Reliable Facility Location Design with Round-trip Transportation

under Imperfect Information Part II: A Continuous Model

Lifen Yun®¢, Hongqiang Fan®<, Xiaopeng Li¢"
aSchool of Traffic and Transportation, Beijing Jiaotong University, Beijing, 100044, China
bSchool of Modern Post, Beijing University of Posts and Telecommunications, Beijing,
100044, China
¢Civil and Environmental Engineering, University of South Florida, Tampa, 33620, USA

Abstract

The Part I paper (Yun et al., 2018) of this study developed a discrete model and a
customized Lagrangian relaxation algorithm for the reliable problem of facility locations
considering round-trip transportation when customers are not aware of facility states in real
time until they visit them on site. Since the investigated problem is an NP-hard problem, large-
scale instances of this problem may not be solved efficiently by the discrete model. To address
this issue, this paper proposes a counterpart continuous model to solve large-scale instances of
the investigated problem. The continuous model assumes that all the settings are continuous
and adopts the continuum approximation (CA) technique to obtain a near-optimum solution to
this investigated problem. The CA technique also reveals theoretical insights into solution
structures of each sub-problem on a customer’s pattern of visiting facilities on a homogeneous
plane. Numerical experiments find that the continuous model with the CA technique has
superior computational efficiency for large-scale instances. The results of the case studies
indicate that the proposed continuous model can obtain a near-optimum solution for the
investigated location problem with heterogeneous settings and has a robust performance.
Keywords: reliability, imperfect information, facility location, continuum approximation,
round-trip
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1. Introduction

Unexpected disruptive events due to anthropogenic (e.g., terrorist attacks, labor strikes,
etc. (D’Amico, 2002; Schewe, 2004; Hirsch et al., 2015)) and natural (e.g., hurricanes,
earthquakes, etc. (Godoy, 2007; Sharkey et al., 2015; Sheppard and Landry, 2016)) disasters
have been observed to substantially impair infrastructure system performance. This highlights
that considering facility reliability is importance in facility location problems to enhance
system resilience. One recent concept in reliable location design is to have facilities backup
one another in the event of disruptions. In this manner, multiple facilities are assigned to a
customer to ensure that she can get backup service in any disruption scenario (Snyder and
Daskin, 2005). Most reliable models for facility locations assume that customers can get the
real-time information regarding facility states if they want, whereas several other models
assume customers cannot obtain this information. The difference in these two assumptions is
illustrated in the Part I paper (Yun et al., 2018).

In reliable facility location design, realizations of customer trips largely affect operation
costs of systems. Many service systems need to account the round-trip (outbound and inbound)
transportation cost for a customer when this customer accesses the service. Outbound
transportation is realized when a customer travels to the service facility, and inbound
transportation is realized when the customer returns to her initial location after the completion
of the service. When customers have perfect information, outbound and inbound transportation
costs are simply identical and there is usually no need to differentiate them in model
formulation. However, these two costs are quite different in reliable facility location problems
under imperfect information: While a customer may visit a series of facilities consecutively
during the outbound trip (if the first several trials happen to hit disrupted facilities), the inbound
trip always simply includes a direct trip from the last stop to her home. This difference was
illustrated in a motivating example in the Part I paper.

A typical approach to reliable facility location problems is to develop mathematical
programming models with discrete setting that can only numerically solve very limited-scale
problem instances. To solve large-scale problem instances, the continuum approximation (CA)
technique proposed by Daganzo and Newell (1986) has been employed in numerous location
design studies. Recently, many studies have been performed using the CA technique to
investigate large-scale instances of location problems. Please see the following section for a
literature review on relevant studies. Despite these fruitful modeling developments, existing
CA methods cannot overcome two challenges in the investigated problem, i.e., (i) the impact
from imperfect information and (i1) significant structural difference between the investigated
problem and those in the literature (e.g., the asymmetric inbound and outbound trips). To
address this gap, we propose a new continuous model that adopts the CA technique to solve
this complex location problem by decomposing it into homogenous sub-problems. Due to the
above-mentioned challenges, it is even difficult to directly solve the optimal solution to a sub-
problem. To circumvent the challenges, a novel solution approach is proposed to efficiently
solve feasible and lower bound solutions to each sub-problem, instead of directly looking for
the exact optimum. These two bounds have been shown very close to each other, which only
adds negligible errors in the whole solution approach. This solution approach also reveals



theoretical properties and analytical insights into the facility location in the corresponding
geographic neighborhood. Integrating the solutions across all sub-problems yields a near-
optimum solution to the investigated problem in the heterogeneous space.

Numerical examples are conducted to examine the performance of the proposed model
and draw managerial insights. Compared with the discrete model in the Part I paper, the
continuous model with the CA technique has superior efficiency and scalability for large-scale
instances. Its simple structure also enables revealing analytical insights into the problem
structure and solution optimality. Overall, this continuous model can solve this new reliable
location problem to near-optimum. However, it should be noted that the solution obtained by
the CA approach is not guaranteed to be the true optimum, and thus the counterpart discrete
model proposed in the Part I paper is necessary to get a rigorous optimality bound or the optimal
solution.

The structure of the paper is shown as follows. Section 2 reviews the literature referring
to facility location problems. Section 3 presents the framework and the solution technique for
the continuous model. Section 4 applies the continuous model with the CA techinque to solve
instances and draws insights into the effects of the inbound trip and imperfect information.
Section 5 presents a conclusion for the paper and points out future research directions.

2. Literature review

Facility location problems are classical strategic decision problems in many service
systems drawing numerous attentions from researchers. Reviews by Drezner (1995) and
Daskin (1995) summarize a number of classic models on facility locations in the last century.
In recent decades, reliable facility location design has been extensively studied due to the
frequent occurrence of facility disruptions. Most reliable facility location models are
formulated as mathematical programming models with discrete settings. Commercial solvers
or customized algorithms can solve these models numerically. Please see the Part I paper for a
thorough review of these studies. However, discrete models may be compromised from
excessive computational burdens when solving larger-scale location problems in some
applications.

