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Abstract In Eikonal equations, rarefaction is a common phenomenon known to de-
grade the rate of convergence of numerical methods. The “factoring” approach al-
leviates this difficulty by deriving a PDE for a new (locally smooth) variable while
capturing the rarefaction-related singularity in a known (non-smooth) “factor”. Pre-
viously this technique was successfully used to address rarefaction fans arising at
point sources. In this paper we show how similar ideas can be used to factor the 2D
rarefactions arising due to nonsmoothness of domain boundaries or discontinuities in
PDE coefficients. Locations and orientations of such rarefaction fans are not known
in advance and we construct a “just-in-time factoring” method that identifies them dy-
namically. The resulting algorithm is a generalization of the Fast Marching Method
originally introduced for the regular (unfactored) Eikonal equations. We show that
our approach restores the first-order convergence and illustrate it using a range of
maze navigation examples with non-permeable and “slowly permeable” obstacles.

Keywords Eikonal · rarefaction fans · factoring · Fast Marching · robotic navigation
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1 Introduction

The Eikonal equation arises in many application domains including the geometric
optics, optimal control theory, and robotic navigation. It is a first-order non-linear
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partial differential equation of the form{
|∇u(x)|F(x) = 1,

u(x) = 0, x ∈ Q.
(1)

In control-theoretic context, the function u(x) can be interpreted as the minimum
time needed to reach the exit set Q starting from x, with F specifying the speed of
motion. The characteristics of this PDE coincide with the gradient lines of u and yield
min-time-optimal trajectories to Q. This equation typically does not have a classical
solution, making it necessary to select a weak Lipschitz-continuous solution that is
physically meaningful. The theory of viscosity solutions [7] accomplishes this and
guarantees the existence and uniqueness for a very broad set of problems. Viscosity
solutions exhibit both shocklines (where characteristics run into each other) and rar-
efaction fans (where many characteristics emanate from the same point). Typically,
the former receive most of the attention in numerical treatment since they lead to a
discontinuity in ∇u. But in this paper we focus on the latter, which result in a blow
up in second derivatives of u on parts of the domain where ∇u remains continuous
and bounded. (See Figure 1.)

(A) (B)

Fig. 1: A simple example with F = 1 and the exit set Q consisting of a single “point source” x0 = (0.15,0).
(Left) Level sets of u(x), the distance to x0 on the domain with an obstacle. Dashed lines show the opti-
mal/shortest paths, some of which follow a part of the obstacle boundary. The “shockline” (where ∇u is
undefined) consists of all points starting from which the shortest path is not unique. The point source and
3 out of 4 obstacle corners generate “rarefaction fans” of characteristics. (Right) The level curves of the
log-Frobenius-norm of Hessian, illustrating the blow up of the second derivatives of u due to rarefaction
fans.

Since the local truncation error of numerical discretizations is proportional to
higher derivatives, it is not surprising that rarefaction fans degrade the rate of con-
vergence of standard numerical methods. Special “factoring techniques” have been
introduced to alleviate this problem for rarefaction fans arising from point source
boundary conditions [10, 15, 16, 17, 20, 27]. The idea is to represent u as a product
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[10] or a sum [16] of two functions: one capturing the right type of singularity at the
point source and another with bounded derivatives except at shocklines. The former
is known based on F restricted to Q; the latter is a priori unknown and recovered by
solving a modified PDE by a version of one of the efficient methods (e.g., [21, 29] or
[32]) originally developed for an “un-factored” Eikonal equation (1). We review this
prior work in section 2 and show that, despite its better rate of convergence, factoring
can also have detrimental effects on parts of the domain far from the point source.
We also consider a localized version of factoring, which often improves the accuracy
and is more suitable for problems with multiple point sources.

However, point sources are not the only origin of rarefaction fans. They can also
arise due to non-smoothness of the boundary; e.g., at some of the “obstacle corners”
in 2D maze navigation problems (see Figure 1). The degradation of accuracy leads
to numerical artifacts in computed trajectories passing near such corners. Unlike in
the point source case, these rarefaction fans are not radially symmetric; moreover,
their locations and geometry have to be determined dynamically. We handle this by
developing a “just-in-time localized factoring” method and verifying its rate of con-
vergence numerically (section 3). Even more complicated fans can arise at corners of
“slowly permeable obstacles” (i.e., problems with piecewise-continuous speed func-
tion F). The extension of our dynamic factoring to this case is covered in section
4.

Throughout the paper, we present our approach using a Cartesian grid discretiza-
tion of the Eikonal equation with grid aligned obstacles (and discontinuities of F).
However, the ideas presented here have a broader applicability. Arbitrary polygonal
obstacles can be treated in exactly the same way if the discretization is posed on
an obstacle-fitted triangulated mesh. Dynamic factoring for more general Hamilton-
Jacobi-Bellman PDEs would work very similarly, though the factoring will need to
account for the anisotropy in rarefaction fans. We conclude by discussing these and
other future extensions as well as the limitations of our approach in section 5.

2 Point-sources and factoring

We begin by examining the classical Eikonal equation (1) in 2D with a “single point-
source” boundary condition: Q = {x0} and u(x0) = 0. Throughout this paper, we
will assume that the controlled process is restricted to a closed set Ω ⊂ R2. I.e.,
u(x) is the minimal-time from x ∈ Ω to Q ⊂ Ω without leaving Ω though possibly
traveling along parts of ∂Ω ; see the trajectories traveling along the obstacle boundary
in Figure 1(A). This makes u an Ω -constrained viscosity solution of (1) (see Chapter
4.5 in [2]), but for the purposes of numerical implementation we can simply impose
the boundary condition u =+∞ on R2\Ω .

