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ABSTRACT

The ankle mechanical impedance of healthy subjects was
estimated during the standing pose while they co-contracted
their lower-leg muscles. Subsequently, the impedance
parameters were modeled as a function of the level of co-
contraction using machine learning regression methods. From
the experimental results, the average ankle stiffness coefficients
in dorsi-plantar flexion (DP) showed more dependence to the
muscle contraction than stiffness in inversion-eversion (IE): 4.6
Nm/rad per %MVC (percent of the maximum voluntary
contraction) and 1.1 Nm/rad per %MVC, respectively. To
accurately estimate the ankle impedance parameters as a
function of the electromyography (EMG) signals, multiple EMG
feature selection methods, regression models, and types of
models were evaluated. Using a 1-vs-All model validation
approach, the best regression model to fit the stiffness and
damping in DP was the Least Square method with
Regularization, and the best IE stiffness was the Gaussian
Process Regression. No model was able to estimate the IE
damping well, possibly because this parameter is not modulated
with a changing co-contraction of the lower-leg muscles.

Keywords: ankle impedance, electromyography, regression,
machine learning, non-linear optimization

1. INTRODUCTION

As the development in areas such as active prostheses,
exoskeletons, and neuromuscular rehabilitation continues to
expand, so has the need to better understand how the end user
interacts with the device. Previous literature suggests that surface
electromyography (EMG) could be an essential element in
predicting a user’s motion intention, especially with the wide
variety of machine learning techniques that are available [1-4].

One approach studies the continuous relationship between
muscle activation and joint motion. In [5], proportional control
was also used to actively control the dorsi-plantar flexion (DP)
motion using an amputee’s residual EMG signals. A nonlinear
autoregressive model predicted the DP ankle angle for an ankle-
foot prosthesis during walking using the amputee’s residual
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EMG signals within the socket [6]. In [7], the relationship
between muscle contraction level and healthy ankle impedance
was studied in both the DP and inversion-eversion (IE)
directions. As expected, ankle stiffness generally increased with
higher muscle activation; however, not all subjects exhibited a
linear relationship. To better explain this relationship, an
Artificial Neural Network (ANN) with a single hidden layer was
implemented [8, 9]. The resulting subject-dependent models
were able to predict ankle impedance in DP and IE directions
with greater than 95% accuracy using the corresponding lower
extremity muscle co-contraction levels. However, these models
were subject dependent and did not perform well with input
EMG signals from a different subject.

In parallel to these EMG studies, previous work determined
the ankle mechanical impedance in the dorsi-plantarflexion (DP)
and inversion-eversion (IE) directions under loaded and non-
loaded scenarios [10-14]. The mechanical impedance of the
ankle is defined as the ankle’s response to an input motion and
can be useful in the control design of active ankle-foot prostheses
[12]. Commonly, the ankle impedance is modeled as a second
order system and is described in terms of stiffness, damping, and
inertial properties of the ankle and foot.

The purpose of this study was to examine ways to improve
the performance of a generalized model that can estimate ankle
impedance based on a subject’s EMG signals that were unseen
to the model during training. Previous work by the authors
studied the relationship between standing ankle impedance and
lower extremity muscle co-contraction level [8, 9]. These studies
determined the performance of (1) an individual ANN model
optimized for each separate subject, (2) an aggregated ANN
model, which used the data of all the subject population (12
subjects) to train and test a single ANN model, and (3) a “1-vs-
All” method, where a model was trained with the data of N — 1
subjects and the performance was tested with the remaining
subject to verify the generalization of the model. When
comparing the three methods, the individual models had the
highest performance (average R? >0.86), followed by the
aggregate model (average R?>0.82). While these models had a
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reasonable performance, they were not able to predict the
impedance of an unseen subject not used to train the model. The
“1-vs-All” method determined an average R? of 0.65 for Kpp and
less than 0.2 for Kig, Big, and Bpp.; showing that the generalized
method was much lower than methods (1) and (2). The goal of
this study was to increase the model accuracy by improving the
stiffness and damping parameters estimation of the 2- degree of
freedom (DOF) ankle impedance, increasing the number of
features that were extracted from the EMG signals, and testing
these features on a wider variety of regression models. When
compared to previous work, this study showed feasible steps
towards improving the performance of a generalized model.
2, METHODS
2.1 Subjects

