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1. INTRODUCTION

Polymer composites have been studied for decades, because of
their ability to join toggether processable polymer resins with
functional additives.' " The additives can range in size from a
few nanometers (e.g., 1-5 nm) to several micrometers (e.g., 1-
S pm) and can be selected for the type of functionality
introduced to the matrix, such as electrical conductivity/
insulation, optical characteristics, strength, etc.”™'? These
composite systems boast a density far less than the additive
material and are thus touted as lightweight, multifunctional
materials.'”> Because of their tunability and the breadth of
potential functionalities, they are heavily used within consumer
products, construction, nanoelectronics, and biomaterial
applications.”'*~"” However, a token disadvantage of polymer
nanocomposites is a propensity for nanoparticle agglomeration,
caused by depletion forces. There is some evidence that low
viscosity and lower-molecular-weight melts afford better
nanoparticle dispersions, as indicated by Heinrich and co-
workers.'®

Polymeric nanocomposites that are cured when exposed to
light serve as promising materials for tissue engineering and
three-dimensional (3D) architectural applications, because the
spatiotemporal cure percentage can be externally con-
trolled.””""~*" In addition, photopolymerizations have been
explored as alternatives to injection molding, wherein the
propagating reactive group moves as a wave through a resin-
filled mold; this implementation typically requires a monomer
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that can undergo cationic polymerization.”” In either case, the
composites that are constructed with photoinitiators will form
stable, covalently bonded cross-links." In the past decade, a great
amount of attention has been devoted to decoupling, or at least
understanding the interplay and the polymer chemistry from
additive dispersion, as well as to improving composite
mechanical properties.””***™*% It has been seen that the
incorporation of nanoparticles into the structures can increase
the composite’s structural integrity.””*° Nanoparticles act as
anchors to stiffen the polymer matrix, contributing to a more-
robust material.”’

Recent efforts have sought to further reduce the density of
plastic and composite systems by creating porous structures or
3D material designs. The latter must be prepared by additive
manufacturing, which restricts the catalog of polymer
chemistries available. A photocurable monomer or photo-
initiator/monomer system would have to be utilized in order to
prepare a 3D thermoset nanocomposite, wherein the resin/
nanoparticle mixture was cured after printing using micro-
stereolithography or technology similar to Carbon 3D
(Continuous Liquid Interface Production (CLIP)).”*~** Thus,
photocurable polymer resins, which inherently have a low
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molecular weight and low viscosity before curing, offer a
medium for favorable nanoparticle dispersion'® that can
subsequently be converted to nanocomposites with uniformly
distributed nanoparticles. The relative strength of the polymer—
nanoparticle interaction, compared to the nanoparticle—nano-
particle interactions, will play a critical role in achieving uniform
dispersions.

To use the nanoparticles to their maximum potential, it is
critical to fully understand the fundamentals of their mechanical
and physical properties. Specifically, this investigation seeks to
understand the influence of SiO, loading on the polymerization
yield, glass-transition temperature (T,), and uniaxial tensile
performance. Therefore, we studied a model photocurable
polymer nanocomposite system: poly(ethylene glycol) diacry-
late monomers loaded with varying weight fractions of 100 nm
SiO, nanoparticles and a fixed concentration of photoinitiator,
which were cured via UV light irradiation. Five different weight
loadings of SiO, nanoparticles (0, 3.8, 7.4, 10.7, and 13.8 wt %)
were tested to elucidate the effects on thermal, mechanical, and
physical characteristics of the nanocomposite. The mechanical
properties were characterized using compressive testing to
determine the Young’s modulus, the ultimate compressive
stress, and the ultimate strain at break. Physical characteristics,
such as the water uptake, the gel fraction, the cross-sectional
morphology, and nanoparticle size and size distribution in the
composite were determined. Finally, the thermal characteristics
were revealed using differential scanning calorimetry (DSC) and
thermogravimetric analysis (TGA). This research provides a
basis for understanding the mechanical capabilities and chemical
properties of hydrophilic, SiO,-loaded nanocomposite. The
ultimate goal is the development of a model system that can be
used to make 3D-printable nanocomposites via stereolithog-
raphy, which will require additional studies at various cross-
linker molecular weights, comonomer compositions and ratios,
photocatalysts, nanoparticle sizes, and nanoparticle surface
compositions.

