

Low-Loss and Broadband Nonvolatile Phase-Change Directional **Coupler Switches**

Peipeng Xu,**,* Jiajiu Zheng, Jonathan KDoylend, and Arka Majumda

[‡]Department of Electricahd Computer Engineeringniversity of Washingto6eattleWashington 981951nited States §Laboratory of Infrared Materials and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, Chi Silicon Photonic Products Divisiontel Corporation Santa ClaraÇalifornia 95054United States

- [⊥]Department of Physidsniversity of Washingto6eattleWashington 98195Inited States
 - Supporting Information

ABSTRACT: An optical equivalent of the field-programmable gate GST array (FPGA) is ofgreatinterestto large-scale photonic integrated Si circuits. Previousprogrammable hotonic devices relying on the weak, volatile thermo-optic or electro-optic effect usually suffer from a large footprint and high energy consumpRobase change materials (PCMs) offer a promising solution due to the large nonvolatile change in the refractive index upon phase transitionwever, the large optical loss in PCMs posesa seriousproblem. Here, by exploiting an asymmetric directional pler designed demonstrate nonvolatile PCM-clad silicon photonic 1 × 2 and 2 × 2 switches with a low insertion loss of ~1 dB and a compact coupling length of ~30 µm while maintaining a smallcrosstalk lesshan -10 dB over a bandwidth of 30 nm. The reported optical witches wilfunction as

the building blocks of the meshes in the optical FPGAs for applications such as optical interconnects, neuromorphic computing quantum computing and microwave photonics.

KEYWORDS: phase-change materials on photonic devires yolatile econfigurable photonics, opticalswitches

remendous progress has been made in photonic integrated circuits(PICs) over the last two decades, revealing their potential create photonic systems with small footprints.low power consumptiohigh-speed operationand low-cost packagin/d/ith PICs going fables sarge-scale PICs have recently been reportechabling systems with complexities far beyond classical enchtop optics. 4 Many of these PICs rely on programmable and generic photonic circuits analogous to the field-programmable gate arrays (FPGAs) irrequired to maintain the switched state. electronics. Contrary to the schemeof application-specific PICs, where specific circuit architecture are designed to implement particular functions, such programmable PICs brimpdulation and nonvolatility for on-chip tunable optical about far greaterflexibility and effective costeduction and thus will be a promising approach to realize applications suchetween amorphousnd crystalline statewith considerable as routing fabrics in optical communication networks, reconfigurable logic gates optical information processing, and multifunctionalab on a chip in opticasensing.

Programmable opticadores employing a grid of Mach-Zehnder(MZ) switches have been demonstrated by several groups^{5,7,8}In these workshe on-chip optical switches can be reconfigured to the cross or bar statening one of the most fundamentaland critical components in programmable PICs. Currentoptical switches in PICshowever primarily rely on the weak modulation of the refractive index (usually $\Delta n <$

0.01) from the free-carrierdispersion or thermo-optic effects, resulting in a large footprint (several hundred micrometers) and high power consumption (typically several milliwatts). Resonator-based switches help improve the modulation strength but suffer from intrinsic narrow optical bandwidth as well as high sensitivity to fabrication imperfections and temperature fluctuations. Moreover, as the switching mechanism is volatile, a constant power supply is

To overcome these fundamentahitations, phase-change materials(PCMs) have been proposed to provide strong devices 4,15 due to several nique properties: phase transition modulation in electrical resistivity and optical constants ($\Delta n >$ 1) over a broad spectral regiostate retention for years in no need of extra power^{1,7} fast and reversible switching offne stateswith nanosecond optical relectrical pulses, 8,19 high enduranceup to 10¹⁵ switching cycles, o and excellent scalability. Therefore PCMs have emerged for plethora of PIC applications such as optical switches optical

