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Abstract 
The Part I paper (Yun et al., 2018) of this study developed a discrete model and a 

customized Lagrangian relaxation algorithm for the reliable problem of facility locations 

considering round-trip transportation when customers are not aware of facility states in real 

time until they visit them on site. Since the investigated problem is an NP-hard problem, large-

scale instances of this problem may not be solved efficiently by the discrete model. To address 

this issue, this paper proposes a counterpart continuous model to solve large-scale instances of 

the investigated problem. The continuous model assumes that all the settings are continuous 

and adopts the continuum approximation (CA) technique to obtain a near-optimum solution to 

this investigated problem. The CA technique also reveals theoretical insights into solution 

structures of each sub-problem on a customer’s pattern of visiting facilities on a homogeneous 

plane. Numerical experiments find that the continuous model with the CA technique has 

superior computational efficiency for large-scale instances. The results of the case studies 

indicate that the proposed continuous model can obtain a near-optimum solution for the 

investigated location problem with heterogeneous settings and has a robust performance. 

Keywords: reliability, imperfect information, facility location, continuum approximation, 

round-trip  
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1. Introduction 
Unexpected disruptive events due to anthropogenic (e.g., terrorist attacks, labor strikes, 

etc. (D’Amico, 2002; Schewe, 2004; Hirsch et al., 2015)) and natural (e.g., hurricanes, 

earthquakes, etc. (Godoy, 2007; Sharkey et al., 2015; Sheppard and Landry, 2016)) disasters 

have been observed to substantially impair infrastructure system performance. This highlights 

that considering facility reliability is importance in facility location problems to enhance 

system resilience. One recent concept in reliable location design is to have facilities backup 

one another in the event of disruptions. In this manner, multiple facilities are assigned to a 

customer to ensure that she can get backup service in any disruption scenario (Snyder and 

Daskin, 2005). Most reliable models for facility locations assume that customers can get the 

real-time information regarding facility states if they want, whereas several other models 

assume customers cannot obtain this information. The difference in these two assumptions is 

illustrated in the Part I paper (Yun et al., 2018). 

In reliable facility location design, realizations of customer trips largely affect operation 

costs of systems. Many service systems need to account the round-trip (outbound and inbound) 

transportation cost for a customer when this customer accesses the service. Outbound 

transportation is realized when a customer travels to the service facility, and inbound 

transportation is realized when the customer returns to her initial location after the completion 

of the service. When customers have perfect information, outbound and inbound transportation 

costs are simply identical and there is usually no need to differentiate them in model 

formulation. However, these two costs are quite different in reliable facility location problems 

under imperfect information: While a customer may visit a series of facilities consecutively 

during the outbound trip (if the first several trials happen to hit disrupted facilities), the inbound 

trip always simply includes a direct trip from the last stop to her home. This difference was 

illustrated in a motivating example in the Part I paper.  

A typical approach to reliable facility location problems is to develop mathematical 

programming models with discrete setting that can only numerically solve very limited-scale 

problem instances. To solve large-scale problem instances, the continuum approximation (CA) 

technique proposed by Daganzo and Newell (1986) has been employed in numerous location 

design studies. Recently, many studies have been performed using the CA technique to 

investigate large-scale instances of location problems. Please see the following section for a 

literature review on relevant studies. Despite these fruitful modeling developments, existing 

CA methods cannot overcome two challenges in the investigated problem, i.e., (i) the impact 

from imperfect information and (ii) significant structural difference between the investigated 

problem and those in the literature (e.g., the asymmetric inbound and outbound trips). To 

address this gap, we propose a new continuous model that adopts the CA technique to solve 

this complex location problem by decomposing it into homogenous sub-problems. Due to the 

above-mentioned challenges, it is even difficult to directly solve the optimal solution to a sub-

problem. To circumvent the challenges, a novel solution approach is proposed to efficiently 

solve feasible and lower bound solutions to each sub-problem, instead of directly looking for 

the exact optimum. These two bounds have been shown very close to each other, which only 

adds negligible errors in the whole solution approach. This solution approach also reveals 
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theoretical properties and analytical insights into the facility location in the corresponding 

geographic neighborhood. Integrating the solutions across all sub-problems yields a near-

optimum solution to the investigated problem in the heterogeneous space. 

Numerical examples are conducted to examine the performance of the proposed model 

and draw managerial insights. Compared with the discrete model in the Part I paper, the 

continuous model with the CA technique has superior efficiency and scalability for large-scale 

instances. Its simple structure also enables revealing analytical insights into the problem 

structure and solution optimality. Overall, this continuous model can solve this new reliable 

location problem to near-optimum. However, it should be noted that the solution obtained by 

the CA approach is not guaranteed to be the true optimum, and thus the counterpart discrete 

model proposed in the Part I paper is necessary to get a rigorous optimality bound or the optimal 

solution. 

The structure of the paper is shown as follows. Section 2 reviews the literature referring 

to facility location problems. Section 3 presents the framework and the solution technique for 

the continuous model. Section 4 applies the continuous model with the CA techinque to solve 

instances and draws insights into the effects of the inbound trip and imperfect information. 

Section 5 presents a conclusion for the paper and points out future research directions. 

2. Literature review 
Facility location problems are classical strategic decision problems in many service 

systems drawing numerous attentions from researchers. Reviews by Drezner (1995) and 

Daskin (1995) summarize a number of classic models on facility locations in the last century. 

In recent decades, reliable facility location design has been extensively studied due to the 

frequent occurrence of facility disruptions. Most reliable facility location models are 

formulated as mathematical programming models with discrete settings. Commercial solvers 

or customized algorithms can solve these models numerically. Please see the Part I paper for a 

thorough review of these studies. However, discrete models may be compromised from 

excessive computational burdens when solving larger-scale location problems in some 

applications. 

To complement discrete facility location models for better scalability, the CA technique 

proposed by Daganzo and Newell (1986) has been employed in numerous location design 

studies. Thorough reviews on the use of CA methods are summarized by Langevin et al. (1996) 

and Daganzo (2005) for deterministic facility location design problems. Ouyang et al. (2015) 

proposed a CA approach to investigate the facility location problem with elastic demand and 

traffic congestion. Li et al. (2016) investigated the system design problem for one-way electric 

vehicle (EV) sharing by developing a CA model. Wang et al. (2017) incorporated temporal 

dynamics on market growth to a CA model. Although the CA method has been successfully 

employed for various traditional deterministic facility location problems, it has seldom been 

applied to the reliable location design context. The CA model proposed by Cui et al. (2010) 

solved the reliable location design under site-dependent disruptions. Li and Ouyang (2010) 

introduced correlated probabilistic disruptions to the CA model for the reliable location 

problem. Li and Ouyang (2012) developed a CA model for the reliable sensor deployment 

problem along a single corridor. Wang and Ouyang (2013) proposed a CA scheme with the 
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game theory to deal with spatial competition. Later, Wang et al. (2015) extended this work to 

competition between new and incumbent companies. Please see Ansari et al. (2018) for a recent 

review on this topic. These reliability studies have a common assumption that a customer gets 

the real-time information regarding facility states, and thus always visits the most convenient 

facility among all operating ones. 