2. MATERIALS AND METHODS

2.1. Chemicals. The poly(ethylene glycol) diacrylate
(PEGDA, M, = S§75 g/mol, purity of >99.68%) and 2-
dimethoxy-2-phenylacetophenone (DMPA) were purchased
from Sigma—Aldrich. The silicon dioxide (SiO,) nanoparticles
(100 nm in diameter) were purchased from NanoCym.
Tetrahydrofuran (THF) was purchased from Fisher Chemical.
All materials were used as received.

2.2. Composite Fabrication. Composite samples were
made by loading SiO, into PEGDA. To reduce SiO,
aggregation, the nanoparticles were first dispersed in THF (0,
0.04, 0.08, 0.12, or 0.16 g of SiO, was added to 3 mL) and
sonicated for 40 min. Separately, DMPA was mixed with the
PEGDA at a ratio of 0.0035:1 w/w (DMPA:PEGDA). The THF
solution was then pipetted into 1.0 g of the DMPA/PEGDA
mixture and stirred at 23 °C for 45 min. Next, the THF was
evaporated at 23 °C and the solution was transferred into a
silicone mold and cured under UV light (wavelength (1) of
~365 nm) for 3 min.

2.3. Determination of Sol-Gel Fractions. Soxhlet
extraction was used to determine gel fractions. A preweighed
sample was placed in the apparatus and >12 complete solvent
wash cycles were completed. THF was used as the solvent to
dissolve any remaining soluble fraction. The sample was then
weighed again after drying under vacuum overnight at 25 °C to
determine the final mass (W), which was compared to the initial

mass (W;). The gel fraction (C) was calculated according to eq
1:

W
C (%) = — x 100
W, (1)

2.4. Water Uptake Determination. In a standard process,
the sample was freeze-dried for 14 h to ensure all water that was
absorbed from atmospheric moisture was removed. First,
samples were subjected to testing to determine the time
required to reach equilibrium. In this equilibrium experiment,
the samples were weighed every 30 min until the weight no
longer increased (~2.5 h). For each subsequent experiment, all
samples were equilibrated for >3 h to ensure maximum water
uptake. The sample was then weighed and immersed in
deionized water for 3 h to reach the absorption equilibrium.*
The sample was removed from the water and blotted with a cloth
to remove excess water on the surface. This sample’s mass (W,)
was recorded and compared to its initial mass (W,). The
percentage (by weight) of water taken up by the network (S) was
calculated using eq 2:

d % 100
W, ()

Thermogravimetric analysis (TGA) was performed using a
TA Instruments QS00 system. Samples (~5 mg each) were
heated at a rate of 10 °C/min from 23—600 °C under nitrogen.

2.5. Characterization of Composites Morphology. The
composite cross-sectional morphology was characterized using
an environmental scanning electron microscopy (SEM) system
(Philips, Model XL30 ESEM-FEG) that was operating at 15 kV.
Composite samples were freeze-fractured using liquid nitrogen
for cross-sectional examination and sputter-coated with gold
before imaging. Small-angle X-ray scattering (SAXS) data were
obtained using a camera (Rigaku Americas, Inc, Model S-
MAX3000 SAXS) that had a large gas-filled area detector,
pinhole collimation optics, and a Confocal Max-Flux collimating
optic. X-rays having a wavelength of A = 1.542 A were generated
by a rotating copper anode source (Rigaku, Model MicroMax
007HFM). The isotropic two-dimensional SAXS data were
corrected for background noise and sample transmission prior to
azimuthal averaging into one-dimensional data in the form of
intensity (I), as a function of g, where

W, — W,
s (%) = =2

_ 4z sin (0)
A

Here, 20 is the scattering angle. Distance and beam center
calibration were performed using silver behenate. Data were
placed on an absolute scale by comparison to a calibrated glassy
carbon standard. All data corrections and analysis were
performed using Igor Pro v. 7 (WaveMetrics, Inc.) and
procedures available from Argonne National Laboratory.*”**

Transmission electron microscopy (TEM) was performed
using a TEM system (JEOL, Model JEM-2100F) that was
operated at 200 kV in bright-field mode. Micrographs were
collected using an ORIUS SC1000 camera (Gatan, Inc.).
Samples of SiO, nanoparticles were prepared by drop casting
nanoparticle dispersions in either methanol or THF onto
carbon-coated TEM grids. The nanoparticle dispersions were
made by hand mixing SiO, powder in the desired solvent, then
dispensed using a micropipette.