All participants gave written informed consent to participate
in this study, which was approved by the Michigan
Technological University Institutional Review Board. Eleven
healthy male subjects were recruited with an average age of 28
+ 3.7 years, average weight of 93.3 + 28.8 kg, an average height
of 180 + 6.9 cm and no previous history of biomechanical or
neuromuscular disorders.
2.2 Experimental Procedure

The same experimental procedure was used in our previous
studies [8, 9], which estimated standing ankle impedance with
the use of the instrumented platform. This platform (Fig. 1)
consisted of a vibrating platform, force plate (Kistler 9260AA3),
and a motion capture system (8 x Optitrack 17W). The standing
ankle impedance was determined by exciting the ankle in both
the DP and IE directions with a stochastic perturbation (up to 33
Hz), and measuring the resultant ground reaction forces, ground
reaction torques, and ankle rotations. Wireless surface EMG
sensors (Delsys® Trigno™ Wireless System) were placed on the
tibialis anterior (TA), peroneus longus (PL), soleus (SOL), and
gastrocnemius (GA) muscles to measure muscle contractions.
These muscles were selected based on their contribution to ankle
stabilization and rotation [15].

The experiment included a total of 10 trials where
stochastic perturbations were applied to the subject’s right foot
for approximately 70 seconds. During each trial, the subject
stood with their muscles co-contracted at a selected level,
including no co-contraction, and actively co-contracting to 10%,
20%, 30%, or 40% maximum voluntary contraction (MVC).
Each muscle activation level was performed in a randomly
selected order and was repeated once while their foot was placed
at 0 degrees and again with their foot at 90 degrees, with respect
to the force plate coordinate frame (Fig. 1). The purpose of
rotating the foot locations was to better separate the inertia of the
force plate and foot bodies during the impedance estimation.

The subject’s MVC was determined at the beginning of the
experiment by co-contracting their muscles to their maximum
level for approximately a 1-second interval. This process was
repeated 5 to 10 times, and the highest maximum voltage of the
TA muscle was selected to be the reference MVC for the
remainder of the trials. During the 10 trials, the subject received
visual feedback of their real-time muscle contraction and the
target voltages, determined as a percentage of the MVC. Subjects

Figure 1. Experimental setup while subject was standing at 0 degrees
and 90 degrees with respect to the force plate coordinate. Setup
included (a) the vibrating platform, (b) force plate, (c) motion capture
reflective markers, (d —g) TA, PL, SOL, and GA EMG muscle sensors.

maintained the voltage level of their muscle as best as they could
to match the target line for the duration of the 70-second trial. In
between trials, subjects rested for a few minutes to reduce the
effects of fatigue.
2.3 Data Acquisition

The motion capture system and the force plate module were
both sampled at 350 Hz to capture the kinematic and kinetic data.
The EMG was measured with a sampling rate of 2000 Hz and
was low passed filtered at 500 Hz. In addition, the Delsys®
software included a motion artifact suppression to reduce the
effects of low-frequency noise.
3. STANDING ANKLE IMPEDANCE ESTIMATION

The multivariable mechanical impedance of the ankle was
estimated using the differential equations of motion of the lower
leg that included the ankle impedance coefficients and the inertia
of the foot and force plate. This method approximates the foot as
a rigid body and the ankle as a gimbal joint with a spring and
viscous damper on each rotating axis.

