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Abstract—Differential privacy has emerged as a gold standard
in privacy-preserving data analysis. A popular variant is local
differential privacy, where the data holder is the trusted curator.
A major barrier, however, towards a wider adoption of this model
is that it offers a poor privacy-utility trade-off.

In this work, we address this problem by introducing a new
variant of local privacy called profile-based privacy. The central
idea is that the problem setting comes with a graph G of data
generating distributions, whose edges encode sensitive pairs of
distributions that should be made indistinguishable. This provides
higher utility because unlike local differential privacy, we no
longer need to make every pair of private values in the domain
indistinguishable, and instead only protect the identity of the
underlying distribution. We establish privacy properties of the
profile-based privacy definition, such as post-processing invari-
ance and graceful composition. Finally, we provide mechanisms
that are private in this framework, and show via simulations
that they achieve higher utility than the corresponding local
differential privacy mechanisms.
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I. INTRODUCTION

Increasing amounts of sensitive data are being collected and
analyzed, and consequently the need for privacy preserving
data analysis has grown. Differential privacy has emerged
as the gold standard of privacy-preserving data analysis, and
a version, known as local differential privacy [1], has been
used in many applications such as Google’s RAPPOR [2]
and Apple’s iOS data collection. This local model consists of
users privatizing their own data before submission to a data
curator. Due to the robustness of differential privacy under
further computation, this model protects privacy regardless of
the trust in the curator, now or in the future.

However, a major barrier for the local model is the undesir-
able utility sacrifices of the submitted data. A local differential
privacy implementation achieves much lower utility than a
similar method that assumes trusts in the curator. Strong lower
bounds have been found for the local framework [1], leading
to pessimistic results that necessarily require massive amounts
of data to achieve both privacy and utility.

In this work, we address this challenge by proposing a new
restricted privacy definition, called profile-based privacy. The
central idea relies on specifying a graph G of profiles or data
generating distributions, where edges encode sensitive pairs
of distributions which should be made indistinguishable. Our
framework does not require that all features of the observed
data be obscured; instead only the information connected to

identifying the distributions must be perturbed. This offers
privacy by obscuring data from sensitive pairs of profiles
while side-stepping the utility costs of local differential pri-
vacy, where every possible pair of observations must be
indistinguishable. As a concrete example, suppose we have
commute trajectories from a city center to four locations -
A, B, C and D, where A and B are north and C and D
are south of the center. Profile based privacy can make the
trajectories that originate in A and B and those that originate
in C and D indistinguishable. This offers better utility than
local differential privacy, which would make every trajectory
indistinguishable, while still offering finer grained privacy in
the sense that an adversary will only be able to tell that the
commuter began north or south of the city center.

We show that profile-based privacy satisfies some of the
beneficial properties of differential privacy, such as post-
processing invariance and certain forms of graceful composi-
tion. We provide new mechanisms in this definition that offer
better utility than local differential privacy, and conclude with
theoretical as well as empirical evidence of their effectiveness.

II. RELATED WORK

Our proposed definition is related to two commonly used
privacy frameworks: the generalized Pufferfish privacy frame-
work [3], and geoindistinguishability [4]. Like our defini-
tion, Pufferfish presents an explicit separation of sensitive
and insensitive information with distributional assumptions.
However, we focus on a local case with distributional secrets,
while the existing Pufferfish literature targets value-dependent
secrets in a global setting. Our definition is also similar
to geoindistinguishability, but our work does not require an
explicit metric and applies more readily to a discrete setting.

Our methods also resemble those seen under maximal-
leakage-constrained hypothesis testing [5]. The maximal-
leakage framework also employs a distribution-focused mech-
anism design, but solves a different problem. Our work aims
to prevent identifying distributions while preserving and iden-
tifying observed values where possible. The maximal-leakage
setting inverts this goal, and protects the observed values while
maximizing the detection of hypotheses on the distributions.
This distinction in goal also applies with respect to the distri-
butional privacy framework [6]. Finally, our work can also be
viewed in relation to information theoretic definitions dues to
the deep connections present from differential privacy [7].



III. PRELIMINARY: PRIVACY DEFINITIONS

We begin with defining local differential privacy — a prior
privacy framework that is related to our definition.