2.6. Thermal and Mechanical Analysis. The glass-
transition temperature (Tg) was characterized using differential
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scanning calorimetry (DSC) (Model Q2000, TA Instruments).
Samples of 4—6 mg and were sealed into aluminum sample pans.
The samples were subjected to a heat—cool—heat process from
—100 °C to 200 °C with heating rates of S °C/min and a cooling
rate of 10 °C/min. The midpoint T, was determined using the
T, function built into TA Instruments’ Universal Analysis
software. An Instron E3000 device was used to perform
compression testing of the SiO,-loaded nanocomposites. A
fresh, dry sample was used for each test. The samples were cut
into rectangles and then compressed at a strain rate of 0.1500
mm/min at 23 °C until the sample integrity was compromised.

3. RESULTS AND DISCUSSION

3.1. Synthesis and Characterization. The photoinitiated
curing of PEGDA has been well-develoged and proposed as a
. o L 20,39 :
free-radical polymerization mechanism, and the synthetic
route is shown in Scheme 1. Because the mechanism and kinetics

Scheme 1. Cross-Linking Reaction of PEGDA Initiated by
DMPA under UV Light
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are understood, as well as the fact that numerous PEGDA chain
lengths are commercially available, PEGDA was selected for this
investigation. First, the optimal concentration of the photo-
initiator was determined by preparing a series of PEGDA
hydrogels with various DMPA concentrations without any SiO,
nanoparticles present (see Figure S1 in the Supporting
Information). After curing the resins, the gel fractions were
determined using Soxhlet extraction. Briefly, the polymer was
washed with an organic solvent in which the monomer is soluble
for multiple cycles and the as-cured weight was compared to the
weight after rinsing. THF was used as the solvent to dissolve any
un-cross-linked monomers or oligomers that remained within
the structure. The highest gel fraction was obtained with 0.35
wt % DMPA; therefore, this initiator concentration was used
throughout the rest of the investigation.

Next, SiO, nanoparticles were added at various weight
fractions and the PEGDA oligomers were cured using the same
process as described above. Herein, the concentration of SiO,
nanoparticles is reported as a mass concentration (wt/total
wt %), which can be converted to other concentrations (e.g,,
mol %, vol %), using the reported densities of PEGDA networks
and SiO, nanoparticles: 1.12 g/cm® and ~1.9 g/cm?,
respectively.’”*" SiO, nanoparticles are common additives in
polymer nanocomposites, because of their low cost, tunable
hydrophilicity, and the ability to purchase particles across a very
broad range of sizes and size distributions.””** The results
shown in Figure 1 reveal that the gel fraction decreased as the
concentration of SiO, nanoparticles increased. This suggests
that the SiO, nanoparticles inhibit cross-linking by scavenging
radicals, limiting diffusion, or simply by diluting the concen-
tration of monomer in the system. Others have observed an
acceleration of the polymerization process (involving SiO,
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Figure 1. Gel fraction of PEGDA networks with varying SiO,
concentrations. Error bars on the water uptake data indicate the
mean =+ one standard deviation. The asterisks indicate statistically

significant differences in gel fraction according to the Student’s t-test (p
< 0.05).

nanoparticles and acrylate-based monomers) but SiO, agglom-
eration at higher volume fractions was observed to reduce the
reactivity.** However, even at the maximum SiO, loading of 13.8
wt %, a gel fraction of 91% was achieved. The network with no
nanoparticles added exhibited a gel fraction of 100%.

Quantitative measurements of the nanoparticle loading in the
hydrogel composites were performed using TGA (Figure 2).
The TGA thermograms display dehydration weight losses of
~1% at temperatures below 100 °C. This weight loss is due to
the desorption of moisture physically adsorbed from the air. A
single decomposition step was observed for the series at ~360
°C with sharp weight losses of 95.1, 92.4, 85.5, 82.3, and 77.4
wt % as the SiO, loading increased from 0 to 13.8 wt %. The
weight loss in this step is attributed to the decomposition of the
PEG matrix. By correcting for the char weight of the PEGDA
matrix, this indicates that the SiO, weight percentages of the
series were 2.7, 10.1, 12.8, and 17.7 wt % for the 3.8, 7.4, 10.7,
and 13.8 wt% SiO,-loaded nanocomposite samples, respec-
tively. Thus, the TGA data confirm that increasing the SiO,
nanoparticle loading during synthesis increased the loading in
the nanocomposite.

