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ABSTRACT 

The ankle mechanical impedance of healthy subjects was 
estimated during the standing pose while they co-contracted 
their lower-leg muscles. Subsequently, the impedance 
parameters were modeled as a function of the level of co-
contraction using machine learning regression methods. From 
the experimental results, the average ankle stiffness coefficients 
in dorsi-plantar flexion (DP) showed more dependence to the 
muscle contraction than stiffness in inversion-eversion (IE): 4.6 
Nm/rad per %MVC (percent of the maximum voluntary 
contraction) and 1.1 Nm/rad per %MVC, respectively. To 
accurately estimate the ankle impedance parameters as a 
function of the electromyography (EMG) signals, multiple EMG 
feature selection methods, regression models, and types of 
models were evaluated. Using a 1-vs-All model validation 
approach, the best regression model to fit the stiffness and 
damping in DP was the Least Square method with 
Regularization, and the best IE stiffness was the Gaussian 
Process Regression. No model was able to estimate the IE 
damping well, possibly because this parameter is not modulated 
with a changing co-contraction of the lower-leg muscles. 

Keywords: ankle impedance, electromyography, regression, 
machine learning, non-linear optimization 
 
1. INTRODUCTION 

As the development in areas such as active prostheses, 
exoskeletons, and neuromuscular rehabilitation continues to 
expand, so has the need to better understand how the end user 
interacts with the device. Previous literature suggests that surface 
electromyography (EMG) could be an essential element in 
predicting a user’s motion intention, especially with the wide 
variety of machine learning techniques that are available [1-4].   

One approach studies the continuous relationship between 
muscle activation and joint motion. In [5], proportional control 
was also used to actively control the dorsi-plantar flexion  (DP)  
motion using an amputee’s residual EMG signals. A nonlinear 
autoregressive model predicted the DP ankle angle for an ankle-
foot prosthesis during walking using the amputee’s residual 
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EMG signals within the socket [6]. In [7], the relationship 
between muscle contraction level and healthy ankle impedance 
was studied in both the DP and inversion-eversion (IE) 
directions. As expected, ankle stiffness generally increased with 
higher muscle activation; however, not all subjects exhibited a 
linear relationship. To better explain this relationship, an 
Artificial Neural Network (ANN) with a single hidden layer was 
implemented [8, 9]. The resulting subject-dependent models 
were able to predict ankle impedance in DP and IE directions 
with greater than 95% accuracy using the corresponding lower 
extremity muscle co-contraction levels. However, these models 
were subject dependent and did not perform well with input 
EMG signals from a different subject.  

In parallel to these EMG studies, previous work determined 
the ankle mechanical impedance in the dorsi-plantarflexion (DP) 
and inversion-eversion (IE) directions under loaded and non-
loaded scenarios [10-14]. The mechanical impedance of the 
ankle is defined as the ankle’s response to an input motion and 
can be useful in the control design of active ankle-foot prostheses 
[12]. Commonly, the ankle impedance is modeled as a second 
order system and is described in terms of stiffness, damping, and 
inertial properties of the ankle and foot.  

The purpose of this study was to examine ways to improve 
the performance of a generalized model that can estimate ankle 
impedance based on a subject’s EMG signals that were unseen 
to the model during training. Previous work by the authors 
studied the relationship between standing ankle impedance and 
lower extremity muscle co-contraction level [8, 9]. These studies 
determined the performance of (1) an individual ANN model 
optimized for each separate subject, (2) an aggregated ANN 
model, which used the data of all the subject population (12 
subjects) to train and test a single ANN model, and (3) a “1-vs-
All” method, where a model was trained with the data of 𝑁 − 1 
subjects and the performance was tested with the remaining 
subject to verify the generalization of the model. When 
comparing the three methods, the individual models had the 
highest performance (average R2 >0.86), followed by the 
aggregate model (average R2 >0.82). While these models had a 
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reasonable performance, they were not able to predict the 
impedance of an unseen subject not used to train the model. The 
“1-vs-All” method determined an average R2 of 0.65 for KDP and 
less than 0.2 for KIE, BIE, and BDP.; showing that the generalized 
method was much lower than methods (1) and (2). The goal of 
this study was to increase the model accuracy by improving the 
stiffness and damping parameters estimation of the 2- degree of 
freedom (DOF) ankle impedance, increasing the number of 
features that were extracted from the EMG signals, and testing 
these features on a wider variety of regression models. When 
compared to previous work, this study showed feasible steps 
towards improving the performance of a generalized model.    
2. METHODS 
2.1 Subjects 