Received: November 232018 Published: January 72019

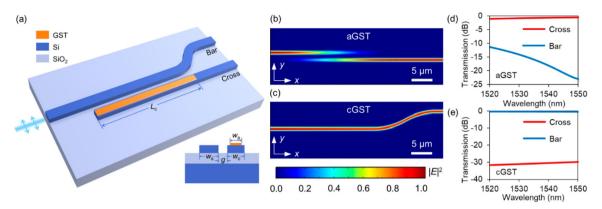


Figure 1.Design of the 1 × 2 DC switcha) Schematic of the switch or (b) Normalized optical field intensity distribution of the switch for (b) aGST and (c) cGST simulated by the 3D finite-difference time-domain method (Lumerical) at 1650 alreal at a 1650 alreal at 1650 the cross and bar ports for (d) aGST and (e) cGST.

modulators, ^{5,29} photonic memories, ³¹ and optical computing.^{32,33}

switchesto have a multiport and broadband characteristic. Current experimental demonstrations of PCM-integrated switches,however, are either single-port, 24,27 or narrowband. 5,23,26 PCM-integrated MZ switches can afford broadband operation. Unfortunatelytheir performance including the crosstalk (CTdefined as the contrastio between the two output ports) and insertion loss (IL) is dramatically sacrificed due to the large absorptive losfrom crystalline PCMs.

Here, we demonstrate compact-30 µm), low-loss(~1 dB), and broadband (over 30 nm with CT < -10 dB) 1 × 2 and 2 × 2 switches using the PCMe,Sb,Te, (GST), based on the previously built nonvolatile programmable GST-onsilicon platform¹⁵ and the asymmetric directional coupler (DC) switch design; 8,34 bypassing the high losassociated with the crystalline state.

RESULTS AND DISCUSSION

Figure 1a shows the schematid of 1 × 2 DC switch. The asymmetric coupling region consists of ormal silicon strip waveguide(SW) and a GST-on-silicon hybrid waveguide (HW) where a thin layer of GST is placed on silicon When the GST is in the low-loss amorphous tate, the optimized structure of the silicon SW and the HW can meet the phasematching condition for TE polarizationeading to the cross state of the switch with a low IL (Figure Ox)ce the GST is transformed to the lossy crystalline state, phase-matching condition is significantly altered due to the strong modification oxide (ITO to avoid GST oxidation) on the HWs was complex refractive indices between amorphous GST (aGST and lift-off process igure 2a,b shows the optional croscope and crystalline GST (cGST) (see Supporting Information). a result, light is diverted away from the HW forming the bar state of the switch with low attenuation ensured by minimal opticalfield interaction with the lossy GST layer (Figure 1c).

To determine the widths of the waveguides(w_s, w_c) appropriately, we analyze the effective indices of the eigenmodesupported in the silicon SW and the GST-onsilicon HW (see Supporting InformatioTh)e simulations are performed using the frequency-domain finite-element methodecause ofhe low sputtering temperature that, rapid (COMSOL Multiphysics). The width of the silicon SW isw chosen as 450 nm to ensure single-mode ope Tateowidth of the GST (w_b) is set to be 100 nm smaller than the core

width of the HW (w), which can be easily achieved within the alignmentprecision of the electron-beam lithography (EBL). Practical pplications of programmable PICs require optically is optimally chosen as 420 nm so that the phase-matching condition could be satisfied foaGST. Therefore the input TE-polarized lightwill be evanescently coupled to the cross port completely with an appropriate coupling length. Considering the trade-off between the coupling length)(L and the insertion loss in the crystalline state (IL_{cGST} see Supporting Information), the gap (g) between the two wavequide is chosen to be 150 nm while ensuring reliable fabrication of the coupling region The coupling length given by $L_c = \lambda_0/2(n_{aGST1} - n_{aGST})$ is thus calculated as compact as ~24 µm, where acst and g_{GST2} are, respectively, the effective indices of the first order (even) and second order(odd) supermodes in the two-waveguide system,550 nm is the wavelength.