3.2. Characterization of Composite Morphology. The
cross-sectional morphology of SiO,—PEG hydrogels was
examined using SEM. As shown in Figure 3, the morphology
of the series of SiO,—PEG nanocomposites showed few features
at lower nanoparticle loadings (3.8 and 7.4 wt %); however, at
higher loadings (10.7 and 13.8 wt %), the nanoparticles became
visible. Aggregates containing multiple SiO, particles were
observed only at 13.8 wt %; however, this does not rule out
multiparticle aggregates at lower loadings. At a loading of 13.8
wt %, aggregates of many different sizes were observed with an
upper limit of ~500 nm. The bulk morphology and nanoparticle
distribution were further probed using SAXS.

The bulk morphological behavior of the nanocomposites was
investigated using SAXS, which has been shown to be useful for
polymers containing nanoparticle fillers.*” The resulting data,
shown in Figure 4, reveal that the neat polymer is
morphologically featureless on the size scale investigated by
SAXS (roughly 1 to 100 nm). Addition of the nanoparticles
results in a strong increase in scattered intensity at lower angles,
with several distinct features in the low-q and mid-q regions.
Increasing the SiO, content results in a corresponding increase
in the scattered intensity. Attempts to fit the above SAXS data
using scattering from a monomodal, spherical particle having
even a broad size distribution were unsuccessful. Use of a single
size distribution allowed a partial fit of the scattering data in the
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Figure 2. TGA thermograms showing (a) the weight loss from thermal decomposition of the SiO,-loaded PEGDA nanocomposites and (b) an
expanded view of the temperature region where degradation occurs (325—475 °C).
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Figure 3. Cross-sectional SEM images of the series of composites with different SiO, nanoparticle loadings of 0, 3.8, 7.4, 10.7, and 13.8 wt % (left to
right), at magnifications of 100X, 10 000X, and 20 000X (top to bottom). The scale bars at 100X, 10 000X, and 20 000X magnifications are 200 ym, 2

pum, and 1 pum, respectively.

range of 0.01 A" < g < 0.03 A™!, but for no other part of the I(q)
data. The data were successfully fit using three particle size
distributions, having average particle diameters of 82, 12, and 3.2
nm (see the Supporting Information for fitting analysis).

TEM data were collected to provide complementary, real
space information on the SiO, nanoparticles. Figure S (left)
shows a representative TEM micrograph of an agglomerate of
SiO, nanoparticles after dispersion in THF. Several nano-
particles ~85 nm in diameter are visible, along with a large
number of nanoparticles ~10 nm in diameter. It appears that
nanoparticles having an even smaller diameter are also present.
Dispersion of the nanoparticles in methanol revealed this small
size component, as shown in Figure S (right), having a diameter
of ~3 nm. Other researchers have observed that the solvent used
for casting nanocomposites can impact the propensity for
agglomeration;*® while these micrographs are of only the
nanoparticles, it is important to note that the solvent selected for
mixing the nanoparticles with the polymer matrix could impact
the nanoparticle size distribution. Given the variation in particle

14778

size observed in TEM and the low-q increase in scattering
intensity seen in Figure 4, it is likely that large-scale aggregates
exist in these materials.

3.3. Thermal and Mechanical Analysis of the
Composites. Water uptake tests were conducted to qual-
itatively analyze the cross-linking of the composites and
determine their relative hydrophilicity. The results, shown in
Figure 6 and summarized in Table 1, indicate that the loading of
SiO, nanoparticles, from 3.8 wt % to 13.8 wt %, does not alter
the hydrophilic nature of the cured PEG network in any
statistically significant way. The midpoint glass-transition
temperatures (Tg) of the SiO,—PEG nanocomposites were
measured as a function of SiO, concentration using DSC
(Figure 6). Upon the addition of 3.8 wt % SiO,, the T, of the
nanocomposite decreased by ~2 °C. Further loading of the SiO,
nanoparticles caused the T, to increase by 5 °C up to the highest
concentration of 13.8 wt %. These reported trends are for the
mean T; replicate experiments indicate that there is no
statistically significant difference in T, at the various SiO,