To the authors’ knowledge, no study has employed the CA method to investigate reliable 

location design under imperfect information. Furthermore, the inbound trip that is important 

for deciding the customer’s visiting sequence under imperfect information is also ignored in 

the previous studies. This causes a customer to travel far from her home, which may be 

unrealistic under imperfect information. Therefore, this paper studies a reliable facility location 

design considering round-trip transportation under imperfect information using a CA approach. 

This study also extends the depth of the research in the Part I paper. 

3. Continuous model 
In this section, we propose a continuous modeling approach. We first present the general 

problem formulation. Then, we propose a continuum approximation solution approach that 

yields an approximate solution to this continuous problem in an efficient manner. 

3.1 Continuous problem formulation 

We list key symbol definitions in Appendix A for the convenience. In a space 2S  , let 

( ) ,x x S    denote the customer demand density at location x . Numerous facilities will be 

constructed in space S  to serve customers. Facilities are permitted to be built at any location 

x S  . We assume that a facility built at location x   (or facility x  ) is disrupted with 

probability ( )q x , which is independent across the space. The set of constructed facilities is 

denoted by  1 2: , , , Nx x x=x  where N  denotes the total facility numbers. We assume that 

customers cannot know facility states (i.e., whether they are disrupted) in any disruption 

scenarios before physically visiting the facilities. Thus, they visit facilities using a “trial-and-

error” strategy, as illustrated in Figure 1, in which triangles denote the built facilities and the 

dot is a customer at location x  (or customer x  for short). Essentially, customer x  tries a 

set of  1R+   facilities according to a pre-specified order regardless of facility states. We 

denote the thr  facility that customer x  visits as ( )rj x x ,  0,1,2, ,r R  , where  x  

denotes that this item depends on location design x . For notation convenience, we denote 

customer 'sx  facility visiting sequence set as ( ) 
0,1, ,

( | ) : r
r R

J x j x
=

=x x . When customer x  

does not obtain the service, a penalty cost ( )x   is imposed assuming 

( )  max : ( | )jx x x j J x −   x  for all x S . Therefore, customer x  will always try to 

visit all the facilities in ( | )J x x  if available before the penalty is imposed. A customer’s trial 
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of visiting these facilities ends either at the first operating facility to get the service or after 

trying the entire set of facilities without finding a functional one and thus receiving a penalty. 

After these moves, this customer returns to her home location where the trip began1. In each 

move, the travel cost is accounted by the Euclidean distance between the starting and ending 

locations of this move. 

 

Figure 1 Illustration of customer travel sequence in a particular failure scenario. 

In continuous settings, all parameters’ values are set according to the location in the 

planning area. These settings can be converted to discrete settings for the discrete location 

model. First, we partition the planning area into numerous small cells. Second, we integrate the 

customer demand density in each cell as the customer demand for this cell. Third, we select the 

location, such as each cell center as usual, to place a customer and one candidate facility for 

each cell. Therefore, the size of the cell number generally decides the approaching degree of 

the optimal result between the continuous model and discrete model. However, the discrete 

settings can also be converted to the continuous setting, which is more complex than the inverse 

conversion. We can apply the approximation method proposed by Peng et al. (2014) to finish 

this conversion. 

Now we investigate how to formulate the relevant cost component for a given x . The 

opening cost for facility x  is denoted by ( )f x ; then, the total facility opening cost is  

 ( ) ( )F : .
x

C f x


=
x

x   (1) 

Let ( )( | )rd x J x x  denote customer 'sx  total travel distance given that she ends at her 

rank r   facility given visiting sequence ( | )J x x  , which we further divide into two parts, 

outbound (departure) distance ( )O ( | )rd x J x x  and inbound (return) distance ( )I ( | )rd x J x x , 

                                                 
1  To highlight the difference between our model and existing reliable location models with perfect 

information (Li et al., 2010), note that the perfect information counterpart instead assumes that a customer knows 

real-time information of facility states and thus always directly visits the closest functioning facility (if any) in 

just one move. 

( )rj x x

( )0j x x

( )1j x x
x

Functional facility Disrupted facility

S
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as formulated below: 

 ( ) ( ) ( )O I( | ) ( ) ,| ( | )r r rd x J x d x J x d x J x= +x x x  (2) 

 ( ) ( ) ( ) ( )0 1
1

O ( | ) ,
i i

r

j x j x j xr

i

x x x xd x J x
−

=

= − + −x x x
x   (3)  

 ( ) ( )
I ( | ) .

rj xr xd x J x x= −
x

x   (4) 

Let ( )( | )rP x J x x  denote the probability that customer x  get the service from facility 

( )rj x x  conditioned on facility visiting sequence ( | )J x x , which occurs if facility ( )rj x x  

is operational and all facilities lower than rank r   failed. Furthermore, let 

( ) ( )
0

( | ) : 1 ( | )
R

r

r

P x J x P x J x
=

= −x x   denote the probability that customer x   finally obtains 

no service from any facility conditioned on facility visiting sequence ( | )J x x  , which 

apparently happens when all facilities in ( | )J x x   are disrupted. Then, the expected total 

transportation cost is 

 ( )
( ) ( )

( ) ( )

T
0

( | ) ( | )
( ) : .

( | ) ( | )

R

r r

r
x S

R

d x J x P x J x
C x dx

d x J x P x J x

 =


 
 

=  
 + 




x x
x

x x

  (5) 

The first term is the summation for the expected travel cost when customer x  is served, and 

the last term formulates the travel cost when customer x  is not successful in trying to obtain 

the service. When the trial is not successful, the expected total penalty cost is formulated by 

 ( ) ( ) ( )P ( ) : ( | ) .
x S

C x x P x J x dx 


= x x   (6) 

With these cost components, the studied reliable continuous location design problem 

under imperfect information with round-trip transportation (CRLP-IIRT) aims to get the 

minimum total system cost by selecting the optimal location x  and the corresponding optimal 

facility visiting sequence  ( | )
x S

J x


x , as formulated below 

 
 

F T P

, ( | )
min ( ) : ( ) ( ) (CRLP-II ).RT:

x S
S J x

C C C C



= + +

x x
x x x x   (7) 

3.2. Continuum approximation approach 

It is difficult to directly solve the original CRLP-IIRT in the heterogeneous space. This 

section proposes a CA approach to achieve an approximate near-optimum solution. Essentially, 

each local neighborhood of space S  can be approximately treated as an infinite homogeneous 

plane (IHP) that has homogenous settings everywhere and thus can be easily solved. If the 
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original heterogeneous space varies mildly, the solution to IHP can approximately replace the 

optimal solution of this neighborhood in the original space. Furthermore, since a customer only 

visits a finite number of facilities in a local area of the space before opting to receive the penalty, 

the cost structures of distant areas will not be strongly coupled and thus, approximating each 

local neighborhood separately is a reasonable treatment. Finally, integrating the approximated 

solutions across the entire space will yield a near-optimum location design for the original 

space. In the following descriptions, Section 3.2.1 presents the method to solve a generic IHP 

problem, and Section 3.2.2 discusses the method of integrating the IHP solutions across the 

entire space into a solution to the original heterogeneous space. 