To complement discrete facility location models for better scalability, the CA technique
proposed by Daganzo and Newell (1986) has been employed in numerous location design
studies. Thorough reviews on the use of CA methods are summarized by Langevin et al. (1996)
and Daganzo (2005) for deterministic facility location design problems. Ouyang et al. (2015)
proposed a CA approach to investigate the facility location problem with elastic demand and
traffic congestion. Li et al. (2016) investigated the system design problem for one-way electric
vehicle (EV) sharing by developing a CA model. Wang et al. (2017) incorporated temporal
dynamics on market growth to a CA model. Although the CA method has been successfully
employed for various traditional deterministic facility location problems, it has seldom been
applied to the reliable location design context. The CA model proposed by Cui et al. (2010)
solved the reliable location design under site-dependent disruptions. Li and Ouyang (2010)
introduced correlated probabilistic disruptions to the CA model for the reliable location
problem. Li and Ouyang (2012) developed a CA model for the reliable sensor deployment
problem along a single corridor. Wang and Ouyang (2013) proposed a CA scheme with the
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game theory to deal with spatial competition. Later, Wang et al. (2015) extended this work to
competition between new and incumbent companies. Please see Ansari et al. (2018) for a recent
review on this topic. These reliability studies have a common assumption that a customer gets
the real-time information regarding facility states, and thus always visits the most convenient
facility among all operating ones.

To the authors’ knowledge, no study has employed the CA method to investigate reliable
location design under imperfect information. Furthermore, the inbound trip that is important
for deciding the customer’s visiting sequence under imperfect information is also ignored in
the previous studies. This causes a customer to travel far from her home, which may be
unrealistic under imperfect information. Therefore, this paper studies a reliable facility location
design considering round-trip transportation under imperfect information using a CA approach.
This study also extends the depth of the research in the Part I paper.

3. Continuous model

In this section, we propose a continuous modeling approach. We first present the general
problem formulation. Then, we propose a continuum approximation solution approach that
yields an approximate solution to this continuous problem in an efficient manner.

3.1 Continuous problem formulation

We list key symbol definitions in Appendix A for the convenience. Ina space SR ,let

A(x),VxeS denote the customer demand density at location x. Numerous facilities will be

constructed in space S to serve customers. Facilities are permitted to be built at any location
xeS . We assume that a facility built at location x (or facility x ) is disrupted with

probability q(x) , which is independent across the space. The set of constructed facilities is

denoted by X:= { X5 Xy, where N denotes the total facility numbers. We assume that

customers cannot know facility states (i.e., whether they are disrupted) in any disruption
scenarios before physically visiting the facilities. Thus, they visit facilities using a “trial-and-
error” strategy, as illustrated in Figure 1, in which triangles denote the built facilities and the
dot is a customer at location x (or customer x for short). Essentially, customer x tries a
set of R+1 facilities according to a pre-specified order regardless of facility states. We

denote the rth facility that customer x visitsas j, (x|x), Vre {0,1,2,... , where -[X

denotes that this item depends on location design X . For notation convenience, we denote

customer x's facility visiting sequence setas J(x|x) = { J. (x|x)} T When customer x

does not obtain the service, a penalty cost (o(x) is imposed assuming

(p(x) > X, H Vied(x| x)} forall xeS§. Therefore, customer x will always try to

visit all the facilities in J(x|x) if available before the penalty is imposed. A customer’s trial
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of visiting these facilities ends either at the first operating facility to get the service or after
trying the entire set of facilities without finding a functional one and thus receiving a penalty.
After these moves, this customer returns to her home location where the trip began!. In each
move, the travel cost is accounted by the Euclidean distance between the starting and ending
locations of this move.

A Functional facility /\ Disrupted facility

Figure 1 Illustration of customer travel sequence in a particular failure scenario.

In continuous settings, all parameters’ values are set according to the location in the
planning area. These settings can be converted to discrete settings for the discrete location
model. First, we partition the planning area into numerous small cells. Second, we integrate the
customer demand density in each cell as the customer demand for this cell. Third, we select the
location, such as each cell center as usual, to place a customer and one candidate facility for
each cell. Therefore, the size of the cell number generally decides the approaching degree of
the optimal result between the continuous model and discrete model. However, the discrete
settings can also be converted to the continuous setting, which is more complex than the inverse
conversion. We can apply the approximation method proposed by Peng et al. (2014) to finish
this conversion.

Now we investigate how to formulate the relevant cost component for a given x. The

opening cost for facility x is denoted by f (x); then, the total facility opening cost is

C'(x)=)_ f(x). (1)

Let d, (x|J (x| x)) denote customer x's total travel distance given that she ends at her
rank r facility given visiting sequence J(x|x), which we further divide into two parts,

outbound (departure) distance d,’ (x|J(x|x)) and inbound (return) distance d; (x|J(x|x)),

' To highlight the difference between our model and existing reliable location models with perfect
information (Li et al., 2010), note that the perfect information counterpart instead assumes that a customer knows
real-time information of facility states and thus always directly visits the closest functioning facility (if any) in

just one move.



as formulated below:

d,(x]J(x|x))=d? (x|J(x|%))+d} (x]J(x|x)), )
d? (x|J(x|x))= Hx—xjo(x‘x) ‘+ Zr: X, )~ Sl 3)
d! (x|J(x|X)) =% 0) —xH. 4)

Let P (x|J (x| X)) denote the probability that customer x get the service from facility

Jj. (x|x) conditioned on facility visiting sequence J(x |X), which occurs if facility ;. (x|x)

is operational and all facilities lower than rank r failed. Furthermore, let

R

P (x|J (x| X)) =1 —ZP, (x (x| X)) denote the probability that customer x finally obtains

r=0

no service from any facility conditioned on facility visiting sequence J(x|X), which

apparently happens when all facilities in J(x|X) are disrupted. Then, the expected total

transportation cost is

R

d (x|J P(x|J
C'w=] A(x) Z;, (I G0) (1) d.
+d (x]J(x %)) P(x|J(x|x))

)

The first term is the summation for the expected travel cost when customer x is served, and
the last term formulates the travel cost when customer x is not successful in trying to obtain
the service. When the trial is not successful, the expected total penalty cost is formulated by

C* )= __A(x)p(x)P(x]J(x|%))dx. (6)