DOI: 10.1021/acs.iecr.9b02068
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Figure 4. Azimuthally averaged SAXS data from the nanocomposites
containing varying amounts of SiO, nanoparticles.

concentrations. The initial reduction in T is attributed to the
decrease in gel fraction, which enhanced the segmental mobility
by decreasing the restrictions from the network on Tg.47’48
However, at nanoparticle concentrations of >3.8 wt% the
volume fraction and subsequent surface area of interaction
between the nanoparticle and the matrix outweigh the decreases
observed in gel fraction.""~>° This increased matrix-particle
interaction has the effect of restricting segmental motion
resulting in an increase in T,. We predict that nanocomposites
prepared with low weight fractions of nanoparticle that achieved
gel fractions of 100% would only display increases in T,

The mechanical properties of the nanocomposites were
determined using a static strain rate compression test (Figure 7).
The data plotted are representative of three individual runs for
each SiO, nanoparticle loading. Because of the soft nature of the
PEGDA networks, the samples appeared to yield or slip multiple
times during the experiment. Upon visual inspection, the sample
had not yielded or deformed; these observations were consistent
throughout the tensile testing. From the stress—strain curves,
the Young’s modulus and the ultimate compressive stress were
obtained. The Young’s modulus was taken as the slope of the
stress—strain curve at low strain and was found to be impacted
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240 1 DE— F10 &
-50 ‘ ‘ ‘ ‘ —F 0
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Figure 6. T, of the composites, as measured by DSC, and the water
uptake measured gravimetrically at various SiO, nanoparticle
concentrations. Error bars on the water uptake data indicate the
mean + one standard deviation.

by both SiO, concentration and the gel fraction (see Figure 8a).
The addition of SiO, had a similar effect on the Young’s modulus
asithad on T. As previously stated, going from the neat PEGDA
network to a SiO, concentration of 3.8 wt % caused a decrease in
the Young’s modulus, producing a softer network that we
attribute to the gel fraction. However, by loading additional SiO,
to create a 7.4 wt% composition and beyond caused the
reinforcement from the addition of SiO, to outweigh the lower
gel fraction. Therefore, the Young’s modulus increased as more
SiO, is added to the structure at SiO, concentrations of >3.8
wt %. Interestingly, the Young’s modulus did not decrease at
high loadings, which is a hallmark of nanoparticle aggregation at
high volume fractions.”® This data, together with the cross-
sectional SEM, possibly rules out percolation of the spherical
nanoparticles, but does not rule out aggregates altogether.

The effect of the multimodal particle size distribution must
also be considered in the context of this mechanical performance
data. Previous work has demonstrated that particle size and
particle size distribution do not impact the Young’s modulus and
tensile strength of the composite.””> Some qualification is
needed to contrast these findings with our data, including the
particle size (50—350 gm) and the uniform size distributions of
the particles. It is possible that the multimodal size distribution
herein could impact the composite performance, which will be
the subject of future investigations.

In addition to the Young’s modulus, the tensile testing showed
that the higher SiO, nanoparticle concentration (>3.8 wt %)
increased the strain at break and had an impact on the ultimate
compressive strength (UCS) (see Figure 8b). At low nano-
particle concentrations, the effect of the lower gel fraction was
dominant, causing a softer sample with a lower UCS (similar to
the trend observed for T, and Young’s modulus). However, after

Figure 5. (left) An agglomerate of SiO, nanoparticles with various diameters, after drop-casting from THF. (right) An aggregate of SiO, nanoparticles

with diameters of ~3 nm, after drop-casting from methanol.
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Table 1. Summary of the Gel Fraction, Water Uptake, Glass-Transition Temperature, Young’s Modulus, and Ultimate
Compressive Stress of the Series of Nanocomposites with Different SiO, Loadings

