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conditions provide a framework which encompasses some notable approximation
kernels including splines, cardinal functions, and many radial basis functions such
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1. Introduction

Among the many notions of smoothness spaces of functions on R? are spaces of fractional smoothness
which may be defined by, or intimately related to, a wavelet expansion. The primary examples to be
considered here are the Besov and Triebel-Lizorkin spaces. For an overview of the basic facts about these
spaces, the reader is invited to consult [30] and the many references therein. DeVore, Jawerth, and Popov [16]
studied approximation orders for best N-term approximation of functions from these spaces with respect
to a given wavelet system; in particular, it was shown that if f is in the Triebel-Lizorkin space F; (where
s € Ry is the smoothness) then the error of the best N-term approximation in L, (for p = (1/7 — s/d)™!)
via many wavelet systems is O(N~%/%).

This article studies N-term approximation of functions in these smoothness spaces from nonlinear spaces
associated with different kernels, which are typically related to a spline system or a radial basis function,
i.e. one for which ¢(z) = ¢(|z|) for a univariate function .

More specifically, suppose we have a family of continuous kernels depending upon some parameter,
(da)aca for some unbounded A C (0, 00). Considering the following nonlinear approximation space:
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N
Py = Zajgbaj(.—xj) : (a;) € C,(ay) C A, (z;) R}, (1)

we seek to answer the following problem.

Problem 1.1. Find sufficient conditions on the family (¢,) such that for f € F?
such that

4> there exists an Sy v € O

If — Syl < CpN—/

Similar problems have appeared in various contexts throughout the literature. In the shift invariant
setting, de Boor, DeVore, and Ron investigated similar problems, [6,7]. The methodology used in those papers
exploits features of the periodization of |ng|2 to provide approximation results analogous the one above. In
[31], Kyriazis and Petrushev develop sufficient conditions for unconditional bases in Triebel-Lizorkin spaces
involving moment conditions from which an answer to their version of the above problem arose. Interestingly,
although their techniques are different, there is overlap in the examples that they produce. In [17], DeVore
and Ron study approximation from both linear and nonlinear spaces using kernels that arise as the solution
of certain elliptic differential operators. This technique encompasses some growing kernels, but does not
allow the use of some notable examples, such as multiquadrics. Hangelbroek and Ron [26] analyzed best
N-term approximations via Gaussians. The analyticity and rapid decay of the Gaussian kernel allows for
very fast approximation in theory; however, their analysis does not directly extend to allow kernels of finite
smoothness, and certainly not growing kernels. Additionally, Buhmann and Dai [12] carried out a related
analysis for quasi-interpolation schemes based around polynomial reproduction. Our approximation scheme
(detailed in Section 3) is similar to theirs in that it is essentially one of quasi-interpolation, but the kernel
they use is formed indirectly from the initial kernel to guarantee polynomial reproduction, and so is of a
different form. Our main results give sufficient conditions on finite-smoothness kernels (both decaying and
growing ones) which allow for the desired approximation orders using properties of the kernel. Some notable
implications of the current analysis are that other growing kernels such as the multiquadrics of all orders
may be used, and also our methods allow for the use of cardinal functions, which gives rise to some new
nonlinear methods involving interpolation. The use of cardinal functions in turn allows for error estimates
for Sobolev spaces, which cannot be achieved directly from the Besov and Triebel-Lizorkin space estimates.

The primary concern of this work is to demonstrate that the approximation orders of the nonlinear spaces
®  associated with a large variety of kernels match the known rates for nonlinear wavelet systems, which
are determined by the smoothness of the target functions. However, in the course of the proof, we exhibit a
concrete approximant to a given function f which attains the error bound of O(N~*/4). As an intermediate
step in the procedure, we use the fact that such f € F7  admits a wavelet expansion of a certain type,
though the choice of the wavelet is not overly important, and we stress that the use of wavelets here is
merely an intermediate step in the analysis.

Specifically, we employ a two-stage approximation process as follows:

Step 1: Form a linear approximation space which provides extremely good error bounds for approximating
mother wavelets which are bandlimited Schwartz functions. Then truncate the approximant. If ¢ is the
wavelet, let Ty be its truncated approximant from the linear space, which is also an N-term approximant
in ® N-

Step 2: Given a wavelet expansion f = Y, frr, where I are dyadic cubes, and ¢ is as in Step 1,
approximate Sy n = Y, fiTn, 1, for some cost distribution (Ny) with )", Ny < N.

For a particular cost distribution (i.e. choice of (N;) based on the wavelet coefficients (fr)), this S n
obtains the desired error bounds for the given f. In general terms, we now state the main theorems contained
below (Theorems 4.5 and 7.6):
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Theorem. Suppose that (¢a)aca is a family of kernels satisfying conditions (A1)-(A6) or (B1)-(B4) below.
Then for the appropriate choices of parameters s,,q, and p, every f € F; , has an N-term approzvimant
S¢.n € ®n such that

If = Salle, <CN=*/f|p: .

As a final note, let us point out that the approximation spaces of the form ® 5 considered here are both
nonlinear as mentioned above, but also nonuniform in the sense that no structure is required a priori on
the shifts (z;) — although the particular method illustrated in the sequel will use regular shifts at different
levels. This is in contrast to the shift-invariant space literature, in which the approximation spaces are of the
form span’? {¢(- — j) : j € Z¢}, though the resulting approximation bounds are similar. For approximation
and structural results of these spaces, consult [6,7,9,27-29]. Typical results therein apply to approximating
(or interpolating) Sobolev classes, and provide approximation rates of order h*, where k is the specified
smoothness of the Sobolev space. Approximation spaces which are nonuniform but linear, i.e. of the form
span’?{¢(- — x;) : j € Z9}, have been studied for quite some time as well. In recent works, these have
been called quasi shift-invariant spaces, e.g. [3,15,20,24]. For a more extensive history, Wendland’s text
on scattered-data interpolation is an excellent reference [45]. For approximation orders for interpolation of
Sobolev functions similar to the theorem above, consult [21,32].

The rest of the paper is laid out as follows: Section 2 begins with some basic definitions, followed by
the conditions on decaying kernels for rapid approximation of bandlimited Schwartz functions in Section 3.
Approximation orders using nonlinear approximation spaces associated with these kernels are given in
Sections 4 and 5, and examples of kernels satisfying the regularity conditions are given in Section 6. Section 7
provides sufficient conditions on growing kernels to allow for similar approximation rates, and examples of
such families of kernels are given in Section 8. In Section 9, we move the discussion to the related topic of
cardinal interpolation, which allows us to give approximation orders for broader classes of smooth functions,
namely Sobolev spaces. This analysis also develops some Greedy interpolation schemes related to Gaussians
and multiquadrics. To give a better idea of the limitations, a special case of the cost distribution for the
approximation scheme is discussed in more detail in Section 10.

