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We experimentally investigate the synchronization of driven metronomes using a servo motor to
impose external control. We show that a driven metronome will only synchronize in a narrow range
near its own frequency; when we introduce coupling between metronomes, we can widen the range
of frequencies over which a metronome will synchronize to the external input. Using these features,
we design a signal to synchronize a population of dissimilar metronomes; separately we design a
signal to selectively synchronize a subpopulation of metronomes within a heterogeneous population.
Published by AIP Publishing. https://doi.org/10.1063/1.5052652

In this work, we experimentally investigate the synchro-
nization of a population of metronomes (interacting or
not), when they are driven by an external control sig-
nal. We introduce the concept of targeted synchronization,
i.e., the possibility of designing a signal that selectively
synchronizes only a subpopulation of oscillators within a
heterogeneous population. We explore the properties of
the driving signal which are needed to observe targeted
synchronization in our experimental setup. Applications
of this study range from mechanics, where a population
of metronomes can be used as an analog frequency iden-
tifier for an unknown driving signal, to medical therapies,
where external driving signals are often introduced to
either synchronize or desynchronize the activity of specific
cells in the body.

Oscillator populations driven by external signals arise
in numerous biological systems and medical therapies. Pace-
maker cells regulate synchrony in the beating of the heart,1,2

as do artificial pacemakers. In the case of deep brain stimu-
lation, the signal delivered into the brain with a surgically-
implanted electrode is thought to disrupt undesired synchrony
caused by disease.3 The day-night light cycle synchronizes
the cells of the suprachiasmatic nucleus.4,5 This entrainment
of the suprachiasmatic nucleus in turn regulates numerous
metabolic processes in both plants and animals.4,6 Numerous
studies demonstrate the role of the Circadian clock in mem-
ory and learning.7 Shift workers have long been known to be
at increased risk of coronary heart disease.8

Many studies explore strategies for the control of popu-
lations of coupled oscillators. References 9–11 showed how
a complex network can synchronize on a desired time evo-
lution when an external control signal is added to a cer-
tain subset of the nodes. Antonsen et al.12 and Childs and
Strogatz13 investigated driving of populations of coupled
phase oscillators. The emergence of certain synchronization
cluster patterns in a network with symmetries depending upon
an external control action was recently studied by Gambuzza
et al.14

The recent literature has also explored how a uniformly-
experienced coupling can cause multiple qualitatively dif-
ferent behaviors within a population. In the chimera state,
parts of a population synchronize while other parts do not;15

various work studies chimeras with delayed coupling,16,17

chimeras in heterogeneous networks,18 and chimeras in non-
locally coupled oscillators.19 Certain neurological disorders
are associated with specific frequencies within the brain
behaving differently; up to 85% of patients with traumatic
brain injury exhibit abnormal delta waves;20,21 patients with
alcoholism exhibit abnormal delta and theta waves.22 Elec-
troencephalogram (EEG) neurofeedback therapy, in which a
specific frequency from an EEG is isolated and fed back into
the brain, has been shown to be an effective treatment for
attention deficit hyperactivity disorder (ADHD);23 in mice
with Alzheimer’s disease, optogenetic driving with gamma
frequency light (and only gamma frequency) was shown to
reverse harmful amyloid accumulation.24

We introduce the concept of targeted synchronization, in
which the appropriate choice of driving causes some parts of a
population to synchronize while not synchronizing other parts
of the population that receive the same driving. The targeted
control of elements within a population appears to be of broad
interest in a variety of disciplines; however, little experimen-
tal work has been performed. Here, we explore this problem
experimentally and develop strategies to enforce targeted syn-
chronization, where certain oscillators synchronize and others
do not. In particular, we design an external driving signal that
causes selective patterns of synchronization.

Since Huygens’ observation of the synchronization of
two clocks on a beam,25 synchronization of mechanical oscil-
lators has been an area of theoretical26 and experimental27,28

study. Although several studies experimentally investigate
coupled mechanical oscillators27–29 or experimental driving in
other systems,30–32 there are few that study driven mechanical
oscillators.

