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Abstract—The proliferation of e-commerce calls for mining consumer preferences and opinions from user-generated text. To this end,
topic models have been widely adopted to discover the underlying semantic themes (i.e., topics). Supervised topic models have
emerged to leverage discovered topics for predicting the response of interest (e.g., product quality and sales). However, supervised topic
modeling remains a challenging problem because of the need to prespecify the number of topics, the lack of predictive information in topics,
and limited scalability. In this paper, we propose a novel supervised topic model, Hierarchical Dirichlet Process-based Inverse Regression
(HDP-IR). HDP-IR characterizes the corpus with a flexible number of topics, which prove to retain as much predictive information as the
original corpus. Moreover, we develop an efficientinference algorithm capable of examining large-scale corpora (millions of documents or
more). Three experiments were conducted to evaluate the predictive performance over major e-commerce benchmark testbeds of online
reviews. Overall, HDP-IR outperformed existing state-of-the-art supervised topic models. Particularly, retaining sufficient predictive
information improved predictive R-squared by over 17.6 percent; having topic structure flexibility contributed to predictive R-squared by at
least 4.1 percent. HDP-IR provides an important step for future study on user-generated texts from a topic perspective.

Index Terms—Bayesian nonparametrics, hierarchical dirichlet process, topic modeling, sufficient dimension reduction, variational inference

1 INTRODUCTION

HE proliferation of e-commerce has given rise to a sig-

nificant amount of user-generated text, which contains
salient information about consumer preferences and opin-
ions [1],12],[3]. Topic models are a major family of text anal-
ysis techniques for exploring the underlying semantic
themes (i.e., topics) within textual data [4],[5],[6],[7]. How-
ever, prior research necessitates not only understanding the
semantic themes but also integrating predictive analytics on
variables of interest, such as customer sentiment [3], prod-
uct quality [8], affect [2], and more. Standard topics models
(e.g., LDA) are unsupervised and therefore incapable of
making such predictions. To this end, the supervised topic
modeling techniques have emerged, which can simulta-
neously discover the underlying semantic themes and lever-
age these themes for prediction [1]. Both the discovered
themes and the predicted response variables provide valu-
able insights about consumer preferences and opinions.
Supervised topic models have a number of important e-
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commerce applications, including customer feedback
assessment [2],[8], online review evaluation [3], consumer
sentiment analysis [3], product attributes mining [8], and
customer preferences identification [9].

However, supervised topic modeling remains a challeng-
ing problem. First, most supervised topic models require
prespecifying the number of topics a priori [10]. Such specifi-
cation may result in model misspecification when the speci-
fied number of topics misrepresent the true underlying topic
structure. For example, customer reviews for new products
may contain unseen topics about new features. Prespecifying
the number of topics inhibits the incorporation of such
unseen topics, leading to unreliable topics and inaccurate
predictions. Second, existing supervised topic models treat
the proportion of topic mixtures as a reduced dimension
representation of the original document and make predic-
tions based on such representations. It is unclear whether
these representations contain sufficient predictive informa-
tion about the response [11]. Statistically speaking, suffi-
ciency entails that the reduced dimension representation
preserves all the information from original documents for
making predictions. The missing information in the super-
vised topic modeling process may diminish the prediction
accuracy. Third, large text corpora often span several million
documents, leaving many supervised topic models unscal-
able [7]. Most supervised topic models adopt sampling-based
inference algorithms, which require hundreds of iterations
over each variable across all documents before convergence
[12]. Therefore, the scalability of these models is limited.

In this paper, we propose a novel supervised topic model
called Hierarchical Dirichlet Process-based Inverse Regression
(HDP-IR). Specifically, the Hierarchical Dirichlet Process
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TABLE 1
ATaxonomy of Major Supervised Topic Models
Model Topic SDR Inference Testbed & Performance
Structure
Supervised LDA (sLDA) [15] Fixed No Variational Movie reviews (5,006): 0.5 pR?; Webpages
(4,078): 0.095 pR*
Dirichlet-Multinomial Regression Fixed No Sampling Academic papers: ~ 65% recall
(DMR) [16]
DiscLDA [11] Fixed Yes Sampling News (19,997): 17% error rates
Labeled LDA (L-LDA) [17] Fixed No Sampling Webpages (4,000): 52.12% MicroF1
Dependency LDA (D-LDA) [18] Fixed No Sampling News (30,658): 54.1% MicroF1; Legal docs
(19,800): 46.7% MicroF1
MedLDA [19] Fixed No Sampling News (19,997): ~ 83% Accuracy
Inverse Regression Topic Model Fixed Yes Variational Amazon (13,528):0.996 MAE; Yelp(152,280):
(IRTM) [20] 0.704 MAE; Press release (72,224): 0.826 MAE
Supervised Hierarchical Dirichlet Non-fixed No Sampling News (1,518): ~ 60% Accuracy; Movie reviews

Process (sHDP) [21]

(10,662): ~ 0.3 pR?; Webpages (3,880): ~ 0.08 pR?

(HDP) is a nonparametric topic modeling technique that
allows for a flexible number of topics. Inverse Regression (IR)
is a sufficient dimension reduction (SDR) technique that makes
predictions with provably sufficient information. HDP-IR
characterizes the corpus with a flexible number of topics,
which prove to retain statistically sufficient information for
improved predictive performance. Moreover, we develop
an efficient inference algorithm for model estimation that is
capable of examining large-scale corpora with millions of
documents. Evaluation of HDP-IR in comparison with the
state-of-the-art baseline techniques reveals that both
increasing the topic structure flexibility and using sufficient
dimension reduction could improve the predictive perfor-
mance on user-generated review text in e-commerce appli-
cations, and the proposed inference algorithm is highly
effective in terms of its scalability.

This paper is organized as follows. Section 2 provides a
review of related work on major supervised topic models
and identifies research gaps. Section 3 briefly introduces the
background of HDP and IR. Section 4 details our proposed
model and the algorithms for estimating the model and
making predictions. Section 5 includes the experimental
evaluation of the proposed model in comparison with the
state-of-the-art baseline techniques. Section 6 provides the
conclusion and future directions.

2 RELATED WORK

Topic modeling aims to analyze large text corpora by discov-
ering the underlying semantic themes (i.e., topics) that are
consistent across documents [13], [14]. A topic model is a
probabilistic model explaining how observed documents
relate to underlying topics. In topic models, a topic B, is often
represented as a multinomial distribution over words in the
vocabulary: [8;,. .., ,6}:"], where f is the probability of word
w. Then, the collection of words wy in each document d is
generated from a mixture of K topics: [f1,. .., 0k], where 6y is
the proportion of the topic g, within the document. Topic
models have been widely studied and applied in various
research contexts [4], [5], [6], [7]. Nonetheless, these topic
models are unsupervised, incapable of making predictions
[11]. Supervised topic models (STMs) are capable of predict-
ing the response y, of each document d based on the underly-
ing topics. Formally, given D document-response pairs

{(wy,31),...,(wp,yp)}, STMs estimate K topics B=
(B1,--.,Bx) that are predictive of the response. When given
a new, unlabeled document wyey,, STMs can predict yyew
based on examining its underlying topic structure.

We summarize major STMs from four aspects through a
taxonomy: Topic Structure, Sufficient Dimension Reduction,
Inference, and Testbed & Performance (Table 1). Topic struc-
ture concerns how STMs organize the topics. The major
topic structure parameter is whether the number of topics
need to be prespecified and fixed a priori. The SDR aspect
examines whether the topics of the STM contain statistically
sufficient information for making predictions. The Inference
aspect concerns what technique each STM uses for model
estimation. The two major inference techniques are the vari-
ational algorithm and the sampling-based algorithm. We
will explain the differences between these two algorithms
later. The Testbed & Performance aspect reports the predictive
performance of each model as measured by various perfor-
mance metrics on different testbeds.