Definition 1: A randomized mechanism A : X — Y
achieves e-local differential privacy if for every pair (X, X')
of individuals’ private records in X and for all outputs y € Y
we have:

Pr(A(X) = y) < e Pr(AX') = y). (1)

Concretely, local differential privacy limits the ability of
an adversary to increase their confidence in whether an in-
dividual’s private value is X versus X’ even with arbitrary
prior knowledge. These protections are robust to any further
computation performed on the mechanism output.

IV. PROFILE-BASED PRIVACY DEFINITION

Before we present the definition and discuss its implica-
tions, it is helpful to have a specific problem in mind. We
present one possible setting in which our profiles have a clear
interpretation.

A. Example: Resource Usage Problem Setting

Imagine a shared workstation with access to several re-
sources, such as network bandwidth, specialized hardware, or
electricity usage. Different users might use this workstation,
coming from a diverse pool of job titles and roles. An
analyst wishes to collect and analyze the metrics of resource
usage, but also wishes to respect the privacy of the work-
station users. With local differential privacy, any two distinct
measurements must be rendered indistinguishable. Under our
alternative profile-based framework, a choice exists to protect
user identities instead of measurement values. This shifts the
goal away from hiding all features of the resource usages, and
permits measurements to be released more faithfully when not
indicative of a user’s identity.

B. Definition of Profile-based Differential Privacy

Our privacy definition revolves around a notion of profiles,
which represent distinct potential data-generating distributions.
To preserve privacy, the mechanism’s release must not give
too much of an advantage in guessing the release’s underlying
profile. However, other facets of the observed data can (and
should) be preserved, permitting greater utility than local
differential privacy.

Definition 2: Given a graph G = (P, E) consisting of
a collection P of data-generating distributions ("profiles")
over the space X and collection of edges F, a randomized
mechanism A : X x P — Y achieves (G, €)-profile-based
differential privacy if for every edge e € E connecting profiles
P; and P;, with random variables X; ~ P; and X; ~ P}, and
for all outputs y € ) we have:

PrA(Xi, P) =y) _ . 2
Pr(AX;, P =y) = ()

Inherent in this definition is an assumption on adversarial
prior knowledge: the adversary knows each profile distribution,

but has no further auxiliary information about the observed
data X. The protected secrets are the identities of the source
distributions, and are not directly related to particular features
of the data X. Put another way, the adversarial goal here is to
distinguish P; versus P;, rather than any fixed X versus X’
pair in local differential privacy. These additional assumptions
in the problem setting, however, permit better performance. By
not attempting to completely privatize the raw observations,
information that is less relevant for guessing the sensitive
profile identity can be preserved for downstream tasks.

The flexible specification of sensitive pairs via edges in
the graph permits privacy design decisions that also impact
the privacy-utility trade-off. When particular profile pairs are
declared less sensitive, the perturbations required to blur those
profiles can be avoided. Such decisions would be impractical
in the data-oriented local differential privacy setting, where
the space of pairs of data sets is intractably large.

The profile-based differential privacy framework exists as
an inverse to the goals seen in maximal-leakage-constrained
hypothesis testing [5], where hypotheses serve a similar role
to our profiles. While they focus on protecting observation-
privacy and maintaining distribution-utility, we focus on main-
taining observation-utility and protecting distribution-privacy.
Both settings are interesting and situational.

C. Discussion of the Resource Usage Problem

This privacy framework is quite general, and as such it
helps to discuss its meaning in more concrete terms. Let us
return to the resource usage setting. We’ll assume that each
user has a personal resource usage profile known prior to the
data collection process. The choice of edges in the graph
G has several implications. If the graph has many edges,
the broad identity of the workstation user will be hidden by
forbidding many potential inferences. However, this protection
does not require all the information about resource usage to be
obscured. For example, if all users require roughly the same
amount of electricity at the workstation, then electrical usage
metrics will not require much obfuscation even with a fully
connected graph.

A more sparse graph might only connect profiles with the
same job title or role. These sensitive pairs will prevent in-
ferences about particular identities within each role. However,
without connections across job titles, no protection is enforced
against inferring the job title of the current workstation user.
Thus such a graph declares user identities sensitive, while a
user’s role is not sensitive. When users in the same role have
similar usages, this sparser graph will require less perturba-
tions of the data.

