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Abstract  

Time-varying capacity design holds an opportunity to reduce the energy consumption of urban mass transit systems, e.g., urban 

rail transits, bus rapid transits, modular autonomous vehicles. In this paper, we investigate the joint design of dispatch headway 

and vehicle capacity for one to one shuttle systems with oversaturated traffic to achieve the optimal tradeoff between general 

vehicle dispatching cost (mainly comprised of vehicle energy consumption) and customer waiting cost. We propose a continuum 

approximation model from a macroscopic point of view to reveal fundamental analytical insights into the optimal design. By 

introducing the concept of a virtual arrival demand curve at the origin station, we prove that the investigated problem with possibly 

oversaturated traffic can be equivalently solved with a simpler revised problem where only unsaturated traffic is present. With this 

property, we decompose the original problem into a set of independent unit-time revised unsaturated problems that can be 

analytically solved in each neighborhood across the operational horizon. With two sets of numerical experiments, we show that the 

CA model offers near-optimum solutions with negligible errors very efficiently and we also verify the theoretical properties. Also, 

the effectiveness of time-varying vehicle capacity design is demonstrated in shuttle systems under both saturated and unsaturated 

traffic. Overall, the proposed CA model contributes to the CA methodology literature by extending the CA method for traditional 

transit dispatching problems with unsaturated traffic to the joint design of dispatch headway and vehicle capacity considering 

oversaturated traffic, adjustable vehicle capacities and other factors (e.g. minimum dispatch headway). 
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Nomenclature  

Parameters  

𝐴(𝑡) Cumulative arrival demand up to 𝑡 , ∀𝑡 ∈ [0, 𝑇]  
𝑎(𝑡) Arrival demand rate at 𝑡, 𝑎(𝑡) ≔ 𝐴′(𝑡), ∀𝑡 ∈ [0, 𝑇] 
𝐵(𝑡) Virtual cumulative arrival demand up to 𝑡 , ∀𝑡 ∈ [0, 𝑇] 
𝐶𝐹 Fixed vehicle energy cost  

𝐶𝑉 Coefficient for capacity-dependent vehicle energy cost  

𝑐 Capacity per vehicle unit 

𝑓𝑖 Energy cost of a vehicle in formation 𝑖, ∀𝑖 ∈ ℐ 

ℎ Minimum dispatch headway 

ℐ: = [1,2, ⋯ , 𝐼] Set of vehicle formations 

𝑖 Index of vehicle formations, ∀𝑖 ∈ ℐ 

𝑇 Time horizon [0, 𝑇] 
𝑡 Time index, ∀𝑡 ∈ 𝑇 

𝑤 Unit time waiting cost per passenger 

𝛼 Unitless parameter,𝛼 ≤ 1 

Decision variables  

𝐷(𝑡) Cumulative departure up to 𝑡, ∀𝑡 ∈ [0, 𝑇] 
𝑑𝑘 Number of passengers boarding at dispatch 𝑘, ∀𝑘 ∈ 𝒦 

𝑖𝑘 Formation of vehicle for dispatch 𝑘, ∀𝑘 ∈ 𝒦 

𝐾 Number of dispatches 

𝒦 ≔ [1,2, ⋯ , 𝐾] Set of dispatch indexes 

𝑡𝑘 Time for dispatch 𝑘, ∀𝑘 ∈ 𝒦 

 

1. Introduction  

Temporal demand fluctuations have been observed in urban mass transit systems (UMTS) in many big cities (e.g. 

Beijing, Los Angeles, and Paris), where passenger arrival rates during peak hours are much more intensive than those 

during off-peak hours. Such time-variant demand patterns considerably lower UMTS’s service quality because of 

excessive waiting time and overcrowded vehicles during oversaturated periods. For instance, the passenger load in 

Shenzhen Metro System (http://www.szmc.net/) is usually over 100% during peak hours, so passengers cannot board 

on a full train and have to wait for another. On the other hand, the demand fluctuations lead to a noticeable energy 

waste due to a mismatch between the vehicle capacity and passenger load. In many existing systems, the length of a 

vehicle is designed to just meet the average peak demand over an hour or more, and its operation may be quite rigid 

to adapt to off-peak periods. With this design, many seats will be empty during off-peak hours, and much energy is 

just wasted in hauling vehicle units with low occupancy. For example, the Shenzhen Subway System consumed 7.43 

billion kWh electricity in 2016, 88% of which was attributed to hauling train units with passenger loads less than 20% 

(Jian, 2017).  