With these cost components, the studied reliable continuous location design problem
under imperfect information with round-trip transportation (CRLP-IIRT) aims to get the
minimum total system cost by selecting the optimal location X and the corresponding optimal

facility visiting sequence {J (x| X)}XE ; » as formulated below

CRLP-IIRT: min C(x):=C*(x)+C"(x)+C"(x). (7)

xeS {J (x[x)}

xe§

3.2. Continuum approximation approach

It is difficult to directly solve the original CRLP-IIRT in the heterogeneous space. This
section proposes a CA approach to achieve an approximate near-optimum solution. Essentially,
each local neighborhood of space S can be approximately treated as an infinite homogeneous
plane (IHP) that has homogenous settings everywhere and thus can be easily solved. If the
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original heterogeneous space varies mildly, the solution to IHP can approximately replace the
optimal solution of this neighborhood in the original space. Furthermore, since a customer only
visits a finite number of facilities in a local area of the space before opting to receive the penalty,
the cost structures of distant areas will not be strongly coupled and thus, approximating each
local neighborhood separately is a reasonable treatment. Finally, integrating the approximated
solutions across the entire space will yield a near-optimum location design for the original
space. In the following descriptions, Section 3.2.1 presents the method to solve a generic IHP
problem, and Section 3.2.2 discusses the method of integrating the IHP solutions across the
entire space into a solution to the original heterogeneous space.
3.2.1 IHP problem

In an IHP (i.e., R ), all parameters are set to be constant across all locations, i.e.,

p(x)=¢, f(x)=f, A(x)=4, q(x)=¢, VxeR . We define the initial service area as

the area that a facility serves when all facilities are operating. Following previous work (Cui et
al., 2010; Li and Ouyang, 2010), the IHP can be formed as a regular hexagonal tessellation by
facilities’ initial service areas. The center of each regular hexagon locates a facility. Toth (1959)
proved that the hexagon tessellation is the optimal facility location layout for the classic
location problem in IHP. We denote the size of initial service areas by A4, and location decision
x on the IHP now reduces to finding the optimal A4 wvalue. Because all the hexagons are
identical and the IHP has the transitional symmetry property, our analysis is centered at a
generic hexagon service area, as illustrated in Figure 2.

Figure 2 Analysis area illustration.
With these homogenous settings, optimizing objective function (7) for the IHP is
equivalent to finding the optimal service area A and the facility visiting sequence for each

customer to minimize its unit-area system cost, including facility opening cost C', penalty

cost C', and transportation cost C'. Based on transitional symmetry, C' can easily be
obtained as follows:

C' = f/A. (8)

For customer x to receive the penalty, the customer must visit and find that all facilities

in J (x|x) are disrupted. This approach indicates that the penalty probability }_’(x‘J (x|x))
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is simply the probability that all its R+1 assigned facilities are disrupted. Since q(x) =q

everywhere and the failures are independent, ﬁ(x‘J (x|x)) is independent of customer
location x or visiting sequence J (x|x) and is equal to
}_’(x|.](x|x))=qR“,‘v’xeR 9)
This leads to the formulation of C* as follows:
C" = Apg™. (10)
Next, we formulate C' for the IHP. Since the facility failures are 1.i.d. across the IHP,
the rank r service probability for each customer xeR , P (x|J (x| x)) , 1S again
independent of customer location x or visiting sequence J (x|x) and is identical to

R(x|J(x|x)):=q’(1—q), VxeR (11)

The challenge in our IHP analysis is that customers in the central service area do not have
the same visiting sequence, which is different from the IHP analysis in the previous paper (Li
and Ouyang, 2010). To overcome this challenge, the central hexagon is divided into twelve
identical sectors, as illustrated in Figure 2. In each sector, customers can be treated as identical.
Furthermore, due to the symmetric of regular hexagon, the cost for customers in these sectors
are identical. Thus, we chose to analyze the upper-right sector (as highlighted in black in Figure

2) for the following analysis, which we denote by 7 with its area size |’T

Following Equations (2) and (4), C" can be decomposed into outbound component C™

and inbound component C"' as formulated below:

[ Lo (e 0)a™ + 32 (e 0) ' —qﬂ"’“
=1 N =0

C™ = - , 12)
LJ”I— (xlCx1%0) g™ + D> d) (x| (x| x))q"(l—q)jdx
c"= N pry (13)

T

Next, we investigate how to formulate the transportation costs. Note that ¢° (x‘J (x|x))



and d! (x‘J (x|x)) for customer x €7 are essentially determined by service area A4 and

customer x's visiting sequence J (x|X). Because each customer x's optimal visiting

sequence (OVY) is hard to be determined exactly, it is appealing to find a feasible visiting
sequence for all customers in 7 that is close to the optimal solution. We denote this sequence
as a near-optimum visiting sequence (NOVS). In order to construct the NOVS, we first index
all facilities (or hexagons), as illustrated by Figure 3. We index the central facility with 0, and
then index all the remaining facilities in a spiral pattern with integers sequentially increasing
from 1. The NOVS assumes that customers in area 7 visit these facilities in a sequence
corresponding to their indexes, i.e.,

JNO(x|x):{jfo(x\x):r} ) YxeT (14)

Figure 3 Indexing facilities and analysis areas.

With the NOVS, C™ and C" can be simplified as

R

(CTONO :ﬂ[d;)-No (A)qR+1 +Zdro.No (A)(]r(l_(])j, (15)
r=0
R

CTNO :l[dlle-NO (A)qRH +Zdr1-No (A)qr (1_‘7)}’ (16)
r=0

where d>™° (A) and d™° (A) are the average outbound and inbound transportation

distances, respectively, across all customers in 7 under the NOVS when they finally visit
facility r before giving up. Note that they are both determined by the A4 value. Here, we
append the superscripts with —-NO to highlight that the corresponding terms are associated with
the near-optimum (NO) solution of the NOVS and will be differentiated from those in the exact
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r

optimal solution with the OVS. Now, we investigate how to formulate d O'NO(A) and

drI'NO(A). The average distance from facility r to customer x can be calculated by the
method proposed in Appendix B. The results show that the average distance between facility

r and customers in 7 is proportional to A" with a coefficient determined by r, which

we denote by S . With this, inbound travel distance drI'NO (A), which is identical to the
average distance from facility » to the customers in 7 , is formulated as

d™°(4)=pB.A". (17)

During the outbound travel, the average distance from customer x to facility 0 is equal

to B,4">. When r >0, the distance from the facility of rank (r —1) to the facility of rank r

/4
is always equal to (%j A" Therefore, the outbound travel distance d, " (4) can be

formulated as

1/4
d>M0(4) = B,A" +r(%j A" (18)

Therefore, the near-optimum solution to C" with the NOVS is formulated as follows:

ya < 14
CT'N":/‘LAl/Z((,BO+R(§j +ﬁRJqR“+Z[ﬂO+"Gj +ﬂrjqr(1—q)j- (19)

The following analysis aims to obtain an optimality gap between this near-optimum

solution and the optimal C" under the OVS. Although the optimal solution of C" remains

unknown, we can construct a lower bound to the optimal C" as follows. If the near-optimum

solution is very close to the lower bound, we believe that this solution well approximates the
exact optimal solution and call it a near-optimum solution. Thus, we use the near-optimum
solution in the analysis instead of the optimal solution. We then construct a lower bound

solution to outbound transportation cost C'° alone through the following analysis, simply

CTO-NO

denoted as in the following proposition.