> Figure 1d.e show the calculated transmission spectral response ofhe 1 × 2 DC switch in both states. When the GST is in the amorphous statethe optical switch attains a small IL < 1 dB and CT from -11 to -23 dB over wavelength range of 1520-1550 n from the crystalline state. since almost no evanescent coupling occurs due to the phase mismatchthe spectralesponse to the input light is guite flat and broadband. The corresponding IL and CT are <0.6 dB and <-29 dB across the whole wavelength range.

wafer with a 220-nm-thick silicon layer on top of a 3-µm-thick buried oxide layer. The pattern was defined via EBL and transferred to the top silicon layer by inductively coupled plasma etchin@eposition of 20 nm GST and 11 nm indium of the mode in the HW induced by the dramatic difference of completed using a second EBL step followed by the sputtering and scanningelectron microscope(SEM) images of the

The devices were fabricated (see Methods) using an SOI

fabricated 1 × 2 DC switc A. false-colored SEM image of the coupling region is shown in Figure Where the GST layer is clearly resolved.

An off-chip optical fiber setup wasused to measure the spectral response of the fabricated devices (see Methords). each devicewe measured the transmission rightfter the deposition of the GST, which is initially in the amorphous state thermal annealing (RTA) of the chip at 200 °C for 10 min in a N₂ atmosphere was performed to actuate the phase transition from aGST to cGS1. The measurement results of the 1 × 2

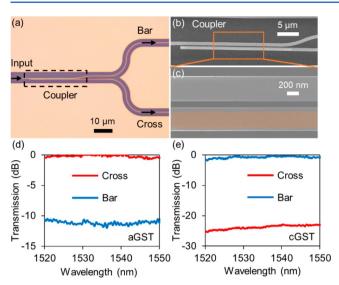


Figure 2. Experimental esults of the 1 × 2 DC switch.(a) Optical microscope image of the fabricated switch(b) SEM image of the switch. (c) An enlarged view of the coupling region highlighted by orange rectangle in (b) with the GST false-coloded) Measured transmission at the crossand barports with the GST in the (d) amorphous and (e) crystalline states.

DC switch are shown in Figure 25 ger, the wavelength range of 1520-1550 nm, the ILs were measured to be approximately ries from 1510 to 1540 nm he bandwidth for achieving a for aGST and <-22 dB for cGSTThe discrepancy between the measured CTs and the design targets is primarily due tobroadband switching operation.

the GST layer owing to the limited alignment precision.

based on the three-waveguide D6e operating principle of the proposed switch relies on the considerable mode modification of the TE-polarized supermodes the threewaveguide system due to the GST phase transition the waveguide DC and the complete powetransfercould be indices of the three supermodes are evenly spaced) is satisfied to the gap discrepancydue to the fabrication Thus, the input light couples to the low-loss GST-on-silicon HW and passes through the cross port (FigureWb)study

the light coupling mechanism by analyzing the supermodes in the coupling region (seeSupporting Information). In this calculationwe adopt the same parameters used in the 1 × 2 switch with $w = 450 \text{ nmg} = 150 \text{ nmand } w = w_c - 100 \text{ nm}$. To meet the phase-matching condititine width of the HW (w_c) is optimally chosen as 422 nm. Once the GST is crystallizedhe three-waveguide system effectively boils down to two separated SWs because to much higher effective index of the HW. In this case, only the even and odd supermodes can be supported in the coupler. The gap between the two SWs is w + 2q, resulting in a much larger coupling length (L_{cGST}). More specifically when g = 150 nm L_{cGST} is calculated to be 516 µm while the coupling length for aGST (LaGST) is 35 µm (see Supporting Information)eading to a large ratio of $L_{cGS}/L_{aGST} = 14.7$. Hence, after a specific coupling length (L designed for the maximum transmission in the amorphous state at is, L_{aGS}), the input light is almost not cross-coupled but propagates directly to the bar port as if the centraHW does not exist (Figure 3cl) his behavior can be further verified by the fact that the effective indices of the supermodealmostremain unchanged when wchangeas there is no field distribution in the GST-on-silicon HW (see Supporting Information).

designed 2 × 2 DC switch for aGST and cGST when launching the lightrom one of the input ports. The device exhibits low ILs of <1 dB in both states when the wavelength 1 dB for both states and the CT was measured to be <-10 dBT less than -15 dB in the amorphous state and less than -20 dB in the crystallinestate is more than 25 nm, enabling