2. Preliminaries

Let .7 be the space of Schwartz functions on R¢, that is the collection of infinitely differentiable functions
¢ such that for all multi-indices a and 3, sup ’anﬁ d)(a:)‘ < 0. The Fourier transform and inverse Fourier
zeR4

transform of a Schwartz function ¢ are given, respectively, by

H(&) 1= 2)e Hem) dg d, Viz) = 71 eH@:8) T d
56 = [ r, €eRY 0V() = o [ OOt 2 e,
Rd Rd

where (-, -) is the usual scalar product on R%. Let 2 C R? be an open set. Then let L,(2), 1 < p < oo, be
the usual space of p-integrable functions on  with its usual norm. If no set is specified, we mean L, (R?).
Additionally, we will use Ny to denote the set of natural numbers including 0, and R to denote the positive
real numbers, i.e. (0, 00).

We denote by F? , the Triebel-Lizorkin space (defined in Section 4, where s € Ry essentially determines
the smoothness of the functions in the space). For 1 < p < oo and k € N, let W;(Q) be the Sobolev space
of functions in L,(€2) whose weak derivatives of order up to k are also in L,(€2). The norm and seminorm
on the Sobolev space may be defined, respectively, via

1 lwe) = Ifll,@ + [flwe@), and  |flwre) = max 1D fllL, -
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Let PWg be the Paley—Wiener space of bandlimited Lo functions whose Fourier transform is supported
on S. If B(0,R) is the Euclidean ball of radius R centered about the origin, define the space . =
& N PWpg(o,r); in the sequel, R will be determined from the context. For a set S, let xs be the function
which takes value 1 on S and 0 elsewhere, and let |S| denote the Lebesgue measure of the set S. We use C
to denote constants, and where appropriate add subscripts to emphasize the parameters they may depend

on.
3. Regularity criteria and approximation in .¥p

We begin with Step 1 described above, which is to give criteria on kernels which allows for rapid approx-
imation of bandlimited Schwartz functions from a linear space involving the kernels. For now, we resolve
our problem for decaying kernels, and turn to growing ones in later sections. Let A be an infinite subset
of (0,00), and (¢ )aca be a family of continuous kernels depending on the parameter «, and let ® 5 be as
defined in (1).

Letting R > 0 be fixed, but arbitrary, and B := B(0, R), we introduce the following regularity conditions
and assume that they hold from here on unless otherwise noted.

(A1) @y is closed under translation and dilation.
(A2) Each ¢, is continuous, and sup||¢a|r.. < C.
a€cA

—

ba ( +£7T]/h)
ba

and that for every k € Ny, there exists an o € A such that for every a > ay, go(h) < ChF for some

(A3) Let Aqp,j =

. Suppose that ‘7502 lAa,n il (B) < gal(h) for some function g (h),
J

absolute constant C.
(A4) For every k € N, there exists an o), € A such that for every o > a}, D7(1/¢n) € Lao(B) for every
| < k.
A5) For every k € N, there exists an o € A such that for every a > of, |¢q ()| = O(|z|72F), |2| = cc.
k k
(A6) For every a € A, |¢o(z)| + |¢a(z)| < C(1 + |2])~¢=¢ for some C,e > 0.

The analysis in [26] is aided by the fact that the Gaussian has rapid decay — a requirement we drop in
order to consider a family of general inverse multiquadrics which serves as the typical example of a collection
of kernels which satisfies (A1)—(A6). These conditions allow us to provide norm and pointwise estimates
for functions in .#g. The requirement (Al) is to ensure the ease of approximation of the wavelet basis,
while (A6) allows one to use the Poisson summation and Fourier inversion formulas (of course (A6) may be
replaced by any other condition which allows these to hold). The utility of the remaining criteria will reveal
itself more clearly in the sequel, but essentially (A2)—(A5) guarantee that after some value of the parameter
«, the kernels are sufficiently localized, smooth, and decaying. Since the Triebel-Lizorkin spaces are defined
by wavelet systems, these criteria guarantee that for any resolution level of the wavelet, the parameter may
be chosen so that the kernel is sufficiently localized. There are other feasible ways to determine such criteria;
for instance, various sets of sufficient conditions can be found in [12,17,26,31], but our aim here is to give
readily checked conditions based on the kernels themselves. Presently, we define an approximation suited
to our purposes.

For f € /g and ¢ € (¢,), we first define f, to be the function such that j”; = f/qAS The main obstruction
is that fs need not be smooth. Nevertheless, we define

Tif(z) =Y folhj)p(x — hy).

jez?
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Proposition 3.1. If a > ag and h < w/R, then for every f € g,

If = hTE Lo < ClFllzygalh),
where C' > 0 is independent of f and h.

Proof. By the inversion formula and the Poisson summation formula (both are justified by (A6)),

At g hd oi{Eh3)
hiT f f qu d¢

jGZd

1 R 2(6 x)
_ ) h i(x,27j/h) de.
(QW)dR[f(S _ 20 jEEZd¢f+ mj/h)e 3

The j = 0 term is nothing but f(z), hence

1 [ |etew
fla) — h'Tf f () = £ | == 6(& +2mj/n)eit®2mi/M) | de.
" (2m)d R/ ¢(5) pord

Recalling that supp( f) C B, we have the straightforward estimate

If = hiTE fll., <

1 .
274 o MAanille | IFlL:
j#0

which is at most C’||ﬂ\nga(h) by (A3). D
Note that by the restriction o > «y, above, we mean that for any ¢ € (¢po)a>a,, the conclusion of the

proposition holds.
We move now to truncate our approximant to put it in the space ® . Define Tg f via

> folh)e(x — hy),

JEZINBy,

where By, is the ball of radius h=2 centered at the origin. This is a finite sum of N ~ h~2% terms, hence
Tg f € ®n. The next pair of propositions show that this truncated approximant performs quite well both
in Lo, and pointwise.

Proposition 3.2. Let k € N and f € /. For h < w/R, there is a constant Cy, > 0, independent of h, so
that for all o > max{ag, o) 4},

If = hT f|n.. < Crih®.