3.2.1 IHP problem 

In an IHP (i.e., 2  ), all parameters are set to be constant across all locations, i.e., 

( )x = , ( )f x f= , ( )x = , ( )q x q= , 
2x  . We define the initial service area as 

the area that a facility serves when all facilities are operating. Following previous work (Cui et 

al., 2010; Li and Ouyang, 2010), the IHP can be formed as a regular hexagonal tessellation by 

facilities’ initial service areas. The center of each regular hexagon locates a facility. Toth (1959) 

proved that the hexagon tessellation is the optimal facility location layout for the classic 

location problem in IHP. We denote the size of initial service areas by A , and location decision 

x  on the IHP now reduces to finding the optimal A  value. Because all the hexagons are 

identical and the IHP has the transitional symmetry property, our analysis is centered at a 

generic hexagon service area, as illustrated in Figure 2.  

 

Figure 2 Analysis area illustration. 

With these homogenous settings, optimizing objective function (7) for the IHP is 

equivalent to finding the optimal service area A  and the facility visiting sequence for each 

customer to minimize its unit-area system cost, including facility opening cost 
FC , penalty 

cost 
PC  , and transportation cost TC  . Based on transitional symmetry, FC  can easily be 

obtained as follows: 

 
F .C f A=   (8) 

For customer x  to receive the penalty, the customer must visit and find that all facilities 

in ( )J x x  are disrupted. This approach indicates that the penalty probability ( )( )P x J x x  
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is simply the probability that all its 1R+  assigned facilities are disrupted. Since ( )q x q=  

everywhere and the failures are independent, ( )( )P x J x x   is independent of customer 

location x  or visiting sequence ( )J x x  and is equal to  

 ( ) 21( | ) , .RP x J x q x+=  x   (9) 

This leads to the formulation of 
PC  as follows: 

 
P 1.RC q +=   (10) 

Next, we formulate 
TC  for the IHP. Since the facility failures are i.i.d. across the IHP, 

the rank r   service probability for each customer 
2x  , ( )( | )rP x J x x  , is again 

independent of customer location x  or visiting sequence ( )J x x  and is identical to   

 ( ) ( ) 2.( | ) : 1 ,r

rP x J x q q x= −  x   (11) 

The challenge in our IHP analysis is that customers in the central service area do not have 

the same visiting sequence, which is different from the IHP analysis in the previous paper (Li 

and Ouyang, 2010). To overcome this challenge, the central hexagon is divided into twelve 

identical sectors, as illustrated in Figure 2. In each sector, customers can be treated as identical. 

Furthermore, due to the symmetric of regular hexagon, the cost for customers in these sectors 

are identical. Thus, we chose to analyze the upper-right sector (as highlighted in black in Figure 

2) for the following analysis, which we denote by   with its area size 12A=  . 

Following Equations (2) and (4), TC  can be decomposed into outbound component 
TOC  

and inbound component 
TIC  as formulated below:  

 

( ) ( )
0

O 1 O

TO

( | ) ( | ) (1 )

,

R
r

R

r

R

r
x

d x J x q d x J x x

C

dq q

 =

+



 
+ 


−

= 
 x x

  (12) 

 

( ) ( )
0

I 1 I

TI

( | ) ( | ) (1 )

.

R
r

R

r

R

r
x

d x J x q d x J x x

C

dq q

 =

+



 
+ 


−

= 
 x x

  (13) 

Next, we investigate how to formulate the transportation costs. Note that ( )( )O

rd x J x x  
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and ( )( )I

rd x J x x  for customer x  are essentially determined by service area A  and 

customer 'sx   visiting sequence ( )J x x  . Because each customer 'sx   optimal visiting 

sequence (OVS) is hard to be determined exactly, it is appealing to find a feasible visiting 

sequence for all customers in  that is close to the optimal solution. We denote this sequence 

as a near-optimum visiting sequence (NOVS). In order to construct the NOVS, we first index 

all facilities (or hexagons), as illustrated by Figure 3. We index the central facility with 0, and 

then index all the remaining facilities in a spiral pattern with integers sequentially increasing 

from 1. The NOVS assumes that customers in area   visit these facilities in a sequence 

corresponding to their indexes, i.e., 

 ( ) ( ) NO NO

0,1, ,
| | , .r r R

J x j x r x
 =

= =  x x   (14) 

 

Figure 3 Indexing facilities and analysis areas. 

With the NOVS, 
TOC  and 

TIC  can be simplified as 

 ( ) ( ) ( )O-NO O-NOTO-NO 1

0

1 ,
R

R

R r

r

r

d A d AC q q q +

=

 
+ 


=


−   (15) 

 ( ) ( ) ( )I-NO I-NOTI-NO 1

0

1 ,
R

R

R r

r

r

d A d AC q q q +

=

 
+ 


=


−   (16) 

where ( )O-NO

rd A   and ( )I-NO

rd A   are the average outbound and inbound transportation 

distances, respectively, across all customers in  under the NOVS when they finally visit 

facility r  before giving up. Note that they are both determined by the A  value. Here, we 

append the superscripts with –NO to highlight that the corresponding terms are associated with 

the near-optimum (NO) solution of the NOVS and will be differentiated from those in the exact 
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optimal solution with the OVS. Now, we investigate how to formulate ( )O-NO

rd A   and 

( )I-NO

rd A  . The average distance from facility r   to customer x   can be calculated by the 

method proposed in Appendix B. The results show that the average distance between facility 

r  and customers in  is proportional to 
1 2A  with a coefficient determined by r , which 

we denote by r  . With this, inbound travel distance ( )I-NO

rd A  , which is identical to the 

average distance from facility r  to the customers in , is formulated as  

 ( )I-NO 1 2.r rd A A=   (17) 

During the outbound travel, the average distance from customer x  to facility 0 is equal 

to 1 2

0 A . When 0r  , the distance from the facility of rank ( )1r −  to the facility of rank r  

is always equal to 

1 4

1 24

3
A

 
 
 

 . Therefore, the outbound travel distance ( )O-NO

rd A   can be 

formulated as 

 ( )
1 4

1 2 1O-NO 2

0

4
.

3
r A rd AA 

 
+ 

 
=    (18) 

Therefore, the near-optimum solution to 
TC  with the NOVS is formulated as follows: 

 ( )
0

1 4 1 4

T-NO 1 2 1

0 0

4 4
1

3 3
.r

R

R
R

r

rC A R q r q q    +

=

    
= + +

   
+ + +   

−         
   

   (19) 

The following analysis aims to obtain an optimality gap between this near-optimum 

solution and the optimal 
TC  under the OVS. Although the optimal solution of 

TC  remains 

unknown, we can construct a lower bound to the optimal 
TC  as follows. If the near-optimum 

solution is very close to the lower bound, we believe that this  solution well approximates the 

exact optimal solution and call it a near-optimum solution. Thus, we use the near-optimum 

solution in the analysis instead of the optimal solution. We then construct a lower bound 

solution to outbound transportation cost 
TOC  alone through the following analysis, simply 

denoted as 
TO-NOC  in the following proposition. 