We explore the synchronization of metronomes with two
kinds of externally provided forcing: direct and indirect.
With direct driving, a servo motor is rigidly attached to the
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platform on which the metronomes rest; the platform is thus
unaffected by the metronome motion. The metronomes on the
directly driven platform do not communicate (see supple-
mentary material, Sec. 1). With indirect driving, the platform
receives the input through a spring; the platform moves in
response to both the external signal and the motion of the
metronomes on the platform. We explore how the driving fre-
quency influences synchronization. We show that metronomes
will only synchronize (or in the case of driving, mutually
entrain) if driven near their natural frequency; we show that
the indirectly driven metronomes synchronize with less exter-
nal driving because their mutual coupling aids synchrony.
Utilizing this observation, we demonstrate that metronomes of
different natural frequencies can be selectively synchronized
with a properly chosen input signal.

Figure 1 shows our experimental setup. The system con-
sists of 2 platforms; The Directly Driven Platform (DDP) is
connected to the servo through rigid joints and the Indirectly
Driven Platform (IDP) is connected to the DDP through a
spring. Each platform supports up to 4 Wittner Taktell Super-
Mini metronomes in a line. For further details about the
experimental setup, see Refs. 33 and 29. We place UV sen-
sitive dots on both the metronomes and platforms; these dots
glow when illuminated by a blacklight in a dark room. We take
videos with a typical DSLR camera at 60 frames per second;
we then analyze these videos with the Matlab video analysis
toolbox to measure the horizontal positions, Xi(t), and vertical
positions Yi(t), of the metronomes and platform dots.

We drive the DDP with a Quanser SRV02 Rotary Servo
Base Unit which we control with Matlab’s Simulink package.
We can input any driving signal d(t) (i.e., sinusoidal, trian-
gular, arbitrary, etc.) to the motor. We have manually tuned
a PID controller up to a cutoff frequency of 2 Hz (240 BPM)
with no steady state error in the ramp response; as a result, the
motor arm angle strictly follows the driving signal in the fre-
quency range of interest. The maximum angular displacement
of the driven swing arm is �max = arcsin[(La/Lm sin(π/8)] ∼
0.24 rad; under these conditions, we use the small angle
approximation, giving �1(t) = 0.6d(t).

From the horizontal displacement, Xi(t) − 〈Xi(t)〉t, of
each platform dot, we identify the peaks of the oscilla-
tory motion. We compute the platform phase using peak-to-
peak linear interpolation, �(t) = 2π [(t − Fn)/(Fn+1 − Fn)],
where Fn represents the time of peak n. To compute the dis-
placement of the metronome arm, we subtract the platform
position. We then obtain the phase of each metronome, φi,
with peak identification and linear interpolation.

In a population of metronomes, we define the second
Kuramoto order parameter 0 ≤ r ≤ 1 of a population of N
metronomes as the modulus of the vector that averages twice
the phasors of the population,34

r(t) = 1

N

∣∣∣∣∣

N∑

i=1

exp[j 2φi(t)]

∣∣∣∣∣ , (1)

where j = √−1. Recall that a metronome ticks each time it
reaches its maximum horizontal displacement, or twice per
oscillation. This symmetry in metronome motion allows both
in-phase and anti-phase synchronizations (depending only on

FIG. 1. Experimental Setup. (Top) Schematic of the experimental setup. The
total mass of each platform with metronomes is M = 1.6 kg. The left platform
is the Directly Driven Platform (DDP), on which the platform exactly follows
the input of the servo motor; there is thus no coupling within the population
of metronomes. The right platform is the Indirectly Driven Platform (IDP),
where servo input enters through a spring; the platform moves in response
to both servo input and metronome motion so there is coupling amongst the
metronomes. (Bottom) Picture of the experimental setup. The component in
the oval is the Quanser SRVO2 Rotary Servo Base Unit.