Proof. Note that the norm in question is at most C|| f|| 2, ga(h) +hd||T£f—TszLm by the triangle inequality
and Proposition 3.1, but the first term is at most thk by (A3) and the assumption a > . Thus, it remains
to show that HT,’if — T2 fllz.. < Ch*=?. By (A2), we have

ITEf = Tof e <C S 1fa(hi)l. (2)

l7]1=h=2
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-~

Now if @ > a4, then for all multi-indices |y| < k + d, D7(1/¢) € La(B). Consequently, by standard
Fourier transform techniques,

fs@l< | D ID7(F/d)lle, | (14 ),

|v|<k+d

which is, by Leibniz’s rule, the Cauchy—Schwarz inequality, the fact that f € ., and (A4), majorized by

S S IDE fln, [0 (013)

(L4 Ja))*71 < Cpa(L + |a)) 75

[v|<k+d B<y L2
Thus the series on the right side of (2) is at most
1 oo
Crah™ " Y g < Cpah™ / L
il
[71>h h—2

concluding the proof. O

Proposition 3.3. Let k € N and f € Zg. Then for all a > max{agg, aly, 4, o)} and sufficiently small h,
there is a constant C, independent of h, such that

£(@) = BT ()| < CE(L+ lal) ™

Proof. First notice that if |z| < 2/h, then (1 + |z|)~% > (h/3)*, and so the desired inequality arises from
Proposition 3.2 (note this requires a > max{aax, %y 4})-

If |z| > 2/h, R*(1+ |z|)~* > C|z/2|~%, and so it suffices to show that |f(x) — hT} f(x)| < C(1+|x|)~2k
in this range. Note that |f(z)| < C(1 + |z|)~2" since it is in .%. On the other hand,

WYTR ()] < B [ fo(hg)| sup |¢(z — hyj)l.

ez g1<h=2

Using the same bound as in the proof of Proposition 3.2, we see that the series above is bounded as long
as a > a,, ;. Moreover, in this case, the series is bounded by a constant times h to a positive power,
in which case, we may say h? > jeza | fs(hj)| < C for some constant independent of k. Next, notice that
|z —hj| > |z|/2, and so if a > o, (A5) implies that |¢(z —hj)| = O(|z — hj|=2*) = O(|z|~2*) for sufficiently
small . Therefore, |h?T} f(z)| < C(1 + |z|)~?* as required. O

Now to make the dependence on N more explicit, we can replace each occurrence of h above with N —1/(2)
and rewrite T}: f as

Tn f(z) = NTV2TY L yen f(2). (3)
We denote by Ny the smallest such N that satisfies the requirements of Proposition 3.3.
4. Approximation in L,, 1 < p < oo

As suggested in Step 2 above, we use wavelets to bridge the gap between .5 and L,. In order to use the
results of Section 3, we need a wavelet system whose generators are in .5 where B = B(0, R) contains the
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support of the Fourier transform of the mother wavelet. Fortunately, such wavelet systems are well known;
for example the Meyer wavelet (see [14,19,35]) forms one such system. So that the proofs extend easily to
arbitrarily high dimensions (see especially Section 7), we restrict to considering multivariate wavelet systems
which are tensor products of univariate ones. Since we use the same methodology as [26, Section 3], we only
list the relevant details adapted to our set up. Using the notation we find there, I = ¢(I) + [0,£(I)]? is a
cube with corner ¢(I) € R? and side length £(I) > 0. Encumbent upon the wavelet structure, we make use
of dyadic cubes, i.e.

IeD:={2"n+[0,1"):meZnecZ.

Let D; be the subset of cubes with common edge-length 27. We will denote by 1 the natural affine change
of variables:

Yr(x) == P((z — c(I))/E(I)).
If ¢ € Sp, then since (A1) is satisfied, we have the following theorem as a direct result of Proposition 3.3.

Theorem 4.1. Let k € N, ¢ € S5, N > Ny and let I € D. There exists ax € A such that for all a > ag,
there is a constant C, independent of N, such that

o — c<I>|)2k_

[r(x) — (Tn)i(z)| < CN—H/4 <1 + D

In particular, Theorem 4.1 says that to approximate any element of the wavelet system, it suffices to
consider the approximant of the mother wavelet under the same affine change of variables.

We will assume throughout that we have a wavelet system ¥ formed from a mother wavelet 1) as described
above. This allows us to use the results of the previous section because we have (for smooth enough f)

f= Z frr.

1€D

To approximate f with IV terms, we begin by assigning to each cube I a cost ¢;, and subsequently a budget

1=

(4)

0, otherwise,

{ ler], ler] = No,

where Ny is the same as in Theorem 4.1 and depends only on the wavelet system. Requiring that >, Ny < N,
we then simply approximate fri; with Ny terms, and set

St = Z J1Tn 1 (5)

1eD

to be our N-term approximant in ® 5 which will exhibit the desired rate of convergence. The cost distribution
depends on several auxiliary quantities, which we define below.

Definition 4.2. Given s, g > 0, define the maximal function M; ,f via

1/q
M qf(x) := <Z Ilsq/dlleqxf($)> -

1eD
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For a fixed dyadic cube I, we define a partial maximal function by

1/q
M;,q,1f () 3=< >, |I'|Sq/d|f1'|q><1’(33)> :

ICl'eD

Now given 7,s,q > 0, we define the Triebel-Lizorkin space F} , via

qu = {f : |f|F$‘q = HMs,quLT(Rd) < 00}7
where | f|p:  is a quasi-seminorm.

For the reader unfamiliar with the Triebel-Lizorkin spaces, it should be mentioned that they may be
viewed from many different equivalent vantage points. While the definition above is in terms of mixed
sequence and function space norms of a maximal function, they may also be defined via a Littlewood—Paley
decomposition, or additionally in terms of a wavelet system; for more details, consult Section 3 of [30].
Returning to the problem at hand, we are now in position to define the cost distribution which will yield the
approximant giving optimal approximation orders. Note this cost distribution may also be found in [17,26].

Deﬁnition 4.3.Let s > 0 and 1 < p < o0. Define 7 and ¢ by 1/7 := 1/p+ s/d and 1/q := 1 + s/d. Let
f € F?,, with the wavelet expansion ) ;.p, fr¢r. The cost of a dyadic cube I € D is

r = |l Mgl
where mg g1 := Sup,epa M q,1f ().

As shown in [26], the sum of all costs is bounded by N. Given (Ny), we can use Theorem 4.1 to see that
we are estimating fry; with Nj translates of the kernel ¢,. Additionally, we can see that for a@ > a:

= R[(!E);

7(z)] < Cr.qmin{1, N=*/} ( dlst(m)

o

)
[Ri(2)] < Craminl,c; ’“”}( dlsgfffi I))

The proof of Theorem 4.5 relies on the following lemma, whose proof may be found in [26].

Lemma 4.4. Let 1 < p < o0 and o > ag, then

< Crya
LP

> 1filRr

1D

S min {1,674} 1

1D

Ly

Theorem 4.5. Given s > 0 and 1 < p < 0o, there exists a constant Cs pq > 0 such that for f € F; , with

1/7=1/p+s/d and 1/q =1+ s/d, there is a function Sy n € ®n so that

Tq?