Proposition 1. 
TO-NOC  (defined in Equation (15)) is no greater than 

TOC  (defined in 

Equation (12)) for any feasible visiting sequence. 
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Proof. For a customer x  , let ( ) ( ) rJ x j x =x x   denote an arbitrary feasible 

visiting sequence, and then ( )( ) O

rd x J x x   shall be the corresponding outbound travel 

distances at all ranks. Similarly, let ( )( ) O NO

rd x J x x  denote the corresponding outbound 

travel distances with the NOVS. It is easy to see that since the closest facility to customer x  

is facility 0 , we have ( )( ) ( )( )O NO O

0 0d x J x d x J xx x  . Furthermore, at a rank 1r   , 

customer x  has to travel from one facility to another, and it is easy to note that the distance 

from facility 1r −  to facility r  is the minimum distance between any two different facilities, 

i.e., ( )( ) ( )( )O NO O , 1, , .r rd x J x d x J x r R  =x x  With this, we obtain  

 

O NO O NO

0

O1O

0

1( | ( | )) ( | ( | ))

( | '( | )) ( | '  ( | )) .

(1 )

(1 )

R

R r

r

R r

R r
R

R r

r

d x J x d x J x

d x J x d

q

x

q q

q q qJ x

+

+

=

=

+



−

−+





x x

x x

  (20) 

Then, based on Equation (12), we conclude that the NOVS yields the minimum value for 
TOC . 

This completes the proof. 

Furthermore, when q   is less than 0.5, the unit-area inbound travel cost is actually 

minimized when the assignment rank of a facility to a customer is consistent with the distance 

from this customer to this facility, i.e., rank- r  facility to customer x  is the thr  nearest 

facility from customer x . We denote this minimum cost with 
TI-MINC . This is proven in the 

proposition below. 

Proposition 2. When 0.5q   , the inbound travel cost TI-MINC   resulting from the 

distance-based facility assignment is no greater than TIC  (defined in Equation (13)) with any 

feasible visiting sequence. 

Proof. For each customer x  , we denote their distance-based facility assignment by 

( ) ( ) DIS DIS

rJ x j x=x x  such that 

 ( )( ) ( )( ) ( )( )DIS DIS DIS

0 1, | , | , |RD x j x D x j x D x j x  x x x   (21) 

and 

 ( )( ) ( ) ( )DIS DIS, | , , \ | ,RD x j x D x j j J x  x x x   (22) 

where function ( ),D x j   denotes the distance from customer x   to facility j  . Let 

( ) ( )DIS{ ( )}rJ x j x J x  =x x x   denote an arbitrary feasible visiting sequence. Then, 
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according to Equation (13), the inbound cost associated with ( )DISJ x x  is 

 ( )( ) ( )( ) ( )TI-MIN DIS 1 DIS

0

, , 1 .
R

R r

R r

r

C D x j x q D x j x q q +

=

 
= + − 

 
x x   (23) 

Furthermore, the inbound cost associated with ( )J x x  is 

 ( ) ( ) ( )TI 1

0

, ( ) , ( ) 1 .
R

R r

R r

r

C D x j x q D x j x q q +

=

 
 = − 



 +


x x   (24) 

We show that ( )J x x   can be made equal to ( )DISJ x x   after numerous adjustment 

steps, and each change can only bring down the cost of 
TIC  . First if the set of facilities in 

( )J x x  is not identical to ( )DISJ x x , then at each adjustment step, we replace an element in 

( ) ( ) ( )( )DIS\J x J x J x x x x   with an element in ( ) ( ) ( )( )DIS DIS\J x J x J xx x x  . This 

substitution always reduces the cost of TIC    because of Equations (21) and (22). This 

process can be repeated until ( )J x x  and ( )DISJ x x  have the same set of facilities, i.e., the 

1R+   closest facilities to customer x  . Then, if the order of ( )J x x   is not the same as 

( )DISJ x x  , at each adjustment step, we pick two ranks 1 2r r   such that 

( )( ) ( )( )
1 2

, ,r rD x j x D x j x x x . Then, we swap the assignment ranks of these two facilities, 

and the change in  is 

 
( )( )

( )

1 2

1 2

2

2

1 ,if ;

, f1 ,i

r r

r r

d q q q r R

d q q dq r R

−  − − 

−  − +  =

  (25) 

where ( )( ) ( )( )
1 2

Δ , ,r rd D x j x D x j x  −x x  . This term is apparently non-positive in either 

case, since 0.5q  . By repeating this adjustment step properly, ( )J x x  can always be made 

identical to ( )DISJ x x . In all of the previous steps, TIC   never increases. Thus, the original 

TIC   is always no less than 
TI-MINC . This completes the proof. 

Based on the results from Li and Ouyang (2010), the average distance between a generic 

TIC 
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central facility and all customers having this central facility for the rank-r   assignment is 

proportional to 
1 2A  and denoted by 

1 2

r A . Because of transitional symmetry, 
1 2

r A  will 

be identical to the average distance between a customer on the IHP and her thr  nearest facility. 

As previously mentioned, the average distance between customers in  and facility r  

is equal to 
1 2

r A , and we denote the average distance between customers in  and the thr  

nearest facility by 
1 2

r A  . From Figure 3, we can see that facility r   is the thr   nearest 

facility when 2r   for all customers in . Therefore, parameter r  is equal to 
r  when 

2r  . When 2r  , we calculate the distance from each customer in  to the thr  nearest 

facility by numerical integration and then obtain the value of parameter r . Thus, the minimum 

value of the unit-area inbound cost TI-MINC  can be expressed by 

 ( )
2

TI-MIN 1 2 1

0 3

1 .
R

r r R

r r R

r r

C A q q q q    +

= =

  
= + − +  

  
    (26) 

Proposition 3. The sum of 
TO-NOC  and 

TI-MINC , denoted by T-LBC , is the lower bound 

to 
TC .  

Proof. 
TO-NOC   is no greater than 

TOC   for all feasible visiting sequences. Therefore, 

TO-NOC  is the lower bound for 
TOC , i.e., 

TO-NO TOC C . 
TI-MINC  is the minimum value of 

TIC , i.e., 
TI-MIN TIC C  for all feasible visiting sequences. Combining these two inequations, 

we can obtain a new inequation, 
TO-NO TI-MIN TO TIC C C C+  + . Because 

TO TIC C+  is equal to 

TC , the new inequation leads to 
T-LB TO-NO TI-MIN TC C C C= +   for all visiting sequences. This 

indicates that 
T-LBC  is a lower bound to 

TC  and thus completes the proof. 