Figure 3d,e show the simulated spectræsponse of the

the fabrication-induced gap change and positional deviation of Figure 4a,b shows the microscope and SEM image before fabricated 2 × 2 DC switc A. false-colored SEM image of the We extend the DC design scheme to build a 2 × 2 switch, coupling region is shown in Figure 4c where the GST layer is Figure 3a shows the schematic diagram of the 2 × 2 DC switchearly resolved the measured transmission spectra of the 2 × 2 DC switch are shown in Figure 4dfer aGSTthe IL was measured to be approximately 1 dB and the CT is less than ~-15 dB at the wavelength ranging from 1510 to 1540 nm, agreeing wellwith the simulation results For cGST. the IL GST is in the amorphous state, the device functions as a threferough the switch is approximately 1-2 dB and the CT is less than -10 dB with a bandwidth of over 30 nπhe degraded achieved when the phase-matching condition (i.e., the effectile and CT compared with the simulation results are mainly imperfection and position deviation of the GST layer owing to the limited alignment precision.

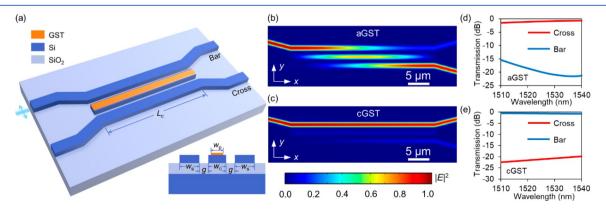


Figure 3.Design of the 2 × 2 DC switcha) Schematic of the switch, c) Normalized opticaled intensity distribution in the device for (b) aGST and (c) cGST simulated by the 3D eigenmode expansion method (Lumerical) at (4559) real culated transmission spectra at the cross and bar ports for (d) aGST and (e) cGST.

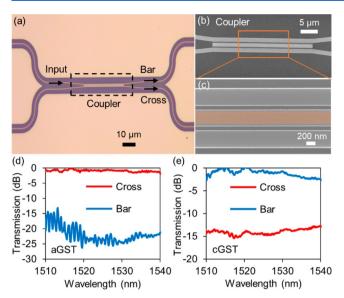


Figure 4. Experimental esults of the 2 × 2 DC switch.(a) Optical microscope image of the fabricated switch(b) SEM image of the switch. (c) An enlarged view of the coupling region highlighted by the orange rectangle in (b) with the GST false-coloded) Measured transmission athe crossand barports with the GST in the (d) amorphous and (e) crystalline states.

CONCLUSIONS

By exploiting the high optical contrast of PCMs and asymmetric DC designed demonstrated compact (~30 µm) nonvolatile 1 × 2 and 2 × 2 switches with low-loss (~1 dB) and broadband (over 30 nm with CT < -10 dB) operations on the silicon photonic platform the reported switches are optimized for TE polarization, similar design can be conducted forTM operation (see Supporting Information). With emerging wide-bandgap PCMs and betterfabrication, further improvement of the performance including IL and = mail: xupeipeng@nbu.edu.cn. CT can be expected the optical bandwidth of the designed switches (see Supporting Information) is primarily limited by ORCID® the wavelength-dependent coupling length and phase-matchlingiu Zheng1000-0003-1527-201X condition mainly due to the waveguide dispersion and can be Arka Majumdar 0000-0003-0917-590X further improved by utilizing the adiabatic, bent, or multisection DC. As a proof of concept, thermal heating was employed to actuate the phase transition in this paper. For Notes practical applications a large-scale PICon-chip electrical switching using transparent conductive heatersh as ITO, grapheneor silicon can be considered with the switching speed as fasts ~10 MHz,27 which is much faster than the traditional thermo-optics witches (~100 kHz). 11 From the volume of the GST needed in the switches, the reconfiguration was provided by Intel), NSF-EFRI-1640986 FOSR energy for phase transition is estimated to be 1520mJy an order of magnitude largethan the thermodynamic limit. Note that, due to the nonvolatility of the GST, no more energy National Natural Science Foundation ochina (NSFC; is required afterswitching. The availability of such on-chip nonvolatile switching technology pavese way for optical FPGAs and sheds light on their applications including opticalwas conducted at the Washington Nanofabrication Facility/ interconnects euromorphic computinguantum computing, and microwave photonics.