As shown in Table 1, most of the STMs have fixed topic
structure, requiring the number of topics to be prespecified.
This is because these STMs are derivatives of the well-known
latent Dirichlet allocation (LDA). LDA is a parametric topic
model, requiring the number of topics to be specified a priori.
In many research contexts, it is often difficult to determine
the correct number of topics [10]. Hence, model selection is
included to determine the optimal number of topics under
certain evaluation metrics. However, the optimal numbers
of topics under different metrics are not often consistent. For
example, Blei and Mcauliffe [15] used the per-word held-out
log-likelihood as a benchmark for selecting the optimal num-
ber of topics. In their testbeds, the selected number of topics
failed to yield the best predictive performance as measured
with predictive R-squared (pR?). In STMs based on paramet-
ric topic models, the fixed topic structure does not have the
flexibility to accommodate the potential topics in new docu-
ments, therefore causing model misspecification. Lately, the
nonparametric topic modeling approach has drawn great
attention for its capability to provide topic structure flexibil-
ity. Particularly, the hierarchical Dirichlet Process (HDP) is a
leading nonparametric topic model that can accommodate an
unlimited number of topics [22]. Compared with the Dirichlet
distribution used in LDA, which assigns proportions to a
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fixed number of topics, HDP uses the Dirichlet process that
can generate a countably infinite number of topics to be
shared across different documents. HDP-based STMs have
the potential to overcome the aforementioned limitation of
most STMs. For example, Dai and Storkey [21] extended HDP
to the supervised context by modeling the joint distribution of
documents and the response, which has achieved promising
performance improvement over Supervised LDA (sLDA) as
measured by pR?.

The sufficiency of dimension reduction [23] is not usually
guaranteed in many previous STMs. In STMs, dimension
reductions of documents are the document-specific topic
mixtures, which are further used to inform the prediction
[11]. For example, sLDA used the empirical topic vector 2, as
the dimension reduction projection of each document for sub-
sequent Generalized Linear Model regression [15]. DiscLDA
achieved dimension reduction by using the average trans-
formed topic mixtures [11]. The sHDP model is built on a
Generalized Linear Model to regress the response variable on
the average of the dimension reduction generated from HDP
[21]. Yet, the dimension reductions provided by most STMs
are not sufficient [11]. Sufficient dimension reduction entails
a comprehensive, succinct representation, which retains as
much predictive information as the original document. For-
mally, given a document w € R" and its response y, SDR is
the low-dimensional representation R(w) € R¥, where
k < W, such that conditioning on SDR R(w), the response y
is independent of the original document w: y 1l w|R(w).
With sufficient predictive information, STMs with SDR have
the potential to make more accurate predictions than STMs
with non-SDR. In [20], the Inverse Regression Topic Model
(IRTM) leveraged the inverse regression model to attain SDR,
which led to more accurate predictions than STMs with non-
SDR, such as sLDA and Dirichlet-Multinomial Regression
(DMR). We will elaborate IRTM further in Section 3.

Inference concerns computing the model’s posterior dis-
tributions. The posterior distributions are the conditional
distributions of the model’s variables given data, which are
key to prediction. There are two major families of inference
algorithms: sampling-based inference algorithms and wvaria-
tional inference algorithms [12]. Sampling-based inference algo-
rithms, such as Gibbs sampling, approximate the posterior
by empirically sampling from the conditional distribution of
each variable within the model and further combining these
conditional distributions into the posterior distribution [24].
Sampling-based inference algorithms usually require hundreds
of iterations to “burn-in” each variable [12] and are therefore
not scalable to large corpus containing hundreds of thou-
sands of documents. In DMR, Mimno and McCallum sam-
pled their model for 1,000 iterations, in addition to the
“burn-in” period of 250 iterations [16]. Each iteration
requires sampling for every variable from all documents.
Therefore, STMs with sampling-based inference are often lim-
ited by the time complexity. As shown in Table 1, most test-
beds in sampling-based inference studies contain fewer than
20,000 documents. The one exception was D-LDA, where
Rubin et al. approximated the sampling of certain variable
with direct assignment to expedite the sampling process
[18]. On the other hand, variational inference algorithms seek
to optimize an approximate distribution that is the closest to
the posterior distribution as measured with Kullback-Leibler
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divergence [12]. By transforming a sampling problem into an
optimization problem, variational algorithms require signifi-
cantly fewer iterations than sampling-based algorithms and
are therefore amenable to relatively large-scale corpora.
Essentially, the variational algorithm is a coordinate ascent
algorithm based on maximizing the marginal likelihood,
iterating between optimizing document-level variables (e.g.,
the mixing proportion of topics) for each document and esti-
mating corpus-level variables (e.g., topics). The variational
algorithm equips STMs with the capability to analyze large
corpora with significantly reduced complexity. For instance,
Rabinovich and Blei developed a variational EM algorithm
for inferring IRTM, which was able to process a relatively
large research testbed containing 152,280 Yelp reviews [20].
The state-of-the-art variational framework is Stochastic Varia-
tional Inference (SVI) [12]. Instead of iterating through the
document-level variables for the entire corpus, SVI performs
stochastic optimization on the document-level variables for
random subsamples of the corpus. SVI therefore has the
potential to process large-scale corpora containing hundreds
of thousands of documents to millions of documents.

In terms of testbeds, prior STMs have been applied to a
variety of domains, including news reports [11], [18], [19],
web pages [15],[21], and academic papers [16]. An emerging
domain is e-commerce customer reviews (e.g., movie
reviews [21], product reviews [20]). Customer reviews are
increasingly available for a variety of products and services,
significantly reshaping the e-commerce landscape. Analyz-
ing customer reviews has important implications for a num-
ber of stakeholders [25]. For example, a manufacturer can
identify the important features of a product or prospective
buyers can assess product quality. Given the differences in
the content, language usage, and communication structure,
we are still far from a thorough understanding of how
STMs can effectively examine customer reviews. Moreover,
as mentioned previously, existing testbeds rarely exceeded
a hundred thousand documents due to the model inference
limitation. Collections of customer reviews may contain mil-
lions of documents. It is unclear how STMs can perform on
such large-scale testbeds.

In terms of the performance metrics, we find that prior
studies mostly adopted predictive R-squared (pR?) and
mean absolute error (MAE) for measuring the predictive
performance on customer review testbeds. pR? captures the
fit between the predicted response and the ground-truth by
assessing the proportion of variation in the true response
that can be explained by the predicted response. MAE cap-
tures the prediction error by measuring the average of the
prediction errors between the predicted response and the
true response. The two metrics evaluate different aspects of
the model predictions and are therefore complementary to
each other. Using both metrics provides a comprehensive
assessment of the predictive performance. Nonetheless, lit-
tle research has jointly used both metrics.

To summarize, we reorganize major STMs in Table 1
based on their model features. Table 2 presents a two-by-
two matrix of existing STM modeling contexts and potential
STM directions. The vertical dimension differentiates STMs
based on whether the model is a parametric model or a non-
parametric model. The horizontal dimension discriminates
STMs providing SDRs from others.
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TABLE 2
Major Supervised Topic Models Research Framework
Non-SDR SDR
Parametric sLDA [15], DMR [16], L-LDA [17], DiscLDA [11],
D-LDA [18], MedLDA [19] IRTM [20]
Non- sHDP [21] Our proposed
parametric model: HDP-IR

In the top left quadrant, most of the STMs are parametric
models providing dimension reductions that are not suffi-
cient. These models have two major limitations. First,
parametric models have the restriction of specifying the
number of topics a priori. Second, non-SDRs in these models
are not capable of capturing as much predictive information
from the document, thus reducing predictive performance.
So far, prior studies have attempted to solve the two major
limitations of STMs separately. The sHDP model (in the bot-
tom left quadrant) leverages the nonparametric topic model
to accommodate data with a flexible number of topics,
achieving better accuracy than sLDA [21]. In the top right
quadrant, DiscLDA [11] and IRTM [20] attempted to
improve the prediction by leveraging SDRs. To the best of
our knowledge, little has been done to provide a compre-
hensive model that addresses both limitations (the bottom
right quadrant, our proposed HDP-IR model).

3 BACKGROUND FOR PROPOSED MODEL

Our proposed model draws upon nonparametric topic model-
ing and inverse regression. This section gives a brief introduc-
tion about the backgrounds of these two streams of research.
Nonparametric topic modeling provides an alternative to meth-
ods that use model selection procedures to choose a fixed
number of topics. Inverse regression techniques support
dimension reductions with provably sufficient predictive
information about the original document for prediction.