If = Sywvllz, < CopaN~Ifps,.
In particular, we may take S§ N as in (5).

Proof. The proof is the same as the one given in [26, Theorem 9], mutatis mudandis. O
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While the proof of the main theorem is essentially the same as in [26], it depends on the propositions
in Section 3 which, on account of conditions (A1)—(A6), allow for the use of kernels that have only finite
smoothness.

5. Approximation in Lo

It should be noted that the proof of Lemma 4.4 relies upon the Fefferman—Stein inequality, which is
not valid in L.,. Thus, for L., convergence phenomena, we restrict our attentions to Besov spaces, which
are alternative (slightly smaller) smoothness spaces than the Triebel-Lizorkin spaces which do not rely on
maximal functions in their definitions.

Here, we list the relevant results suited to our set up. It closely matches that of [26, Section 4], thus the
proofs are omitted.

Definition 5.1. For 7 = d/s € (0,00) and g € (0, 00), the Besov space B , is defined by the finiteness of the
quasi-seminorm

1/7
|flBs, = ||k — <Z |fI|T> ;
1€Dy, ‘0

that is

By, i={f €L :|flp:, < oo}

Lemma 5.2. Let k > d and o > ag. Suppose that (ar)iep; is a finitely supported sequence of coefficients;
then

> arpr— > ar[Tw, ] < Cra sup ’aIN;k/d’~
€D;

Ie D; Ie D; Lo

Theorem 5.3. Given s > 0, there exists a constant Cs 4 > 0 such that for f € B, with 1/7 = s/d and
1/g =1+ s/d, there is a function Sy N € ®n so that

If = Spnllie < CoaN ™ fl5: .
For the cost distribution for the Besov space case that produces the function S n, see [26, Section 4.1].
6. Examples
In this section, we provide numerous examples of kernels which satisfy the conditions prescribed above
whose associated N-term approximation spaces @y exhibit optimal rates for nonlinear approximation of
smooth functions.

6.1. Gaussians

This example is due to Hangelbroek and Ron and can be found in [26]. It served as the inspiration for
our analysis.
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Here we will let ¢, be the Gaussian:

bo(z) = e*lw/a\“”

whose Fourier transform is given by

Da(€) = (av/T) D3/a(6).

We check conditions (A1)-(A6) below, which are straightforward since the Gaussian is nice.
Condition (A1) is clear from the definition of ®x and the fact that ¢o(z/8) = ¢as(z). The constant in
(A2) can be taken to be ¢,(0) = 1. The quantity in (A3) is calculated in [26] as follows:

>

770

dal€ +2nj/h)

< Cha(2(n/h — R)) < Coge/™,
~© (2(m/ ) RE

where the constant ¢ > 0 depends on a and R. We may take our parameter ay = 0.

Condition (A4) is checked easily by noting that 1/ b0 = eﬁg, which is in LY since it is continuous. As
with (A3), we may take o}, = 0. Likewise, conditions (A5) and (A6) are both clearly satisfied (with o}, = 0)
because of the exponential decay of the Gaussian.

6.2. Inverse multiquadrics
We will now consider the general (inverse) multiquadric,
Pac(r) = (|z]* + )7,
where | - | denotes the Euclidean distance on R?; ¢ > 0 is called the shape parameter, and we take o € A =

(d+1/2,00). Consider

N
Oy = Zaj¢aj,cj(- —xz;): (a;) CC,(a ) C A,(cj) C RT, (z;) C R4
j=1

Since ®p is manufactured to be closed under translations, we check only dilation. If § > 0, we have
ba,c(0-) = 0¢q,c/5; hence @ is dilation invariant, and (A1) is satisfied.

Condition (A2) is straightforward by noting that ¢, . is decreasing radially when |z| € (0, 00); hence
|pa ()| < 722, which is bounded by ¢~2¢*+! for all @ € A. Condition (A3) requires the use of the Fourier
transform of ¢y ., which is given by (see, for example, [45, Theorem 8.15]):

— 4 21— %_a
Ger@ =t () Ky, §eRM\o), (6)
where
K,(r) = /e*TCOSht cosh(vt)dt, r >0, veR. (7)
0

The function K, is called the modified Bessel function of the second kind (see [1, p. 376]). We note that
®a,c, and consequently its Fourier transform, are radial functions (i.e. ¢q c(x) = ¢a.c(|z])). It is also clear
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from (7) that K is symmetric in its order; that is, K_, = K, for any v € R. Additionally, the decay of the
Bessel function governs the decay of ¢ ., which is exponential away from the origin.
Using the estimates from [23], we may estimate A, j ; as follows:

R d/2—a - ‘
‘Aa,h,j(g)‘ < (m) eCR—clé+2mj/h|

< CQ,RGZCRe_TrCM/h,

where we have estimated the polynomial term with an exponential. Thus the series obtained by summing

2eRe=me/h Consequently, we may take ap > d+ 1/2 to satisfy the condition.

over j # 0 is bounded by Cy, re

Estimates from [23] show that 1/ (ﬁ/a\c is only (2 — d)-times differentiable near the origin, hence we must
have o), > k/2 4+ d/2. Additionally, each of these derivatives are bounded, hence 1/ gzﬁ/a\c € LY° as desired.
Condition (A5) is obvious by taking o) > 2k. Finally, (A6) follows from the decay of ¢, when o € A and
the exponential decay of qﬁ/a\c

As a final remark, our use of the multiquadrics here is not entirely standard in that, typically, a fixed
multiquadric order « is used in a given approximation scheme; however, our method detailed above forces the
use of multiquadrics with differing parameters « to achieve good approximation for the wavelet expansions
in the Triebel-Lizorkin spaces. On the other hand, if so desired, one could specify a given « to be fixed in
the approximation from &, but only after knowledge of the cost distribution for the target function f.

6.3. Matérn kernels

The Matérn kernels are simply the Fourier transform of the inverse multiquadrics, i.e. po () := gi)/a\c(x),
where ¢, . is given by (6). Consequently, p, (&) = (|€]? + ¢?)~. The approximation space associated with

these kernels is closed under dilations since p,..(dx) = §2¢~¢

Pa,cs(z). It is a simple exercise to verify that
condition (A3) holds if & > d/2, whilst the other conditions are also readily checked in a fashion similar to

the inverse multiquadrics.
6.4. Cardinal functions

Associated with many kernels are so-called cardinal functions which exhibit the interpolatory condition
on the integer lattice that the cardinal sine function does, i.e. they are functions L such that L(j) = do j,
j € Z4. Given a kernel ¢, formally define

—~ (&)
L ==t
o) S 6(¢ —2mj)

JjEZA

¢ € R

Then as long as the Fourier inversion formula holds and (;AS decays suitably, one may show that Ly given by
the inverse Fourier transform is a cardinal function. For sufficient conditions on the kernel ¢ for Ly to be a
cardinal function, see [33]. In particular, we assume from here on that $ > 0 on R

Cardinal functions associated with radial basis functions have been studied rather extensively [4,5,10,
11,22,23,25,33,34,36-39,41]. Specifically, the cardinal functions associated with the Gaussian and general
multiquadrics are known to have nice decay (exponential in the former case and polynomial based on the
exponent « in the latter).