initial condition); the second Kuramoto order parameter is
unity for both in-phase and antiphase synchronizations and
thus captures either kind of synchronization. A low value of
r, on the order of 1/N , is consistent with uniformly randomly
distributed phases in the range [0, 2π ]. Note that we com-
pute order within the metronomes on each swing, not between
swings. The metronomes on the DDP are not coupled; the
order reflects the number of single metronomes entraining to
the driving. With the order, we can directly compare behavior
on the DDP and the IDP. Many studies of driving exam-
ine whether the driven oscillator frequency locks with the
driving; the order parameter measures if the driven oscillator
frequency and phase lock with one another.

We can set the driver to different frequencies and ampli-
tudes. The general equation for the angle θi(t) of a metronome
on a platform with a time-varying swing angle �j(t) is29

θ̈i + f (θi, θ̇i) + ω2L

g
cos(θi)�̈j = 0, (2)

where ω is the metronome nominal frequency (ω = BPM ·
π/60, since two beats correspond to one oscillation period)
and f is the non-linear function describing the metronome
motion. To compare experiments with different metronome
frequencies and different driving signal frequencies, we tune
the amplitude of the driving signal so that the maximum
effect of the driver on the metronomes is equal in each swing.
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Experiments on the DDP and the IDP are performed sepa-
rately so that the driving is tuned for the platform of interest.
We choose driving amplitudes for each swing so that the maxi-
mum acceleration moduli are equal, �̈max

1 =�̈max
2 . For the DDP,

a driving signal of d(t) = A sin(�t) gives

�̈max
1 = max

t
|0.6A�2 sin(�t)| = 0.6A�2.

For the IDP, neglecting the effect of the metronomes motion
on the IDP, the swing angle �2(t) follows

�̈2 + νs

M
�̇2 + g

L
�2 + κ

M

l

L2
(�2 − �1) = 0,

where νs = 0.27 kg s−1 is a damping parameter, obtained by
the time needed for the free-swinging platform to stop its
motion after an initial perturbation (∼ 30 s). Since �1(t) is
proportional to the servo input d(t), we can compute the
transfer function of the indirectly driven swing angle as

G�1→�2(�) = κl

ML2(i�)2 + L2νs(i�) + MLg + κl
.

|G�1→�2(�)| is the ratio between the energies that the driver
transmits to the indirectly driven platform and the directly
driven platform. In the top panel of Fig. 2, we show the vari-
ation of |G�1→�2(�)| as with variation in frequency; note the
resonance peak at ω = 160 BPM. To limit the effect of this
peak, in what follows we use driver frequencies smaller than
120 BPM. We choose 72 BPM as the minimum frequency,
since the metronomes’ frequencies in this range can be uni-
formly tuned with a step of 4 BPM. In the bottom panel of
Fig. 2, we report the IDP frequency response in the range of
analysis; experimental data acquired to validate the theoretical
results is shown by red circles. Note that another small reso-
nance peak (not predicted by the linearized model) is present
at 80 BPM; we use these experimental values of |G�1→�2(�)|
to calculate the driving amplitude for later experiments. The
peak is at 80 BPM, exactly half the frequency of the major
resonance peak at 160 BPM, and can be explained looking at
the nonlinear driven pendulum model.35

We explore the emergence of synchrony in response to
a driving force on the DDP and the IDP. We manually start
96 BPM metronomes in a roughly synchronous condition.
Different initial conditions do not affect the results; when
synchrony occurs, this state includes some metronomes in-
phase and some anti-phase with respect to the platform. We
apply sinusoidal driving, scanning over a range of frequencies
(� = 88–104 BPM in increments of 4 BPM) and maximum
angular accelerations (�̈max

i from 2 rad s−2 to 10 rad s−2). We
report results for a larger range of driving frequencies in Sec. 3
of the supplementary material.