Proposition 1. C'°™° (defined in Equation (15)) is no greater than C'© (defined in

Equation (12)) for any feasible visiting sequence.
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Proof. For a customer xe7 , let J’(x|x)={ J! (x|x)} denote an arbitrary feasible

visiting sequence, and then {df’ (x

J '(x|x))} shall be the corresponding outbound travel

distances at all ranks. Similarly, let {d © (x‘] NO (x|x))} denote the corresponding outbound

travel distances with the NOVS. It is easy to see that since the closest facility to customer x
is facility 0, we have o (x‘JNO (x|x)) <dy (x‘J'(x|x)) . Furthermore, at a rank r>1,
customer x has to travel from one facility to another, and it is easy to note that the distance
from facility »—1 to facility » isthe minimum distance between any two different facilities,

ie., d° (x‘JNO (x|x)) <d° (X‘J'(x|x)), Vr=1,--- With this, we obtain

dy (x| T (x| x)g"™" + D dP (x| TN (x| x)q" (1-q)
r=0 (20)

<dy (x| (x| ))g"™" + D d2 (x| I (x]%)g"(1-q).

r=0

Then, based on Equation (12), we conclude that the NOVS yields the minimum value for C .

This completes the proof.
Furthermore, when ¢ 1is less than 0.5, the unit-area inbound travel cost is actually

minimized when the assignment rank of a facility to a customer is consistent with the distance
from this customer to this facility, i.e., rank-7 facility to customer x is the 7th nearest

facility from customer x. We denote this minimum cost with C TN This is proven in the
proposition below.
Proposition 2. When ¢ <0.5, the inbound travel cost C'™™™ resulting from the

distance-based facility assignment is no greater than C' (defined in Equation (13)) with any
feasible visiting sequence.
Proof. For each customer x, we denote their distance-based facility assignment by

JP8 (x|x) = {7 (x[x)} such that

D(x, jy"® (xx)) < D(x, ™ (xfx)) < 72 (x[x)) 21)
and

D(x, jp" (xx)) < D(x, ),V € x\J” (xx), (22)
where function D(x,;) denotes the distance from customer x to facility ;. Let

J’(x|x)={ j;(x|x)}¢JDIS(x|x) denote an arbitrary feasible visiting sequence. Then,
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according to Equation (13), the inbound cost associated with J™°(x|x) is
CTMN = A(D(x, JoS (x]x)) g™ +§:D(x, 725 (x[x))g’ (l—q)]. (23)
=
Furthermore, the inbound cost associated with J'(x[x) is
c" = /”L(D(x, Jr(x[x))g"™ +IZ:;D(x, Ji(x[%)q" (l—q)j. (24)
We show that J'(x|x) can be made equal to J"*(x|x) after numerous adjustment

steps, and each change can only bring down the cost of C™ . First if the set of facilities in

J'( x|x) is not identical to J"*® (x|x) , then at each adjustment step, we replace an element in
J'(x|x)\(J’(x|x)ﬂ ()) with an element in J° (x|x)\(Jr(x|X)ﬂ ()) This
substitution always reduces the cost of C™ because of Equations (21) and (22). This
process can be repeated until J '(x|x) and J°® (x|x) have the same set of facilities, i.e., the
R+1 closest facilities to customer x. Then, if the order of J ’(x|x) i1s not the same as
J™(x]x) , at each adjustment step, we pick two ranks £ <7, such that

D(x, jt (x|x)) > D(x, i (x|x)) Then, we swap the assignment ranks of these two facilities,
and the change in C™" is

{M.(qnqrz)<1q>,ifrz<& 2

-Ad -q" (1—q)+Aa’q"2,ifr2 =R,

where Ad > D(x, Jr (x|x))—D(x, Jn (x|x)) . This term is apparently non-positive in either
case, since ¢ <0.5. By repeating this adjustment step properly, J '(x|x) can always be made

identical to J™*(x|x). In all of the previous steps, C™" never increases. Thus, the original

C™ is always no less than C™™™ . This completes the proof.

Based on the results from Li and Ouyang (2010), the average distance between a generic
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central facility and all customers having this central facility for the rank- assignment is
proportional to A" and denoted by 7/,A1/ ? . Because of transitional symmetry, yrAl/ > will

be identical to the average distance between a customer on the IHP and her 7th nearest facility.
As previously mentioned, the average distance between customers in 7 and facility r

is equal to ﬂ,Al/ * and we denote the average distance between customers in 7~ and the rth
nearest facility by ;/VAV *. From Figure 3, we can see that facility r is the rth nearest

facility when » <2 for all customers in 7 . Therefore, parameter 7, is equal to g when
r<2.When r>2, we calculate the distance from each customer in 7 tothe rth nearest
facility by numerical integration and then obtain the value of parameter },. Thus, the minimum

value of the unit-area inbound cost C™™

2 R
CTIN = 1 4 ((Zﬂrqr +27r9’](1—61)+71eqm} (20
r=0 r=3

can be expressed by

Proposition 3. The sum of C"°™ and C"™™™ denoted by C™®, is the lower bound
to C'.

Proof. C'*™° is no greater than C'™® for all feasible visiting sequences. Therefore,
C™™° s the lower bound for C™, i, CTON°<C™. C™™ js the minimum value of
C", ie., C"™™ <C" for all feasible visiting sequences. Combining these two inequations,
we can obtain a new inequation, C 0 +C"™N <C™ +C". Because C'°+C" is equal to

=CON+ C™™N < CT for all visiting sequences. This

C", the new inequation leads to C .

indicates that C'™" is a lower bound to C" and thus completes the proof.