In the examples given below, we also have Ly(x) = > ,czq ¢jd(x — j), where convergence is at least
uniform on compact subsets of R%, but in many cases, the convergence is uniform and in Ly(R%). We note
that the impetus for considering such cardinal functions may be found in the ubiquitous literature on spline



1328 K. Hamm, J. Ledford / J. Math. Anal. Appl. 475 (2019) 1317-1340

interpolation (particularly cardinal splines), see for example [8,40] and references therein. For some works
involving splines used in sampling, see [2,43,44].

Lemma 6.1. Let (¢n)aca satisfy (A3), (denote the quantity there by Afé’h’j). Then the associated cardinal
L

functions (La)aca satisfy (A3) (denote the associated functions in the condition by Ay ; .

Loo(B) (1 + Z ”Aﬁ,l,j| Loo(B)>'

J#0
— — Z d)a (§ - 27T€)
_ La(e+2mj/h) _ dale+2ni/h) _ ici

Agn;(6) = — — :
#il®) La(§) $al€) Y Galé+2mj/h — 2mk)

kezd

), and moreover

Yo IAL b lloaim) < C YO IAL, |
#0 #0

Proof. Note that

The series in the denominator on the right is at least &;(g) by the assumption of positivity. Thus

AL (6) < A7, () (1 Y Aii,l,g(g)),
0#£0

and the required inequality follows from summing over j # 0. O

It follows immediately from this that gZ(h) < Cg2(h), where the functions g, are the rates assumed in
(A3).
For a given set of cardinal functions (L,), define the N-term approximation space via

N
Ly := Za’jLaj (_ij> : (aj) C(Cv (aj) CA? (I]) CRd,(C]‘) CR
j=1 J

Note that these spaces are defined to be closed under translation and dilation, so (A1) is automatically
satisfied; this is done because the cardinal functions themselves are not generally preserved under these
operations. However, defining the approximation space this way is not unnatural since often in such methods,
one considers interpolation using cardinal functions for different lattices. Therefore, the use of shifted and
dilated cardinal functions will correspond to interpolation of the wavelet at differently scaled lattices to
form the approximant. We note also that (A2) is satisfied for all cardinal functions since |L,(x)| < 1 for all
x € R? for the examples listed in the sequel.

6.4.1. Gaussian cardinal function

The cardinal function associated with the Gaussian kernel ¢, described in section 6.1 was studied exten-
sively by Riemenschneider and Sivakumar [36-39,41]. In particular, they showed that the cardinal function
decays exponentially away from the origin, as does its Fourier transform, which implies (A5) with o} =0
and (A6). Additionally, for every «, |Lq(z)| < 1 for every x € R, Finally, (A3) follows from Lemma 6.1,
while (A4) is a simple exercise based on the exponential decay of the Gaussian.

6.4.2. Multiquadric cardinal functions

Details on the behavior of the cardinal functions associated with the general multiquadrics may be found
in [22,23] for a broad range of exponents «, whereas the particular cases of &« = +1/2,1,—-k+1/2, k € N
were considered previously [4,10,13].
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In fact, checking the condition (A3) was done in Section 7 of [22] for the univariate cardinal function, while
a different estimate in [23] demonstrates (A3) in higher dimensions. (A4) and (A5) also follow from those
estimates (even with the same parameters ay,aj, o) as in Section 6.2). For any « > d/2, the associated
multiquadric cardinal function satisfies (A1)—(A6).

It should also be noted that the growing multiquadrics ¢g . := (|- |2 4 ¢2)? for B > 1/2 have well-defined
cardinal functions which also satisfy (A1)-(A6) [22,23].

7. Regularity criteria for growing kernels

In this section we investigate the possibilities for growing kernels, which requires a reworking of conditions
(A1)—(A6). Moreover, the approximants defined in this section differ from those previously discussed, but
nonetheless achieve the same approximation orders. To begin, given N > Ny, we seek an M := My term
approximation space

M
Oapi= 4 Y a;00,(-— ;) ¢ (a5) CC,(a;) C A, (z;) CR?
j=1

which is closed under translation and dilation. Relying on the analysis above, we seek functions ¢, such that
a finite linear combination of their translates decay. For the moment, consider the univariate case, where
we could hope to use the divided difference to obtain (A2) and perhaps (A5). In principle and practice,
condition (A3) is the hardest to check. Notice that a growing kernel leads to a singularity at the origin in the
Fourier domain; however, the function ) jez Ai h.j has no such singularity. With this and the formulation
in Proposition 3.1 in mind, we define the bivariate kernel k4 ;, whose Fourier transform in the first variable
is given by

o i i /h)e2riiz/h
Fon(ea) = 30 2EE2 5)(/ g e ®)
JEZ

By (A3), this kernel is well defined for all z, since

[kgn(Coa)lo, <C |14 A7 (s
370

Thus we make our approximation of f € .5 of the form
Tif (@) = [ * k(- 2)(2) (9)

(i.e. the convolution is taken in the first variable) and note that when everything is smooth and decays
well enough, the Poisson summation formula holds and we recover our previous work; that is, Tg f= T}j f.
The advantage of this technique is that we can consider growing kernels from the outset. For illustration
purposes, consider the family of univariate multiquadrics

Tolz) = (22 + ) V2 aeN
We know that by taking sufficiently many divided differences, we will be able to obtain any polynomial

rate of decay. In fact, ¢a (%) = [ 7a |20 (x) = O(|z|72271), where | flon = oy 31—, (=17 (20) (- + 5)-
Notice that for this choice of kernel, we have
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(1 — cos(€ + 215 /h)) T (€ + 275 /R)
(1 —cos(§))*7a(§) ’

AL ps(6) =
so that if we choose h = 1/N, we get

Ta(§+21jN .
a,l/N,j(g) = T(i/;—(gj) = a,1/N,j(f)'

The interplay between the divided difference and the choice of h = 1/N is vital and allows us to proceed.
To do so, we need to truncate our approximation, so we set k;_l/N(-,x) to be the function whose Fourier
transform is given by

/\ é‘ + 27T]N) 2mixj N
(& ) : x5(§);
Banlen = 2, =X
then we define
Ty nf (@) = [f %K)y (o)) (2). (10)

Henceforth we make the following assumptions:
(B1) @, is closed under translation and dilation.
(B2) ¢o = |Ta]n, for some (n,) C N; that is, the kernels are built out of divided differences.
(B3) (A3) holds for each ¢, and h = 1/N.
(B4)

B4) For every k € N and j # 0, there exists & € A and C independent of N such that for every a > ay
and 0 <1<k, D'AT, 1N, € Lo (B), and

Z ||DZA;,1/N,J'||LOO(B) <C.
370

We now use these hypotheses to prove the results analogous to those found in Section 3; note that here
we have B = [—R, R].