A common approach for discretizing (1) on a uniform Cartesian grid is to use
upwind finite differences:

max{D−x
i, j u,−D+x

i, j u,0}2 +max{D−y
i, j u,−D+y

i, j u,0}2 =
1

F2
i, j
, (2)
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using the standard finite difference notation

D−x
i, j u =

ui, j−ui−1, j

h
, D+x

i, j u =
ui+1, j−ui, j

h
,

D−y
i, j u =

ui, j−ui, j−1

h
, D+y

i, j u =
ui, j+1−ui, j

h
.

(3)

The discretized system of equations (2) is coupled and non-linear. We postpone the
discussion of fast algorithms used to solve it until section 2.1 and for now focus on
the rate of convergence of the numerical solution to the viscosity solution of PDE
(1). Since this discretization is globally first-order accurate, the local truncation error
is proportional to the second derivatives of u, which blow up as we approach x0.
Because of this blow up, even if we assume that local truncation errors accumulate
linearly, the global error would decreases as O(h log 1

h ) instead of the expected O(h).
To illustrate the convergence rate, we will consider a simple example with a

known analytic solution [16] on a square domain1:

F(x) =
1
s0

+v · (x−x0) =⇒ u(x) =
1
|v|

acosh

(
1+

1
2

s0|v|2
|x−x0|2

F(x)

)
. (4)

Figure 2 shows the solution and the convergence plots for the parameter values x0 =
(0,0), s0 = 2, v = (0.5,0). The thick black line in Figure 2(B) corresponds to solving
(2) on Ω and clearly shows the sublinear convergence. (Throughout this paper, all
logarithms of errors and grid sizes are reported and plotted in base e.)

To alleviate this issue, one could simply “enlarge the exit set” by choosing some
(h-independent) constant radius r > 0, initializing u = 0 on the disk B = Br(x0) =
{x ∈Ω | |x−x0| ≤ r}, and solving (2) on the rest of the grid. This avoids the rarefac-
tion fan (since only one characteristic stems from each point on ∂B), but introduces
a O(r) difference compared to the solution of the original point-source-based prob-
lem. One can also use a better approximation of u on B; e.g., using T (x) = |x−x0|

F(x0)
,

we already reduce this additional error to O(r2). The latter approach is based on as-
suming that F (rather than u) is constant on B, in which case the characteristics are
straight lines. Of course, one could also take a truly Lagrangian approach, employing
ray-tracing to compute a highly accurate value of u at all gridpoints on B, but this
becomes increasingly expensive as h→ 0. Instead, we evaluate the feasibility of an
“approximate Lagrangian” initialization technique, where the characteristics are still
assumed to be straight on B, but u(x) is approximated more accurately by integrating
1/F on the line segment from x0 to x. In all the figures of this section, we slightly
abuse the notation and call this approach Lagrangian, reporting the results for r = 0.1
in all the figures of this section. Figures 3 and 4 show that, for general F , the error
due to this “characteristics are straight” assumption prevents the overall first order
convergence on the entire grid.

1 This formula for u(x) is derived on the unbounded domain Ω∞ = {x ∈ R2 | F(x) > 0} but remains
valid on Ω = [0,1]× [0,1] as long as Ω∞-optimal trajectories from every x ∈ Ω to x0 stay entirely inside
Ω , which is the case for all examples considered in this section. The linearity of F(x) can be used to show
that all optimal paths are circular arcs, whose radii are monotone decreasing in |v|. (When v = 0, these
radii are infinite; i.e., all optimal paths are straight lines and u(x) = s0|x−x0|.)
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(A) level sets of u(x)
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Fig. 2: (Left) Level curves of the value function computed from the formula (4) with x0 =(0,0), s0 = 2, v=
(0.5,0). (Right) The corresponding convergence plot (based on the L∞ error) for several discretization
approaches, with the thin black line of slope (−1) included to aid the visual comparison. For this example,
the convergence plot based on the L1 error is very similar and thus omitted.

A factored Eikonal equation was proposed in [10] as a method for dealing with
point-source rarefaction fans without introducing any special approximations on B
and recovering the first order of accuracy on the entire domain. The main idea is
to split the original value function u(x) into two functions: one of them (T , defined
above) encodes the right type of singularity at the point source, while the other (τ(x),
our new unknown) will be smooth near x0. In addition to point-sources, [10] also used
factoring to treat “plane-wave sources” (i.e., constant Dirichlet boundary conditions
specified on a straight line in 2D). In the latter case, there is no singularities in the
solutions at the boundary (so, the numerics for the original/unfactored version is still
first-order accurate), but a factored version still yields lower errors in many examples.

The original factoring in [10] used an ansatz u(x) = T (x)τ(x) to derive a new
factored PDE for τ , which was then solved with the boundary condition τ(x0) = 1.
In this paper we rely on a slightly simpler additive splitting2 introduced in [16] :
assuming that u(x) = T (x)+ τ(x), we find τ by solving

|∇T (x)+∇τ(x)|F(x) = 1, (5)

with the boundary condition τ(x0) = 0. Similarly to (1) this can be discretized using
upwind finite differences and then solved on Ω (see section 2.2). In all our con-
vergence figures we refer to this approach as the “global factoring” (shown by a
solid blue line). In Figures 2-4 it is clear that global factoring has a clean linear
convergence. Moreover, in Figure 2 it exhibits smaller errors than either the origi-
nal/“unfactored” discretization or even the Lagrangian-initialized version regardless
of the grid resolution. However, as examples in Figures 3 and 4 show, on relatively
coarse grids it can be actually less accurate than the unfactored discretization – partic-
ularly when the characteristics are far from straight lines. This phenomenon has not

2 Throughout the paper we refer to this approach as “additive factoring” to stay consistent with the
terminology used in prior literature.
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been examined in prior literature, but it is hardly surprising: farther from the point
source, u and T can be quite different, and if the second derivatives of u are smaller,
this will result in larger local truncation errors when computing τ .