Figure 3 shows the Kuramoto order of the metronome
population time-averaged over the last 30 s of the experiment
(each experiment is 2 min long). For each experiment, we also
report either the time needed to achieve a constant Kuramoto
order or the minimum and maximum order parameter value
when it fails to reach a steady order value. The response of
the DDP, shown in the left of Fig. 3, demonstrates that the
population of metronomes acts as a frequency selector, i.e.,
we only observe frequency and phase synchronization when
the driver and metronome frequencies are the same (96 BPM).

FIG. 2. Frequency response of the indirectly driven platform. (Top) Calcu-
lated transmitted energy, G�1→�2 (�), for full range of possible metronome
frequencies. The dashed red lines indicate the range of frequencies plotted
in the bottom panel. (Bottom) Diagram of frequencies between 72 BPM and
120 BPM. The red circles are experimental data.

When synchronization is achieved, the Kuramoto order value
is around 0.98 (white in the figure); the metronome phases
synchronize in less than 20 s. Note that there is a lower
threshold (black dotted line in the figure) in the acceleration,
�̈max

i , needed to achieve global synchronization. Below this
threshold, the Kuramoto order of the metronome population
varies over time; the amplitude of this variation grows with
decreasing forcing.

When we drive the DDP with a different frequency (� �=
96 BPM), we never obtain a constant Kuramoto order greater
than 0.8 for the range shown in the figure. The constant sub-
unity values arise from small phase offsets; the metronomes
oscillate at roughly the driving frequency but maintain phase
offsets not equal to zero or π . For example, at � = 100 BPM,
all the metronomes tick within 0.15 s (for �̈max

1 =8 rad s−2)
and 0.08 s (for �̈max

1 =10 rad s−2) of one another, while 0.6 s
elapses between two ticks for a 100 BPM metronome. Further
increasing �̈max

1 to 12 rad s−2 (not in figure) at this frequency
produces synchronization of the population at 100 BPM; note
that to achieve synchronization at this frequency, we need
twice the angular acceleration required for � = 96 BPM. We
observe periodic oscillations of the order when the accelera-
tion given by the driver is less than the threshold. In this case,
the metronome amplitudes oscillate quasi-periodically while
the frequency stays roughly at the natural value (96 BPM),
see supplementary material, Sec. 4. For � = 88 BPM and
�̈max

1 = 10 rad s−2, we observed amplitude death36–38 in one
to two metronomes over several repetitions, see Sec. 4 of the
supplementary material.

When we compare the DDP (left panel) and the IDP
(right panel), we see that the exchange of energy between the
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FIG. 3. Average Kuramoto order for four 96 BPM metronomes with different driving frequency, �, and maximum driven acceleration, �̈max
i . (Left) metronomes

on the DDP, (Right) metronomes on the IDP. For each experiment we report either the time for the Kuramoto order parameter to reach a constant value or
the maximum and minimum values of the Kuramoto order as it varies with time (reported in brackets). AD stands for amplitude death36 and means that the
metronome amplitude goes to zero for the experiment. The black dotted lines indicate the angular acceleration threshold required to synchronize at � = ω.

metronomes and the platform which is possible on the IDP
facilitates the mutual entrainment of the population to driving.
Although the metronomes exchange so little energy in the
absence of driving that they cannot synchronize, this small
difference between the IDP and the DDP produces a large
qualitative difference in synchronization between the two.

When synchronization is not achieved, the average order
is lower and the oscillations of the metronomes are always
quasi-periodic.

The IDP exhibits synchrony even with a driving fre-
quency different than but close to that of the metronomes. The
synchronization tongue39 of the IDP is asymmetrical; it is eas-
ier to synchronize the metronomes when the driving is faster
(i.e., when � > ω). This asymmetry was also present on the
DDP, although less pronounced.