The differential equation is derived from the conservation

of angular momentum, resulting in

Ipwp + wp X (Ipwp) + RE{(Ppo — D) X
[mp(Bpo — 9)] + Rellpwr + wp X (_IFwF)] +
(Pro — Pr) X [Mp(Bro — g)1 + RpT2(6,6)}
= TP + Tbias + R;[(pP - pF) X (FP + Fbias)]

(1)

Ixx; Ixy; Ixz;
where [; = llxyl- lyy;, lyz;

Ixz; lyz; Izz;
R; € SO(3), p;p € R3, p; € R3 and m; € R* are the inertial
tensor on the body frame, local angular acceleration, local
angular velocity, rotation matrix, global position of the center of
mass and coordinate frame, and mass of body i, respectively, for
either body P (force plate) or F (foot). In addition, g € R3, T, €
R3, Fp € R3, Tyi0s € R3 and Fy;y € R3 are the gravity vector,
torque and force measured by the force plate at its origin, and
torque and force sensor biases. The internal torque resulted from
the ankle spring and damper are

€ R33, w; € R3, w; € R3,

cO, —50, 0
T7(6,8) = —| cO,50;  cO,c0; 0 |(K4a9
co, —s6,c0; 50,5605 O, @
+ B%4agg)
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where 8 € SO(3), K449 € R3, and B4%9 € R3, are the joint
angles, and diagonal matrices of stiffness and damping, for a
Euler rotation order of XYZ from shin to foot frame. The matrix
composed with 8 converts the torques from the Euler axis to the
foot frame. Finally, the kinematic variables that depend on the
unknown parameters are calculated as

{pPO =pp + Rp1p (3.2)
Pro = Pr + ReTr (3.b)
{ﬁpo =pp + Rplwp X 1p + wp X (wp X 1p)] (4.2)
Pro = Dr + Rplop X 15 + wp X (0p X 15)] (4.b)

where p, € R® and r; € R? are the linear acceleration of any
body i.

The derivatives from equations (1-4) were calculated with
a Sarvitzky-Golay filter [16] with 11-samples window and a 5%
order polynomial. In addition, the same filter was used to smooth
all the other kinematic signals. This filter approximates the
samples of a signal within a moving window as a polynomial and
calculates derivatives with good noise rejection.

The best estimates for the unknown parameters were
calculated with the non-linear optimization method, Sequential
Quadratic Programming [17], substituting the measurements and
computed derivatives into Eq. 1, and reducing the mean-square-
error of the equation. To improve the stability of the results, the
force plate inertia parameters were estimated in a separate
experiment, in which the platform vibrated without any human
load. In addition, to account for sensor biases and time-varying
impedance, different values of Tyis, Fpigs, K and B were
estimated in small sample windows. Therefore, the vector of
unknown parameters is

x = [Jp, mp, 1,21, 212, 21100 (5)
— rlt] [t]
Z[t] = [Tbias’ Fbias' K[t]’ B[t]] (6)

where zlfl is the set of biases and impedances of trial t.
Considering the impedance and bias might change even within a
trial, each trial was split in 40 sections (with overlap) of 2-
seconds of duration and used to estimate an independent
solution, x. Therefore, each subject had 40 estimates of foot
inertia, and 400 estimates of ankle impedance.
4. FEATURE EXTRACTION

To avoid under or overfitting of a model during training, the
input feature vector should describe the useful characteristics
found in the raw data. In addition, the number of features
selected also plays a factor in how well the model can be trained.
Too few features might cause a model to be underfitted and too
many features may cause linearly dependent features to overfit
to a model. This paper looked at the effects of feature selection
on model performance.
41 EMG Signal

Figure 2 shows the averaged and z-score normalized EMG
signals across the entire population, while the subject co-
contracted their muscle from 0% to 40% of their MVC. The
general trend shows that the EMG voltage increased linearly
with muscle activity, with the exception of the SOL muscle.

I 0% [ 10% [ 20% [ J30% [ J40%]

z-score nomalized

T L soL o

muscle
Figure 2. Average =+ standard deviation of the z-score normalized EMG
signals for the TA, PL, SOL, and GA muscles across the 5 co-

contraction levels.