3.1 Nonparametric Topic Modeling

As mentioned above, standard parametric topic models
(e.g., LDA) face the challenge of prespecifying the number
of topics. The nonparametric topic modeling approach over-
comes this challenge by leveraging Bayesian nonparamet-
rics, in which the number of topics does not need to be
specified a priori and can be inferred from the data. The
hierarchical Dirichlet Process (HDP) extension of the LDA
model [22] can perform as well as the best LDA model in
terms of held-out perplexity, while doing so without any
model selection procedure.

The major building block of HDP is the Dirichlet process
(DP), a probability distribution of discrete distributions over
the topic space [26],[27]. Specifically, a Dirichlet Process,
DP(a, Gy), is specified by a positive concentration parameter o
and a base distribution Gy. The concentration parameter speci-
fies how concentrated the discrete distributions over topics
drawn from the DP are. When the concentration parameter
is small, the discrete distributions mostly concentrate on a
few topics. As the concentration parameter increases, the dis-
crete distributions gradually spread out probability weights
to other topics. The base distribution determines the topic
space and the expectation of the discrete distributions drawn
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from the DP. Modeling topics with the DP is advantageous
because the discrete distribution drawn from the DP has a
unique combination of properties. First, the topics drawn
from this discrete distribution exhibit the clustering property;
this property allows the words within a document to be clus-
tered according to different topics. Second, the number of
topics does not need to be specified a priori and can poten-
tially grow with the size of corpus.

We further demonstrate these two properties using the
stick-breaking construction, a statistically equivalent view of
the DP from a constructive perspective [28]. Sethuraman
[28] showed that a topic distribution G ~ DP(«, G) can be
formed through the following stick-breaking construction pro-
cess: First, we generate two independent sequences of ran-
dom variables: the topic sequence B = (B,),_,, where
B, ~ Gy is topic k, and the “stick” probability sequence
a' = (m},)_,, where 7}, ~ Beta(1, «) relates to the probability
of topic k. Second, we define the probability sequence
m=(m)2, as m =m,[[F5(1—n) (often denoted as
m ~o(n')), where m; is the probability of topic k. This
resembles the breaking of a unit-length stick with the
“stick” probability sequence a’. Then, combining the proba-
bility sequence and the topic sequence, the topic distribu-
tion G is defined as G =377 | m;8p,, a discrete distribution
over a countably infinite number of topics (B,);-, with proba-
bility (7;);,. The same topic can appear in different draws
from this discrete distribution [29]. Furthermore, this stick-
breaking construction provides a guideline for developing
variational inference algorithms for estimating nonparamet-
ric topic models [30].

So far, the topic distribution of each document d can be
modeled with a draw from the DP: G; ~ DP(«, Gj). Particu-
larly, each word wy, in document d is generated from a topic
By that is drawn from the document topic distribution G;.
However, topic modeling requires the topics to be shared
not only within each document but also across different
documents. Following the intuition of topic sharing within
each document, HDP extends DP to enable topic sharing
across different documents by imposing a shared DP prior
(called the corpus-level DP) onto the base distributions of the
DPs for each document (called the document-level DP)

GU ~ DP(}": H):
Gd ~ DP(“: Gﬂ):

For the entire corpus :
(1

For each document d :

where y is the concentration parameter of the corpus-level DP,
«a is the concentration parameter of the document-level DP
and H is the baseline distribution of the topics. As such, the
base distribution of the document-level DP Gy is discrete
(with probability one) and therefore topics drawn for differ-
ent documents are resamples from the same set of topics,
thus achieving sharing of topics across documents.
Generally, the HDP topic model defines a set of docu-
ment topic distributions G, one for each document, gov-
erned by the corpus-level topic distribution Gy, which
includes a countably infinite number of topics. For each doc-
ument, the HDP topic model assumes a sequence of topics
(Ba1; Bas, - --) and each topic B, defines the probability dis-
tribution of word wy,. Preliminary attempts to embed HDP
in a STM were made in [21]. In this study, Dai and Storkey
extended the application of HDP to supervised data by
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incorporating a Generalized Linear Model. The proposed
supervised HDP (sHDP) model outperformed parametric
STMs on multiple testbeds. However, the dimension reduc-
tion of each document in sHDP is not sufficient. While prior
studies are encouraging, we are motivated to provide an
STM based on HDP to make more accurate predictions by
including SDR.

3.2 Inverse Regression

Inverse regression (IR) is a prominent SDR technique for tex-
tual data [31]. Classical regression analysis focuses on esti-
mating the conditional distribution of the response given a
document w € R": p(y|w). Due to the high dimensionality of
textual data, classical regression analysis is not capable of
efficiently estimating the conditional distribution, because
an accurate estimation would require the sample size D to
grow exponentially in the number of words W, which
imposes both computational and statistical challenges [31].
To achieve dimension reduction, IR estimates the inverse
conditional distribution of the document given the response
p(wly), because this inverse conditional distribution proves
to lie on a lower dimensional subspace [23]. To prove this,
we first assume a true model where the dimension reduction
projection exists: y = f(b,w, . ..,bw,€), where f determines
the relationships between the document and the response,
bi,...,bx are projection vectors, bjw, ..., b w are the true
dimension reduction of w, and ¢ is the mean-zero error. The
centered inverse regression curve E(wl|y) — E(w) lies on the
K-dimensional subspace spanned by 3.4u,b:'s, where 2., is
the covariance matrix of w [31]. As such, the inverse condi-
tional distribution of document p(wl|y) can be projected onto
a K-dimensional (K < W) subspace without compromising
any predictive information about the response.

Multinomial inverse regression (MNIR) is the state-of-the-
art IR model that provides provable SDRs of documents
[32]. MNIR extended the traditional IR by specifying the
inverse conditional distribution for documents to be multi-
nomial. MNIR performs multinomial logistic regression of
word counts w onto the response y: wly ~ Multinomial(q|y)
with the word frequency vector ¢ = [¢',...,¢"]. The fre-
quency of word w relates to the response y through a logistic
link: ¢* o exp(ety, + ¢,,). The intercept «,, determines the
“neutral” probability of word w when the response is zero.
The coefficient ¢, uses an independent sparsity-inducing
Laplace prior with mean-zero, whose maximum a posteriori
(MAP) estimation is equivalent to the LASSO estimator [33]
such that the coefficients of the words that are not correlated
with the response are minimized. Alternatively, each coeffi-
cient ¢, can be viewed as the influence of the response on
the frequency of word w within the document. With the suf-
ficiency factorization of multinomial logistic regression,
MNIR proves to yield an SDR projection ®'w,;, where
@' = [p,,...,pw] are the vector of coefficients. Namely, the
response y is independent of the original document w given
the SDR projection ®'wy: y I w|®'w. Consequently, with
this SDR projection ®'w,, we can ignore the original docu-
ment wy when making predictions. In other words, the SDR
projection ®'w, retains as much predictive information
about the response y as the original document w,. Further,
the prediction can be readily implemented using classical
regression analysis for estimating p(y|®'w).
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Fig. 1. A graphical model representation of hierarchical dirichlet process-
based inverse regression model.

While effective in capturing the predictive information
about the response, MNIR cannot capture the underlying
semantic themes within the corpus. Drawing upon MNIR,
the Inverse Regression Topic Model (IRTM) further accom-
modates for the topic heterogeneity within the corpus by
replacing the word intercept «,, with the logarithm of word
weight in each topic, In 8}/, such that each word can have
different intercepts under different topics [20]. As such,
IRTM can be viewed as the combination of MNIR and LDA.
The underlying intuition of IR-TM is to attribute the relation-
ship between documents and response to (1) the topic struc-
ture that is independent from the response and (2) the
influence of the response on the document. From the topic
modeling perspective, IRTM can be viewed as rescaling the
LDA topics with the multinomial regression weights from
MNIR, so that documents are jointly generated by the topics
and the response. Nonetheless, as we mentioned previ-
ously, using standard parametric topic models requires the
number of topics be specified a priori.