According to Equations (15), (18) and (26), we can formulate C"™" as follows:

1/4
[ﬂo +R(gj +7RJ‘]R+1

(E[ael2) Yo gaa e Srajo-a)

C™B=24" (27)

r=0
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Now, we formulate the gap between C'° and C™® as follows:

CTNO _ oTLB
G = W (28)
Based on the Equations (19) and (27), we obtain
R
(ﬂR_yk)qRH"' (ﬁr—}/r)qr(l—q)
r=3 x100%. (29)

- 14 /4
(ﬁﬁR@j +ﬂR}qR*I+Z£ﬁo+r(:) +ﬁrJq’(1—CJ)

With Equation (29), we obtain the G value for any given R and ¢. Figure 4 plots the
values of G forvarious R and ¢ values. Figure 4(a) shows that G 1is no more than 0.003%

because R ranges from 1 to 20 when ¢ =0.05. Figure 4(b) shows that G increases with

the increase of ¢, but the maximum value remains below 1%. These small gap values are
reasonable for engineering practices. Therefore, we can use the near-optimum solution in lieu
of the exact optimal solution to calculate the unit-area transportation cost.

0.003% . . : 1%
‘l'
0.0025%} 'S B E R R B R EEE R NERE S BN J 0.8% '.“_
L
0.002%F 1 o
0.6% o
& &
0.0015%} ] 3 R
0.4%} Ry
0.001%} ] o
d
L od
0.0005%r ] 027 M‘,«
0 *» 1 1 1 0 1 1 1
5 10 15 20 0 0.1 0.2 0.3 0.4 0.5
R q
(a) (b)

Figure 4 The gap between FS and LB, (a) ¢ =0.05;(b) R=5.

Remark. As we know, to obtain the minimum inbound cost, each customer has her own

visiting sequence J"® (x|x)={ JPs (x|x)} If we divide the central service area by the

identical visiting sequence, we find the following feature. For a given value of R, we can
always find one sub-area in the central service area in which the visiting sequences are identical
for all customers. In our paper, all customers in 7 have the same visiting sequence when
R<5. When R>35, we can calculate the average distance by numerical integration for each
customer although they have different visiting sequences. However, this process involves
extreme complexity, and the extra inbound cost will be small compared with the cost when
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R<5. Therefore, we focus on the situation where R<35 in the following section unless we
indicate otherwise.
From Equations (8), (10) and (19), the unit-area system cost for the IHP problem is
C(A)=C"+C"+C" = f/ A+ Apq""

V4 R V4
YL {(ﬁo +R@ +ﬂR]qR“ +Z[ﬂo +(§] +/3,Jq’ (1_q)}. o

Note that A4 is the only one variable in the above problem.

Proposition 4. The function C(4) is unimodal.

4 1/4 R 4 14
Proof. uﬂo"‘R(gj +IBRJ(]RH+Z(,30 +r(§j +ﬂ,]qr(1—q)} is represented by
r=0

Q for simplification. The derivative of function C (A) is

1

¢ L +5/1A-1/2Q (31)
Then, set ( o , and we can obtain the unique result, which is shown as follows.
2/3
A= E (32)
A0
When 4 > 0, the function ( ~ is a continuous function. Therefore, the function ( o is

less than 0 if 0< A<(2f/2Q)"" and greater than 0 if 4>(2f/2Q)"" . This indicates that

the function C(A4) is unimodal and thus completes the proof.

With this proposition, we can easily obtain the optimal solution A by derivation, which

1/4 R 1/4 3
is equal to [2f/}{£ﬂo+R(:j +ﬁRJqR+1+Z£ﬂO+r[jj +ﬁ,}q’(lq)ﬁ

Therefore, the near-optimum unit-area system cost C (A*) can be obtained.

3.2.2 CA approach for a heterogeneous space
This section discusses the application of the IHP results to the finite heterogeneous space

S. We assume that all relevant parameters (ie. f(x), A(x), ¢(x) and ¢(x)) vary
relatively mildly over the original heterogeneous space and the facility initial area A(x) is

far smaller than the size of S, ie., A(x) < =S . Instead of searching for discrete
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location x, we try to find the optimal solution to A(x) € R near each location x.

Since the facilities are densely located, we can ignore the boundary effect with
substantially no effect on the total cost. Since all parameters vary mildly over space S, each
neighborhood of xe€§ can be approximated as an [HP and can be simply solved by Equation

(30). We define C (x, A(x)) as the cost per unit area near x, which can be formulated as

C(x,A(x)):=f (x)/4(x) + A(x)p(x) " (x) + 2 (x) 47 (x)-
((ﬁo +RGT/4 +ﬂRJ‘1RH (x)+ i(ﬁo . r(%jw +ﬂrjq" (9 _q(x))] (33)

r=0

We can obtain the optimal service area A*(X) for each neighborhood x by solving

C (x,A(x)). Then, the optimal system cost in the original finite heterogeneous plane can be

approximated by
Cc' = C(x, A (x))dx. (34)

xeSs

Since [A* (x)T1 is the optimal facility density function, the total number of optimal
facilities can be estimated by

N~ [4(x)] a (35)

xe§
The optimal solutions, A*(x) and N, can be used in the direct sweeping method

proposed by Fan et al. (2018) to discrete facility locations. This method just require search the
space once to obtains a discrete location solution, and the initial service area of each facility is

very close to the value of 4" (x) . More implementation details are shown in the paper (Fan et

al., 2018). The reference illustrates that the sweeping model can obtain the near-optimum total
cost that approximates to that estimated by Equation (34).

4. Numerical examples
This section presents several numerical examples to illustrate the performance of the

continuous model on the investigated location problem. Space S is now a [O,S]X[O,s]

square for the convenience of comparison and scalability. The density function of customer

demand is A(x)= ﬂf[l+g cos(a)”x”ﬂ . The cost for opening a facility at x is
f (x) = f[l +7, cos(a)”x”)] . The disruption probability of a facility at x is
q(x)=q_[1+z'q cos(w”x”ﬂ LT, e(—l,l) . T e(—l,l) and 7, E(—l,l) are the
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heterogeneity control parameters for A(x), f (x) and q(X) over §, respectively. Scalar
o 1is selected to normalize the average customer density, facility cost and disruption

probability by scalar o (e.g., J.S/l(x)dxz/f , Lf(x)dxzf and J.Sq(x)dxzcj ). ||x||
expresses the distance between the location x and the center of space S . Because go(x)

does not influence the value of A4’ (x) , for simplicity, we set (o(x) =@ as a constant over the

space S. We calculate C* and N° by Equations (34) and (35), respectively. The default

values of parameters are set as s=1, ]_”:4, A =100, 7=0.05, T, =0.1, 7,=0.5,

z‘q=0.5, w=11.73, ¢p=1,and R=3.