METHODS

Fabrication and Optical Characterization Setup. The designed on-chip optical witcheswere fabricated using the SOI wafer with a 220-nm-thick silicon layer on top of a 3-µmEnergy Institute, the Washington Research Foundation, the M.

thick buried oxide layer. The pattern was defined by a JEOL JBX-6300FS 100 kV EBL system using a positive tone ZEP-520A resist and transferred to the silicon laver by inductively coupled plasma (ICP) etcher utilizing a gas mixture and SF C₄F₈. Next, a positive electron beam res**RM**MA was spun on the sample and a second EBL exposure was used to define the window for the GST deposition on the HWsinally,20 nm GST and 11 nm indium tin oxide (ITO) were deposited using a magnetron sputtering system followed by a lift-off processThe on-chip devices were characterized by an off-chip optical fiber setup. The focusing subwavelengthgrating couplers were fabricated at the input ports and output ports for fiber-chip coupling and polarization selectivihe polarization of the input light was controlled to match the fundamentabuasi-TE mode of the waveguide by a manual fiber polarization controller (Thorlabs FPC526) e straight single-mode waveguides with the same grating couplers were also fabricated on the same chip to normalize the spectra. tunable continuous wave laser (Santec TSL-510) and a lownoise power meter (Keysight 81634B) were used to measure the performance of the fabricated devices.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.8b01628.

The design of the 1 × 2 and 2 × 2 switches (sections S1 and S2); optical bandwidth of the switches (section S3); discussion of the switch design for TM polarization (section S4) (PDF)

AUTHOR INFORMATION

Corresponding Authors

E-mail: arka@uw.edu.

Author Contributions

[†]These authors contributed equally to this work.

The authors declare no competing finanioterest.

ACKNOWLEDGMENTS

The research wasunded by the SRC Grant2017-IN-2743 Grant FA9550-17-C-0017Program ManagerDr. Gernot Pomrenke), and UW Royalty Research Fund. P.X. is supported 6187509961505092) and the Naturacience Foundation of Zhejiang ProvinceChina (LY18F050005)Part of this work Molecular Analysis Facility, a National Nanotechnology Coordinated Infrastructure (NNCI) site athe University of Washingtonwhich is supported in partby funds from the National Science Foundation (Awards NNCI-1542101, 1337840, and 0335765), the National Institutes of Health, the Molecular Engineering and Sciences Institthte, Clean

J. Murdock Charitable Trus Altatech Class One Technology. GCE Market Google and SPTS.

REFERENCES

- (1) Hochberg, M.; Baehr-Jones, T. Towards fabless silicon photonicsNat. Photonics 2010, 492-494.
- M. S.; Waterman A. S.; Shainline J. M.; Avizienis R. R.; Lin, S. Single-chip microprocessbat communicatedirectly using light. Nature 2015528,534-538.
- (3) Shen,Y.; Harris,N. C.; Skirlo,S.; Prabhu,M.; Baehr-Jone,s;; HochbergM.: Sun.X.: Zhao.S.: LarochelleH.: EnglundD. Deep learning with coherent nanophotonic circuits. Nat. Photonics 201 441-446.
- (4) Wang, J.; PaesaniS.; Ding, Y.; SantagatiR.; SkrzypczykP.; SalavrakosA.; Tura, J.; AugusiakR.; Manonska, L.; Bacco, D.; BonneauD.; SilverstoneJ. W.; Gong, Q.; Acín, A.; Rottwitt, K.; Oxenløwe,L. K.; O'Brien, J. L.; Laing, A.; Thompson,M. G. Multidimensionaduantum entanglemewith large-scale integrated optics.Science 201360,285-291.
- (5) Zhuang, L.; Roeloffzen C. G.; Hoekman, M.; Boller, K.-J.; Lowery, A. J. Programmablehotonic signal processorchip for radiofrequency applicatio@stica 20152, 854-859.
- (6) Graydon,O. Birth of the programmable ptical chip. Nat. Photonics 20160, 1.
- (7) Liu, W.; Li, M.; Guzzon, R. S.; Norberg, E. J.; Parker, S.; Lu, M.; Coldren L. A.; Yao J. A fully reconfigurable photonic integrated signalprocesso Nat. Photonics 20160, 190-195.
- A. Z.; Li, K.; Cao, W.; Mashanovich, G. Z.; Capmany, J. Multipurpose toonics Techniquit. 2010, 30, 230 233.