Information from each of the EMG signals was concatenated into
a single input feature vector and used to train each regression
fitting model.
4.2 Time Domain Features
Six simple time domain (TD) features were selected for this

study, including: the mean (AVE), standard deviation (STD),
mean absolute value (MAV), number of zero crossings (ZC),
number of slope sign changes (SSC), and the cumulative length
of the signal (CL). These features were selected based on
previous work and are described in [2, 18-21]. The features
provide insight towards the amplitude, frequency, and scale of
the signal. Each feature extraction method was applied to the
windows of all four EMG channels in each trial.
4.3 Normalization

All data were normalized using z-score normalization. This
method was selected to resize the EMG and impedance
parameters to a similar scale, which can greatly improve training
and testing results. This normalization is shown as

_ X T My
== (7)

where x is the sample being normalize, u is the mean, and o is
the standard deviation across the population of interest.
After the data was separated into windows, outliers from the
EMG and impedance parameters were removed, and the
parameters were z-score normalized by individual subjects. This
reduced any large differences in amplitudes between impedance
and EMG. Additionally, the impedance parameters were
normalized by the subject’s weight. After the EMG features were
extracted, the EMG and impedance parameters were once more
z-score normalized, this time across the entire population.
5. REGRESSION MODEL SELECTION

Several commonly used regression models have been
proposed to estimate ankle impedance using EMG signals [4,
22]. The goal was to determine a model or a group of models that
can estimate this relationship with high performance. Using the
MATLAB Regression Learner App, fitrlinear function, and the
Neural Network Fitting App, the following regression models
were selected for this study, including:
1. Least Squares Linear Regression (LSQ)
2. Least Squares linear regression with Lasso Regularization

(LSQ + Reg)
3. Medium Gaussian Support Vector Machine (SVM)
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4. Support Vector Machine with Lasso Regularization
(SVM + Reg)

5. Gaussian Process Regression with Matern 5/8 Kernel (GPR)

6. Single Layer Artificial Neural Network (ANN)

5.1 Training & Testing

Each model was trained using the training data set, which
consisted of EMG features (ranging from 4 up to 24) as inputs
and 4 impedance parameters as the target. Three methods of
training were tested, as previously described in [8]. The first
method included generating an individual model for each of the
subjects and testing the performance using only the data from the
subject-specific model. While this method is not a generalized
solution, it has shown to have the highest performance and was
used to test the effects of EMG features selection on model
performance.

Using the best-performing feature vector from the
individual model study, the regression models were tested using
an aggregated model and trained using the data from the total
population (11 subjects). In addition, these regression models
were tested to estimate impedance when given unseen EMG data
using the 1-vs-All technique. This technique trained each model
using 10 out of 11 subjects, and then tested the model’s
performance with the 11" subject. The model iterated so that all
the subjects were used during testing.

5.2 Performance Evaluation

The performance of each regression model was determined
by comparing the predicted impedance parameters, Z, with the
nominal impedance parameters, Z, used during training. The
measure of how well the predicted compared to the actual
impedance was determined using the normalized mean-squared-
error, as described in Eq. 8, where p, is the mean of the nominal
impedance.

A 2
1Z - ]|

12— wa”

Before calculating the NMSE, both the predicted and
nominal impedance parameters were first de-normalized or
converted back into their original units. By re-scaling the
impedance, there is a better understanding of the relative error.
For the three types of models (individual, aggregated, and 1-vs-
All), the NMSE was determined using the ‘goodnessoffit’
function in MATLAB and the predicted and nominal impedance
vectors of all the subjects, where Z = {#,%;,...Z7;} and Z =
{21,245, ) 211}
6. RESULTS
6.1 Impedance Identification

The unknown parameters resulted in a mean torque error of
the reconstructed torque of 2.1 = 0.3 Nm amongst all solutions.
The mean torque error describes the error between the nominal
and estimated torque vectors and is defined as

1 N
e(x)=NZ|

NMSE =1 — (8)

Teie(X) = Ty

)

2

where Tgs]t(x) and T[Tij, ¢ are the estimated and reference ground

reaction torque around the ankle (isolating Tp + RZ[(pp — pr) X
Fp] from Eqn. 9), for the i*" of N samples.