First, we make a comparison between the continuous and discrete (introduced in the Part
I paper) models. For comparison purposes, the continuous parameters should be converted into
the discrete parameters. We partition the continuous space S into nxn identical square
cells where n is an integer parameter for the space granularity. Set J contains all the square

cells. Customer z, and candidate facility z;, where i,j€J, are located at the center of the

corresponding cells, respectively. We set f; = f (zj), q;= q(zj) and ¢, =¢.Demand /4

is equal to the total demand in this square cell and is approximately formulated as

S
Ziz/i(zi)L—J.

(36)

In the conversion process, we omit the transportation cost when the customer and candidate
facility are located in the same cell. This omission will underestimate the total transportation
cost. To compensate it, we set that the distance between the customer and candidate facility in
the same cell is approximately equal to one quarter of the cell length.

InTable 1, C, and N, denote the best system cost and facility number for the discrete
model, respectively. We use the percentage & = (C;; -C ) / C, to indicate the difference in

the system cost between the continuous and the discrete models. Let 7 and 7, denote the

solution times of the continuous and the discrete models, respectively. Table 1 shows how the
solutions change with different cell numbers for both continuous and discrete models. We

observe that C" is less than C, in most instances. This is because the transportation cost

between the customer and the facility in the same cell is equal to approximately one quarter of
the cell length in the discrete model, which may overestimate the transportation cost relative to
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. 2 . L . .
the continuous model. As n~ increases, C increases that is close to the exact integral value.
Although & fluctuates, the trend of & is decreasing as n° increases. However, we can

observe that 7 is smaller than 7, for all experiments, and the former increases almost

linearly with the number of cells, yet the latter increases apparently super-linearly. We also see
that the instances with large n° cannot be solved by the discrete model due to the memory
limit. From the results, it is obvious that the continuous model has better scalability and can

solve large-scale instances efficiently.
Table 1 Total system cost estimation for the continuous and discrete models.

* *

n c N t Ny, 4 & (%)
49 | 56.4594 4.6404 0.000437 | 60.3250 82 6.41%
64 | 56.8256 4.6639 0.000959 | 60.4693 185 6.03%
81 57.0914 4.6806 0.000724 | 60.0849 402 4.98%
100 | 57.2926 4.6933 0.000867 | 59.0395 73 2.96%

1336 4.47%
1800 3.99%

121 57.448 4.7031 0.001067 | 60.1336
144 | 57.5695 4.7107 0.00141 | 59.9606
169 | 57.6658 4.7167 0.001396 | 59.8608 1800 3.67%
196 | 57.7434 4.7216 0.001687 | 59.2987 1247 2.62%
225 | 57.8069 4.7256 0.001834 - --- -—- -
400 | 57.9988 4.7375  0.0031 - - - -
1600 | 58.1897 4.7493 0.01145 - - --- ---
6400 | 58.2384 4.7523 0.045572 - --- -—- -
10000 | 58.2442 4.7526 0.080393 - - - -
40000 | 58.2521 4.7531 0.316043 --- -—- -—- --—-

B N S N N LY I S

Now, we vary only s and compare the performances of the continuous and discrete
models. Table 2 shows the results for several instances with various s values with #°> =100.
In this table, we see that C* and N~ increase linearly as s increases. However, the solution
time ¢ does not change obviously with increasing s, which is apparent because the

. . . . . . * * .
discretization resolution remains the same. Correspondingly, C,, and N, also increase as

s increases. However, the solution time £, remains approximately the same but is much

greater than 7. In this table, we also observe that although & fluctuates, the absolute value
of & isstill less than 5% as s increases, indicating that the total system costs from both the
continuous and discrete models are similar, regardless of the space size and the customer

density.
Table 2 Total system cost estimation for the continuous and discrete models with various §
5 o N ‘ C, Ny oty (%)
0.6 16.5571 1.4323  0.000977 | 17.1244 2 724 3.31%
0.7 23.7018 2.0247 0.000844 | 23.8019 2 728 0.42%
0.8 33.3532 2.7939  0.000821 | 32.7050 4 73 -1.98%
0.9 44.9065 3.7044  0.000835 | 44.0375 4 32 -1.97%
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1 57.2926 4.6933  0.000906 | 59.0395 4 73 2.96%
1.5 126.3304  10.3942 0.000913 | 127.9645 12 657 1.28%
1.6 145.3540  11.9367 0.000862 | 141.3677 11 624 -2.82%
1.7 165.7275  13.5736  0.000945 | 159.5829 13 625 -3.85%
1.8 186.5041  15.2567 0.000849 | 183.8099 14 590 -1.47%
1.9 206.8956  16.9451 0.000915 | 215.2402 18 649 3.88%

Next, we compare the performance of the CA approach for the imperfect information and
perfect information conditions with the following experiments. With perfect information, a
customer knows the status of all facilities and chooses the nearest functional facility to obtain
the service. The optimal service area, optimal system cost and optimal facility number under

5

and N

perfect information are denoted by 4, (x), C .

- respectively. We use C, to

express the actual cost under imperfect information when A4, (x) is implemented.

Ep = (C* -C,, ) / C" denotes the difference in total system cost between perfect information
and imperfect information. Table 3 shows the solutions of several problem instances with
various ]7 and ¢ values under perfect information and imperfect information. In Table 3,

we see that the optimal system cost with imperfect information is higher than that with perfect

information in all experiments. The difference &,, increases with increasing ¢ and is

higher than 13.6% when ¢ >0.2. The optimal facility number is also small in the perfect

information condition. Thus, if the customer can obtain perfect information, the system cost
can obviously decrease by adjusting the facility location. Therefore, one aim of technology
development is to ensure that the customer can always obtain perfect information. Otherwise,
facility locations should be designed more robustly to prevent imperfect information. If we

omit the consideration of imperfect information in the design, the actual system cost C, is

higher than both C,” and C".

Table 3 Total system cost estimation under imperfect information and perfect information.