4 PROPOSED MODEL: HIERARCHICAL DIRICHLET
PROCESS-BASED INVERSE REGRESSION
(HDP-IR)

We propose a novel supervised topic model, the Hierarchi-
cal Dirichlet Process-based Inverse Regression model
(HDP-IR). Our major methodological contribution to the lit-
erature is two-fold. First, HDP-IR combines the advantages
of both nonparametric topic modeling and inverse regres-
sion: (1) HDP-IR avoids the model selection complications
and can capture the uncertainty regarding the number of
topics; (2) HDP-IR provides a SDR for each document,
which can improve the predictive performance. Second,
we design a scalable variational inference algorithm for fit-
ting HDP-IR such that it can be applied to large-scale cor-
pora (hundreds of thousands or millions of documents).
Following prior STM literature, we design HDP-IR under a
hierarchical Bayesian modeling framework. The structure
of HDP-IR can be represented by a graphical model as
shown in Fig. 1.
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41 Model Representation

At a high level, HDP-IR contains three components: the non-
parametric topic modeling component, the inverse regression
component, and the coupling component. The nonparametric
topic modeling component builds on HDP to capture the
uncertainty regarding the number of topics. The inverse
regression component leverages MNIR to model the
response and the document. The coupling component com-
bines the previous two components by integrating the
topics into the logistic regression within the MNIR model.
The design of each component is discussed in the remainder
of this section.

4.1.1  The Nonparametric Topic Modeling Component

(GO: Gd: ﬁdﬂ in ng' 1)

Consistent with prior topic modeling literature [15], we
define a topic B as a probability distribution over words in
vocabulary. Specifically, Bis a vector [8', ..., "], where g*
is the probability of word w in this topic. As mentioned in
related work, parametric topic models assume a fixed finite
number of K topics (B,,...,Bg) shared across the corpus.
In contrast, the nonparametric topic model, HDP, relaxes
this critical assumption and allows the number of topics to
grow with the size of corpus. Specifically, at the corpus
level, a random distribution of topics Gy is generated from
DP(y, H), which provides a countably infinite number of
topics to be shared across the corpus; at the document level,
each document d € D generates a distribution of topics Gy
from DP(«,G) (Equation (1) in Section 3.1). We emphasize
that G is the base topic distribution here. As a result, each
document has the sames set of topics but with different
probabilities, thus sharing the topics within the corpus.

4.1.2 The Inverse Regression Component

(‘)bm: Yd in ng' 1)

Drawing upon MNIR, the inverse regression component mod-
els the relationship between each word wy,, and the response
variable g, through a multinomial logistic regression. Specif-
ically, each word wy, is generated from a multinomial distri-
bution: wg, ~ Multinomial(g},...,q})|ys, where ¢¥ is the
frequency of word w in document d given the response vari-
able y,. Further, the relation between ¢} and 3, is modeled
through a logistic link: g4 o exp(ay + ¢,,ya), where & is the
intercept term and ¢, is the coefficient. The coefficient ¢,, fol-
lows an independent fat-tailed and zero-mean Laplace distri-
bution in order to induce sparsity such that some coefficients
are shrunk to zero. This is because the maximum a posteriori
(MAP) estimation of zero-mean Laplace-distributed coeffi-
cients is equivalent to the LASSO shrinkage [33]. Using the
multinomial logistic regression setting has two notable
strengths. First, as pointed out in the literature review,
modeling using the multinomial logistic regression guaran-
tees an SDR of the document through R(w;) = ®'w,y, where
® is the coefficient vector [¢,,...,¢y]- Second, the coeffi-
cients {¢,} can capture the influence of the response y; on
the observed words {wy, }.

4.1.3 The Coupling Component (¢,,, B, Win, Ya in Fig. 1)

In the logistic model within the inverse regression compo-
nent (i.e., ¢§ ox exp(af + ¢,¥a)), & plays a vital role when
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the response is zero. That is, when y; = 0, the frequency of
word w is ¢4 o exp(e¥). In other words, exp(ay) is propor-
tional to the frequency of word w in the absence of the
response. Recall that in topic models, the probability of
word w under topic By, is ;. We therefore incorporate £
into ¢ o exp(ef + ¢,y4) by defining «f = In . Modeling
the intercept term using the logarithm of the probability of
word w in topics has two strengths compared to other alter-
natives. First, instead of having a fixed intercept for each
word as in MNIR, each word can have a different intercept
(i.e., probability in the absence of the response) under differ-
ent topics, which helps capture the topic structure. Second,
the property of Vo =1 helps to identify the multino-
mial logistic regression in the MNIR such that there is no
need to specify a null category for the model.

Drawing upon Sethuraman’s stick-breaking construction
[28], we reconstruct the original HDP-IR model to facilitate
the development of inference algorithm because the DPs in
HDP-IR cannot be readily represented in the posterior. Spe-
cifically, we apply Sethuraman’s stick-breaking construction
to both corpus-level DP (ie., Gy ~ DP(y, H)) and document
level-DP (i.e., G4 ~ DP(w, Gy)). The advantage of this con-
struction is that the conditionals within the resulting poste-
rior are all in closed form [30]. The generative process of the
reconstructed model is described as follows.

(1) Draw coefficients for each word,
¢, ~ Laplace(t), w € {1,..., W}
(2) Draw an infinite number of topics,
B;. ~ Dirichlet(n), k€ {1,2,3,...}.
(3) Draw corpus-level breaking proportions,
v ~ Beta(l,y), k € {1,2,3,...}.
(4) For each document d,
a) Draw document-level topic indices,
cgi ~ Multinomial(o(v)), i € {1,2,3,...}.
b) Draw document-level breaking proportions,
4 ~ Beta(l,@), i € {1,2,3,...}.
¢) For each word n,
i) Draw topic assignment,
Zdn ~ Multinomial(o(m4)).
ii) Draw word,
W4n ~ Multinomial(g,), where

B, &P(,ya)

O e ewoa

We further elaborate the generative process of this recon-
struction of HDP-IR. Per-word coefficients ¢,, are generated
from the zero-mean, fat-tailed Laplace distribution to achieve
LASSO shrinkage (Step 1). Topics (B.),., are generated
from the Dirichlet distribution (Step 2). The corpus-level
breaking proportion of each topic v, defines the relative
prevalence of each topic within the corpus (Step 3). For each
document, we create a document-level distribution over
topics: we first generate the document-level topics by draw-
ing topic indices ¢; from o(v) (Step 4.1); we then generate
the document-level breaking proportion of each topic 74,
which defines the relative prevalence of each topic within
the document (Step 4.2). For each word, we create a distri-
bution over words: we first generate the topic by drawing
topic index 2, from o(mr,) (Step 4.3.1); we then use this topic




1198

(ie., B. a:m) in the multinomial logistic model for generating
the word (Step 4.3.2).

4.2 Inference and Prediction
We develop an efficient inference algorithm for fitting the
HDP-IR model based on the Stochastic Variational Inference
framework [12]. The traditional variational inference algo-
rithm needs to perform coordinate ascent over both docu-
ment-level variables for all documents (i.e., E-step) and
corpus-level variables in each iteration (i.e., M-step). When
the traditional variational algorithm examines large corpora
containing hundreds of thousands of documents, the
computational complexity associated with the E-step grows
significantly. Based on stochastic optimization, SVI incorpo-
rates random subsampling into the E-step and then uses the
resulting accumulated document-level sufficient statistics to
optimize the corpus-level variables through natural gradi-
ent ascent. In the E-step, SVI randomly subsamples from
the corpus and optimizes the document-level variables
based on the subsampled documents. Then, SVI uses the
optimized document-level variables from the subsample as
noisy approximations of the collective document-level vari-
ables for optimizing the corpus-level variables. The rest of
this section summarizes the algorithmic logic of our infer-
ence algorithm and prediction algorithm.