According to the resulting estimated ankle impedance, both
the ankle joint stiffness and damping have shown dependence to
the co-contraction on the lower-leg muscles. The curve of Fig. 3
was approximated to a linear equation, resulting in an average
impedance during the passive trial (curve intercept) and the
change of impedance per unit of muscle co-contraction (curve
slope). The R? for the linear equations were 0.74, 0.97, 0.09, and
0.96 for KIE, KDP, BIE, and BDP, respectively.

stiffness dampin
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Figure 3. Resulting average + MAE of the impedance across eleven
subjects in both the DP and IE directions. The MAE is amongst the
means of each subject in the respective trial.

In response to a co-contraction increase, the ankle stiffness
increased four times more in the DP than in IE anatomical axis.
The IE damping showed a low linear fitness score (R? = 0.09),
suggesting a weak linear correlation. Similar characteristics of
ankle stiffness and damping have been determined at varied
muscle contraction levels while the ankle was non-loaded [7,
23]. The stiffness in DP was greater than the stiffness in IE for
all contraction levels and the damping parameter typically had a
smaller change over contraction levels, consistent with results
found in [7].

TABLE 1: LINEAR FIT BETWEEN MUSCLE CO-

CONTRACTION AND ANKLE IMPEDANCE

Kie Kbpp Bie Bpp
Nm/rad Nms/rad
Passive Impedance
Tt 14.7 121.1 1.6 2.1
Impedance change -, | 46  13x10°  24.6x10°

(per % MVC)

6.2 Regression Model Training

Feature Extraction. The results in Table 2 show the NMSE
for 6 regression model types and 4 different combinations of TD
EMG features. All models were trained using individual models
and the NMSE was determined using Eq. 8. As the number of
features selected increased, the model fitness was improved.
When comparing the four combinations of feature vectors, the
vector that contained all 24 features
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TABLE 2: TD FEATURE EXTRACTION EFFECT ON MODEL PERFORMANCE FOR INDIVIDUAL SUBJECT MODELS.

LsQ 1‘&; sVM % GPR  ANN(30)
KIE 0.704 0.707 0.820 0.695 0.932 0.785
KDP 0.460 0.717 0.828 0.695 0.905 0.764
@-STD | gy 0318 0.335 0.650 0.300 0.877 0.681
BDP 0.809 0.510 0.883 0.802 0.963 0916
KIE 0.734 0.737 0.864 0.724 0.924 0.779
(8-STD+ | KDP 0.512 0.743 0.863 0.727 0.910 0.496
MEAN | BIE 0.476 0.479 0.784 0.455 0.861 0.470
BDP 0.823 0.824 0.922 0.813 0.951 0.894
KIE 0.781 0.781 0.883 0.764 0.974 0.729
(16)-MAV, | gpp 0.803 0.807 0.886 0.792 0.916 0.758
LG, SS%I BIE 0.556 0.552 0.806 0.519 0.954 0.511
BDP 0.872 0.871 0.947 0.861 0.985 0.919
@9-stp, | KIE 0.821 0.808 0.890 0779 1 0976 0762
MEAN, | KDP 0.817 0.817 0.888 0.801 | 0918 | 0.796
MAV,ZC,| BIE 0.635 0.602 0.825 0.543 | 09% 0632
SSC,+CL | ppp 0.903 0.884 0.950 0.867 : 0989 | 0914

population

(AVE, STD, MAV, ZC, SSC, and CL) achieved the highest
result for all model types. The 24-feature vector was selected to
be used during the aggregated and 1-vs-All model testing.

Aggregated Regression Models. The aggregated model of
the total population showed the highest performance when
trained with the GPR model. The resulting NMSE was greater
than 0.95 for all the impedance parameters (Table 4). This was
the highest training performance across all models trained during
this analysis.