amount of SiO, nanoparticles gel fraction water uptake glass-transition temperature, T, Young’s modulus ultimate compressive stress
(wt %) (%) (%f (°c) MPa) (MPa)
0 98 £2.3 369 +4.7 —22.6 £ 4.7 23.58 £ 5.94 3.54 £ 0.87
3.8 95 £ 1.0 38.5+3.3 -23.0+ 6.5 16.80 + 2.53 2.52+0.73
7.4 93+ 1.1 370+ 5.4 —25.6 + 4.4 35.43 + 4.34 5.86 + 1.40
10.7 91+ 14 352 +2S5 —23.5+24 40.10 £ 8.75 8.55 £2.90
13.8 91 + 0.9 349 £2.9 —20.4 +£ 0.6 53.83 £2.70 9.22 +3.14
10 investigated herein requires additional engineering to enable
9 these advanced processing techniques. Moreover, reducing the
molecular weight between cross-links will dramatically increase
8 the composite modulus, opening up alternative applications
7 requiring harder, rigid material properties. The absolute values
. Silica for the T, gel fraction, water uptake, Young’s modulus, and
§ C°“(°;‘;‘;f)‘“°“ UCS, as a function of SiO, concentration, are summarized in
S5 - Table 1.
E - 38 Collectively, this investigation begins to demonstrate how
me=i74 systems with varying amounts and types of photoinitiators,
2 - ig'; monomers, and nanoparticles could be utilized to prepare 3D
5 - hierarchical composites. However, as noted above, additional
studies are needed to decouple the effects of cross-linker
! molecular weight, comonomer composition and ratio, photo-
0 catalyst (e.g., wavelength, half-life, and efficiency), nanoparticle
0 2 4 10 12 14

6 8
Strain (%)

Figure 7. Tensile testing of the SiO,-loaded nanocomposites in
compression mode at a strain rate of 0.150 mm/min. These traces are
representative plots of three individual runs per SiO, loading.

adding more nanoparticles to achieve a 7.4 wt % composite, the
reinforcement from the nanoparticles overcame the negative
effects of the decreasing gel fraction. Thus, the ultimate
compressive strength increased as the nanoparticle loading
increased. Collectively, these data suggest that the limited
segmental mobility (relatively high T,) contributed by loading
SiO, nanoparticles at ~10 wt % overcomes the negative effects
of an increased gel fraction, and also enhanced the mechanical
strength 2—3 times, relative to the unloaded sample.’
Additional testing to determine the effect of the molecular
weight between cross-links is needed in order to decouple gel
fraction and thermal and mechanical properties. However, the
ultimate compressive modulus of SiO,-loaded nanocomposites
falls within the range needed for soft tissue engineering (~0.4—
350 MPa).>**® The added benefit of using photocuring
techniques affords hierarchical designs through stereolitho-
graphic 3D printing or photopatterning. The material system

size, and nanoparticle surface composition on the curing kinetics
and composite performance. Furthermore, additional inves-
tigations into the polymerization process (e.g., heat-release
profile®* ™" and radical/ion propagation), amenability to
patterning,”®" and optical characteristics’” will be necessary
along with comprehensive kinetic studies.”’ Finally, additional
strategies to control and characterize nanoparticle dispersion
will be crucial before this material system can be implemented in
an advanced manufacturing technique such as 3D printing.

4. CONCLUSIONS

SiO,—PEG nanocomposites exhibit qualities that are promising
for tissue engineering, advanced manufacturing, and multifunc-
tional materials. Higher concentrations of the SiO, nanoparticle
limited the gel fraction obtainable and had no impact on the
water uptake experiments. At low loadings (<3.8 wt %), the T,
Young’s modulus, and UCS all decreased. However, the addition
of SiO, nanoparticles at concentrations from 3.8 wt % to 13.8
wt % resulted in a monotonic increase in T,, Young’s modulus,
and UCS. Cross-sectional SEM and SAXS experiments
indicated that some fraction of the particles existed as 82, 12,
or 3.2 nm particles, all of which were also observed in TEM
imaging of the nanoparticles. In summary, the low density of the
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Figure 8. (a) Young’s modulus and (b) ultimate compressive strength, as a function of SiO, nanoparticle concentration and gel fraction.
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SiO,-loaded nanocomposite gives way to creating a lightweight
and multifunctional material. The tunability of this material,
combined with its amenability to photoactivated polymer-
ization, suggests that 3D and hierarchical assemblies are near-

term possibilities.
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