The objective of inference is to infer the following poste-
rior distribution given data, which can then be further used
in prediction

p(v, B, ®, 7, c, 2w, y;, ¥, 1m, A)
_ p(v, B, @, ¢,z w,yla,y,n,\) @
p(w,yla, y,n, )

The denominator p(w,y|e, y,n, ) is intractable to compute
because it requires integrating over all other latent varia-
bles: v, 8,®,m, ¢, z. Hence, variational inference seeks to
find an approximation distribution ¢(v, 8, ®,x, ¢, z) that is
the closest to the posterior distribution p(v, 8, ®, 7, ¢, zlw,
y; , ¥,1,A) as measured by Kullback-Leibler divergence

KL(g(v, B, ®, 7, ¢, 2)|[p(v, B, ®, 7, ¢, z|w, y;¢, ¥, 1, A))
=—{Ey[lnp(v, 8, ®, 7, c, z,w, yla, y,m, \)]
—Ey[lng(v, 8, ®,7,¢,2)]} +logp(x)
=— L(g) +logp(z)

)

In other words, variational inference aims to maximize £(g),
which is also known as Evidence Lower BOund (ELBO) [12].
Drawing upon the mean field theory [12], we define the
approximation distribution ¢ to be fully factorized

q(v,B,®,m,¢,2)
= q(vla)tI(ﬂlp)t}@)t}(ﬂl#)tf(flf)@(%l&)

K W W

= H Q(Udak :a.k )HHQ(ﬂ|pk) HQ(qﬁw (4)

=1 w=1 w=1

X H H Q(ﬂdﬁ|'§b’dg 'ﬂb'dg ) H Q(Cdau'da) H Q(zdn|£dn

d=1 | i=

where {v;}, {Bi.}, and ¢, are corpus-level variables, {74},
{cai}, and {z4,} are document-level variables, and a, p, ®,
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¥, £, § are the corresponding variational parameters for opti-
mizing the approximate posterior. We define the factor
approximation distributions to be in the same exponential
family of the corresponding condlhonal d1str1but10ns as
defined in our model (ie., q(vdak ,ai ) ~ Beta(a,L ,af)),
Q(ﬁkwLok) ~ D]IIChJEt(pk) etc.).

Having defined the form of ¢(v, 8, ®, m, ¢, z), we further
develop an SVI-based EM algorithm (Algorithm 1) to maxi-
mize L(g) by iteratively optimizing the variational parame-
ters (e, a, p, ®, ¥, ¢, &. In the E-step, we randomly
subsample a set of documents from the corpus and update
the variational parameters of the document-level variables
for these documents by performing coordinate ascent on
document-level variational parameters (i.e., ¥, £, and £). This
step makes it possible to perform the M-step without iterat-
ing through all the documents within the corpus, enabling
the scalability of our inference algorithm. In the M-step, we
perform stochastic natural gradient ascent over the varia-
tional parameters of the corpus-level variables (i.e., a, p, and
@) based on the subsampled document-level variables from
the E-step. Prior studies have proved that such subsampled
document-level variables are consistent approximations of
the document-level variables of the entire corpus with
respect to the objective ELBO function [34].

Algorithm 1. HDP-IR Inference Algorithm

Input: Corpus D (with responses)

Output: Converged variational parameters: a, p, i, T, ¥, , €

1: initialization

2: while ELBO has not yet converged do

3: randomly sample documents D; from the corpus D

{E-step:}

for each document d € D, do

update the document-level breaking proportion
parameter ¥,

update the topic indices parameter

update the topic assignment parameter &,

end for

{M-step:}

9:  update the corpus-level breaking proportion parameter
with document-level parameters from the subsampled
documents: a* = @' + p,3a({¥a} 4ep, {84} dep,: {€a}aen,)

10:  update the topic parameter with document-level parame-

ters from the subsampled documents: p' = p'™! + p,dp
({¥a}ien,> {8atacp, {€i}acn,)

11:  update the coefficient parameters with document-level
parameters from the subsampled documents: ®° =
Y+ (¥} aep, {8 aep, €adacn,)

12:  update the step size p; according to [12]

13: end while

@

NS

421 E-Step

For each document within the subsample, we maximize
L(gq) by performing coordinate ascent over the document-
level variational parameters: ¢, ¢, and & This can be
achieved by setting the ELBO derivatives with respect to
these parameters to zero

vy =1+ &, ®)
n=1
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—a+22§f1ﬂ (6)

Na
¢5 oc exp (Eq logow(v)] + ) _ &4 Eqllog p(wan| By yd)]) @
n=1

ﬂnamp( ollogo;(ma) +Z§dg lng(wdn|ﬂk:yd)]) @®)

k=1

The E,[log p(wan| By, y4)] term in Equations (7) and (8) can be
expanded as follows.

Eq[log .| + Eql¢u,, val

W (9
—E,flog > Brexp(¢,ya)]

u=1

E,[log p(was | B, ya)] =

The expectation of the denominator from the softmax func-
tion, E,[log 3" | Btexp(¢,va)], does not have a closed form
expression because of the non-conjugacy between the
Dirichlet distribution and softmax function [35]. As a result,
there are no tractable updates for variational parameters ¢
and &. The delta method [36], [37] is therefore used to approx-
imate this expectation term. For simplicity, we define this
term as E(p, ®), where p and ® are the topic and coefficient
variational parameters to be optimized

W W

E,flog ) Brexp(,us)] ~ log Z E,[{]E

u=1 u=1

2 E(p, @)

olexp(d,ya)] (10)

4.2.2 M-Step

We optimize the variational parameters for document-level
variables. Since the optimized document-level variational
parameters are from the random subsample of the corpus,
we use the stochastic natural gradient ascent to optimize
the corpus-level variational parameters (i.e., a, p, and ®).
The gradient for each corpus-level variational parameter is
presented as follows:

L D DI
aai)—-ai)+1+|D| ol (11)
sl di
Dy LK
30 = —a? D > (12)
| | d,iJ=k+1
Dy, Ny, I
apf =n-= m Z ﬂa‘&nv%ﬂE(P: Q) (13)
U dngi
Dy Ny, KK
3¢ /\a|¢w| + Z gd'agdn
' d,n, ki (14)

X (ll(wd =w)ya — Vg, E(p, ‘D))

In these equations, (&,),cp, and (&;),ep, are the opti-
mized document-level and word-level topic proportion var-
iational parameters for subsampled documents in D, from
the E-step. The I'E%[ in these equations helps approximate the
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optimized document-level variational parameters (with
respect to ELBO) for all documents based on the subsample.
For example, in Equation (11), the last term on the right-
hand side, 5737+ ¢%, approximates 377 ¢k, where D is
the entire corpus. Consider that when the subsample is big
enough to cover the entire corpus D, — D, Equation (11)
becomes the exact gradient derived from the variational
parameters for all documents

D1
day) = —a)) +1+ ¢ (15)
d,i

4.2.3 Prediction

The inference procedure computes the posterior distribu-
tions of the variables within the model, from which we can
derive the sufficient dimension reduction. As suggested in
our model, the SDR generated by HDP-IR contains two
major components: (1) the topic-based dimension reduction
from the nonparametric topic modeling component and (2)
the non-topic-based dimension reduction from the inverse
regression component. The former is the document-level
topic proportion expectation (ie., £;), which has already
been achieved in the inference. The latter is the inverse
regression-based sufficient dimension reduction (i.e., ®'wa),
which can be calculated by taking the product of the opti-
mized coefficients ® and the new document word count w,.