TABLE 4: NMSE (R?) FOR AGGREGATED MODEL OF

TOTAL POPULATION

Kie Kbop Bie Bor
LSQ 0.638 0.677 0.261 0.727

LSQ + Reg 0.642 0.683 0.268 0.733
SVM 0.828 0.841 0.651 0.898
SVM + Reg 0.632 0.682 0.253 0.710
GPR 0.989 0.953 0.973 0.998

ANN 0.797 0.784 0.548 0.893

1-vs-All Regression Models. The 1-vs-All models used the
data of an unseen subject to test the performance of the model.
The resulting NMSE can be found in Table 5. The highest NMSE
was found using the LSQ + Reg model for Bpp with a value of
0.65. In addition, this model showed to have the highest

TABLE 5: NMSE (R?) FOR 1-VS-ALL TEST FOR

GENERALIZABILITY
Kie Kbpp Bie Bpp

LSQ 0.526 0.574 0.076 0.637

LSQ + Reg 0.540 0.589 0.098 0.650
SVM 0.525 0.585 -0.09 0.648

SVM + Reg 0.530 0.567 0.067 0.622
GPR 0.558 0.582 -0.005 0.663

ANN 0.417 0.484 -0.227 0.592

*all table data is the NMSE (R?) between the predicted and actual measurement of total

performance for Kpp and B with values of 0.589 and 0.098,
respectively. One possible reason that the simpler models had the
highest performance is because the other models overfit to the
training data. By having fewer weights within the model, the
impedance parameters were better explained by the EMG
features. This also suggests that the ANN model overfits to the
training data, resulting in the worst NMSE out of all the model
types. Interestingly, Kiz has a slightly higher score using the
GPR model with a value of 0.558.

Another observation is that IE damping had a very poor
performance across all the model types, with the highest value
being 0.098. The results in Table 3 show that the change in the
IE damping across the 5 muscle activation levels was small. This
small change suggests that either the parameter was not
modulated enough to be related to the muscle signal, or the
parameter was more susceptible to noise in the model.

When comparing to the previous study [8], the results of
the 1-vs-All method improved with the addition of new EMG
features and new model types. The previous work, which used
only an ANN model to relate EMG and impedance, resulted in
an average NMSE of 0.67 for Kpp, 0.18 for Kig, 0.19 for Bpp, and
-0.07 for Bie. The improvements in the 1-vs-All method show
promising results towards a generalized model that can predict
ankle impedance based on lower extremity muscle activations.
Future work will test additional feature extraction methods not
presented in this paper, such as exploring the frequency domain.
It will also look to improve normalization methods, impedance
estimation techniques, and increase the number of subjects
during training.

7. CONCLUSION

In this work, the ankle mechanical impedance of 11 healthy
subjects was estimated during standing while they co-contracted
their lower-leg muscles. Subsequently, the impedance
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parameters were related to the level of co-contraction using
regression and machine learning techniques.

The predicted impedance parameters were able to explain
the effect of an external torque to the ankle motion with an error
of 2.1 £ 0.3 Nm/rad, or 0.80 &+ 0.08 in a normalized vector error
score. Comparing the average stiffness among different co-
contraction levels, the stiffness coefficients in the DP anatomical
axis showed more dependence to the muscle contraction than the
IE axis: 4.6 Nm/rad per % MVC and 1.1 Nm/rad per % MVC,
respectively.

To accurately estimate the ankle impedance parameters as
a function of the EMG signals, different regression models and
EMG parameter features were evaluated. The best model used
24 EMG features: the mean, standard deviation, mean absolute
value, number of zero crossings, number of slope sign changes,
and the cumulative length of each of the 4 raw EMG signals. The
best regression model to fit the stiffness and damping in DP was
the Least Square method with Regularization, and the best for [E
stiffness was the Gaussian Process Regression. The estimation of
IE damping did not perform well, possibly because this
parameter did not change very much with increased muscle co-
contraction.
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