 
Fig. 1: (a) Autonomous rail rapid transits (source: https://designmuseum.org/) and (b) Modular autonomous vehicles (source: http://www.next-

future-mobility.com/). 

 

https://designmuseum.org/
http://www.next-future-mobility.com/
http://www.next-future-mobility.com/
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This observation actually reveals an opportunity for significantly reducing UMTS energy consumption as well as 

improving the service quality by integrating vehicle scheduling with time-varying capacity design. Indeed, various 

advanced transportation technologies inspired by this concept have been proposed and tested recently. As is illustrated 

in Fig. 1(a), pilot experiments on autonomous rail rapid transit with adjustable train lengths are going on in Zhuzhou, 

China (Lambert, 2017) and flexible grouped electric multiple units (EMU) have been tested in China in 2017 (Rail, 

2017). Moreover, modular autonomous vehicles featured with time-varying vehicle capacity (Fig. 1(b)) designed by 

the Next Future Transportation Inc. are being tested in Dubai (Tarek, 2018) and Singapore (Ackerman, 2016). In these 

emerging technologies, a modular vehicle is composed of multiple identical modules (or units) that can be dissembled 

and assembled dynamically either on standard city roads or terminals. Thus, ideal operations shall be able to not only 

adjust vehicle dispatch headways but also design different vehicle lengths (or capacities) across different dispatches 

to accommodate time-varying travel demand with minimum energy. 

Indeed, increasing research efforts have been seen in recent years to improve the service quality and (or) reduce 

the energy consumption of UMTS’s through demand-driven transit scheduling or timetable design (Yin et al., 2017) 

but only a handful of them has considered the option of time-varying vehicle capacity (e.g. Albrecht, 2009; Hassold 

and Ceder, 2012; Hassold and Ceder, 2014; Guo et al., 2014). One approach to solving the transit scheduling problem 

is discrete modeling, which usually builds models with a discretised time representation and then numerically solves 

the models (Lin and Kwan, 2016; Niu and Zhou, 2013; Niu et al., 2015; Wang et al., 2015; Xu et al, 2017). Although 

the discrete models can yield exact solutions, it still takes enormous computational efforts to solve them to optimality 

even with advanced solution algorithms (Niu and Zhou, 2013; Sun et al., 2014; Zhou and Teng, 2016), which hinders 

their applications in large-scale instances in the real world. Further, the discrete models cannot provide analytical 

results on how different demand levels affect the dispatch policy in an UMTS system, which may hinder our 

understanding of the problem properties and managerial insights (Anasari et al., 2017). See the Chen et al. (2018) for 

a comprehensive review on this topic. 

The other modeling approach, as the focus of this paper, is the classical continuum approximation (CA) model 

proposed by Newell (1971) for the first time to design the optimal dispatch headways for a transportation route with 

unsaturated traffic. Later, the CA approach has been extended to consider more realistic constraints, e.g. round-trip 

constraints and fleet size (Salzborn, 1972; Hurdle, 1973a; Hurdle, 1973b), capacitated vehicles (Sheffi and Sugiyama, 

M., 1982), bus bunching (Barnett and Kleitman, 1973; Newell, 1974; Daganzo, 2009), multiple periods (Chang and  

Schonfeld, 1991), transit line spacing (Hurdle, 1973c), interchange (Salzborn, 1980), many-to-many time-varying 

demand (Wirasinghe, 1990), skip-stop operations (Freyss et al., 2013), etc. Recent studies have applied the CA models 

to more complicated transit network design problems where the dispatch headway serves as a decision variable 

(Daganzo, 2010; Estrada et al., 2011; Ouyang et al., 2014; Chen et al., 2015; Fan et al., 2018). See Anasari et al. (2017) 

for a recent review on the CA methods. Despite these abundant advancements in CA methods, few of them can be 

directly applied to the investigated problem in this study.  