(A) level sets
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(B) L∞ error
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Fig. 3: (Left) Level curves of the value function u(x) computed from the formula (4) with x0 = (0,0), s0 =
0.5, v = (12,0). (Center & Right) The corresponding convergence plot for several discretization ap-
proaches (based on the L∞ & L1 errors respectively) .

We further examine a “localized factoring” version of this idea. For small r, this
could be posed as a 2-stage process: first solve (5) on B and then switch to solving
(1) on Ω\B. However, we have found that another interpretation is more suitable,
particularly when characteristics are highly curved: solve (5) on the entire Ω but
defining T (x) = 0 on Ω\B. We note that several recent papers have already consid-
ered such hybrid/localized factoring motivated by decreasing the computational cost
(since ∇T = 0 on most of the domain) [20] and by the need for additional proper-
ties of T when pursuing a higher-order accurate discretization [17]. Here, however,
we show that the localized factoring (shown by a blue dashed lines on convergence
plots) has some accuracy advantages even with the first-order upwind discretization.
In our first example (Figure 2), u ≈ T remains true on the whole Ω and characteris-
tics are fairly close to straight lines; so, the global factoring is more accurate. But in
Figure 3 this is no longer the case, and the localized factoring is clearly preferable.

Localized factoring is also often advantageous (and more natural) when dealing
with multiple point sources. Consider, for example, the speed function specified in
(4) with s0 = 0.5, v = (5,20) and two point sources: x0 = (0,0) and x1 = (0,0.8).
(See Figure 4.) If Q = {x0} or Q = {x1}, the respective value functions u0 and u1
are specified by formula (4). For the two point-sources case, Q = {x0, x1}, the value
function u(x) = min(u0(x), u1(x)) is no longer smooth: ∇u is undefined at the points
from which the optimal paths to x0 and x1 are equally good. Since the characteristics
run into the shockline rather than originate from it, this does not degrade the rate of
convergence, but the rarefaction fans remain a challenge. In global factoring, there is
a number of choices to capture in T the singularities at both point sources. We use

T0(x) =
|x−x0|
F(x0)

, T1(x) =
|x−x1|
F(x1)

, T (x) = min
(
T0(x),T1(x)

)
,
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but the convergence results based on T = T0 + T1 are qualitatively similar (though
the L1 error becomes significantly larger). For the localized factoring, we simply
set T (x) = Ti(x) on Br(xi) and T (x) = 0 everywhere else. Figure 4 shows that both
versions of factoring exhibit linear convergence, but the localized factoring yields
significantly smaller errors both in L∞ and L1 norms.

(A) level sets
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(B) L∞ error
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Fig. 4: (Left) Level curves of the value function u(x) for s0 = 0.5, v= (5,20) and two point sources at x0 =
(0,0) and x1 = (0.8,0). (Center & Right) The corresponding convergence plot for several discretization
approaches (based on the L∞ & L1 errors respectively) .

2.1 Fast methods for an (unfactored) Eikonal

Since an Eikonal equation arises in so many applications, there has been a number of
fast numerical methods developed for it in the last 20 years. Most of these methods
mirror the logic of classical label-setting and label-correcting algorithms for finding
shortest paths on graphs [4]. In this discrete setting, an equation for the min-time-to-
exit Ui starting from each node xi is posed using the min-time-to-exit values (U j’s)
at its neighboring nodes (x j’s). Dijkstra’s method [9] is perhaps the most famous
of label-setting algorithms for graphs with positive edge-weights. It is based on the
idea of monotone causality: an optimal path from xi starts with a transition to some
neighboring node x j∗ and, since all edge weights are positive, this implies Ui >U j∗ .
Thus, even if we don’t know x j∗ a priori, Ui can be still computed based on the set
of all smaller neighboring values. Dijkstra’s method exploits this observation to dy-
namically uncover the correct node-ordering, decoupling the system of equations for
Ui’s. The nodes are split into three sets: Accepted (with permanently fixed U values),
Considered (with tentatively computed U values) and Far (with U values assumed
to be +∞). At each stage of the algorithm, the smallest of Considered U values is
declared Accepted and the values at its immediate not-yet-Accepted neighbors are
recomputed. On a graph with M nodes and bounded node connectivity, this yields
the overall complexity of O(M logM) due to the use of a heap to sort the Consid-
ered values. An additional useful feature of this approach is that the U values are
fixed/accepted after a small number of updates on an (incrementally growing) part of
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the graph. Many label-correcting algorithms aim to mimic this property, but without
using expensive data structures to sort any of the values. Unlike in label-setting al-
gorithms, they cannot provide an a priori upper bound on the number of times each
Ui might be updated. As a result, their worst-case complexity is O(M2), but on many
types of graphs their average-case behavior has been observed to be at least as good
as that of label-setting techniques [4].

For Eikonal PDEs discretized on Cartesian grids, the Dijkstra-like approach was
first introduced in Tsitsiklis’s Algorithm [29] and Sethian’s Fast Marching Method
(FMM) [21]. The latter was further extended to simplicial mesh discretizations in Rn

and on manifolds [12, 24], to higher-order accurate numerical schemes [22, 24], and
to Hamilton-Jacobi-Bellman equations, which can be viewed as anisotropic general-
izations of the Eikonal [1, 8, 18, 25, 26]. The major difficulty in applying Dijkstra-like
ideas in continuous setting is that, unlike in problems on graphs, a value of u at a grid-
point xi, j will depend on several neighboring values used to approximate ∇u(xi, j). To
obtain the same monotone causality, this u(xi, j) has to be always larger than all of
such contributing u values adjacent to xi, j. This property is enjoyed by only some
discretiations of (1), including the first-order accurate upwind scheme (2): a direct
verification shows that ux and uy are never approximated using any neighbors larger
that ui, j.