Following MNIR [32], we leverage the SDR for prediction
using forward regression. Specifically, given a document
wy, we use the SDR of the document (¢;, ®'wq) to predict
the response y4. The predictive model is not restricted to a
specific form. Rather, various forms of forward regression
models can be applied, depending on the research context.
In this study, we use the simplest regression model, linear
regression, to predict the response y; from the customer
reviews (the document wy). Specifically, we use the follow-
ing linear regression model

E(ya) =

where by, by, and b, are the regression coefficients. Algorithm
2 depicts the overall prediction procedure. We first achieve
the SDRs for all the training documents (i.e., &;, ®wy), then
estimate the coefficients (i.e., by, b1, bs) with the SDRs and the
corresponding responses, and finally predict the expectation
of the response based on the estimated coefficients.

by + big,; + b @ wy, (16)

Algorithm 2. HDP-IR Prediction Algorithm

Input: Training documents D4, optimized coefficients ®
Output: Prediction of the response expectation
: initialization
: \\ Training;
: foreach document d € Dy, do
: calculate the topic-based dimension reduction ¢, through
the E-step in Algorithm 1
calculate the non-topic-based dimension reduction: ®'wy
: end for
: estimate the coefficients in Equation 16 (i.e., by, by, and by)
using the training documents: {(y4, {4, ®'wa) }4ep, .
8: \\ Predicting;:
9: calculate the SDR for new document d*: (£, ®"wer)
10: predict the response expectation: E(y;) = by + b1&, + b ®'wye

= W=

R
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5 EVALUATION: E-COMMERCE TESTBEDS

Based on the design of HDP-IR, three experiments were con-
ducted to evaluate the predictive performance of our pro-
posed model. The first experiment was intended to evaluate
how the topic modeling component in HDP-IR improved the
predictive performance. We compared our proposed model
to various state-of-the-art non-topic-based models. The sec-
ond experiment compared the nonparametric STMs with
parametric STMs to evaluate how the nonparametric tech-
nique helped improve the predictive performance. The third
experiment sought to assess how the sufficient dimension
reduction generated by the inverse regression component in
HDP-IR contributed to the predictive performance. To this
end, we compared the HDP-IR model to various state-of-the-
art supervised topic models, such as sSLDA and DMR. For all
experiments, we evaluted the models through five-fold cross
validation to prevent the evaluation bias induced by model
misspecification. Conforming to the conventions in the STM
literature [15], [20] and the SVI literature [37], we set the
default parameters of priors as follows: y =1.0, a = 1.0,
A =1.0,and n = 0.01.

To evaluate the effectiveness of our proposed model,
we conducted experiments on three e-commerce review
testbeds used in prior studies. The first testbed is built on
movie reviews from Rotten Tomatoes [38]. This testbed is
composed of 5,006 movie reviews, each of which is associ-
ated with a numerical rating response ranging from 0 to
5. The second testbed is based on customer reviews from
the Yelp Academic Dataset [39]. This testbed includes a
total of 330,071 customer reviews. The reponses are stars
rated on a scale of 0 to 5. The third testbed contains
1,422,518 Amazon reviews for various product categories,
including books, electronics, housewares, and more. Each
review corresponds to a numerical rating on a scale of 0
to 5 [40]. Since the responses of all three testbeds are
numerical ratings, we standardized these responses by
calculating their Z-scores: y, = £X

%’ where 7 is the mean of
the responses for each testbed and o(y) is the standard
deviation for each testbed.

As suggested in prior studies (see Table 1), the predictive
performance on customer reviews is often measured by pre-
dictive R-squared (pR?) and mean absolute error. In addi-
tion, we also report root mean square error (RMSE) to
provide a comprehensive comparison between HDP-IR and
baseline models. pR* assesses the fit between the prediction
and the ground-truth with the proportion of variation in the
true response that can be explained by the predicted
response. Models with higher pR? have better predictive

D .2
7245‘{%_%),. MAE is the average of
> wa—)?
the prediction errors between the prediction and the
ground-truth. Lower MAE suggests lower prediction error:
MAE2 157 |, —y4l. RMSE measures the standard
deviation of the prediction errors between the prediction
and the ground-truth. Lower RMSE suggests lower pre-

performance: pR* 21 —

diction error: RMSE 2 \;‘%Z(‘?:l(g},g — y4)°. Furthermore,
we used one-sided Wilcoxon signed-rank test with 95
percent confidence for testing results significance because
these performance metrics may not be normally distrib-
uted [41].
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TABLE 3
pR? Results for HDP-IR and MNIR-Based Models

Model Movie Yelp Yelp  Amazon Amazon
(N=5K) (N=5K) N=03M) (N=5K) (N=14M)

HDP-  0.681 0.661 0.722 0.595 0.598

IR

MNIR-  0.444 0.499 - 0.332 -

LR (p<0.001) (p<0.001) (p<0.001)

MNIR- 0.463 0575 - 0.481 -

PolyQ (p<0.001) (p<0.001) (p<0.001)

MNIR- 0.476 0577 - 0.554 -

PolyC (p<0.001) (p<0.001) (p<0.01)

Tree- 0.586 0.568 - 0.541 -

LSTM (p<0.001) (p<0.001) (p<0.001)

5.1 Experiment #1: HDP-IR versus Non-Topic-Based
Models

To evaluate the improvement associated with the topic
modeling component, we compared HDP-IR to the state-of-
the-art non-topic-based algorithms, including Multinomial
Inverse Regression (MNIR) models and Tree-structured
Long Short-Term Memory model (Tree-LSTM). As sug-
gested in [32], MNIR-based models provide an SDR of each
document, which can be further used in predictive models.
Based on [20] and [32], we extended MNIR with three
predictive models: linear regression (MNIR-LR), polyno-
mial regression with quadratic term (MNIR-PolyQ), and
polynomial regression with cubic term (MNIR-PolyC).
Tree-LSTM is the state-of-the-art recurrent neural net-
work method for prediction. This method incorporates
the tree-structured dependency relations into standard
LSTM models and has demonstrated enhanced predictive
performance over traditional approaches in sentiment
classification [42]. The comparison against discriminative
models as such can further demonstrate the benefits of
modeling topics in HDP-IR. Our experiments confirmed
that both MNIR models and Tree-LSTM were not able to
converge on the two larger testbeds (ie., Yelp Reviews
and Amazon Reviews) because the scale of these testbeds
exceeded the limits that these models can handle. There-
fore, we randomly subsampled 5,000 reviews from each
of the testbeds to evaluate MNIR and Tree-LSTM.

Table 3 shows the experimental results for predictive R-
squared across all models applied to the three testbeds.
Neither MNIR-based models nor Tree-LSTM were com-
pared on the complete Yelp testbed (N = 330,071) or the
complete Amazon testbed (N = 1,422,518). The inference
algorithms of both MNIR and Tree-LSTM failed to con-
verge on these testbeds due to their limited scalability.
HDP-IR outperformed the baseline MNIR-based models
on all three testbeds in terms of predictive R-squared.
HDP-IR accounted for 1.7 percent (on the Amazon
testbed) to 19.5 percent (on the Movie testbed) more of
the variation in the true response than the baseline mod-
els. The improvements on all three testbeds were signifi-
cant, as measured by the p-values from the Wilcoxon
signed-rank test. For both the Yelp and Amazon testbeds,
HDP-IR performed better on the complete testbeds than
on the subsampled testbeds (N = 5,000). This suggests
that the prediction bias caused by the noisy data points in
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TABLE 4
MAE Results for HDP-IR and MNIR-Based Models
Model  Movie Yelp Yelp Amazon  Amazon
(N=5K) (N=5K) (N=03M) (N=5K) (N=14M)
HDP- 0.457 0.477 0.474 0.347 0.376
IR
MNIR- 0.593 0.672 - 0.702 -
LR (p<0.001)  (p<0.001) (p<0.001)
MNIR- 0.579 0.613 - 0.627 -
PolyQ (p<0.001) (p<0.001) (p<0.001)
MNIR- 0.574 0.616 - 0.548 -
PolyC  (p<0.001) (p<0.001) (p<0.001)
Tree- 0.498 0.593 - 0.688 -
LSTM  (p<0.001) (p<0.001) (p<0.001)

relatively small samples can be effectively corrected by
increasing the sample size.

Tables 4 and 5 show the MAE and RMSE results for
HDP-IR and all baseline models across the three testbeds.
Consistent with the pR? results, the MAE results and the
RMSE results show that HDP-IR had the best perfor-
mance, with the lowest MAE prediction error and the
lowest RMSE prediction error for all three testbeds. The
Wilcoxon signed-rank test results supported that HDP-IR
significantly outperformed the baseline MNIR-based
models in terms of both MAE and RMSE across all three
testbeds. Looking at the results of baseline models by test-
beds, both MNIR-based models and Tree-LSTM had the
lowest MAE prediction error and the lowest RMSE pre-
diction error on the Movie testbed. This is not surprising
since movie reviews have less topic heterogeneity than
Yelp reviews and Amazon reviews, which span a variety
of services and products.