One important caveat of this definition is that the profile
distributions must be known and are assumed to be released a
priori, i.e. they are not considered privacy sensitive. If the user
profiles cannot all be released, this can be mitigated somewhat
by reducing the granularity of the graph. A graph consisting
only of profiles for each distinct job role can still encode
meaningful protections, since limiting inferences on job role



can also limit inferences on highly correlated information like
the user’s identity.

The trade-off in profile granularity is subtle, and is left for
future exploration. More profiles permit more structure and
opportunities for our definition to achieve better utility than
local differential privacy, but also require a greater level of a
priori knowledge.

V. PROPERTIES

Our privacy definition enjoys several similar properties
to other differential-privacy-inspired frameworks. The post-
processing and composition properties are recognized as
highly desired traits for privacy definitions [3].

a) Post-Processing: The post-processing property spec-
ifies that any additional computation (without access to the
private information) on the released output cannot result in
worse privacy. Following standard techniques, our definition
also shares this data processing inequality.

Observation 3: If a data sample X; is drawn from profile
P;, and A preserves (G, €)-profile-based privacy, then for any
(potentially randomized) function F, the release F'(A(X;, P;))
preserves (G, €)-profile-based privacy.

b) Composition: The composition property allows for
multiple privatized releases to still offer privacy even when
witnessed together. Our definition also gets a compositional
property, although not all possible compositional settings
behave nicely. We mitigate the need for composition by
focusing on a local model where the data mainly undergoes
one privatization.

Profile-based differential privacy enjoys additive composi-
tion if truly independent samples X are drawn from the same
profile. The proof of this follows the same reasoning as the
additive composition of differential privacy.

Observation 4: If two independent samples X; and X,
are drawn from profile P;, and A; preserves (G, €1 )-profile-
based privacy and A preserves (G, eq)-profile-based pri-
vacy, then the combined release (A;(Xy,P;), A2(Xo, P;))
preserves (G, €1 + eo)-profile-based privacy.

A notion of parallel composition can also be applied if two
data sets come from two independent processes of selecting a
profile. In this setting, information about one instance has no
bearing on the other. This matches the parallel composition
of differential privacy when applied to multiple independent
individuals.

Observation 5: If two profiles P; and P; are independently
selected, and two observations X; ~ P; and X; ~ P; are
drawn, and A; preserves (G, e )-profile-based privacy and
A, preserves (G, e2)-profile-based privacy, then the combined
release (A1 (X;, P;), A2(X;, P;j)) preserves (G, max{e, e2})-
profile-based privacy.

However, this framework cannot offer meaningful protec-
tions against adversaries that know about correlations in the
profile selection process. For example, consider an adversary
with knowledge that profile Py is always selected immediately
after either P; or P; are selected. An edge obscuring P; versus
P; will not prevent the adversary from deducing P, in the next

round. This matches the failure of differential privacy to handle
correlations across individuals. The definition also does not
compose if the same observation X is reprocessed, as it adds
correlations unaccounted for in the privacy analysis. Although
such compositions would be valuable, it is less important when
the privatization occurs locally at the time of data collection.

Placing these results in the context of reporting resource
usage, we can bound the total privacy loss across multi-
ple releases in two cases. Additive composition applies if
a single user emits multiple independent measurements and
each measurement is separately privatized. When two users
independently release measurements, each has no bearing on
the other and parallel composition applies. If correlations exist
across measurements (or across the selection of users), no
compositional result is provided.

VI. MECHANISMS

We now provide mechanisms to implement the profile-based
privacy definition. Before getting into specifics, let us first
consider the kind of utility goals that we can hope to achieve.
We have two primary aspects of the graph G we wish to
exploit. First, we wish to preserve any information in the input
that does not significantly indicate profile identities. Second,
we wish to use the structure of the graph and recognize that
some regions of the graph might require less perturbations
than others.

A. The One-Bit Setting

We begin with a one-bit setting — where the input to the
mechanism is a single private bit — and build up to the more
general discrete setting.