All participants gave written informed consent to participate 
in this study, which was approved by the Michigan 
Technological University Institutional Review Board. Eleven 
healthy male subjects were recruited with an average age of 28 
± 3.7 years, average weight of 93.3 ± 28.8 kg, an average height 
of 180 ± 6.9 cm and no previous history of biomechanical or 
neuromuscular disorders. 
2.2 Experimental Procedure 

The same experimental procedure was used in our previous 
studies [8, 9], which estimated standing ankle impedance with 
the use of the instrumented platform. This platform (Fig. 1) 
consisted of a vibrating platform, force plate (Kistler 9260AA3), 
and a motion capture system (8 x Optitrack 17W). The standing 
ankle impedance was determined by exciting the ankle in both 
the DP and IE directions with a stochastic perturbation (up to 33 
Hz), and measuring the resultant ground reaction forces, ground 
reaction torques, and ankle rotations. Wireless surface EMG 
sensors (Delsys® Trigno™ Wireless System) were placed on the 
tibialis anterior (TA), peroneus longus (PL), soleus (SOL), and 
gastrocnemius (GA) muscles to measure muscle contractions. 
These muscles were selected based on their contribution to ankle 
stabilization and rotation [15].  

 The experiment included a total of 10 trials where 
stochastic perturbations were applied to the subject’s right foot 
for approximately 70 seconds. During each trial, the subject 
stood with their muscles co-contracted at a selected level, 
including no co-contraction, and actively co-contracting to 10%, 
20%, 30%, or 40% maximum voluntary contraction (MVC). 
Each muscle activation level was performed in a randomly 
selected order and was repeated once while their foot was placed 
at 0 degrees and again with their foot at 90 degrees, with respect 
to the force plate coordinate frame (Fig. 1).  The purpose of 
rotating the foot locations was to better separate the inertia of the 
force plate and foot bodies during the impedance estimation. 

The subject’s MVC was determined at the beginning of the 
experiment by co-contracting their muscles to their maximum 
level for approximately a 1-second interval.  This process was 
repeated 5 to 10 times, and the highest maximum voltage of the 
TA muscle was selected to be the reference MVC for the 
remainder of the trials. During the 10 trials, the subject received 
visual feedback of their real-time muscle contraction and the 
target voltages, determined as a percentage of the MVC. Subjects 

maintained the voltage level of their muscle as best as they could 
to match the target line for the duration of the 70-second trial. In 
between trials, subjects rested for a few minutes to reduce the 
effects of fatigue. 
2.3 Data Acquisition 

The motion capture system and the force plate module were 
both sampled at 350 Hz to capture the kinematic and kinetic data. 
The EMG was measured with a sampling rate of 2000 Hz and 
was low passed filtered at 500 Hz. In addition, the Delsys® 
software included a motion artifact suppression to reduce the 
effects of low-frequency noise. 
3. STANDING ANKLE IMPEDANCE ESTIMATION 

The multivariable mechanical impedance of the ankle was 
estimated using the differential equations of motion of the lower 
leg that included the ankle impedance coefficients and the inertia 
of the foot and force plate. This method approximates the foot as 
a rigid body and the ankle as a gimbal joint with a spring and 
viscous damper on each rotating axis. 