Another popular class of efficient Eikonal solvers is Fast Sweeping Methods
(FSM) [32], which solve the system (2) by Gauss-Seidel iterations, but changing the
order in which the gridpoints are updated from iteration to iteration. When the di-
rection of the current sweep is aligned with the general direction of characteristics,
many gridpoints will receive correct values in a single “sweep”. If marching-type
methods attempt to uncover the correct gridpoint-ordering dynamically, in FSM the
idea is to alternate through a number of geometrically motivated orderings. (In 2D
problems: from northeast, from northwest, from southwest, and from southeast.) The
resulting Eikonal solvers have O(M) complexity, but with a hidden constant factor,
which depends on F and the grid orientation, and cannot be bound a priori. These
techniques have also been extended to anisotropic (and even non-convex) Hamilton-
Jacobi equations [11, 28], as well as higher-order finite-difference (e.g., [31]) and
discontinuous Galerkin (e.g., [30]) discretizations. Hybrid two-scale methods, com-
bining the best features of marching and sweeping, were more recently introduced in
[5, 6]. We also refer to [5] for a comprehensive review of other fast solvers inspired
by label-correcting algorithms.

2.2 Modified Fast Marching for factored Eikonal

We start by simplifying the original upwind discretization scheme (2) for the un-
factored Eikonal. Focusing on a gridpoint xi, j we define its smallest horizontal and
vertical neighboring values: uH = min(ui−1, j, ui+1, j) and uV = min(ui, j−1, ui, j+1). If
both of these values are needed to compute ui, j, then (2) becomes equivalent to a
quadratic equation (ui, j−uH)

2 + (ui, j−uV )
2 = h2/F2

i, j. We are interested in its small-
est real root satisfying an upwinding condition ui, j ≥max(uH , uV ). If there is no root
satisfying it, then ui, j should instead be computed from a one-sided-update ui, j =
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min(uH , uV )+h/Fi, j, which corresponds to the case where either max{D−x
i, j u,−D+x

i, j u,0}
or max{D−y

i, j u,−D+y
i, j u,0} evaluates to zero. This procedure is monotone causal by

construction and its equivalence to (2) was demonstrated in [21], making a Dijkstra-
like computational approach suitable.

Recalling the “additive factoring” ansatz u(x) = T (x) + τ(x), we now define
the upwind vertical and horizontal neighboring values for the new unknown τi, j but
basing the comparison on u rather than on τ itself and using the flags kH ,kV ∈ {−1, 1}
to identify the selected neighbors. More specifically,{

τH = τi−1, j and kH = 1, if (Ti−1, j + τi−1, j) < (Ti+1, j + τi+1, j);
τH = τi+1, j and kH =−1, otherwise;

with (τV , kV ) similarly defined based on the vertical neighbors. Since the partial
derivatives of T are known, the corresponding quadratic equation is

(
kH

∂Ti, j

∂x
+

τi, j− τH

h

)2

+

(
kV

∂Ti, j

∂y
+

τi, j− τv

h

)2

=
1

F2
i, j
. (6)

We are interested in its smallest real root satisfying a similarly modified upwinding
condition

Ti, j + τi, j ≥ max
(

min
k=±1

{
Ti+k, j + τi+k, j

}
, min

k=±1

{
Ti, j+k + τi, j+k

})
. (7)

If there is no such root, then τi, j should instead be computed from a one-sided-update
as the smaller of the two values corresponding to

kH

∂Ti, j

∂x
+

τi, j− τH

h
=

1
Fi, j

, and kV

∂Ti, j

∂y
+

τi, j− τV

h
=

1
Fi, j

.

In other words,

τi, j = min
{

τH−hkH

∂Ti, j

∂x
, τV −hkV

∂Ti, j

∂y

}
+

h
Fi, j

. (8)

The above is a full recipe for computing τi, j if all of the neighboring grid values are
already known. But since τ is a priori known only on Q, this yields a large coupled
system of discretized equations (one per each gridpoint in Ω\Q). This system was
first treated iteratively via Fast Sweeping [16], but the monotone causality makes a
Dijkstra-like approach applicable as well. As in the original Fast Marching, the Con-
sidered gridpoints are sorted using a binary heap with a O(M logM) computational
complexity; however, the sorting criterion is based on u rather than on τ values. The
resulting method is summarized in Algorithm 1. It is very similar to a modified FMM
recently introduced for the case of “multiplicative factoring” in [27].
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Algorithm 1: Modified Fast Marching Method
Input: source point x0, speed function F(x)

Initialize τ(x0) := 0 and τ(x) :=+∞ for all gridpoints x 6= x0;
Initialize Considered := {x0} and Accepted := /0;

while Considered 6= /0 do
Find a Considered gridpoint x̂ whose (T + τ) value is the smallest;
Move x̂ to Accepted list;

for all not-yet-Accepted neighbors xi, j of x̂ do
Find τH ,τV and solve the quadratic equation (6) for τnew

i, j ;
if τnew

i, j does not satisfy the upwinding condition (7) then
Use a one-sided update formula (8) to (re-)compute τnew

i, j ;
end
if τnew

i, j < τi, j then
Set τi, j := τnew

i, j ;
end

end
end

3 Rarefaction fans at obstacle corners

Even though all prior work on factored Eikonal equation was focused on isolated
point sources, there are other well-known situations where rarefaction fans can arise.
As a simple example in Figure 1 shows, they can easily develop at the corners of
obstacles (which are viewed as a part of R2\Ω ) or, more generally at any points on
∂Ω where the boundary is non-smooth and the interior angle is larger than π. These
non-point-source rarefaction fans result in a similar degradation of convergence rate
for standard numerical methods and also lead to unpleasant artifacts in optimal trajec-
tory approximations obtained by following (−∇u) to the target set Q. Figure 5 shows
several such trajectories in a “maze navigation” problem. All of these trajectories
should be piecewise-linear, with their directions only changing at obstacle corners. A
zoomed version in Figure 5(B) clearly shows that they often approach an obstacle too
early, following its boundary to the corner and yielding longer paths. Similar artifacts
are common in determining parts of the domain visible by an observer [23] and in
multiobjective path-planning [13, 19]. A natural question (and the focus of this paper)
is whether factoring techniques can be used to alleviate this problem. In section 3.1
we demonstrate experimentally that the “global factoring” is not suitable for this task.
On the other hand, the localized factoring works, but adopting it to corner-induced
rarefaction fans presents two new challenges. First of all, not all obstacle corners
produce this effect; e.g., see the lower left corner in Figure 1(A).