The first challenge is the consideration of oversaturated traffic. One fundamental property for CA to be applicable 

is that decisions in a local time or space neighborhood have relatively minor impacts on other neighborhoods and the 

impact deteriorates over the distance. This way, the problem can be approximately decomposed across all 

neighborhoods and CA can easily solve each neighborhood’s decisions with homogenous approximation. This “local-

impact” property, however, is not satisfied in the investigated UMTS problem due to oversaturated traffic. Under 

oversaturated traffic, passengers may not be able to all board the first vehicle reaching their station at its departure 

time, and thus the passenger queue is built up when this happens. The queuing mechanism actually couples decisions 

in relatively distant (time) neighborhoods since the current dispatch decision may significantly affect the queuing state 

and thus the corresponding dispatch decision in a relatively distant future. For example, at time 0, the queue length is 

100 after a dispatch of a vehicle of capacity 50, and the arrival rate is the same as the departure capacity in the following 

few hours. Then the decision of dispatching this vehicle at time 0 will result in a persistent queue of size 100 throughout 

these few hours, which will cut into the waiting costs not only at time 0 but also for the rest of the few hours. However, 

if we change the decision of the dispatch at time 0 to a larger vehicle of capacity 100, then the queue length for the 

remaining few hours will be reduced to 50, which consequentially reduces the waiting cost by a half even in 

neighborhoods hours away. With this example, we know that the investigated problem does not satisfy the local impact 

premise and thus, the classic CA methods are not applicable to it.  

Though has been rarely investigated under the CA framework, time-dependent queue behavior under 

oversaturation circumstances of different queuing systems (e.g., intersections, transits, airlines) has been extensively 
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discussed in the seminal work of queueing theory by Newell (1982). Related discussion can also be found in Daganzo 

(1997). Approximate formulas for performance measures in queueing systems are derived in this book, which can be 

applied to analyzing any queuing systems (possibly with certain mathematical tricks). Particularly, the deterministic 

approximation to the total oversaturation delay in Newell’s book (see Equation 2.8 in Page 16) is highly related to the 

investigated problem. Yet to apply this equation to the investigated problem, two problems need to be addressed. First, 

the approximation is achieved based on the assumption that the cumulative departure curve is rather close to the 

cumulative arrival curve during oversaturation periods, which might not be true in a heavily congested transit system. 

Taking a step back, even if this assumption holds, optimization is still needed to determine the optimal service rate in 

this equation. Since constant continuous departure rates is considered to derive this equation, delays only appear when 

the system is oversaturated. Therefore, one can easily tell from this equation that the largest service rate should be 

selected to minimize the (oversaturation) delay in the system. Note that this might not be true if operation cost is taken 

into cost. Nevertheless, in the investigated problem, passengers are served in batches, which brings passenger delays 

even when the system is in unsaturated periods. Further, instead of loss time from switching approaches that is almost 

independent of intersection capacity, the investigated problem also considers vehicle dispatching cost that is mainly 

comprised of energy consumption depending on the length (or capacity) of the dispatched vehicle. Thus, we have to 

incorporate the unsaturation delay and operation cost to Newell’s approximate equation to obtain the objective 

function for optimization, to solve which is akin to solve the original problem. Nevertheless, the analysis methods 

presented in these books, i.e. cumulative plots and fluid approximations, lay a methodological foundation to analyzing 

the oversaturated queuing behavior in this paper. 

In addition to oversaturated traffic, the second challenge in the investigated study is the consideration of time-

varying (or variable) vehicle capacity since a vehicle can be assembled with different numbers of modular vehicle 

units. This will make the vehicle dispatch cost a variable related to the capacities of vehicle dispatched. As far as the 

authors’ knowledge, no CA study has considered such time-varying vehicle capacity and the associated energy cost 

implications in the vehicle scheduling context. Thus, there still lacks a methodology that can efficiently solve the joint 

design problem in real-world settings or offer simple analytical insights into the fundamental problem structure. 