 The differential equation is derived from the conservation 
of angular momentum, resulting in 

𝐼𝑃𝜔̇𝑃 + 𝜔𝑃 × (𝐼𝑃𝜔𝑃) + 𝑅𝑃
𝑇{(𝑝𝑃0 − 𝑝𝐹) × 

[𝑚𝑃(𝑝̈𝑃0 − 𝑔)]   + 𝑅𝐹[𝐼𝐹𝜔̇𝐹 + 𝜔𝐹 × (𝐼𝐹𝜔𝐹)] + 
(𝑝𝐹0 − 𝑝𝐹) × [𝑚𝐹(𝑝̈𝐹0 − 𝑔)] + 𝑅𝐹𝑇𝑍(𝜃, 𝜃̇)}  

= 𝑇𝑃 + 𝑇𝑏𝑖𝑎𝑠 + 𝑅𝑃
𝑇[(𝑝𝑃 − 𝑝𝐹) × (𝐹𝑃 + 𝐹𝑏𝑖𝑎𝑠)] 

(1) 

where 𝐼𝑖 = [

𝐼𝑥𝑥𝑖 𝐼𝑥𝑦𝑖 𝐼𝑥𝑧𝑖

𝐼𝑥𝑦𝑖 𝐼𝑦𝑦𝑖 𝐼𝑦𝑧𝑖

𝐼𝑥𝑧𝑖 𝐼𝑦𝑧𝑖 𝐼𝑧𝑧𝑖

]  ∈  ℝ3×3,  𝜔̇𝑖 ∈  ℝ3,  𝜔𝑖 ∈  ℝ3,

𝑅𝑖 ∈  SO(3),  𝑝𝑖0 ∈  ℝ3,  𝑝𝑖 ∈  ℝ3 and 𝑚𝑖 ∈  ℝ+ are the inertial 
tensor on the body frame, local angular acceleration, local 
angular velocity, rotation matrix, global position of the center of 
mass and coordinate frame, and mass of body 𝑖, respectively, for 
either body P (force plate) or F (foot). In addition, 𝑔 ∈  ℝ3, 𝑇𝑃 ∈
 ℝ3, 𝐹𝑃 ∈  ℝ3, 𝑇𝑏𝑖𝑎𝑠 ∈  ℝ3 and 𝐹𝑏𝑖𝑎𝑠 ∈ ℝ3 are the gravity vector, 
torque and force measured by the force plate at its origin, and 
torque and force sensor biases. The internal torque resulted from 
the ankle spring and damper are  

𝑇𝑍(𝜃, 𝜃̇) =
1

𝑐𝜃2

[

𝑐𝜃3 −𝑠𝜃3 0
𝑐𝜃2𝑠𝜃3 𝑐𝜃2𝑐𝜃3 0

−𝑠𝜃2𝑐𝜃3 𝑠𝜃2𝑠𝜃3 𝑐𝜃2

] (𝐾𝑑𝑖𝑎𝑔

+ 𝐵𝑑𝑖𝑎𝑔𝜃̇) 

(2)  

 
Figure 1. Experimental setup while subject was standing at 0 degrees 
and 90 degrees with respect to the force plate coordinate. Setup 
included (a) the vibrating platform, (b) force plate, (c) motion capture 
reflective markers, (d – g) TA, PL, SOL, and GA EMG muscle sensors. 
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where 𝜃 ∈  SO(3),  𝐾𝑑𝑖𝑎𝑔 ∈  ℝ3,  and 𝐵𝑑𝑖𝑎𝑔 ∈  ℝ3,  are the joint 
angles, and diagonal matrices of stiffness and damping, for a 
Euler rotation order of XYZ from shin to foot frame. The matrix 
composed with 𝜃 converts the torques from the Euler axis to the 
foot frame.  Finally, the kinematic variables that depend on the 
unknown parameters are calculated as 