Lemma 7.1. There exists ag € A such that for all « > a9, N > R/m, and f € 5,
(/N f@)] < 1 Fll, (1 + ga(1/N)).
Proof. Using (9) and the inversion formula, we have
/N @) < | Fham )|, < 17, (4 ga(1/N)).
the last inequality coming from (B3). O
Proposition 7.2. There exists ag € A such that for all « > ag, N > R/7, and f € S5,

If = (/N)TE p fllo < ClFllLuga(1/N),

where C' > 0 is independent of f and N.
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Proof. We have, from (B3),

@) = UNTE o f@)| < |FY A% s < CIlga/N). o

370 L1(B)

Lemma 7.3. Let k € N and f € #p. There exists a, € A, such that for sufficiently large N, there is a
constant Crj, > 0 independent of N, so that for all o > oy,

If = ﬁ/NfHLOQ < CprpN~"

Proof. On account of (B3) and Proposition 7.2, we have

J@) = NITY @) < |£@) = O/NTE @) + |(N)TE  fl@) = (1/N)T  f(2)
< Oy 90 /N + /NIl D2 148wl
l71>N2
SCf’kN_k. O

Proposition 7.4. Let k € Ny and f € .#g. There exists o), € A so that for all o > o, and sufficiently large
N, there is a constant C, independent of N such that

|f(x) = (1/N)T} )y ()| < ON7F(1 + [of) 7

Proof. Similar to Proposition 3.3, we need only check that if || > 2/h, then

[£(@) = (/N)T} i f (@) < oy (1 1)

Note that since f € .7, |f(x)| < C(1 + |2|)~2*. From (B4), when a > 2d;,, we have

|+ ) (/N T @) < Cpa Y SSUDAY o

41>N? 1=0

< C'f,k. O

For a given k, we set ax = max{ag, o}, ) }. Thus the conclusions of the results above hold for every
o> ag.

Theorem 7.5. Let ¢ € B be given. Suppose k € No, N > Ny, and let I be a cube. Then there exists a
constant C > 0, independent of N and I, such that for all N large enough and suitably large o

o c<f>|)‘2"'_

i (w) — Tf/wa(év)’ <CNTF (1 LT

We need only double ai to achieve the stated bound.

In order to obtain results in the multivariate case we use tensor products, which is sufficient due to the
fact that the wavelets considered here are tensor products themselves. The univariate estimates above lead
to the main results of this section. Note that @%d is the space of d-fold tensor products of functions in @/,
i.e. h € ®§7 has the form h(z,y) = f(z)g(y), for f,g € ®pr.
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Theorem 7.6. Suppose that s > 0, N > Ny, and 1 < p < 0o. There is a constant Cp, s 4 > 0, My ny € N s0

that for f € , wit T=1/p+s/d an q =1+ s/d, there is € so that
hat for f € F3,,, with 1 1 d and 1 1+ s/d, there is Sy € ®SF so th

Hf - SfHLp < Cp,s,dN_s/d|f‘Fs .

7,9

Proof. We begin with the wavelet expansion of f, given by

f=>_ frer,

and define Sy in terms of this expansion

Spi=>_ frT}n,0r.

Recall that Tvlb/lel = Zjvz’l arj¢ ((- —c(I)/€(I))), so choose ¢ = ¢, with o = 5 large enough so that
Theorem 7.5 holds. Notice also that we have used no more than > M, n, < M, n total centers. If everything
is smooth, we have M x = N, while if we use divided differences, then we have M y = (2as+ 1) (N2 +1)4
terms involving the original kernel.

Since the bound in Theorem 7.5 justifies Lemma 4.4 with no further restriction, we use this to obtain

If—Stllz, < Cra

> min{1, e Y frlxr
I

Ly

This estimate also makes use of the tensor product structure of the wavelet and approximant .Sy. To complete
the proof, we must have k > s, which provides the restriction on a;. The rest of the proof follows the same
reasoning given in the proof of Theorem 4.5. O

The conclusion of Theorem 7.6 does not completely resolve the problem of approximation from the space
®, as the construction therein relies on taking tensor products for approximation in dimension larger than
1. It remains of interest to determine an approximation method from the space ®j5; in 1 dimension that
does not require taking divided differences of the growing kernel and which can be extended in a natural
way to higher dimensions.

It should be noted that the techniques of [17] give convergence rates as in Theorem 7.6 for certain growing
kernels such as surface splines, but the proofs rely on the kernels inverting an elliptic differential operator
of a certain type. The approximants f,g and fg used here are defined in different ways than those in [17,26]
and allow more flexibility in the choice of kernel (indeed they need not be associated to any differential
operator), and yet achieve a similar goal.

8. Examples of growing kernels
8.1. Multiquadrics

We will show that the family of divided differences of multiquadrics mentioned above satisfies properties
(B1)—(B4). To wit, consider

¢a = \_Ton 2as

where 7,(z) = (22 + a?)*" V2 a €N, z € R.
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Property (B1) is satisfied by using the same reasoning as that for (A1) in Section 6.2. Property (B2) is
obvious, and note the fact that we want the divided difference of order 2« of 7,. To see that (B3) holds,
note that

To 2w N -
Ai 1/N,j(f) = T(%@T)r]) = a,l/N,j(g)a

so using estimates from Lemma 1 in [22], we have
AL s ©ll sy < €2Fe 27N (2] — 1),
hence (A3) is satisfied. Estimates from [23] show that A7 , /N, 18 (2a0 — 1)-times differentiable and Theo-
rem 5.1 there may be adapted to our needs, showing that the sum in (B4) can be bounded independent
of h.
8.2. Power kernels
Our next example is ¢o = |Ta |24, Where 7, (x) = |z|* for € R \ 2N. We note that
da(x) =0 (|x|70‘) , x| = oo,

We find the Fourier transform in Section 8.3 of [45]:

=

L)
which allows us to move forward with our computations. Conditions (B1) and (B2) are evident, so we begin
with (B3):