Definition 3.1. An obstacle corner x̃ is “regular” if the characteristic leading to it
from Q points into that obstacle. (I.e., if an optimal trajectory starts from x̃ in the
direction a, then (−a) should point into the obstacle.) An obstacle corner is “rarefy-
ing” if it is not regular.
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(A) multiple obstacles (B) distorted trajectories

Fig. 5: A maze navigation example: non-permiable obstacles with F = 1 on the rest of Ω . (Left) The level
sets of the value function u computed by the Fast Marching Method on a 240×240 grid and approximate
optimal trajectories to the origin from 12 starting locations. (Right) A zoomed version to highlight the
incorrect direction of “optimal” trajectories in the rarefaction fans at obstacle corners.

So, even though the rarefying corners are not known in advance, we can identify
them dynamically, checking the above condition when the corresponding corner x̃
becomes Accepted in Fast Marching Method and approximating the optimal a =
−∇u(x̃)
|∇u(x̃)| using x̃’s previously Accepted upwind neighbors. The resulting “just-in-time
localized factoring” method is detailed in Algorithm 2. It maintains a list of identified
rarefaction fans, with each entry containing the center of the fan (either a point source
or a rarefying corner) and the corresponding localized function T . The algorithm is
formulated in terms of u, with the corresponding τ values computed on the fly once
the appropriate localized T is selected.

(A) level sets of u
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(B) domain splitting (C) level sets of T

Fig. 6: A simple example with one rarefying corner. (Left) level curves of the domain-restricted distance
to a point source. (Center) a dynamic domain splitting based on the rarefaction fan. (Right) the level sets
of a “cone+plane” function T capturing the correct rarefaction behavior.

The second difficulty is to define a suitable T that will be used for factoring when
updating all not-yet-Accepted gridpoints in Br(x̃). Intuitively, it might seem that a
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Algorithm 2: Just-in-time Localized Factoring
Input: source point x0, speed function F(x), fixed radius r

Initialize u(x0) := 0 and u(x) :=+∞ for all gridpoints x 6= x0;
Initialize Considered := {x0} and Accepted := /0;
Initialize FanList := {(x0, T x0 = |x−x0|/F(x0))};

while Considered 6= /0 do
Find a Considered gridpoint x̂ whose u value is the smallest;
Move x̂ to Accepted list;
if x̂ is a rarefying corner then

Build a suitable T x̂ using formula (9);
Add an entry

(
x̂,T x̂) to FanList;

end

for all not-yet-Accepted neighbors xi, j of x̂ do
Check if xi, j is within distance r from any x̃ on FanList
and identify the appropriate T = T x̃ (use T = 0 by default);
Given the current u values at xi, j & its neighbors,
define their τ values as τ = (u−T ) based on T selected for xi, j;

Find τH ,τV and solve the quadratic equation (6) for τnew
i, j ;

if τnew
i, j does not satisfy the upwinding condition (7) then

Use a one-sided update formula (8) to (re-)compute τnew
i, j ;

end
unew

i, j := τnew
i, j +Ti, j;

if unew < ui, j then
Set ui, j := unew

i, j ;
end

end
end

cone-like T = |x−x̃|
F(x̃) is the right choice, similarly to our handling of point sources.

However, as we show in section 3.1, this choice does not yield the desired rate of
convergence. This is due to the fact that such corner-born rarefaction fans are not
radially symmetric. They only exist for u > u(x̃) in the sector between a part of
obstacle boundary and the characteristic passing through x̃; see Figure 1 and an even
simpler example in Figure 6. Note that, outside of that rarefaction sector, the second
derivatives of u are bounded. But using the ansatz u = T + τ with the above cone-
like T would introduce unbounded second derivatives in τ on non-rarefying parts
of Br(x̃), thus degrading the rate of convergence. Therefore, we need to construct T
which is cone-like only in the correct sector and remains smooth on the entire not-
yet-Accepted portion of the domain. This yields a “cone+plane” version of T shown
in Figure 6(C). Assuming that c is a unit vector bisecting the obstacle corner at x̃, we
can now split the plane into two sets

S0 = {x ∈Ω | (x− x̃) is between c and (−a) } ; S1 = Ω\S0.
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Analytically, we can define T as follows

T (x) =


|x− x̃|
F(x̃)

, x ∈ S0

−a · (x− x̃)
F(x̃)

, x ∈ S1.

(9)

The resulting T is not continuous along c, but this will not matter since the discon-
tinuity is hidden within the obstacle. The gradient of T is also continuous wherever
T is, though the second derivatives are bounded but discontinuous along (−a). Our
numerical results show that this T fully recovers the first-order convergence of the
numerical solution.

Remark 1. The bisector of obstacle corner is not the only choice for c. Any direc-
tions falling inside the obstacle will work just as well since the idea is to “hide” the
discontinuity line of T. For rectangular obstacles, it might feel more natural to choose
c orthogonal to the characteristic direction a. However, we prefer the bisector simply
because it is a safe choice for arbitrary polygonal obstacles, which can be handled
by a version of Algorithm 2 on (obstacle-fitted) triangulated meshes.

Another possibility is to hide the T ’s discontinuity in the part of Ω already
Accepted (e.g., along a) by the time this rarefying corner is identified. This is the
approach we use in section 4, when dealing with “slowly permeable obstacles”.