{
𝑝𝑃0 = 𝑝𝑃 + 𝑅𝑃𝑟𝑃

𝑝𝐹0 = 𝑝𝐹 + 𝑅𝐹𝑟𝐹
 (3.a)  

(3.b) 

{
𝑝̈𝑃0 = 𝑝̈𝑃 + 𝑅𝑃[𝜔̇𝑃 × 𝑟𝑃 + 𝜔𝑃 × (𝜔𝑃 × 𝑟𝑃)]

𝑝̈𝐹0 = 𝑝̈𝐹 + 𝑅𝐹[𝜔̇𝐹 × 𝑟𝐹 + 𝜔𝐹 × (𝜔𝐹 × 𝑟𝐹)]
 (4.a)  

(4.b) 

where 𝑝𝑖̈ ∈  ℝ3 and 𝑟𝑖 ∈  ℝ3 are the linear acceleration of any 
body 𝑖. 

  The derivatives from equations (1-4) were calculated with 
a Sarvitzky-Golay filter [16] with 11-samples window and a 5th 
order polynomial. In addition, the same filter was used to smooth 
all the other kinematic signals. This filter approximates the 
samples of a signal within a moving window as a polynomial and 
calculates derivatives with good noise rejection.  

  The best estimates for the unknown parameters were 
calculated with the non-linear optimization method, Sequential 
Quadratic Programming [17], substituting the measurements and 
computed derivatives into Eq. 1, and reducing the mean-square-
error of the equation. To improve the stability of the results, the 
force plate inertia parameters were estimated in a separate 
experiment, in which the platform vibrated without any human 
load. In addition, to account for sensor biases and time-varying 
impedance, different values of 𝑇𝑏𝑖𝑎𝑠 , 𝐹𝑏𝑖𝑎𝑠 , 𝐾 and 𝐵 were 
estimated in small sample windows. Therefore, the vector of 
unknown parameters is 

𝑥 ≡ [𝐽𝐹, 𝑚𝐹 , 𝑟𝐹 , 𝑧[1], 𝑧[2], … , 𝑧[10]] (5) 

𝑧[𝑡] ≡ [𝑇𝑏𝑖𝑎𝑠
[𝑡]

, 𝐹𝑏𝑖𝑎𝑠
[𝑡]

, 𝐾[𝑡], 𝐵[𝑡]] (6) 

where 𝑧[𝑡] is the set of biases and impedances of trial 𝑡. 
Considering the impedance and bias might change even within a 
trial, each trial was split in 40 sections (with overlap) of 2-
seconds of duration and used to estimate an independent 
solution, 𝑥. Therefore, each subject had 40 estimates of foot 
inertia, and 400 estimates of ankle impedance.  
4. FEATURE EXTRACTION 

To avoid under or overfitting of a model during training, the 
input feature vector should describe the useful characteristics 
found in the raw data. In addition, the number of features 
selected also plays a factor in how well the model can be trained. 
Too few features might cause a model to be underfitted and too 
many features may cause linearly dependent features to overfit 
to a model. This paper looked at the effects of feature selection 
on model performance. 
4.1  EMG Signal 
 Figure 2 shows the averaged and z-score normalized EMG 
signals across the entire population, while the subject co-
contracted their muscle from 0% to 40% of their MVC. The 
general trend shows that the EMG voltage increased linearly 
with muscle activity, with the exception of the SOL muscle. 

Information from each of the EMG signals was concatenated into 
a single input feature vector and used to train each regression 
fitting model. 
4.2 Time Domain Features 
 Six simple time domain (TD) features were selected for this 
study, including: the mean (AVE), standard deviation (STD), 
mean absolute value (MAV), number of zero crossings (ZC), 
number of slope sign changes (SSC), and the cumulative length 
of the signal (CL). These features were selected based on 
previous work and are described in [2, 18-21]. The features 
provide insight towards the amplitude, frequency, and scale of 
the signal. Each feature extraction method was applied to the 
windows of all four EMG channels in each trial.  
4.3 Normalization 