I

_ 4 20
7al6) = mt

vlR

AL s ) = e
a,1/N,j |£_‘_27er|04+1’

thus

a1

HAzJ/N,jHLoo(B) < W(ﬂﬂ - 1)—04—17

hence (B3) is satisfied. To see (B4), we apply the quotient rule repeatedly and find that

ID'AL | n (O] < CauNT(2]j] - 1)~

hence as long as a > 1, (B4) is satisfied.
9. Sobolev interpolation using cardinal functions

Let us now look more closely at the example of using cardinal functions as the family of kernels. Due
to some existing theory, the use of cardinal functions allows us to obtain error estimates for the classical
Sobolev smoothness spaces which are not included in the framework above due to the restrictions on the
smoothness s of the Triebel-Lizorkin space. The method here is one of interpolation, whereby more details
may be found in the cardinal interpolation literature mentioned previously.
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9.1. Decaying functions

To begin, formally define an alternate approximant of f via

Iif (@)= f(hi)Lrauy (% —j>,

jezd

where L. is one of the cardinal functions discussed in Section 6.4, and 7(h) = h? in the case of the
Gaussian, and A~' for the multiquadrics. Note that this is different from T£ f due to the fact that we use
the samples of f at the lattice hZ? in the approximant rather than the values of fr,_ (o as defined previously.
This object has been studied in various instances before [10,23,25], and is actually an interpolant of f. By
definition of the cardinal functions, it is easy to see that Igf(hk) = f(hk), k € Z%. Note that for the general
multiquadric cardinal functions, there is an additional parameter a governing the power of the multiquadric
(|z|? + 7(h)?)®. We suppress this subscript, and simply consider « to be fixed but arbitrary in the range
(—o0,—d —1/2) U[1/2,00) \ N.

It is known that for certain classes of Sobolev functions, these interpolants exhibit nice approximation
rates. For example, the following holds.

Theorem 9.1 (/25], Theorem 2.1 and [25], Theorem 3.1). Let L.y be the cardinal function associated with
the Gaussian or the general multiquadrics. If 1 < p < oo, and k > d/p, then there exists a constant C,
independent of h, such that for every f € Wlﬂ“ (RY),

15 f = fllz, < CH*|[ fllws-
If p=1,00, then the bound changes to C(1 + |In h|)dhk|\f||W5.

With Theorem 9.1 in mind, one would naturally desire some estimate for a related interpolant which
makes use of only finitely many samples of the function. While there are many feasible ways to do this, we
focus here on a method similar to the preceding analysis; to wit, let

Lf@) = Y fhi)Le (7 -3)

jGZdﬂBh

where By, is the ball of radius h~2 centered about the origin. Similarly, let Iy f be as in (3) where N ~ h=24.
For arbitrary Sobolev functions, it is difficult to ascertain the behavior of the truncated interpolant;

however, if one assumes a certain asymptotic decay rate on the function itself, then something may be said.

Define .7, to be the class of functions on R? with decay O(|z|~%), |#| — co. Then the following holds.

Theorem 9.2. With the notation and parameters as in Theorem 9.1, there exists a constant C, independent
of h, such that for every f € Wf(Rd) Nk,

15.f = fllz, < Ch2I|fllws,

where p = min{k,x — 2d + d/p} for multiquadric interpolation, and p = min{k,x — d} for Gaussian
interpolation.

Before supplying the complete proof, we collect some useful lemmas.
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Lemma 9.3. If f € %, then

> 1f(hg)| < ChET2

li[>h=2

Proof. By the assumption on the decay of f and the same estimate as in the proof of Lemma 3.2, we find
that

oo

. 1 —K —1—k —K7— K
Z |f(hj)| < C Z Wécdh /Td Fdr = Cg h™Fh—20%2

7]>h=2 |5]>h=2 [
which is at most Ch*~2¢ as required. O

Lemma 9.4. Let 1 < p < oo. If L% is the cardinal function associated with the general multiquadric, then

L3 (-/h)l|z, < ChYP,
whereas if Ly2 is that associated with the Gaussian, then
[Ln2(-/h)||z, < Ch.

Proof. Let us begin with the multiquadric case. From [23, Corollary 5.3], we see that [Li(z/h)| <
Cymin{1, h%|x|~} (we also note that the estimate may be obtained in a straightforward manner from
Section 4 of [22]). Therefore, the p-th power of the L, norm in question is bounded by

o0

hdp

dr + / de < Ch®+ Chpd/r_dprd_ldr,
T

B(0,h) R4\ B(0,h) h

which is at most Cy_p gh?.

For the Gaussian case, one need only notice that the multivariate Gaussian cardinal function is nothing
but the d-fold tensor product of the univariate version. Consequently, we may use the bound of [25, Eq. 4.4],
which says that for the univariate Gaussian cardinal function, Lp2(z/h) < C min{h, h|z|~'}. Consequently,

1 0

1
1L (/DL gy < Chp/dx + Chp/ e < Cn”.
1

1
Thus the multivariate estimate is Ch%, whence taking p-th roots gives the desired inequality. O
With these ingredients in hand, we are now ready to supply the proof of the theorem.

Proof of Theorem 9.2. First note that ||} f — f||., < ||I£f - fllz, + HIfo — I} ||1,, and the first term is
majorized by Ch¥F by Theorem 9.1. Now to estimate the second term, it follows from Minkowski’s integral
inequality [18, Theorem 6.19, p. 194] that
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p
1= Bfle, = | [| X s0kay (5 -3)| do
a [171>h2 1
< Y /|f(hj)|p’LT(h) (%—j) " da
1>k~ \ga
= DL /D),
l7|>h=2

From Lemmas 9.3 and 9.4, we see that for the multiquadric, ||Iflf — I} fllp, < Ch®=2d+4/P while the bound
for the Gaussian is Ch*~?, thus completing the proof. O

Corollary 9.5. With the parameters as in Theorem 9.2, if N ~ h=2%, then for every f € Wlﬂ“(Rd) NS,
I f = fllz, < CN=#/CD| f][yy.

Evidently, the N-term interpolants considered here work well for Sobolev functions which decay away
from the origin. Of course, if a given function peaks far away from the origin but still decays away from the
peak, one should translate the peak to the origin and then interpolate, in which case the same estimate as
in Corollary 9.5 holds for In(fr) — fr.

It follows easily from the lemmas above that one can still estimate the difference of the full and truncated
interpolants in L; and L., and get analogous bounds in terms of h. However, the method of proof of
Theorem 9.2 is not sufficient to estimate approximation orders of IZ f — f in these spaces due to the
logarithmic term found in Theorem 9.1. Moreover, it has proven elusive to estimate the truncated interpolant
via other means.