According to Equations (15), (18) and (26), we can formulate 
T-LBC  as follows: 

 

( )

1 4

1

0

T-LB 1 2

1 4 2

0

0 0 3

4

3
.

4
1

3

R

R

R R
r r r

r r

r r r

R q

C A

r q q q q

 



  

+

= = =

   
+ +       

=  
    

+ + + + −           
  

 (27) 
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Now, we formulate the gap between 
T-NOC  and 

T-LBC  as follows: 

 
T-NO T-LB

T-NO
: .

C C
G

C

−
=   (28) 

Based on the Equations (19) and (27), we obtain 

 

( ) ( ) ( )

( )

1

1 4 1 4

1

0

3

0

0

1

: 100%.
4 4

1
3 3

R r

R R

R

r

R

r

r r

R r

R r

q q q

G

R q r q q

   

   

+

=

+

=

+

   
+ + +      

   

− − −

= 
   

+ + −   
   





  (29) 

With Equation (29), we obtain the G   value for any given R   and q  . Figure 4 plots the 

values of G  for various R  and q  values. Figure 4(a) shows that G  is no more than 0.003% 

because R  ranges from 1 to 20 when 0.05q = . Figure 4(b) shows that G  increases with 

the increase of q , but the maximum value remains below 1%. These small gap values are 

reasonable for engineering practices. Therefore, we can use the near-optimum solution in lieu 

of the exact optimal solution to calculate the unit-area transportation cost.  

 

  (a)                                         (b) 

Figure 4 The gap between FS and LB, (a) 0.05q = ; (b) 5R = . 

Remark. As we know, to obtain the minimum inbound cost, each customer has her own 

visiting sequence ( ) ( ) DIS DIS

rJ x j x=x x  . If we divide the central service area by the 

identical visiting sequence, we find the following feature. For a given value of R , we can 

always find one sub-area in the central service area in which the visiting sequences are identical 

for all customers. In our paper, all customers in  have the same visiting sequence when 

5R  . When 5R  , we can calculate the average distance by numerical integration for each 

customer although they have different visiting sequences. However, this process involves 

extreme complexity, and the extra inbound cost will be small compared with the cost when 
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5R  . Therefore, we focus on the situation where 5R   in the following section unless we 

indicate otherwise. 

From Equations (8), (10) and (19), the unit-area system cost for the IHP problem is 

 

( )

( )

F P T 1

1 4 1 4

1 2 1

0 0

0

:

4 4
1 .

3 3

R

R

r

R

r

r

R

C A C C C f A q

A R q r q q



    

+

=

+
   

+ + +      

= + + = +

    
+ + + −           


  (30) 

Note that A  is the only one variable in the above problem. 

Proposition 4. The function ( )C A  is unimodal. 

Proof. ( )
1 4 1 4

1

0 0

0

4 4
1

3 3

R r

R r

R

r

R q r q q   
=

+
      

+ + +      


+ + −          
   is represented by 

Q  for simplification. The derivative of function ( )C A  is 

 ( ) 2 1 21

2
C A f A A Q −= − +   (31) 

Then, set ( ) 0C A = , and we can obtain the unique result, which is shown as follows. 

 

2 3

2 f
A

Q

 
=  
 

  (32) 

When 0A  , the function ( )C A  is a continuous function. Therefore, the function ( )C A  is 

less than 0 if ( )
2 3

0 2A f Q   and greater than 0 if ( )
2 3

2A f Q . This indicates that 

the function ( )C A  is unimodal and thus completes the proof. 

With this proposition, we can easily obtain the optimal solution 
*A  by derivation, which 

is equal to ( )

2 3
1 4 1 4

1

0 0

0

4 4
2 1

3 3

R r

R r

R

r

f R q r q q    +

=

     
 + + −         

   
+ +

 

+      
   

  . 

Therefore, the near-optimum unit-area system cost ( )*C A  can be obtained. 

3.2.2 CA approach for a heterogeneous space 

This section discusses the application of the IHP results to the finite heterogeneous space 

S  . We assume that all relevant parameters (i.e. ( )f x  , ( )x  , ( )x   and ( )q x  ) vary 

relatively mildly over the original heterogeneous space and the facility initial area ( )A x  is 

far smaller than the size of S  , i.e., ( ) | |,A x S x S   . Instead of searching for discrete 
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location x , we try to find the optimal solution to ( )A x +  near each location x . 

Since the facilities are densely located, we can ignore the boundary effect with 

substantially no effect on the total cost. Since all parameters vary mildly over space S , each 

neighborhood of x S  can be approximated as an IHP and can be simply solved by Equation 

(30). We define ( )( ),C x A x  as the cost per unit area near x , which can be formulated as 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

1 1 2

1 4 1 4

1

0 0

0

, :

4 4
1

3 3

R

R
R r

R r

r

C x A x f x A x x x q x x A x

R q x r q x q x

  

   

+

+

=

= + + 

       
+ + + + + −                  


  (33) 

We can obtain the optimal service area ( )*A x   for each neighborhood x   by solving 

( )( ),C x A x . Then, the optimal system cost in the original finite heterogeneous plane can be 

approximated by 

 ( )( )* *, .
x S

C C x A x dx


=    (34) 

Since ( )
1

*A x
−

     is the optimal facility density function, the total number of optimal 

facilities can be estimated by 

 ( )
1

* * .
x S

N A x dx
−


      (35) 

The optimal solutions, ( )*A x   and 
*N  , can be used in the direct sweeping method 

proposed by Fan et al. (2018) to discrete facility locations. This method just require search the 

space once to obtains a discrete location solution, and the initial service area of each facility is 

very close to the value of ( )*A x . More implementation details are shown in the paper (Fan et 

al., 2018). The reference illustrates that the sweeping model can obtain the near-optimum total 

cost that approximates to that estimated by Equation (34). 

4. Numerical examples 
This section presents several numerical examples to illustrate the performance of the 

continuous model on the investigated location problem. Space S   is now a    0, 0,s s  

square for the convenience of comparison and scalability. The density function of customer 

demand is ( ) ( )1 cosx x    = +   . The cost for opening a facility at x   is 

( ) ( )1 cosff x f x  = +   . The disruption probability of a facility at x   is 

( ) ( )1 cosqq x q x  = +   . ( )1,1  −  , ( )1,1f  −   and ( )1,1q  −   are the 
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heterogeneity control parameters for ( )x  , ( )f x   and ( )q x   over S  , respectively. Scalar 

   is selected to normalize the average customer density, facility cost and disruption 

probability by scalar    (e.g., ( )
S

x dx =  , ( )
S

f x dx f=   and ( )
S
q x dx q=  ). x  

expresses the distance between the location x   and the center of space S  . Because ( )x  

does not influence the value of ( )*A x , for simplicity, we set ( )x =  as a constant over the 

space S . We calculate C  and N   by Equations (34) and (35), respectively. The default 

values of parameters are set as 1s = ， 4f =  , 100 =  , 0.05q =  , 0.1f =  , 0.5 =  , 

0.5q = , 11.73 = , 1 = , and 3R = . 