 (30) Rios, C.; Hosseini P.; Wright, C. D.; Bhaskarand, Pernice,
- J. 16× 16 non-blocking silicon optical/itch based on electro-optic Mach-Zehnder interferomet@st. Express 20124,9295-9307.
- (10) Qiao, L.; TandW.; Chu, T. 32× 32 silicon electro-optic switch with built-in monitors and balanced-status ur 42306
- silicon thermo-optidMach-Zehnderswitch with bent directional couplersOpt.Lett.2016,41,836-839.
- A.; BergmanK.; Lipson,M. Optical4 × 4 hitless silicon router for optical Networks-on-Chip (NoC)Opt. Expres 2008, 16, 15915-
- (13) Reed,G. T.; MashanovichG.; GardesF. Y.; ThomsonD. J. Silicon opticalmodulatorsNat. Photonics 2014, 518-526.
- for non-volatile photonic applications. Photonics 20171,465-476
- (15) Zheng, J.; Khanolkar, A.; Xu, P.; Colburn, S.; Deshmukh, S.; Myers, J.; Frantz, J.; Pop, E.; Hendrickson, J.; Doylend, J. GST-oncontinuously reprogrammable platf@pt. Mater.Express 2018, 1551-1561.
- Wuttig, M. Resonanbonding in crystalline phase-change materials. using asymmetric-waveguide based phase @pttrekpress 2015, Nat. Mater. 2008, 7, 653-658.
- Nat. Mater 2008, 7, 653–658.
 (17) Wuttig, M.; YamadaŊ. Phase-change materials for rewriteable (39) Wang,Y.; Wang,X.; Flueckiged,; Yun,H.; Shi,W.; Bojko,R.; data storageNat. Mater.2007,6, 824.
- (18) Wutting, R. Phase Change Materialsience and Applications; Springer: New York, U.S.A.2009.
- (19) Loke,D.; Lee,T.; Wang, W.; Shi, L.; Zhao, R.; Yeo, Y.; Chong, T.; Elliott, S. Breaking the speed limits phase-change memory. Science 2013236,1566-1569.
- (20) Raoux, S.; Xiong, F.; Wuttig, M.; Pop, E. Phasechange materials and phase change merMaRS Bull2014,39,703-710.
- (21) RaouxS.; BurrG.W.; BreitwischM. J.; RettnerC. T.; Chen,
- Y.-C.; ShelbyR.M.; Salingayl.; KrebsD.; ChenS.-H.; LungH.-L.

Phase-change random access memory: A scalable ted Mology. ResDev 2008 52, 465-479.