The simplest case is when we have two profiles ¢ and j rep-
resented by Bernoulli distributions P; and P; with parameters
p; and p; respectively. Here, we aim to design a mechanism
A that makes a bit b drawn from P; or P; indistinguishable;
that is, for any ¢ € {0,1}, with b; ~ P; and b; ~ P},

Pr(A(b;, Pj) =t) —

A plausible mechanism is to draw a bit ¥’ from a Bernoulli
distribution that is independent of the input bit, but this
discards all the information from the input.

We instead use a mechanism that flips the input bit with
some probability o < 1/2. Lower values of « improve
the correlation between the output and the input. The flip-
probability « is obtained by solving the following optimization
problem:

ec. 3)

min « “4)
subject to a>0
i (1 — 1—p; _
pi(1 —a) +( p)Oée[6 € ]
pl—a)+(1—pa
1—pi)(d - i _
(1—pi))(1— ) + picx € e, ef].

(1-pj)(1—a)+pja
When p; = 0 and p; = 1 (or vice versa), this reduces to
the standard randomized response mechanism [8]; however, «



may be lower if p; and p; are closer — a situation where our
utility is better than local differential privacy’s.

The mechanism described above only addresses two pro-
files. If we have a cluster of profiles representing a connected
component of the profile graph, we can compute the necessary
flipping probabilities across all edges in the cluster. To satisfy
all the privacy constraints, it suffices to always use a flipping
probability equal to the largest value required by an edge in
the cluster. This results in a naive method we will call the One
Bit Cluster mechanism, directly achieves profile-based privacy.

Theorem 6: The One Bit Cluster mechanism achieves
(G, €)-profile-based privacy.

B. The Categorical Setting

The One Bit Cluster mechanism has two limitations. First,
it applies only to single bit settings and Bernoulli profiles,
and not categorical distributions. Second, by treating all pairs
of path-connected profiles similarly, it is overly conservative;
when profiles are distant in the graph from a costly edge, it is
generally possible to provide privacy with lesser perturbations
for these distant profiles.

We now show how to address both. Addressing the first
limitation is relatively straight-forward, and is done by picking
additional constraints, as well as a (possibly) domain specific
objective that maximizes a measure of fidelity between the
input and the output. To address the second, we use ideas
inspired by the smoothed sensitivity mechanism in differential
privacy [9]. However, rather than smoothly calibrating pertur-
bations across the entire space of data sets, a profile-based
privacy mechanism needs only to smoothly calibrate over the
specified profile graph, which is a tractable task.

Specifically, suppose we have k categorical profiles each
with d categories; we introduce kd? variables to optimize, with
each profile receiving a d x d transition matrix. To keep track
of these variables, we introduce the following notation:

e P, ..., Py asetof k categorical profiles in d dimensions
encoded as a vector.

o Al ... AF: A set of d-by-d transition matrix that repre-
sents the mechanism’s release probabilities for profile .
A; . represents the (4, k)-th element of the matrix A°.

o P, A" represents the d dimensional categorical distribu-
tion induced by the transition matrix A’ applied to the
distribution F;.

« In an abuse of notation, P;A" < e€P; A’ is a constraint
that applies element-wise to all components of the result-
ing vectors on each side.

With this notation, we can express our optimization task:

1min kmax(off—diagonal entries of A', ... ,Ak) 5)
AL

subject to Vi € [n]Vj € [d]Vk € [d]:

> AL =1

k=
Y(P;, Pj) € E: P,A" < efP; A7,

0< A, <1

Vi € [n|Vj € [d]:

—

PjAj S eepl‘Ai.

To address the tractability of the optimization, we note that
each of the privacy constraints are linear constraints over our
optimization variables. We further know the feasible solution
set is nonempty, as trivial non-informative mechanisms achieve
privacy. All that is left is to choose a suitable objective function
to make this a readily solved convex problem.

To settle onto an objective will require some domain-
specific knowledge of the trade-offs between choosing which
profiles and which categories to report more faithfully. Our
general choice is a maximum across the off-diagonal elements,
which attempts to uniformly minimize the probability of any
data corruptions. This can be further refined in the presence
of a prior distribution over profiles, to give more importance
to the profiles more likely to be used.

We define the Smooth Categorical mechanism as the process
that solves the optimization (5) and applies the appropriate
transition probabilities on the observed input.