The results we present are not specific to the metronome
frequencies we have selected. Figure 4 reports the order
observed in a population of 4 metronomes with 13 differ-
ent natural frequencies (the available metronomes settings
between 72 BPM and 120 BPM) driven with a signal just
above the synchronization threshold for frequencies that dif-
fer within ±8 BPM of the metronomes frequency. From
Fig. 3, we see that synchronization begins at �̈max

1 = �̈max
2 =

6 rad/s2 (see Table 2 in the supplementary material for the
values of A used); we use this driving to drive metronomes
of different frequencies. For the DDP, we omit ω = 72 BPM
and for the IDP, we omit ω = 72–84 BPM because the ampli-
tude of the computed driving signal exceeded the maximum
amplitude the servo-motor can generate. Again, for all the
analyzed frequencies, we only observe total frequency and

phase entrainment (average Kuramoto order > 0.96) in the
DDP when the driver and the metronome frequencies are the
same, thus confirming the capability of the metronomes’ pop-
ulation to act as a frequency selector. Note that metronome
selectivity works better at higher frequencies, since the higher
frequency curves exhibit sharper peaks (see Fig. 4). On the
IDP, we again see that metronomes synchronize across a wider
range of driving frequencies.

To better underline this property, we place 4 metronomes
with 4 different natural frequencies (104 BPM, 108 BPM,
112 BPM, and 116 BPM) and impose a driving signal with
frequency 110 BPM and an amplitude which slowly increases
with time for a total of 300 s. Figure 5 gives the 20 s moving
average of the order of this population of metronomes both on
the DDP (thick cyan curve) and on the IDP (thin red curve),
as a function of the maximum acceleration of each platform
�̈max

i . The acceleration needed to synchronize the population
on the IDP is less than for the DDP. In the IDP, we see that
the order jumps twice, first when the three fastest metronomes
synchronize (around �̈max

2 = 5 rad s−2), and second when the
slowest metronome joins the other three (around �̈max

2 =
11 rad s−2). We expect the slowest metronome to synchronize
with the most effort; slower metronomes require more accel-
eration to experience the same magnitude of forcing in Eq. (2).
We also saw in Fig. 3 that the synchronization region is asym-
metric toward faster frequencies. On the other hand, the DDP
remains disordered until around �̈max

1 = 12 rad s−2.
Conversely, one might prefer to exploit the heterogene-

ity of a system. Consider a population composed of two
subpopulations with different frequencies; can we drive the

FIG. 4. Average Kuramoto order of a
population of four metronomes. On each
line, the population is tuned at a differ-
ent natural frequency (see legend). The
driving signal frequency is in the neigh-
borhood of the metronomes natural fre-
quency, with amplitude selected in order
to be just above the same-frequency syn-
chronization threshold. DDP and IDP are
in the left and right panel, respectively.

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-039894
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FIG. 5. Average Kuramoto order of a popu-
lation of 4 different metronomes (natural fre-
quencies ranging from 104 BPM to 116 BPM)
driven with a signal with amplitude that slowly
increases in time.

system in order to selectively synchronize each or both the
subpopulations? Since the DDP behaves more strongly as a
frequency selector, we place on it 4 metronomes with 2 differ-
ent natural frequencies (two of them at 100 BPM and the other
two at 116 BPM). We then drive the system with the following
signal:

d(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if t ∈ [30, 60],
0.3 sin(116/120 2π t), if t ∈ [30, 90],
sin(100/120 2π t), if t ∈ [90, 150],
0.3 sin(116/120 2π t)

+ sin(100/120 2π t), t > 150.

The result of this experiment is reported in the upper panel of
Fig. 6.

When only one driving signal is present, the correspond-
ing population of metronomes synchronizes. With both har-
monics, both subpopulations synchronize, each at its own
natural frequency (i.e., the metronomes inside each subpop-
ulation are synchronized, but those from two different sub-
populations are not). We chose the amplitude of the driving
signals so that the acceleration from driving in Eq. (2), �̈max

i ,
is constant. We observe that, in order for the two populations
to synchronize separately, we need the two natural frequen-
cies of the metronomes to be at least 12 BPMs apart (roughly
10% of the natural frequency). We perform the same experi-
ment on the IDP; see the lower panel of Fig. 6. We change the
amplitudes of the driving signal according to the experimental

values from the right panel of Fig. 2 in order to keep the
same maximum acceleration of the two platforms. Although
we observe targeted synchronization on the IDP too, the pop-
ulation takes longer to synchronize and is less synchronized
after this longer transient.