- (22) Tanaka,D.; Shoji,Y.; Kuwahara,M.; Wang,X.; Kintaka,K.; KawashimaH.; ToyosakiT.; Ikuma,Y.; TsudaH. Ultra-smallselfholding optical gate switch using G&b Te, with a multi-mode Si waveguideOpt. Express 20120, 10283-10294.
- (23) RudeM.; Pello,J.; SimpsorR. E.; OsmondJ.; Roelken S.; (2) Sun, C.; Wade, M. T.; Lee, Y.; Orcutt, J. S.; Alloatti, L.; Georgaen der Tol.J.J.; Pruneriv. Opticalswitching at 1.55 µm in silicon racetrack resonators using phase change matapalsPhysLett. 2013.103.141119.
 - (24) Moriyama T.: Tanaka D.: Jain P.: Kawashim L.: Kuwahara, M.; Wang, X.; Tsuda, H. Ultra-compactself-holding asymmetric Mach-Zehnder interferometer switch using Ge2Sb2Te5 phase-change materialIEICE Electronics Express 2011,420140538-20140538
 - (25) Liang, H.; Soref, R.; Mu, J.; Majumdar, A.; Li, X.; Huang, W.-P. Simulations of Silicon-on-Insulato Channel-Waveguid Electrooptical2 × 2 Switches and 1 × 1 Modulators Using a G8bTe₅ Self-Holding Layer. Lightwave Techn 2015, 33, 1805-1813.
 - (26) Stegmaiel.; Ríos.C.; Bhaskarall.; Wright,C.D.; Pernice, W. H. Nonvolatile All-Optical × 2 Switch for Chipscale Photonic NetworksAdv.Opt.Mater.2017,5, 1600346.
 - (27) Kentaro, K.; Masash, K.; Hitoshi, K.; Tohru, T.; Hiroyuki, T. Current-driven phase-change optimate switch using indium-tinoxide heaterAppl.PhysExpress 20170, No. 072201.
 - (28) Zhang, Q.; Zhang, Y.; Li, J.; Soref, R.; Gu, T.; Hu, J. Broadband nonvolatile photonic switching based on optical phase change materials beyond the classic figure-of-meritOpt. Lett. 2018, 43, 94-97.
- (29) Yu, Z.; Zheng, J.; Xu, P.; Zhang, W.; Wu, Y. Ultracompact (8) Perez, D.; Gasulla, I.; Crudgington, L.; Thomson, D. J.; Khokhallectro-OpticalModulator-BasedGe2Sb2Te5on Silicon. IEEE
- (9) Lu, L.; Zhao, S.; Zhou, L.; Li, D.; Li, Z.; Wang, M.; Li, X.; Chen. H. P. On-Chip Photonic Memory Elements Employing Phase-Change Material Adv. Mater 2014, 26, 1372-1377.
 - (31) Ríos, C.; Stegmaier M.; Hosseini P.; Wang, D.; Scherer T.; Wright, C. D.; Bhaskarald.; PerniceW. H. Integrated all-photonic non-volatile multi-levelemory Nat. Photonics 2019, 725-732.
- (32) Feldmann, ; Stegmaid, ; Gruhler, N.; Ríos, C.; Bhaskaran, (11) Chen, S.; Shi, Y.; He, S.; Dai, D. Low-loss and broadband 2 H2 Wright, C.; PerniceW. Calculating with light using a chip-scale alf-opticabbacusNat. Commun2017,8, 1256.
- (33) Cheng, Z.; Ríos, C.; Pernice, W. H. P.; Wright, C. D.; (12) Sherwood-Droz, N.; Wang, H.; Chen, L.; Lee, B. G.; Biberman, Bhaskararli. On-chip photonic synaps&cience Advances 2617,
 - (34) Soref, R. Tutorial: Integrated-photonic switching structures. APL Photor2018,3, No. 021101.
- (35) Zhang,Y.; Chou,J.B.; Li,J.; Li,H.; Du, Q.; Yadav,A.; Zhou, S.; Shalaginov, Y.; Fang, Z.; Zhong, H. ExtremeBroadband Silicon opticalnodulatorsNat. Photonics 2014, 518–526. TransparenOpticalPhase Change Materials for High-Performance (14) Wuttig, M.; Bhaskaran, H.; Taubner, T. Phase-change materials Nonvolatile PhotonicarXiv; preprint arXiv:1811.00526 2018,
 - (36) Dong, W.; Liu, H.; Behera, J. K.; Lu, L.; Ng, R. J.; Sreekanth, K. V.; Zhou, X.; Yang, J. K.; Simpson, R. E. Wide Bandgap Phase Change Material Tuned Visible Photoniadv.FunctMater2018,1806181.
- silicon hybrid nanophotonic integrated circuits: a non-volatile quasi 2 × 2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides, Photonics North 201 ProcSPIE 20136.
- (16) Shportko, K.; Kremers, S.; Woda, M.; Lencer, D.; Robertson, A.F.; Chrostowski, Broadband silicon photonic directional coupler
 - Jaeger N. A.; Chrostowski L. Focusingsub-wavelength grating couplerswith low back reflections forapid prototyping of silicon