First, we make a comparison between the continuous and discrete (introduced in the Part 

I paper) models. For comparison purposes, the continuous parameters should be converted into 

the discrete parameters. We partition the continuous space S   into n n   identical square 

cells where n  is an integer parameter for the space granularity. Set  contains all the square 

cells. Customer iz  and candidate facility jz , where ,i j , are located at the center of the 

corresponding cells, respectively. We set ( )j jf f z= , ( )j jq q z=  and i = . Demand 
i  

is equal to the total demand in this square cell and is approximately formulated as 

 ( ) 2
.i i

S
z

n
 =   (36) 

In the conversion process, we omit the transportation cost when the customer and candidate 

facility are located in the same cell. This omission will underestimate the total transportation 

cost. To compensate it, we set that the distance between the customer and candidate facility in 

the same cell is approximately equal to one quarter of the cell length. 

In Table 1, 
*

DC  and 
*

DN  denote the best system cost and facility number for the discrete 

model, respectively. We use the percentage ( )* * *

D DC C C = −  to indicate the difference in 

the system cost between the continuous and the discrete models. Let t  and Dt  denote the 

solution times of the continuous and the discrete models, respectively. Table 1 shows how the 

solutions change with different cell numbers for both continuous and discrete models. We 

observe that 
*C  is less than 

*

DC  in most instances. This is because the transportation cost 

between the customer and the facility in the same cell is equal to approximately one quarter of 

the cell length in the discrete model, which may overestimate the transportation cost relative to 



 

18 

 

the continuous model. As 
2n  increases, 

*C  increases that is close to the exact integral value. 

Although    fluctuates, the trend of    is decreasing as 2n   increases. However, we can 

observe that t   is smaller than Dt   for all experiments, and the former increases almost 

linearly with the number of cells, yet the latter increases apparently super-linearly. We also see 

that the instances with large 2n  cannot be solved by the discrete model due to the memory 

limit. From the results, it is obvious that the continuous model has better scalability and can 

solve large-scale instances efficiently. 

Table 1 Total system cost estimation for the continuous and discrete models. 

2n  *C  N   t  
*

DC  *

DN  Dt   (%) 

49 56.4594 4.6404 0.000437 60.3250 5 82 6.41% 

64 56.8256 4.6639 0.000959 60.4693 4 185 6.03% 

81 57.0914 4.6806 0.000724 60.0849 5 402 4.98% 

100 57.2926 4.6933 0.000867 59.0395 4 73 2.96% 

121 57.448 4.7031 0.001067 60.1336 4 1336 4.47% 

144 57.5695 4.7107 0.00141 59.9606 4 1800 3.99% 

169 57.6658 4.7167 0.001396 59.8608 4 1800 3.67% 

196 57.7434 4.7216 0.001687 59.2987 4 1247 2.62% 

225 57.8069 4.7256 0.001834 --- --- --- --- 

400 57.9988 4.7375 0.0031 --- --- --- --- 

1600 58.1897 4.7493 0.01145 --- --- --- --- 

6400 58.2384 4.7523 0.045572 --- --- --- --- 

10000 58.2442 4.7526 0.080393 --- --- --- --- 

40000 58.2521 4.7531 0.316043 --- --- --- --- 

 

Now, we vary only s   and compare the performances of the continuous and discrete 

models. Table 2 shows the results for several instances with various s  values with 2 100n = . 

In this table, we see that *C  and *N  increase linearly as s  increases. However, the solution 

time t   does not change obviously with increasing s  , which is apparent because the 

discretization resolution remains the same. Correspondingly, 
*

DC  and 
*

DN  also increase as 

s   increases. However, the solution time Dt   remains approximately the same but is much 

greater than t . In this table, we also observe that although   fluctuates, the absolute value 

of   is still less than 5% as s  increases, indicating that the total system costs from both the 

continuous and discrete models are similar, regardless of the space size and the customer 

density. 

Table 2 Total system cost estimation for the continuous and discrete models with various s  

s  *C  *N  t  *

DC  *

DN  Dt   (%) 

0.6 16.5571 1.4323 0.000977 17.1244 2 724 3.31% 

0.7 23.7018 2.0247 0.000844 23.8019 2 728 0.42% 

0.8 33.3532 2.7939 0.000821 32.7050 4 73 -1.98% 

0.9 44.9065 3.7044 0.000835 44.0375 4 32 -1.97% 
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1 57.2926 4.6933 0.000906 59.0395 4 73 2.96% 

1.5 126.3304 10.3942 0.000913 127.9645 12 657 1.28% 

1.6 145.3540 11.9367 0.000862 141.3677 11 624 -2.82% 

1.7 165.7275 13.5736 0.000945 159.5829 13 625 -3.85% 

1.8 186.5041 15.2567 0.000849 183.8099 14 590 -1.47% 

1.9 206.8956 16.9451 0.000915 215.2402 18 649 3.88% 

 

Next, we compare the performance of the CA approach for the imperfect information and 

perfect information conditions with the following experiments. With perfect information, a 

customer knows the status of all facilities and chooses the nearest functional facility to obtain 

the service. The optimal service area, optimal system cost and optimal facility number under 

perfect information are denoted by ( )*

PIA x  , *

PIC   and *

PIN  , respectively. We use IIC   to 

express the actual cost under imperfect information when ( )*

PIA x   is implemented. 

( )* * *

PI PIC C C = −  denotes the difference in total system cost between perfect information 

and imperfect information. Table 3 shows the solutions of several problem instances with 

various f  and q  values under perfect information and imperfect information. In Table 3, 

we see that the optimal system cost with imperfect information is higher than that with perfect 

information in all experiments. The difference PI   increases with increasing q   and is 

higher than 13.6% when 0.2q   . The optimal facility number is also small in the perfect 

information condition. Thus, if the customer can obtain perfect information, the system cost 

can obviously decrease by adjusting the facility location. Therefore, one aim of technology 

development is to ensure that the customer can always obtain perfect information. Otherwise, 

facility locations should be designed more robustly to prevent imperfect information. If we 

omit the consideration of imperfect information in the design, the actual system cost IIC  is 

higher than both PIC 
 and C

. 

Table 3 Total system cost estimation under imperfect information and perfect information. 