# f q N* NPI* C* CP]* CII "("P] (%)

1 05 005 19.01 1836 29.13 28.10 29.14 3.52
2 05 01 2038 1899 3129 29.12 3134 694
3 05 015 21.86 19.64 33.72 30.24 33.82 10.30
4 05 02 2347 2029 3652 3154 3673 13.63
5 1 005 1198 11.56 36.70 3541 36.71 3.52
6 1 01 1284 1196 3942 36.68 3947 694
7 1 015 13.77 1238 42.44 38.07 42.58 10.31
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8 1 02 1479 12.78 4590 39.63 46.17 13.66
9 2 005 755 729 4624 44.61 4625 3.52
10 2 01 809 754 49.66 4621 49.73 694
11 2 015 868 7.80 5344 4793 53.61 1031
12 2 02 931 805 57.73 49.82 58.06 13.69
13 4 005 475 459 5825 5620 5828  3.52
14 4 01 510 475 6256 5822 6264 694
15 4 015 547 491 6730 6036 6751 10.32
16 4 02 587 507 7262 6267 73.05 13.71

We also compare the performance of the CA approach with and without considering the
inbound trip, under various f and ¢ values. Without the inbound trip, a customer only

chooses the optimal facility sequence to obtain the service without considering the return trip
to her home location. The optimal service area, optimal system cost and optimal facility number

without an inbound trip are denoted by 4, (x), C,, and N, respectively. We use C,, to
express the actual cost with the inbound trip when A:) (x) is implemented.
g, = (C* -C, ) / C" denotes the difference in total system cost with and without the inbound

trip, whereas ¢, = (C o—C ) / C" denotes the actual cost deviation after applying the “wrong”

facility location design. Table 4 shows the solutions of several problem instances with and

without considering the inbound trip with various f and 7 . The optimal system cost without
the inbound trip is lower than that with the inbound trip in all experiments. The difference &,
is more than 28% and decreases with increasing ¢ . The optimal facility number without the
inbound trip is lower. The actual system cost C,, is less than the optimal system cost C "

under the “wrong” design, with &, as high as greater than 4%.

Table 4 Total system cost estimation with and without an inbound trip.

# f q N N, C C,; Co &,(%) &p%)

0.5 0.05 19.01 1238 29.13 1898 3038 34.83 4.31
0.5 0.1 2038 13.68 3129 21.03 3246 32.78 3.73
0.5 0.15 21.86 15.07 33.72 2332 3481 30.82 3.25
0.5 0.2 2347 1658 36.52 2597 37.55 28.90 2.83
1 005 1198 7.80 36.70 2392 38.28 34.83 4.31
1 01 1284 8.62 3942 2649 40.89 32.79 3.73

AN U AW N =
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1 015 13.77 950 4244 2935 4382 30.85 3.25

1 02 1479 1045 4590 32.61 47.20 28.96 2.83

2 005 755 491 4624 30.13 4823 3483 4.31
10 2 01 809 543 49.66 3337 5151 32.80 3.74
11 2 015 868 598 5344 3695 5518 30.87 3.25
12 2 02 931 658 57.73 4098 5936 29.02 2.84
13 4 0.05 475 3.10 5825 3797 60.76 34.83 4.31
14 4 01 510 342 6256 42.04 64.89 32.80 3.74
15 4 015 547 377 6730 4651 69.49 30.88 3.25
16 4 02 587 415 72.62 5152 74.69 29.06 2.84

Figure 5 shows the visiting sequence with and without an inbound trip in one facility
location design problem. Comparing Figure 5(a) and (b), we see that the number of built
facilities in Figure 5(a) is less than that in Figure 5(b), which indicates that considering the
inbound trip will increase the facility number to guarantee customers the ability to obtain the
service near their initial locations. Figure 5(a) shows that the customer visiting sequence is
assigned near her initial location. Figure 5(b) shows that the customer visiting sequence is
similar to a line and is far from her initial location. The results reflect our realistic situations
when customers look for service. If a customer wants to go back her home, she will search the
service around her home. On the contrary, if this customer does not need to go back her home,
she will visit the most appropriate facility and may far away from her home when she finds the
service.
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A o a A
08 P ] N n
a A
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06F & o a & 06l &
I a
;
Yos Yos a
- &
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% A A & A
02} & A A ” oz a
01t o1
o IS A a S S a = A & & & s 8
ol P " . . . . . . ) ol . . . . . . . . . )
0 01 02 03 04 06 06 07 08 09 1 o 01 02 03 04 05 06 OF 08 089 I
X x
(a) (b)

Figure 5 Visiting sequences (a) with and (b) without an inbound trip.

Finally, we discuss the sensitivity analysis of optimal results for parameters ¢, f, A

and R.

Table 5 shows the relationship between the cost components and R . We find that
providing the backup service can reduce the total system cost when system faces the facility
disruptions. However, this reduction gradually diminishes as R increases. When R exceeds
5, all cost components except the penalty cost do not change. This indicates that the benefits
by assigning more facilities are almost disappeared. Thus, we can foresee that the penalty cost
will be almost equal to 0 when R is large enough. Therefore, we do not set R exceed 5 in
most experimental instances of this paper.
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Table 5 Analysis of the sensitivity to R

R Construction cost Transportation cost Penalty cost Total system cost Facility number
1 19.3498 38.6995 0.3683 58.4176 4.7372
2 19.4129 38.8258 0.024 58.2626 4.7522
3 19.4178 38.8356 0.0016 58.2549 4.7533
4 19.4181 38.8361 0.0001 58.2543 4.7534
5 19.4181 38.8362 7.63E-06 58.2542 4.7534
6 19.4181 38.8362 5.35E-07 58.2542 4.7534
7 19.4181 38.8362 3.78E-08 58.2542 4.7534
8 19.4181 38.8362 2.69E-09 58.2542 4.7534
9 19.4181 38.8362 1.92E-10 58.2542 4.7534
10 19.4181 38.8362 1.37E-11 58.2542 4.7534

Figure 6 shows the results of sensitivity analysis to several key parameters. We set

g=0.05, f=1,and A =500 as the default parameter values, and select one parameter to
vary at a time. The other parameters are set as 7,=0.1, 7,=09, 7, =05, ©=11.73,

p=1,and R=5.