We show that the entrainment of driven metronomes
varies depending upon the presence of coupling within the
population. With no population coupling (on the DDP),
entrainment occurs only when the natural metronome fre-
quency is close to the driving frequency; when we allow
population coupling (on the IDP), entrainment occurs when
the driving frequency differs by a certain amount from the
natural frequency. We have experimentally verified that these
results are robust even to changes in the waveforms of the
driving signal (i.e., triangular, square, etc.). The entrainment
to driving (as on the DDP) is typical for forced nonlinear oscil-
lators; similar dynamics occurs in predator-prey models,40

love dynamics,41 and experimental optics,42 among others.
However, the synchronization range of the metronomes is
unusually narrow (see supplementary material, Sec. 3) and
shrinks if we add more metronomes. This observation sug-
gests the possibility of using a metronomes population as an
analog frequency identifier for an unknown driving signal.

We chose to keep the model for metronome nonlinear-
ity in Eq. (2) generic, f (θi, θ̇i), as we found that the Van
der Pol-based model, which is generally used when study-
ing metronome synchronization,28,29,33 was not suitable for

FIG. 6. Kuramoto order of two popula-
tions composed by two 100 BPM (green)
and two 116 BPM (red) metronomes on
the DDP (upper panel) and on the IDP
(lower panel). The driving signal changes
at t = 30, 90, 150 as written in the figure.

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-28-039894
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several reasons: (1) The model frequently predicts driven
solutions with amplitudes of π/2, larger than physically possi-
ble in the metronome. (2) The model cannot predict amplitude
death, which we observed experimentally (see supplementary
material, Sec. 4.2). (3) The model does not predict the
amplitude and frequency variation we observe in the uncou-
pled metronome (see supplementary material, Sec. 1). (4)
We did not find a satisfactory fit with the model when the
driving frequency equaled the metronome frequency (when
� = ω). In Sec. 3 of the supplementary material, we also
show that the Van der Pol model predicts much broader
entrainment to driving than we experimentally observe. The-
oretical studies on metronomes sychronization should thus
rely on more physically-grounded models, such as the ones
proposed in Kapitaniak et al.43

In this paper we have characterized how a population of
nonlinear oscillators responds to external driving, both with
and without internal coupling. This controlled experiment is
analogous to a variety of biological examples; for example,
the entrainment of the cells of the suprachiasmatic nucleus
(SCN) to the external forcing of the sun is responsible for the
circadian rhythm. Like the metronomes, the synchronization
of the circadian rhythm occurs only near the natural frequency
of the SCN cells.5,44 We have described how the environment
of an experimental nonlinear oscillator can influence its syn-
chronization to an externally-imposed driving signal. We have
also explored the idea of targeted synchronization and show
how the presence of internal coupling within a heterogeneous
population can interfere with the ability of a targeted group to
synchronize. Many medical therapies apply an external sig-
nal to populations with coupling; that internal coupling is
not always fully known. Further characterization of the influ-
ence of internal coupling on synchronization may enable the
improvement of such therapies.

SUPPLEMENTARY MATERIAL

See supplementary material that has four sections focus-
ing on:

1. Metronome behaviors and a quantification of their inter-
action through the DDP and the IDP.

2. The computation of the driving amplitude A in order
to maintain the maximum platform acceleration �max

i
constant.

3. A discussion on the frequency selectivity observed on the
DDP.

4. A description of the interesting nonlinear behaviors
(quasi-periodicity, amplitude death) described throughout
the paper.
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