All data were normalized using z-score normalization. This 
method was selected to resize the EMG and impedance 
parameters to a similar scale, which can greatly improve training 
and testing results. This normalization is shown as  

 𝑥̅ =
𝑥𝑖 −  𝜇𝑥

𝜎𝑥

 (7) 

where 𝑥 is the sample being normalize,  𝜇 is the mean, and 𝜎 is 
the standard deviation across the population of interest.   
After the data was separated into windows, outliers from the 
EMG and impedance parameters were removed, and the 
parameters were z-score normalized by individual subjects. This 
reduced any large differences in amplitudes between impedance 
and EMG. Additionally, the impedance parameters were 
normalized by the subject’s weight. After the EMG features were 
extracted, the EMG and impedance parameters were once more 
z-score normalized, this time across the entire population. 
5. REGRESSION MODEL SELECTION 

Several commonly used regression models have been 
proposed to estimate ankle impedance using EMG signals [4, 
22]. The goal was to determine a model or a group of models that 
can estimate this relationship with high performance. Using the 
MATLAB Regression Learner App, fitrlinear function, and the 
Neural Network Fitting App, the following regression models 
were selected for this study, including:  
1. Least Squares Linear Regression (LSQ) 
2. Least Squares linear regression with Lasso Regularization 

(LSQ + Reg)  
3. Medium Gaussian Support Vector Machine (SVM) 

 
Figure 2. Average ± standard deviation of the z-score normalized EMG 
signals for the TA, PL, SOL, and GA muscles across the 5 co-
contraction levels. 
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4. Support Vector Machine with Lasso Regularization           
(SVM + Reg)  

5. Gaussian Process Regression with Matern 5/8 Kernel (GPR) 
6. Single Layer Artificial Neural Network (ANN) 
5.1 Training & Testing 

 Each model was trained using the training data set, which 
consisted of EMG features (ranging from 4 up to 24) as inputs 
and 4 impedance parameters as the target. Three methods of 
training were tested, as previously described in [8]. The first 
method included generating an individual model for each of the 
subjects and testing the performance using only the data from the 
subject-specific model. While this method is not a generalized 
solution, it has shown to have the highest performance and was 
used to test the effects of EMG features selection on model 
performance.  

 Using the best-performing feature vector from the 
individual model study, the regression models were tested using 
an aggregated model and trained using the data from the total 
population (11 subjects). In addition, these regression models 
were tested to estimate impedance when given unseen EMG data 
using the 1-vs-All technique. This technique trained each model 
using 10 out of 11 subjects, and then tested the model’s 
performance with the 11th subject. The model iterated so that all 
the subjects were used during testing.    
5.2 Performance Evaluation 

The performance of each regression model was determined 
by comparing the predicted impedance parameters, 𝑍̂, with the 
nominal impedance parameters, 𝑍, used during training. The 
measure of how well the predicted compared to the actual 
impedance was determined using the normalized mean-squared-
error, as described in Eq. 8, where 𝜇𝑧 is the mean of the nominal 
impedance.   

 
𝑁𝑀𝑆𝐸 = 1 −

‖𝑍̂ − 𝑍‖
2

‖𝑍̂ − 𝜇𝑍‖
2 (8) 

Before calculating the NMSE, both the predicted and 
nominal impedance parameters were first de-normalized or 
converted back into their original units. By re-scaling the 
impedance, there is a better understanding of the relative error.  
For the three types of models (individual, aggregated, and 1-vs-
All), the NMSE was determined using the ‘goodnessoffit’ 
function in MATLAB and the predicted and nominal impedance 
vectors of all the subjects, where 𝑍̂ = {𝑧1̂, 𝑧2̂, … 𝑧11̂} and 𝑍 =
{𝑧1, 𝑧2, … , 𝑧11}.  
6. RESULTS 
6.1 Impedance Identification 
 The unknown parameters resulted in a mean torque error of 
the reconstructed torque of 2.1 ± 0.3 Nm amongst all solutions. 
The mean torque error describes the error between the nominal 
and estimated torque vectors and is defined as 