Figure 6(a) and Figure 6(b) illustrate how the optimal system cost and optimal facility
number change with the average facility disruption probability ¢ . Both of these values
increase as ¢ increases. The optimal system cost increases slowly when ¢ 1is less than 0.3.
However,as ¢ continues to increase, it increases rapidly and becomes very large. The optimal

facility number also has a similar tendency, but it is not obvious. Therefore, we should control

the probability ¢ to a low value to reduce the increase in the optimal system cost. These

observations are similar to those in the Part I paper.

Figure 6(c) shows that the optimal system cost increases as the average facility cost f

increases. Figure 6(d) shows that the optimal facility number decreases as the average facility

cost f increases. In other words, a higher average facility cost results in fewer facilities, as

is commonly found in real-world situations. However, the difference in tendencies in Figure
6(c) and Figure 6(d) indicates that the presence of fewer facilities will result in greater
transportation costs, leading to an increase in the optimal system cost.

Figure 6(e) and Figure 6(f) show how the optimal system cost and optimal facility number

change with the average demand density A . Both of these values increase approximately

linearly as A increases. Therefore, the demand has a constant effect on the optimal location

design. To satisfy the increase in customer demand, we must build more facilities to shorten
the customers’ travel distance and thus reduce the increase in the total system cost.
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Figure 6 Sensitivity analysis

5. Conclusion

This paper proposes a continuous model for the large-scale RUFL problem considering
round-trip transportation under imperfect information, which is a supplement of research on
the location problem performed in the Part I paper. In the proposed model, we assume that each
facility has a site-dependent disruption probability. In any disruption scenario, a customer has
imperfect information regarding facility states and always attempts to visit pre-assigned
facilities to obtain the minimum transportation cost. When the customer obtains the service or
gives up, she will return to her initial location. The CA formulation starts with an idealized
homogeneous plane and is then extended to a general heterogeneous plane for the investigated
problem. The simple structure of the CA model allows examination into problem structures for
constructing a near-optimum solution (e.g., by constructing a feasible customer visiting
sequence and a lower bound cost). Numerical experiments showed that the continuous model
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adopting the CA technique has superior computational efficiency for solving large-scale
instances, whereas the discrete model performs well for small and medium-sized problem
instances. Case studies also indicated that the round-trip needs to be considered in reliable
facility location problems, particularly with imperfect information. The results of the sensitivity
analysis for various parameters indicated that the continuous model can solving the large-scale
instances with a good, robust performance.

In the future, we can relax the facility disruption pattern to more general patterns, such as
correlated disruption pattern that is investigated by Li et al. (2010) considering perfect
information. When relevant data are available (e.g., facility disruption patterns), it is interesting
to see how this proposed modeling method can be applied to real-world problems to improve
the infrastructure system reliability.
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Appendix A. Notation list

SYMBOL

DESCRIPTION

R
d, (x]J(x]x))
d? (x|J(x|x))
d! (x]J(x]x))
P (x|J(x|x)

]_’(x|J(x|x))

Planning space
Fixed opening cost for facility x (the facility at location x)
Demand of customer x (the customer at location x)
Penalty cost for customer x
Disruption probability for facility x
Service area for facility x
Set of built facilities
The rth facility that customer Xx visits
Facility visiting sequence for customer x
Facility rank for a customer

Maximum facility rank for a customer
Total travel distance for customer x given that she ends at her rank »
facility given visiting sequence J(x|X)

Outbound distance for customer x given that she ends at her rank r
facility given visiting sequence J(x|X)

Inbound distance for customer x given that she ends at her rank r
facility given visiting sequence J(x|X)
Probability for customer X to be served by facility j. (x|x)
conditioned on facility visiting sequence J(x | X)

Probability that customer X is not served by any facility conditioned on
facility visiting sequence J(x |X)
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-NO

CTO

CTI

©

T (Tf’ Tq)

Size of a facility’s initial service area

Analysis area for the IHP problem

Superscript tag that the corresponding terms are associated with the near-
optimum (NO) solution of the NOVS

Unit-area facility fixed opening cost
Unit-area penalty cost
Unit-area transportation cost
Unit-area outbound transportation cost
Unit-area inbound transportation cost

Optimal system cost in the original finite heterogeneous plane

Total number of optimal facilities in the original finite heterogeneous
plane

Side length of the planning space
Average customer density (facility cost, disruption probability)

Scalar to control the heterogeneity of ﬁ.(x) (f (x), q(x)) over S

Scalar to normalize the average customer density, facility cost and
disruption probability

Integer parameter for the space granularity
Set of all square cells

Location of customer i e .J

Location of candidate facility je J
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Appendix B. IHP transportation cost formulation

To facilitate the derivation of transportation costs, we arrange facilities as illustrated in
Figure 7. Again, we investigate a generic central facility (or hexagon) and index the facilities
around it in the manner illustrated by Figure 3. Furthermore, the hexagons can be grouped into
different layers according to their distance from facility 0. For example, the first layer contains
facility 0, the second layer contains facilities 1-7, and so forth. We index the layers with

me 7 .Meanwhile, we divide the space into six sextants, indexed by s € {1, 2,3,4,5, 6} where

s=1 indexes the upper right sextant. Note that the m™ layerhas m facilities in each sextant.

Figure 7 Illustration of the coordinate system

With this system, we can re-index each facility with a triplet (m, S, t) such that me Z
indexes the layer of this facility, se {1,- . indexes the sextant of this facility, and
te {1,- . indexes the clockwise position of this facility in this sextant. For example, facility

2 is re-indexed as (2,1,2). In general, the mapping from index j to triplet (m,s,l‘) is as

follows:

(37)

m:(—3+1/9+12]}

6
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. 2
{] 3m +2m+1—‘, P 3m—2m
m

S = ] 5 s (38)
|7]—3m +8m+1—" <3m’ —2m—1

m

t:{j—3m2+3m+1—sm, j>3m’ —2m—1 (39)

J=3m’ +9m+1-sm, j<3m’ —2m—1
Since the area size of a hexagon is A, the side length of a hexagon should be
1 1

[ = (4/ 27)5 A . We can easily obtain each facility’s Euclidean coordinates (a,b) by its index

(m,s,t ) . The results of these coordinates are shown in Table 6.

Table 6 Coordinates (a, b) of a facility

5| ({35
sheid-g) e 57)
5 Zenea [{3507)

With this system, the average distance between customers in 7 and any facility

(m,s,t ) can be obtained by the following integral.

(40)

1 \/ ) +(y- b)zdxdy(4jiA;
ave £ 27 °
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