Remark 2. Our approach uses local factoring with a continuous T on the entire
Br(x̃)∩Ω . A variant of the same idea is to employ local factoring with a standard
cone-like T = |x−x̃|

F(x̃) but only when updating gridpoints from a subset Br(x̃)∩Ω ∩S0.
(The difference is that one would use T = 0 when updating gridpoints in Br(x̃)∩
Ω ∩S1.) While we do not formally include this variant in our convergence studies in
section 3.1, its performance appears to be quite similar. E.g., for the above example
from Figure 6, the alternative version also shows the first-order convergence, but with
L∞ errors ≈ 10% larger than those resulting from the “cone+plane” formula (9).

We close this section by discussing a subtle property implicitly used in our approach.
The above construction relies on having a sufficiently accurate representation of the
characteristic direction a at each rarefying corner. This might seem unreasonable: if
our numerical approximation of u is only O(h) accurate (as is the case in formulas
(2) and (6-8)), then one could expect the resulting finite difference approximation
of ∇u to be completely inaccurate. The same argument would imply that optimal
trajectories also cannot be reliably approximated based on any first-order accurate
representation of the value function. However, there is ample experimental evidence
that such trajectory approximation works in practice. See, for example, the optimal
trajectories in Figure 5,8,9,13 and in many optimal control and seismic imaging pub-
lications with and without factoring. The fact that this gradient approximation is in
fact O(h) accurate is also confirmed by a numerical study in [3] and is instrumen-
tal for constructing other (compact stencil, second-order) schemes for the Eikonal
[3, 24].
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A plausible explanation for this “superconvergence” phenomenon is that the
error in u-approximation is sufficiently “smooth”, resulting in a convergent ∇u–
approximation despite the use of divided differences. To the best of our knowledge,
this property has not been proven for general Eikonal PDEs, though it has been rig-
orously demonstrated for the distance-to-a-point computations and for constant co-
efficient linear advection equations[14, Appendix B]. In our current context, we use
the same idea to conjecture that the a-dependent approximation of the localized T is
sufficiently accurate to recover the full first-order accuracy in u computations with
dynamic factoring. This conjecture appears to be fully confirmed by the convergence
rates observed in our numerical experiments throughout this paper.

3.1 Numerical Examples

As a first numerical test, we consider a simple example from Figure 6(A): a domain-
constrained distance u to the origin on Ω = [0,1]× [0,1]\Ωob, with a single rectan-
gular obstacle Ωob = (0,0.2)×(0.2,1). Since F = 1, all optimal paths are piecewise-
linear. According to Definition 3.1, we find that the corner at x̃ = (0.2,0.2) is rarefy-
ing. As a result, the problem contains two rarefaction fans: one at this corner and the
other at the point source x0 = (0,0).
We test the accuracy of several methods:

1. original: Original (un-factored) Eikonal solved on the entire Ω with the original
Fast Marching Method.

2. global cone: Global factoring using T (x) = |x−x0|/F(x0) on the entire Ω with
Algorithm 1.

3. global 2 cones: Global factoring using T (x) = |x−x0|/F(x0) + |x− x̃|/F(x̃) on
the entire Ω with Algorithm 1.

4. switching cones: Global factoring using T (x) = |x−x0|/F(x0) until x̃ is ac-
cepted and then switch to global factoring using T (x) = |x− x̃|/F(x̃) on the rest
of Ω .

5. localized cone only: Just-in-time localized factoring Algorithm 2 with T (x) =
|x−x0|/F(x0) on Br(x0) and another cone-like T (x) = |x− x̃|/F(x̃) on Br(x̃).

6. localized cone+plane: Just-in-time localized factoring Algorithm 2 with T (x) =
|x−x0|/F(x0) on Br(x0) and a dynamically defined “cone+plane” T (x) specified
by formula (9) on Br(x̃).

The first four of these are included to show that the corner-induced rarefaction fans do
indeed degrade the rate of convergence and the issue cannot be addressed by global
factoring. Accuracy of all methods is tested using a range of gridsizes (h = 1

50 2−k,
where k = 0, . . . ,5). The localized factoring is based on r = 0.18. As Figure 7(B)
clearly shows, only the last method actually exhibits the first-order of convergence.
Even though the usual global factoring (method 2) starts out with smaller errors on
coarser meshes, it becomes worse than our preferred approach (method 6) for smaller
values of h. The fact that method 5 has a similar performance degradation proves the
importance of choosing the correct localized factoring function T .
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Fig. 7: Convergence of several methods for a simple obstacle case of Figure 6(A).

Since we do not rely on knowing ahead of time which corners are rarefying,
the just-in-time localized factoring algorithm is excellent for “maze-navigation prob-
lems” with numerous obstacles and possibly inhomogeneous speed function F . Be-
fore running the algorithm, we create a binary array to identify all gridpoints con-
tained inside obstacles. This array is then used to identify obstacle corners in Al-
gorithm 2, and whenever a corner is found to be rarefying by Definition 3.1, a fac-
toring procedure is locally applied with an appropriately chosen “additive factor”
T (x). Below we show two examples based on a “maze” from Figure 5. In Figure
8 we explore the version with F = 1. In Figure 9 we use an inhomogeneous speed
F(x,y) = 1+0.3sin(2πx)sin(2πy). In both cases, the white lines are used to indicate
the (local) boundaries of corner-induced rarefaction fans. Twelve sample trajectories
are shown to demonstrate that the trajectory distortions near the corners are avoided
by just-in-time factoring. The convergence is tested using the gridsizes h = 1

30 2−k,
where k = 0, . . . ,4, and the “ground truth” is computed on a much finer grid with
h = 1/4800. Figure 10 shows that, unlike the Fast Marching Method for the original
Eikonal, our approach is globally first-order accurate in both examples.