# f  q  N 
 PIN 

 C
 PIC 

 IIC  
PI (%) 

1 0.5 0.05 19.01 18.36 29.13 28.10 29.14 3.52 

2 0.5 0.1 20.38 18.99 31.29 29.12 31.34 6.94 

3 0.5 0.15 21.86 19.64 33.72 30.24 33.82 10.30 

4 0.5 0.2 23.47 20.29 36.52 31.54 36.73 13.63 

5 1 0.05 11.98 11.56 36.70 35.41 36.71 3.52 

6 1 0.1 12.84 11.96 39.42 36.68 39.47 6.94 

7 1 0.15 13.77 12.38 42.44 38.07 42.58 10.31 
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8 1 0.2 14.79 12.78 45.90 39.63 46.17 13.66 

9 2 0.05 7.55 7.29 46.24 44.61 46.25 3.52 

10 2 0.1 8.09 7.54 49.66 46.21 49.73 6.94 

11 2 0.15 8.68 7.80 53.44 47.93 53.61 10.31 

12 2 0.2 9.31 8.05 57.73 49.82 58.06 13.69 

13 4 0.05 4.75 4.59 58.25 56.20 58.28 3.52 

14 4 0.1 5.10 4.75 62.56 58.22 62.64 6.94 

15 4 0.15 5.47 4.91 67.30 60.36 67.51 10.32 

16 4 0.2 5.87 5.07 72.62 62.67 73.05 13.71 

We also compare the performance of the CA approach with and without considering the 

inbound trip, under various f   and q   values. Without the inbound trip, a customer only 

chooses the optimal facility sequence to obtain the service without considering the return trip 

to her home location. The optimal service area, optimal system cost and optimal facility number 

without an inbound trip are denoted by ( )*

OA x , 
*

OC  and 
*

ON , respectively. We use IOC  to 

express the actual cost with the inbound trip when ( )*

OA x   is implemented. 

( )* * *

O OC C C = −  denotes the difference in total system cost with and without the inbound 

trip, whereas ( )* *

IO IOC C C = −  denotes the actual cost deviation after applying the ‘‘wrong” 

facility location design. Table 4 shows the solutions of several problem instances with and 

without considering the inbound trip with various f  and q . The optimal system cost without 

the inbound trip is lower than that with the inbound trip in all experiments. The difference O  

is more than 28% and decreases with increasing q . The optimal facility number without the 

inbound trip is lower. The actual system cost IOC  is less than the optimal system cost 
*C  

under the “wrong” design, with IO  as high as greater than 4%. 

Table 4 Total system cost estimation with and without an inbound trip. 

# f  q  N 
 ON 

 C
 OC 

 IOC  O (%) IO (%) 

1 0.5 0.05 19.01 12.38 29.13 18.98 30.38 34.83 4.31 

2 0.5 0.1 20.38 13.68 31.29 21.03 32.46 32.78 3.73 

3 0.5 0.15 21.86 15.07 33.72 23.32 34.81 30.82 3.25 

4 0.5 0.2 23.47 16.58 36.52 25.97 37.55 28.90 2.83 

5 1 0.05 11.98 7.80 36.70 23.92 38.28 34.83 4.31 

6 1 0.1 12.84 8.62 39.42 26.49 40.89 32.79 3.73 
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7 1 0.15 13.77 9.50 42.44 29.35 43.82 30.85 3.25 

8 1 0.2 14.79 10.45 45.90 32.61 47.20 28.96 2.83 

9 2 0.05 7.55 4.91 46.24 30.13 48.23 34.83 4.31 

10 2 0.1 8.09 5.43 49.66 33.37 51.51 32.80 3.74 

11 2 0.15 8.68 5.98 53.44 36.95 55.18 30.87 3.25 

12 2 0.2 9.31 6.58 57.73 40.98 59.36 29.02 2.84 

13 4 0.05 4.75 3.10 58.25 37.97 60.76 34.83 4.31 

14 4 0.1 5.10 3.42 62.56 42.04 64.89 32.80 3.74 

15 4 0.15 5.47 3.77 67.30 46.51 69.49 30.88 3.25 

16 4 0.2 5.87 4.15 72.62 51.52 74.69 29.06 2.84 

Figure 5 shows the visiting sequence with and without an inbound trip in one facility 

location design problem. Comparing Figure 5(a) and (b), we see that the number of built 

facilities in Figure 5(a) is less than that in Figure 5(b), which indicates that considering the 

inbound trip will increase the facility number to guarantee customers the ability to obtain the 

service near their initial locations. Figure 5(a) shows that the customer visiting sequence is 

assigned near her initial location. Figure 5(b) shows that the customer visiting sequence is 

similar to a line and is far from her initial location. The results reflect our realistic situations 

when customers look for service. If a customer wants to go back her home, she will search the 

service around her home. On the contrary, if this customer does not need to go back her home, 

she will visit the most appropriate facility and may far away from her home when she finds the 

service. 

 
                   (a)                                     (b) 

Figure 5 Visiting sequences (a) with and (b) without an inbound trip. 

Finally, we discuss the sensitivity analysis of optimal results for parameters q , f ,   

and R . 

Table 5 shows the relationship between the cost components and R  . We find that 

providing the backup service can reduce the total system cost when system faces the facility 

disruptions. However, this reduction gradually diminishes as R  increases. When R  exceeds 

5, all cost components except the penalty cost do not change. This indicates that the benefits 

by assigning more facilities are almost disappeared. Thus, we can foresee that the penalty cost 

will be almost equal to 0 when R  is large enough. Therefore, we do not set R  exceed 5 in 

most experimental instances of this paper. 
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Table 5 Analysis of the sensitivity to R 

R Construction cost Transportation cost Penalty cost Total system cost Facility number 

1 19.3498 38.6995 0.3683 58.4176 4.7372 

2 19.4129 38.8258 0.024 58.2626 4.7522 

3 19.4178 38.8356 0.0016 58.2549 4.7533 

4 19.4181 38.8361 0.0001 58.2543 4.7534 

5 19.4181 38.8362 7.63E-06 58.2542 4.7534 

6 19.4181 38.8362 5.35E-07 58.2542 4.7534 

7 19.4181 38.8362 3.78E-08 58.2542 4.7534 

8 19.4181 38.8362 2.69E-09 58.2542 4.7534 

9 19.4181 38.8362 1.92E-10 58.2542 4.7534 

10 19.4181 38.8362 1.37E-11 58.2542 4.7534 

Figure 6 shows the results of sensitivity analysis to several key parameters. We set 

0.05q = , 1f = , and 500 =  as the default parameter values, and select one parameter to 

vary at a time. The other parameters are set as 0.1f =  , 0.9 =  , 0.5q =  , 11.73 =  , 

1 = , and 5R = . 

Figure 6(a) and Figure 6(b) illustrate how the optimal system cost and optimal facility 

number change with the average facility disruption probability q  . Both of these values 

increase as q  increases. The optimal system cost increases slowly when q  is less than 0.3. 

However, as q  continues to increase, it increases rapidly and becomes very large. The optimal 

facility number also has a similar tendency, but it is not obvious. Therefore, we should control 

the probability q  to a low value to reduce the increase in the optimal system cost. These 

observations are similar to those in the Part I paper. 

Figure 6(c) shows that the optimal system cost increases as the average facility cost f  

increases. Figure 6(d) shows that the optimal facility number decreases as the average facility 

cost f  increases. In other words, a higher average facility cost results in fewer facilities, as 

is commonly found in real-world situations. However, the difference in tendencies in Figure 

6(c) and Figure 6(d) indicates that the presence of fewer facilities will result in greater 

transportation costs, leading to an increase in the optimal system cost. 