As expected, including topic modeling component signifi-
cantly improved the predictive performance of inverse
regression models. This suggests that the learned topics
were able to effectively capture the underlying semantic
themes within the corpus, and these learned topics signifi-
cantly contributed to prediction accuracy. Inverse regression
models assume different documents to have the same distri-
bution over words conditioned on the same response value.
For documents with similar topics, this assumption is rea-
sonable and effective; however, for documents covering a
variety of topics, this assumption becomes less realistic and

TABLE 5

RMSE Results for HDP-IR and MNIR-Based Models

Model  Movie Yelp Yelp Amazon  Amazon
(N=5K) (N=5K) (N=03M) (N=5K) (N=14M)

HDP- 0.581 0.553 0.512 0.615 0.644
IR
MNIR- 0.746 0.867 - 0.977 -
LR (p<0.001)  (p<0.001) (p<0.001)
MNIR- 0.733 0.799 - 0.861 -
PolyQ (p<0.001) (p<0.001) (p<0.001)
MNIR- 0.724 0.797 - 0.798 -
PolyC  (p<0.001) (p<0.001) (p<0.001)
Tree- 0.616 0.789 - 0.732 -
LSTM  (p<0.001) (p<0.001) (p<0.001)
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Fig. 2. pR? results for HDP-IR and baseline models with different number
of topics.

may affect the prediction accuracy. HDP-IR, on the other
hand, relaxes this assumption with flexible topic structure.
Specifically, HDP-IR leams the topics across all the docu-
ments with the nonparametric technique to capture topic
heterogeneity and then incorporates these learned topics to
differentiate the distribution of each document conditioned
on the associated response. Furthermore, the experiment
results emphasized the benefits of modeling topics using
generative models. The state-of-the-art discriminative
approach, Tree-LSTM, leveraged the word embedding lan-
guage model, where each word was mapped to a unique
embedding vector that capture its contextual semantics.
While effective in many contexts, the word embedding
language model cannot address homonyms adequately as
each word is mapped to only one embedding vector.
Therefore, Tree-LSTM tends to perform better on semanti-
cally coherent testbeds where each word tends to have
fewer meanings within the entire corpus. This is evi-
denced by our experiment results: Tree-LSTM performed
significantly better on the relatively coherent movie
reviews. The topic modeling component in HDP-IR
allows for each word to have multiple meanings as cap-
tured in its association with semantically different topics.
Therefore, compared to MNIR-based models and Tree-
LSTM, HDP-IR could have better predictive performance
on datasets with topic heterogeneity.

5.2 Experiment #2: Nonparametric versus
Parametric

To assess the improvement introduced by the nonparametric
topic modeling technique, we compared HDP-IR to the base-
line parametric STMs. The parametric STMs included open-
sourced implementations of the state-of-the-art sLDA [15]
and DMR [16], and our implementation of IRTM [20]. The
specifications of these baseline models have already been
discussed in Related Work. The comparison between HDP-IR
and IRTM could directly reflect the predictive performance
gain contributed by the nonparametric topic modeling com-
ponent. We examined the predictive performance of the
parametric STMs under different assumptions of the number
of topics. We varied the number of topics in the parametric
STMs from 10 to 150 in increments of 10 topics. This range
covers the numbers of topics specified in most previous stud-
ies [15], [16], [11], [17], [18], [19], [20], [21].

Fig. 2 shows the predictive R-squared results for all mod-
els across the three testbeds, including the Movie testbed
and the subsampled Yelp and Amazon testbeds. Overall,
HDP-IR performed the best with the highest pR?, followed
by IRTM and sLDA. This pattern is consistent across all
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three testbeds. Fig. 3 shows the MAE results for all models
across the three testbeds. HDP-IR had the best predictive
performance with the lowest MAE prediction error across
all three testbeds. On the Amazon testbed, IR-TM appeared
to have better performance than the other two baseline
models, while such advantage was not fully reflected on the
other two testbeds. Fig. 4 shows the RMSE results for all
models across the three testbeds. Similarly, HDP-IR had the
best predictive performance with the lowest RMSE predic-
tion error across all three testbeds. On the Amazon testbed,
IRTM had better performance than the other two baseline
models. As the major difference between IRTM and HDP-IR
is the nonparametric topic modeling component, the experi-
ment results clearly suggested the effectiveness of nonpara-
metric topic modeling and quantified its contribution to
overall predictive performance.

In comparison with parametric STMs, the nonparametric
topic modeling technique improved the predictive perfor-
mance of HDP-IR. The major underlying reason was that the
parametric topic modeling approach requires specifying the
number of topics, which might cause model overfitting or
underfitting. Further, varying the number of topics could not
significantly improve the predictive performance of the
parametric STMs, as evidenced by the results of pR* (Fig. 2),
MAE (Fig. 3), and RMSE (Fig. 4) on all three testbeds. This is
because the nonparametric topic model is fundamentally dif-
ferent from the parametric topic model in terms of learning
the topics. The nonparametric topic model considers the
topics to be drawn from a topic space containing an infinite
number of topics, whereas the parametric topic model
assumes the topic space to have a limited number of topics.
Therefore, the parametric topic model cannot attain as good
performance as the nonparametric topic model can by
merely changing the number of topics. For sLDA on the Yelp
testbed and the Amazon testbed, the predictive performance
became worse as the number of topics increased, which was

Model - HDP-IR - IRTM - sLDA - DMR

Movie Yelp Amazon

30 60 90 120150 30 60 90 120 150

Number of Topics

30 60 90 120 150

Fig. 4. RMSE results for HDP-IR and baseline models with different
number of topics.
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TABLE 6
pR? Results for HDP-IR and Baseline Topic-Based Models

Model Movie Yelp Yelp Amazon Amazon
(N=5K) (N=5K) (N=03M) (N =5K) (N=14M)

HDP-  0.681 0.661 0.722 0.595 0.598

IR

sLDA 0503 0.420 - 0.419 -
(p<0.001) (p<0.001) (p<0.001)

DMR  —-0.142 0.008 - 0.003 (p<0.001) -
(p<0.001) (p<0.001)

HDP 0.275 -0.214 0.013 -0.031 -0.035
(p<0.001) (p<0.001) (p<0.001) (p<0.001)  (p<0.001)

consistent across all three performance metrics. This seems
counterintuitive as the Yelp testbed and the Amazon testbed
were supposed to have more topics due to the variety of serv-
ices and products. A possible explanation is that sLDA
assumes both the topic and the words to be generated based
on the topic [16]. Such topics suffered from model overfitting
on the held-out testing set because neither the response nor
the words are generated from the topics in the same way as
in the training set. Increasing the number of topics intro-
duced more overfitted topics; therefore, the magnitude of
the model overfitting became more significant.

5.3 Experiment #3: SDR versus Non-SDR

To evaluate the contribution of the inverse regression com-
ponent to the predictive performance, we compared HDP-IR
against baseline topic-based models without sufficient
dimension reductions. Ideally, the best baseline model
would include sHDP [21] because it is a nonparametric STM
as well. However, the sHDP implementation was not avail-
able, so we identified a set of state-of-the-art open-source
baseline topic-based models for comparison. Our first base-
line model was a nonparametric STMs. This model per-
formed linear regression on the posterior topic distribution
from unsupervised HDP. Specifically, the nonparametric
baseline method leveraged the posterior HDP topic distribu-
tion of each document as the covariates for predicting the
response through a Generalized Linear Model. Inspired by
[15], this baseline method could provide a meaningful com-
parison between SDR-based HDP and non-SDR-based HDP.
Additionally, our baseline models also include parametric
STMs, such as supervised LDA (sLDA) [15] and Dirichlet-
Multinomial Regression [16]. Since most of these baseline
models employed sampling-based inference algorithms
(e.g., Gibbs sampling), which required hundreds of itera-
tions over millions of variables, these models cannot scale
well in the two larger testbeds (i.e., Yelp Reviews and Ama-
zon Reviews). This was empirically validated by our prelimi-
nary experiment, where sLDA and DMR were not able to
converge within a reasonable time frame (i.e., two weeks on
a Windows system equipped with quad 3.0 Ghz processor
and 32 GB memory). Therefore, we evaluated these models
on the subsampled testbeds as described in Experiment #1.
Table 6 shows the experimental results for predictive R-
squared across all the models for the three testbeds. HDP-IR
outperformed the baseline topic-based models consistently
across all three testbeds as measured by predictive R-
squared. HDP-IR was able to predict 17.6 percent (on the
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TABLE 7
MAE Results for HDP-IR and Baseline Topic-Based Models