4 Discontinuous Speed Function

Rarefaction fans can also arise due to discontinuities in F . Here we consider a simple
subclass of such problems: a generalization of maze navigation examples from the
previous section to account for “slowly permeable obstacles”. We will assume that
obstacles are described by an open set Ωob ⊂ (Ω\Q) and the speed F is lower inside
them. In the simplest setting, F is piecewise constant with a discontinuity on ∂Ωob
and 0 < Fob < Ff ree. We will use ϒ = Ff ree/Fob to measure the severity of obstacle
slowdown.

The following properties are relatively easy to prove for this simple type of
discontinuous F in 2D problems:
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(A) maze: original (B) maze: localized factoring

Fig. 8: Navigating a maze with F = 1. Level sets of u and representative optimal trajectories computed by
the original FMM (Left) and by Algorithm 2 (Right). The latter avoids obvious numerical artifacts near
rarefying corners.

(A) maze: original (B) maze: localized factoring

Fig. 9: Navigating a maze with F(x,y) = 1+ 0.3sin(2πx)sin(2πy). Level sets of u and representative
optimal trajectories computed by the original FMM (Left) and by Algorithm 2 (Right). The latter avoids
obvious numerical artifacts near rarefying corners.

1. Rarefaction fans can only arise at point sources or at rarefying corners of slowly
permeable obstacles. (E.g., there are no fans arising on non-corner parts of obsta-
cle boundaries.)

2. When a rarefaction fan arises at an obstacle corner x̃, it does not propagate into
that obstacle.

3. Such rarefaction fans are always confined to a sector between the characteristic
direction (−a) and another vector (−b) found from Snell’s law.

4. Suppose a makes an angle α ∈ (0,π/2) with a normal to one side of a rectangular
obstacle at x̃ and (−b) makes an angle β ∈ (0,π/2] with a normal to the other
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(B) maze with variable F

Fig. 10: L∞ error for maze navigation examples.

side of that obstacle; see Figure 11. Then these angles must satisfy

sinβ = min
(√

ϒ 2− sin2
α, 1

)
. (10)

and the rarefaction fan takes place in a sector of angle δ = (α +β − π

2 ).

For the sake of brevity, we sketch the proof of the last of these only.

(A) (B)

Fig. 11: A rarefaction fan at the corner of a slowly permeable obstacle. (Left) α is the incidence angle
of a ray from the point source to the rarefying corner x̃ and β is the “refracted” angle from the normal
on the other side of the obstacle. The rarefaction fan appears in a sector corresponding to the angle δ be-
tween (−b) shown in red and the yellow dash-dotted line corresponding to (−a). (Right) A ray refraction
happening at a point z close to x̃. As z→ x̃, θ1 and θ3 will tend to α and β respectively, with the purple
segment disappearing, and yielding the (−a,−b) path through x̃ in the limit.

Proof. We can reinterpret the characteristics as light rays traveling from a point
source and refracted at the boundary of slowly permeable obstacles. We then use
the Snell’s Law to determine their changing directions.
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Consider a point z close to the corner x̃, whose characteristic has an incidence
angle θ1 and refraction angle θ2; see Figure 11(B). The incidence angle of the second
refraction is π

2 −θ2 and the second refraction angle is θ3. If θ3 <
π

2 , by Snell’s Law
these three angles must satisfy

sinθ1

Ff ree
=

sinθ2

Fob
,

cosθ2

Fob
=

sinθ3

Ff ree
. (11)

Eliminating θ2, we obtain

sinθ3 =

√(
Ff ree

Fob

)2

− sin2
θ1 =

√
ϒ 2− sin2

θ1

We note that this equality only makes sense if
√

ϒ 2− sin2
θ1 ≤ 1. Otherwise, we will

observe the “total internal reflection” with θ3 = π

2 and Snell’s Law not holding for
the θ2 - θ3 transition. So, the more accurate version of this relationship is sinθ3 =

min
(√

ϒ 2− sin2
θ1, 1

)
. As z→ x̃, we have θ1→ α, θ3→ β , and we recover (10)

in the limit.

Remark 3. It is easy to provide a sufficient condition for the rarefaction fan filling
the whole region between (−a) and the obstacle boundary (exactly as we saw in the
non-permeable case). Whenever ϒ ≥

√
2, we have sinβ = 1 and hence β = π

2 ; so,
optimal trajectories from all starting positions in Ω\Ωob reach the exit set Q without
passing through Ωob. On the other hand, in the continuous case (ϒ = 1), formula
(10) implies that β = π

2 −α,δ = 0 and no rarefaction fan is present.

Using a and b defined at a rarefying corner x̃ in the above properties, it is natural
to split Br(x̃) into three regions:

S0 = {x ∈Ω | (x− x̃) is between (−b) and (−a) } ;

S1 = {x ∈Ω | (x− x̃) is between (−b) and a } ; S2 = Ω\(S0∪S1).

We can now build a suitable (localized) factoring function T as follows:

T (x) =



|x− x̃|
F(x̃)

, x ∈ S0

−b · (x− x̃)
F(x̃)

, x ∈ S1

−a · (x− x̃)
F(x̃)

, x ∈ S2.

(12)

Based on the shape of the graph, we refer to this function as a “cone+2 planes”;
see Figure 12(C). This formulation makes T discontinuous along a ray parallel to
a = −∇u(x̃)/|∇u(x̃)|, but for a sufficiently small r all gridpoints close to this ray in
Br(x̃) will be already Accepted by the time we start this factoring. Both T and ∇T
are continuous along (−a) and (−b).
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Fig. 12: A simple example with one “permeable obstacle”. (Left) level curves of the “partially refracted”
distance to a point source. (Center) a dynamic domain splitting based on the rarefaction fan. (Right) the
level sets of a “cone + 2 planes” function T capturing the correct rarefaction behavior. The function has a
small discontinuous jump along the ray parallel to a through x̃.