9.2. Greedy interpolation

Of interest, especially in light of the recent advances in Greedy approximations (e.g. [42]), is the greedy
interpolant of f, which for a given lattice would be formed by keeping only the N largest (in absolute value)
samples f(hj). That is, Gn f(2) = >_;cp f(RJ)Lrny(x/h — j), where |f(hj)| = [f(RK)[, j € A, k ¢ A, and
|A| = N. Inspired by the estimates in [12] for greedy quasi-interpolants, we may provide similar estimates
here for the greedy Gaussian and multiquadric interpolants.

The rest of the argument mimics that of [12], although the proofs of the intermediate steps do not
follow directly from their argument, but rather come from other known estimates for the Gaussian and
multiquadric cardinal functions. Before stating the theorem, we need an auxiliary lemma on the Lebesgue
constants for the given cardinal functions.

Lemma 9.6. Let o € (—oo,—d — 1/2) U[1/2,00) \ N be a fized parameter for the general multiquadric, and
let Ly be either the cardinal function associated to the multiquadric or the Gaussian. Then for h > 0, we
have

sup Y Loy (y — )| < Cllnh|%,
YER? ez

for some C independent of h.

Proof. The estimate is well-known for the Gaussian, and may be found in [37, Theorem 5.2], while for the
multiquadrics, the estimate in dimension 1 for general « is given by [22, Proposition 7] (though for o = 1/2,
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the estimate is in [36]), and the proof of the bound in higher dimensions follows the same line of reasoning
upon using the bounds provided in [23, Corollary 4.7]. O

Theorem 9.7. Let the parameters p,k and o be as in Theorem 9.1, and let G be the greedy Gaussian or
1
multiquadric interpolant with parameter a. If h ~ N~ ¥»+d  then

__k
If = Gy fllo. < CON"®5a(1+ | N\ flwy, fe€WE.

Proof. First of all, by Theorem 9.1, we have that

__k
If = I fllee < CN7m5 (L4 I N fllwe,

whereby it suffices to estimate ||7 }ﬁl f— GnfllL... The quantity in question is, by definition,

> Fh) Loy (5, —3)
JEA Loo
Since f € W, it follows from the Sobolev embedding Theorem that > jeza | f(hG)P < Ch*d||f|\W§, whereby

(as noted in [12], there can be at most n elements of Z¢ for which | f(hj)| > Ch "N v Hf||W!£c Consequently,
since |[A| = N, the reverse inequality is true for |f(hj)| for all j ¢ A. Finally, we need only appeal to
Lemma 9.6 to see that

_4d _1
15 f = GNFllow < ClIN|*R" 5 N5l

The result follows upon combining this estimate with that from Theorem 9.1, with the requirement
onh. O

Of particular future interest would be to give estimates on ||f — G f||z, in the above setting; however,
this remains an elusive task at present.

10. Cost distribution
10.1. Ezamples

In this section, we analyze what the cost distribution looks like for some particular types of functions.
Suppose that 1 is the mother wavelet, and that v; is as defined previously for a dyadic cube I. Then
suppose that {I; }]]Vil are disjointly supported dyadic cubes, and we consider the cost distribution for the
function

M
[= Z a;yr;.
=1

We recall the relation of the parameters: for a fixed p and s, we have 1/7 =1/p+s/d, and 1/g =1+ s/d.
Then

q

M
Mo f (@) = | D1~ ay|x, ()
=1



1338 K. Hamm, J. Ledford / J. Math. Anal. Appl. 475 (2019) 1317-1340

Table 1
Cost distribution for f with sparse wavelet rep-
resentation.

N Cost (¢1,...,¢7)

100 (10, 16, 16, 9, 28, 20, 2)
200 (21, 31, 31, 17, 56, 39, 5)
300 (31, 47, 47, 26, 83, 59, 7)
400 (42, 62, 62, 34, 111, 79, 10)
500 (52, 78, 78, 43, 139, 98, 12)

Therefore, since the I; are disjoint,

A=

q

M
— 24

[flrs, = Y1 F laglxr, (2) | da

j=1

B

-

1
<
s
S
.
S
&
<N
N——
all

the final step coming from the observation that 1 — s7/d = 7/p.
Next, recall that m; g1, := M g1, = |I;|=@|a;|, and by definition f1, = aj. Then the cost of the cube I;
is
]. S
e, = 17 1T ay |70y || 1N

|am|T|Im|%
1

NE

AT | ®
— |a“.7| ‘ ]|p N. (11)

|am|T|Im|%
1

E

Recalling that N;, = Lcljj if the right-hand side is at least Ny, and N, 1; = 0 otherwise, we have that

M
Sf = ZajTNjw[j.

j=1

As an example of the above, we illustrate the cost distribution for a function having a disjoint wavelet
expansion. Consider a fixed 7-term wavelet, f = a19(271 (-4 3)) +a2)(272(-+2)) +- - -+ a7 (277 (- — 3)) where
the coefficients ay, . . . a7 and the dilations were randomly generated to yield coefficients (9, 5,5,3,8,4,1) and

dilations of (3,1,1,2,0,0,4). The number of terms is of course arbitrary, but the cost distribution is displayed

in Table 1 for increasing budget for the parameters s =1,d=1,p=1,7= %

It can be seen from this example that dilations giving larger supports are more favored in the cost
distribution, as the terms with dilation 1 and 0 have the largest associated cost, while those with large

dilation (hence smaller measure of |I;|) have smaller costs. Additionally, the coefficients a; scale the cost

according to the power of 7, for example c5 =~ v/2cg, where as = 2ag (recall that 7 = %)
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10.2. Limitations

Here, we present an inherent limit to this scheme. It should not be surprising based on the discussion
above, but the cost distribution scheme can fail to capture enough information on a signal whose wavelet
expansion is very spread out. Let us suppose that IV is fixed, and arbitrarily large. We will exhibit a signal

whose N-term approximant Sy y is identically 0 because the cost of each dyadic cube is 0.
M
Let M > N7, and let (I j)jj\il be disjointly supported cubes of unit volume, and define f = > 7,. By
j=1

(11), we find that for each 1 < j < M,
e, =M™ TN <1,

whereby, Ni, = 0 for every j.

Finally, it should be noted that the theoretical cost distribution above is difficult to implement in practice.
In particular, it assumes knowledge of all the wavelet coefficients of the target function, f. Moreover,
computing the approximants is not typically fast in this case. For the future, it would be interesting to
consider other approximations from the spaces ® above which may obtain the optimal recovery rates and
which are more readily implemented numerically. However, the main purpose of this work was to demonstrate
criteria on general approximation spaces which yield best N-term approximation orders analogous to the
wavelet decomposition of the space itself.
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