Model  Movie Yelp Yelp Amazon  Amazon
(N=5K) (N=5K) (N=03M) (N=5K) (N=14M)

HDP- 0.457 0.477 0.474 0.347 0.376

IR

sLDA 0.558 0.739 - 0.649 -
(p<0.001)  (p<0.001) (p<0.001)

DMR 0.891 0.824 - 0.735 -
(p<0.001)  (p<0.001) (p<0.001)

HDP 0.925 0.816 0.776 0.720 0.756
(p<0.001) (p<0.001) (p<0.001) (p<0.001) (p<0.001)

Amazon subsampled testbed) to 24.1 percent (on the Yelp
testbed) more of the variation in the true response than the
baseline topic-based models. Based on the Wilcoxon signed-
rank test, HDP-IR significantly outperformed the baseline
topic-based models, with p-values at the significance level
of 0.001. Surprisingly however, the baseline nonparametric
supervised topic model based on HDP, did not outperform
the parametric supervised topic models. This may suggest
that the topics leamned by the nonparametric topic model
under the unsupervised setting were not predictive of the
document response. This confirmed our design of jointly
considering the effects of the response (i.e., @) and the topic
(ie., B) on document generation. Among the baseline mod-
els, sSLDA consistently performed the best with the highest
predictive R-squared across all three testbeds. HDP-IR
achieved better performance with the SDR associated with
the nonparametric topic modeling.

Tables 7 and 8 show the MAE results and the RMSE
results for HDP-IR and the baseline topic-based models
across the three testbeds. Again, HDP-IR outperformed the
baseline topic-based models in terms of both the MAE pre-
diction error and the RMSE prediction error across all three
testbeds. The Wilcoxon signed-rank test also supported the
significance of these results. The prediction errors were
comparable with each other across different testbeds. Con-
sistent with the pR? results, SLDA had the best performance
among the baseline topic-based models across all three test-
beds. Examining the baseline model results by testbeds, we
found that sLDA had the lowest MAE prediction error and
the lowest RMSE prediction error on the Movie testbed. In
comparison, both DMR and HDP had relatively lower pre-
diction errors in terms of both MAE and RMSE on the Yelp
testbed and the Amazon testbed than on the Movie testbed.

Since the Yelp testbed and the Amazon testbed both had
more topic heterogeneity than the Movie testbed, this

TABLE 8
RMSE Results for HDP-IR and Baseline Topic-Based Models

Model Movie Yelp Yelp Amazon  Amazon
(N=5K) (N=5K) (N=03M) (N=5K) (N=14M)

HDP-IR 0.581 0.553 0.512 0.615 0.644

sLDA 0.705 0.931 - 0911 -
(p<0.001) (p<0.001) (p<0.001)

DMR 1.069 0.996 - 0.999 -
(p<0.001) (p<0.001) (p<0.001)

HDP 1129 1.047 0.964 0.982 1.034
(p<0.001) (p<0.001) (p<0.001) (p<0.001) (p<0.001)
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Fig. 5. Topic coherence results for HDP-IR and unsupervised HDP

suggests that DMR and HDP performed better at capturing
the topics within the documents than sLDA. DMR is a gener-
ative model that considers the documents to be generated
under the influence of both the response and the topics; there-
fore, the latent variables within DMR could differentiate the
two types of influence and capture the actual topic heteroge-
neity within the corpus. Further, the HDP baseline method
first learned the topics over the corpus under an unsuper-
vised setting, which captured the actual topic heterogeneity
as well. On the other hand, sLDA is a discriminative model
that assumes both the documents and the response to be gen-
erated from the topics; hence, the learned topics were overfit-
ted with the response. While predictive of the response, such
topics cannot be readily generalized to new documents.

To further illustrate the effectiveness of HDP-IR in captur-
ing the topics, we compare the quality of topics learned by
our HDP-IR and the quality of unsupervised HDP topics.
The quality of topics is measured using fopic coherence,a com-
monly used topic quality measurement [43]. Topic coherence
primarily measures the co-occurrences of the most probable
keywords within each topic and has shown high correlation
with the judgment of human annotator [43]. Higher topic
coherence score suggests higher topic quality.

Fig. 5 shows the topic coherence result for HDP-IR topics
and unsupervised HDP topics on the Movie testbed. We
compared the rankings of topic coherence scores between
the two models. Overall, the quality of HDP-IR topics is
comparable to the quality of unsupervised HDP topics. For
the higher quality topics (i.e., Top 100 coherent topics),
HDP-IR learned more coherent topics than unsupervised
HDP. This evidence shows that the major topics learned by
HDP-IR could capture more semantic themes than unsuper-
vised HDP as the HDP-IR model can differentiate the varia-
tion caused by neutral semantic themes and response
variables of interest. On the other hand, the lower quality
topics of unsupervised HDP learned are slightly more
coherent than the lower quality topics of HDP-IR, as shown
on the right hand side of the chart.

As expected, the SDR generated by the inverse regression
component in HDP-IR contributed significantly to the pre-
dictive performance. The improvement induced by SDR can
be measured by comparing HDP-IR and the HDP baseline
model, which is a nonparametric STM based on non-suffi-
cient dimension reduction of the documents. In this case, the
SDR of HDP-IR was able to capture provably sufficient pre-
dictive information about the response, as reflected in the
experimental results. Moreover, the SDR of HDP-IR outper-
formed the dimension reductions provided by other baseline
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topic-based models, such as sSLDA and DMR. This is because
under any true model of y; = f(wg), the statistical property
of the SDR guarantees that the response is independent of
the original document given the SDR: yu 1L wys|R(wy),
where R(wy) = (¢4, ®'wy) is the SDR from HDP-IR. In the
baseline STMs, the response is correlated with the original
document even given the provided dimension reduction:
ya AL wy|RF(wy), where Rf(w,) = (B, - . -, Bx) is the dimen-
sion reductions (i.e., topics) of the baseline STMs. As such,
the predictions conditioned on the SDR E(y4|¢;, ®'wy) are
theoretically more accurate than the predictions conditioned
on the non-sufficient dimension reduction E(ya| 8, - . ., Bx)-

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we proposed a novel nonparametric super-
vised topic model, HDP-IR. HDP-IR leverages the nonpara-
metric topic modeling approach to determine the topic
structure from the data. Extending the inverse regression
model, HDP-IR makes predictions with sufficient dimension
reduction of the document to improve the predictive perfor-
mance. Further, HDP-IR is able to examine large-scale cor-
pora containing millions of documents with the help of a
novel efficient inference algorithm based on the state-of-the-
art Stochastic Variational Inference. Experimental results
revealed that the proposed HDP-IR model significantly out-
performed existing supervised topic models. The results also
suggested that both the nonparametric topic modeling com-
ponent and SDR could improve the predictive performance.

To the best of our knowledge, the proposed HDP-IR
model is the first nonparametric topic model leveraging SDR
to improve prediction accuracy. The proposed model pro-
vides an important step for future work seeking to study the
user-generated text from a topic perspective. Based on our
study, we have identified a few future research directions. In
this study, we focused on predicting the univariate response.
To inform multi-task leaming, we would like to examine
whether the multivariate response also fits in HDP-IR. We
are also interested in exploring the role of additional factors
such as the temporal factor in the extension of our proposed
model. Moreover, the topic sharing idea is applicable to
many other research domains, such as audio and image anal-
ysis. We therefore intend to examine the generalization of
HDP-IR in such data. Furthermore, since the SDR of the
HDP-IR model retains complete information about the
response, we are interested in assessing whether the SDR
can be used as a measurement of the document to improve
the explanatory models in future social science research.
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