4.1 Numerical Examples

Returning to the example in Figure 12, we choose Fob =
2√
5
≈ 0.894 inside the ob-

stacle Ωob = (0,0.2)× (0.2,1) and Ff ree = 1 on Ω\Ωob. Based on the properties
discussed above, this will result in a rarefaction fan spreading in a sector of angle
δ = π

12 between the two white dashed lines in Figure 13(A). We test the convergence
of several methods described in section 3.1 and report the results in Figure 13(B). The
numerical experiments are conducted using gridsizes h = 1

50 2−k, where k = 0, . . . ,4
and the “ground truth” is computed on a much finer grid with h = 1/4000. Unsur-
prisingly, the “original” (unfactored) method results in the largest errors and only the
“localized cone + 2 planes” method exhibits the first-order convergence.

Our final example in Figure 14 has multiple slowly permeable obstacles with
each having a different Fob (indicated in Figure 14(A)) and Ff ree = 1 in the comple-
ment. At each corner, we use equation (10) to find (−b) and use two white line
segments to indicate the rarefying region. The “ground truth” is computed using
h = 1/6400 and the convergence is tested using gridsizes h = 1

40 2−k,k = 0, . . . ,4.
Figure 14(B) demonstrates that our method reduces the errors and recovers the first-
order convergence.

5 Conclusions

We have introduced a new just-in-time factoring algorithm for Eikonal equations to
reduce the numerical errors due to rarefaction fans. Prior (global and localized) fac-
toring algorithms were meant to deal with rarefactions arising at point sources and
we have carefully compared their accuracy in that setting. However, our main focus
has been on rarefactions arising in 2D due to nonsmothness of ∂Ω (e.g., corners
of non-permeable obstacles) or discontinuities in the speed function (e.g., corners
of “slowly-permeable” obstacles). The locations and the geometry of such rarefac-
tion fans are a priori unknown. Our algorithm uncovers them dynamically and adop-
tively applies the localized factoring. This dynamic aspect makes our approach nat-
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Fig. 13: Optimal trajectories and convergence for a “single permeable obstacle” example introduced in
Figure 12. (Left) The level sets of u, with purple dashed lines showing the obstacle boundaries and white
dashed lines showing the rarefaction fan boundaries. Eight representative optimal trajectories shown in
black: (1) outside any region influenced by the obstacle, taking a straight line to the point source; (2,3)
starting within the rarefaction fan, coinciding after reaching the rarefying corner; (4,5,6) experiencing a
double refraction; (7) starting inside the obstacle and experiencing the “total internal reflection” described
in the proof, with two different segments inside the obstacle; (8) starting inside the obstacle and expe-
riencing a single refraction. [Note: the “light rays” (5-8) enter the obstacle with small incidence angles,
resulting in barely changed refracted angles, so the first refraction is difficult to identify visually.]
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Fig. 14: A maze with several slowly permeable obstacles. (Left) The level sets of u with dashed lines
showing the obstacle boundaries and white line segments showing the rarefaction fan boundaries. The
speed Fob is shown inside each obstacle.

ural in the Fast Marching framework. (With Fast Sweeping, one could in principle
solve the original Eikonal on the entire domain, then identify all rarefaction fans in
post-processing and re-solve the correctly factored equation on Ω .) Numerical tests
confirm that our method restores the full linear convergence and prevents numerical
artifacts in approximating optimal trajectories once the value function is already com-
puted. While we have only implemented and tested the “additive” dynamic factoring,
we expect that in the “multiplicative” case the results would be qualitatively simi-
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lar. All presented examples were in the context of time-optimal path planning, but
other optimization criteria (e.g., a cumulative exposure to an enemy observer) would
also lead to a similarly factored Eikonal equation as long as the running cost remains
isotropic. Even though our focus so far has been on applications in robotic naviga-
tion and computational geometry, we hope that the same general approach might also
be useful in seismic imaging problems, which motivated much of the prior work on
Eikonal factoring.

Several straightforward generalizations will make our method more useful in
practice.

1. We can easily treat general polygonal obstacles by adding dynamic factoring to
prior Fast Marching techniques on (obstacle-fitted) triangulated meshes [12, 24].
The definition of our “additive factor” T will stay exactly the same; see also
Remark 1 in section 3.

2. The examples presented in section 4 are based on rectangular “slowly permeable
obstacles” with a piecewise constant speed function. However, the same approach
is also applicable for the general discontinuous speed functions as long as the
discontinuity lines are polygonal and aligned with the discretization mesh. The
rarefaction fans can be determined based on a local information only (i.e., the
directional limits of the speed function at a rarefying corner of the discontinuity
line), and the definition of T in dynamic factoring will remain the same even
when F is not piecewise constant.

3. If the speed of motion is anisotropic (i.e., dependent on the direction of motion
rather than just the current location), the value function satisfies a more general
Hamilton-Jacobi-Bellman PDE. Point-source-based factoring for the latter has al-
ready been developed (e.g., by Fast Sweeping in [16]). Marching-type techniques
for anisotropic problems (e.g., [26] or [18]) can be similarly modified to handle
the corner-induced rarefactions.

4. Another easy extension is to treat rarefaction fans due to more general boundary
conditions (e.g., fast-varying u= g specified on ∂Ω can result in rarefactions even
if the boundary is smooth).

It will be more difficult to move to factoring suitable for higher-order accurate dis-
cretizations. For point-source-induced fans, this has been addressed in [15] and [17].
Similar ideas might work in our context, but higher derivatives will need to be esti-
mated at rarefying corners and one would need to construct a smoother T than the
version used in this paper.

Finally, the obvious limitation of our current approach is that Ω ⊂R2. We expect
that Eikonal problems in higher dimension will be much harder to factor dynamically.
Even with F = 1 and simple non-permeable box-obstacles in 3D, one would already
need to deal with rarefying edges rather than corners.

Acknowledgements: The authors are grateful to anonymous reviewers for their sug-
gestions on improving this paper.
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