𝜀(𝒙) =
1

𝑁
∑‖𝑻𝑒𝑠𝑡

[𝑖] (𝒙) − 𝑻𝑟𝑒𝑓
[𝑖]

‖
2

𝑁

𝑖=1

 (9) 

where 𝑻𝑒𝑠𝑡
[𝑖]

(𝒙) and 𝑻𝑟𝑒𝑓
[𝑖]  are the estimated and reference ground 

reaction torque around the ankle (isolating 𝑇𝑃 + 𝑅𝑃
𝑇[(𝑝𝑃 − 𝑝𝐹) ×

𝐹𝑃] from Eqn. 9), for the 𝑖𝑡ℎ of N samples. 
According to the resulting estimated ankle impedance, both 

the ankle joint stiffness and damping have shown dependence to 
the co-contraction on the lower-leg muscles. The curve of Fig. 3 
was approximated to a linear equation, resulting in an average 
impedance during the passive trial (curve intercept) and the 
change of impedance per unit of muscle co-contraction (curve 
slope). The R2 for the linear equations were 0.74, 0.97, 0.09, and 
0.96 for KIE, KDP, BIE, and BDP, respectively.  

 
Figure 3. Resulting average ± MAE of the impedance across eleven 
subjects in both the DP and IE directions. The MAE is amongst the 
means of each subject in the respective trial. 

In response to a co-contraction increase, the ankle stiffness 
increased four times more in the DP than in IE anatomical axis. 
The IE damping showed a low linear fitness score (R2 = 0.09), 
suggesting a weak linear correlation. Similar characteristics of 
ankle stiffness and damping have been determined at varied 
muscle contraction levels while the ankle was non-loaded [7, 
23]. The stiffness in DP was greater than the stiffness in IE for 
all contraction levels and the damping parameter typically had a 
smaller change over contraction levels, consistent with results 
found in [7]. 

6.2  Regression Model Training  
Feature Extraction. The results in Table 2 show the NMSE 

for 6 regression model types and 4 different combinations of TD 
EMG features. All models were trained using individual models 
and the NMSE was determined using Eq. 8. As the number of 
features selected increased, the model fitness was improved. 
When comparing the four combinations of feature vectors, the 
vector that contained all 24 features  

TABLE 1: LINEAR FIT BETWEEN MUSCLE CO-
CONTRACTION AND ANKLE IMPEDANCE  

 KIE KDP BIE BDP 
 Nm/rad Nms/rad 

Passive Impedance 
(Intercept) 14.7 121.1 1.6 2.1 

Impedance change 
(per % MVC) 1.1 4.6 1.3×10-3 24.6×10-3 
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parameters were related to the level of co-contraction using 
regression and machine learning techniques. 

The predicted impedance parameters were able to explain 
the effect of an external torque to the ankle motion with an error 
of 2.1 ± 0.3 Nm/rad, or 0.80 ± 0.08 in a normalized vector error 
score. Comparing the average stiffness among different co-
contraction levels, the stiffness coefficients in the DP anatomical 
axis showed more dependence to the muscle contraction than the 
IE axis: 4.6 Nm/rad per % MVC and 1.1 Nm/rad per % MVC, 
respectively. 

To accurately estimate the ankle impedance parameters as 
a function of the EMG signals, different regression models and 
EMG parameter features were evaluated. The best model used 
24 EMG features: the mean, standard deviation, mean absolute 
value, number of zero crossings, number of slope sign changes, 
and the cumulative length of each of the 4 raw EMG signals. The 
best regression model to fit the stiffness and damping in DP was 
the Least Square method with Regularization, and the best for IE 
stiffness was the Gaussian Process Regression. The estimation of 
IE damping did not perform well, possibly because this 
parameter did not change very much with increased muscle co-
contraction. 
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