Theorem 7: The Smooth Categorical mechanism achieves
(G, €)-profile-based privacy.

C. Utility Results

The following results present utility bounds which illustrate
potential improvements upon local differential privacy; a more
detailed numerical simulation is presented in Section VII.

Theorem 8: If A is a mechanism that preserves e-local
differential privacy, then for any graph G of sensitive profiles,
A also preserves (G, €)-profile-based differential privacy.

An immediate result of Theorem 8§ is that, in general and
for any measure of utility on mechanisms, the profile-based
differential privacy framework will never require worse utility
than a local differential privacy approach. However, in specific
cases, stronger results can be shown.

Observation 9: Suppose we are in the single-bit setting with
two Bernoulli profiles P; and P; with parameters p; and p;
respectively. If p; < p; < epj;, then the solution o to (4)
satisfies @ < max{0, 5, _ii;f;le_ef), 2(}7;1-7—8;%;-?;:: .

Observe that to attain local differential privacy with pa-
rameter € by a similar bit-flipping mechanism, we need a
flipping probability of —L, while we get bounds of the form

14-ec?
1

g Thus, profile based privacy does improve over

local differential privacy in this simple case. The proof of
Observation 9 follows from observing that this value of «
satisfies all constraints in the optimization problem (4).

VII. EVALUATION

We next evaluate our privacy mechanisms and compare
them against each other and the corresponding local differ-
ential privacy alternatives. In order to understand the privacy-
utility trade-off unconfounded by model specification issues,
we consider synthetic data in this paper.

A. Experimental Setup

We look at two experimental settings — Bernoulli-Couplet,
and Categorical-Chain.
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(a) Bernoulli-Couplet, Our Method and Base-
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(b) Categorical-Chain, Baseline (Local differ-
ential privacy). All 4 curves overlap.

(c) Categorical-Chain, Our Method.

Fig. 1. Experimental results in various settings. In all figures, lower is better.

a) Settings: In Bernoulli-Couplet, the profile graph con-
sists of two nodes connected by a single edge G = (P =
{a,b}, E = {(a,b)}). Additionally, each profile is a Bernoulli
distribution with a parameter p. In Categorical-Chain, the
profile graph comprises of three nodes connected into a chain
P, — P, — P;. Each profile however, corresponds to a 4-
dimensional categorical distribution, instead of a Bernoulli.

TABLE I
CATEGORICAL-CHAIN PROFILES

P | 02 03 04 0.1
P, | 03 03 03 0.1
Ps | 04 04 01 0.1

b) Baselines: For Bernoulli-Couplet, we use Warner’s
Randomized Response mechanism [8] as a local differentially
private baseline, as well as our One Bit Cluster Mechanism.
For Categorical-Chain, the corresponding local differentially
private baseline is the K-ary version of randomized response,
against our Smooth Categorical mechanism.

B. Results

Figure 1(a) plots the flipping probability for Bernoulli-
Couplet as a function of the difference between profile param-
eters p. We find that as expected, as the difference between the
profile parameters grows, so does the flipping probability and
hence the noise added. However, in all cases, this probability
stays below the corresponding value for local differential
privacy — the horizontal black line — thus showing that profile-
based privacy is an improvement.

Figures 1(b)-1(c) plot the utility across different outputs
in the Categorical-Chain setting. We illustrate its behavior
through a small setting with 3 profiles, each with 4 categories.
We can no longer plot the entirety of these profiles, so at each
privacy level we measure the maximum absolute error for each
output. Thus, in this setting, each privacy level is associated
with 4 costs of the form given in (6). This permits the higher
fidelity of profile-irrelevant information to be seen.

(6)

Our experiments show the categories less associated with
the profile identity have lower associated costs than the more

cost; = MaX;e(p] \P; — (P'AY),]

informative ones. However, the local differential privacy base-
line fails to exploit any of this structure and performs worse.

VIII. CONCLUSION

In conclusion, we provide a novel definition of local privacy
— profile based privacy — that can achieve better utility than
local differential privacy. We prove properties of this privacy
definition, and provide mechanisms for two discrete settings.
Simulations show that our mechanisms offer superior privacy-
utility trade-offs than standard local differential privacy.
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