Figure 6(e) and Figure 6(f) show how the optimal system cost and optimal facility number 

change with the average demand density   . Both of these values increase approximately 

linearly as   increases. Therefore, the demand has a constant effect on the optimal location 

design. To satisfy the increase in customer demand, we must build more facilities to shorten 

the customers’ travel distance and thus reduce the increase in the total system cost. 
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       (a)                                          (b) 

 

      (c)                                            (d) 

 

     (e)                                           (f) 

Figure 6 Sensitivity analysis 

5. Conclusion 
This paper proposes a continuous model for the large-scale RUFL problem considering 

round-trip transportation under imperfect information, which is a supplement of research on 

the location problem performed in the Part I paper. In the proposed model, we assume that each 

facility has a site-dependent disruption probability. In any disruption scenario, a customer has 

imperfect information regarding facility states and always attempts to visit pre-assigned 

facilities to obtain the minimum transportation cost. When the customer obtains the service or 

gives up, she will return to her initial location. The CA formulation starts with an idealized 

homogeneous plane and is then extended to a general heterogeneous plane for the investigated 

problem. The simple structure of the CA model allows examination into problem structures for 

constructing a near-optimum solution (e.g., by constructing a feasible customer visiting 

sequence and a lower bound cost). Numerical experiments showed that the continuous model 
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adopting the CA technique has superior computational efficiency for solving large-scale 

instances, whereas the discrete model performs well for small and medium-sized problem 

instances. Case studies also indicated that the round-trip needs to be considered in reliable 

facility location problems, particularly with imperfect information. The results of the sensitivity 

analysis for various parameters indicated that the continuous model can solving the large-scale 

instances with a good, robust performance. 

In the future, we can relax the facility disruption pattern to more general patterns, such as 

correlated disruption pattern that is investigated by Li et al. (2010) considering perfect 

information. When relevant data are available (e.g., facility disruption patterns), it is interesting 

to see how this proposed modeling method can be applied to real-world problems to improve 

the infrastructure system reliability. 
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Appendix A. Notation list 

SYMBOL DESCRIPTION 

S  Planning space 

( )f x  Fixed opening cost for facility x  (the facility at location x ) 

( )x  Demand of customer x  (the customer at location x ) 

( )x  Penalty cost for customer x  

( )q x  Disruption probability for facility x  

( )A x  Service area for facility x  

x  Set of built facilities 

( )rj x x  The thr  facility that customer x  visits 

( | )J x x  Facility visiting sequence for customer x  

r  Facility rank for a customer 

R  Maximum facility rank for a customer 

( )( | )rd x J x x  
Total travel distance for customer x  given that she ends at her rank r  

facility given visiting sequence ( | )J x x  

( )O ( | )rd x J x x  
Outbound distance for customer x  given that she ends at her rank r  

facility given visiting sequence ( | )J x x  

( )I ( | )rd x J x x  
Inbound distance for customer x  given that she ends at her rank r  

facility given visiting sequence ( | )J x x  

( )( | )rP x J x x  
Probability for customer x  to be served by facility ( )rj x x  

conditioned on facility visiting sequence ( | )J x x  

( )( | )P x J x x  
Probability that customer x  is not served by any facility conditioned on 

facility visiting sequence ( | )J x x  
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A  Size of a facility’s initial service area 

 Analysis area for the IHP problem 

–NO 
Superscript tag that the corresponding terms are associated with the near-

optimum (NO) solution of the NOVS 

FC  Unit-area facility fixed opening cost 

PC  Unit-area penalty cost 

TC  Unit-area transportation cost 

TOC  Unit-area outbound transportation cost 

TIC  Unit-area inbound transportation cost 

*C  Optimal system cost in the original finite heterogeneous plane 

*N  
Total number of optimal facilities in the original finite heterogeneous 

plane 

s  Side length of the planning space 

  ( f , q ) Average customer density (facility cost, disruption probability) 

  (
f , 

q ) Scalar to control the heterogeneity of ( )x  ( ( )f x , ( )q x ) over S  

  
Scalar to normalize the average customer density, facility cost and 

disruption probability 

n  Integer parameter for the space granularity 

 Set of all square cells 

iz  Location of customer i  

jz  Location of candidate facility j  
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Appendix B. IHP transportation cost formulation 

To facilitate the derivation of transportation costs, we arrange facilities as illustrated in 

Figure 7. Again, we investigate a generic central facility (or hexagon) and index the facilities 

around it in the manner illustrated by Figure 3. Furthermore, the hexagons can be grouped into 

different layers according to their distance from facility 0. For example, the first layer contains 

facility 0, the second layer contains facilities 1-7, and so forth. We index the layers with 

m + . Meanwhile, we divide the space into six sextants, indexed by  1,2,3,4,5,6s  where 

1s =  indexes the upper right sextant. Note that the thm  layer has m  facilities in each sextant. 
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Figure 7 Illustration of the coordinate system 

With this system, we can re-index each facility with a triplet ( ), ,m s t  such that m +  

indexes the layer of this facility,  1, ,6s   indexes the sextant of this facility, and 

 1, ,t m  indexes the clockwise position of this facility in this sextant. For example, facility 

2 is re-indexed as ( )2,1,2 . In general, the mapping from index j  to triplet ( ), ,m s t  is as 

follows: 

 
3 9 12

,
6

j
m

 − + +
=  
  

  (37) 
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2
2

2
2

3 2 1
, 3 2 1

,
3 8 1

, 3 2 1

j m m
j m m

m
s

j m m
j m m

m

 − + +
 − − 

 
= 

 − + +
 − − 

 

  (38) 

 
2 2

2 2

3 3 1 , 3 2 1
.

3 9 1 , 3 2 1

j m m sm j m m
t

j m m sm j m m

 − + + −  − −
= 

− + + −  − −
  (39) 

Since the area size of a hexagon is A  , the side length of a hexagon should be 

( )
11
22: 4 27l A= . We can easily obtain each facility’s Euclidean coordinates ( ),a b  by its index 

( ), ,m s t . The results of these coordinates are shown in Table 6. 

Table 6 Coordinates ( ),a b  of a facility 

1s =  2s =  

( ) ( )
3 3

0, 3 1 ,
2 2

m t l
  

+ − −    
  

 ( )( )3 3
, 1 0, 3

2 2
m t l
  

+ − −    
  

 

3s =  4s =  

( )
3 3 3 3

, 1 ,
2 2 2 2

m t l
    

− + − − −        
    

 ( ) ( )
3 3

0, 3 1 ,
2 2

m t l
  

− + − −    
  

 

5s =  6s =  

( )( )3 3
, 1 0, 3

2 2
m t l
  

− − + −    
  

 ( )
3 3 3 3

, 1 ,
2 2 2 2

m t l
    

− + −        
    

 

With this system, the average distance between customers in   and any facility 

( ), ,m s t  can be obtained by the following integral. 

 
( ) ( )

1 3
12 2

2 2 1
4

0 3 2
4

.
273

8

x

ave

x a y b dxdy
d A

− + −  
=  

 

 
  (40) 