To bridge these methodological gaps, this paper proposes a CA model for the joint design of dispatch headway and 

capacity for a one-to-one shuttle system under oversaturated traffic, which has been frequently observed in real UMTS 

traffic (Niu and Zhou, 2013). The major challenge of this problem is to deal with a series of passenger queue variables 

across all time points, and each queue variable has a large feasible region that is unbounded as the time elapses due to 

the consideration of oversaturated demand. The oversaturated traffic even invalidates the fundamental CA premise 

that local decisions mainly have impacts on the corresponding local neighborhoods. Plus, the multiple capacity options 

of a dispatch further complicate the dynamics of the queue variables. As a result, this problem is computationally 

intractable in its original form. To overcome these challenges, we introduce a virtual arrival demand curve at the 

origin station to decompose the oversaturated traffic into a constant term and a revised problem where the arrival 

demand is always unsaturated throughout the operational horizon. Due to the removal of the excessive queue, the 

revised unsaturated problem regains the local-impact property enabling the CA concept and thus can be approximately 

analytically solved across all neighborhoods independently with the CA framework. This also indicates that the 

computational complexity of the CA model is only linear to the number of the time discretization intervals. In addition 

to solution efficiency, we have verified that the obtained analytical solutions can produce highly accurate near-

optimum designs to the original problem. Overall, this paper makes contributions to the literature from the following 

three aspects:  

(i) We for the first time formulate the joint design problem into a CA model that presents a macroscopic view of 

the system and yields simple analytical rules into the optimal design. These analytical results will enable efficient 

solution methods for relevant large-scale transportation problems and offer managerial insights to system operators.  

(ii) We prove some elegant theoretical properties of the investigated problem, which show that the original problem 

can actually be solved by just solving its corresponding revised unsaturated problem. With this, the proposed CA 

model extends the CA methodology literature from traditional transit dispatching problem with unsaturated traffic to 

the joint design of dispatch headway and vehicle capacity considering oversaturated traffic, adjustable vehicle 

capacities and other factors (e.g., minimum dispatch headway).  

(iii) Two sets of numerical experiments using real-world data are conducted to verify the validity and efficiency of 

the proposed solution method and theoretical properties. Results show that the proposed CA model can produce highly 

accurate near-optimum solutions in almost no time (compared with the exact solutions obtained in Chen et al. (2018)). 

These results also verify the correctness of the proposed theoretical properties.  
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Overall, this study advances our knowledge in fundamental mechanisms and critical matters in UMTS operations, 

creates new opportunities in improving existing engineering practices by incorporating time-varying capacity, and 

provides both numerical and analytical tools for solving realistic problem instances. We want to note that this paper 

only focuses on the continuous modeling method. To obtain exact solutions (as well as evaluating the performance of 

the CA method in both optimality and efficiency), we investigate alternative discrete models with microscopic discrete 

inputs and propose a customized dynamic programming algorithm that can efficiently solve the problem instances in 

moderate sizes in Chen et al. (2018). 

The remainder of this article is organized as follows. Section 2 introduces the studied joint design problem. 

Section 3 investigates theoretical properties of the joint design problem. Based on the theoretical properties, Section 

4 presents the CA model and the analytical solution approach. Section 5 demonstrates the validity of the proposed CA 

model and tests its efficiency and the related theoretical properties with two sets of numerical experiments. Finally, 

Section 6 concludes the paper and briefly discusses the future research topics. 

2. Problem statement 

This study considers a UMTS shuttle system (e.g. subways, bus rapid transits, autonomous rail transits, modular 

autonomous vehicles) with one origin and one destination over an operational time horizon [0, 𝑇]. The time-varying 

daily passenger demand at the origin is described as a cumulative arrival demand curve 𝐴(𝑡), ∀𝑡 ∈ [0, 𝑇] as shown in 

Fig. 2, and thus the arrival demand rate at 𝑡 ∈ [0, 𝑇] is 𝑎(𝑡) ≔ 𝐴′(𝑡). A group of vehicles in different formations ℐ: =
[1,2, ⋯ , 𝐼], indexed by 𝑖 ∈ ℐ, can be dispatched at the terminal. Each vehicle formation 𝑖 ∈ ℐ has 𝑖 identical vehicle 

units and therefore a capacity of 𝑖𝑐, where 𝑐 is the capacity of a vehicle unit. To serve the passenger demand, a number 

of 𝐾 vehicles are dispatched at the origin and head to the destination over the operational horizon, and we index these 

dispatches as 𝒦 ≔ [1,2, ⋯ , 𝐾] where the index increases with the dispatch time. Following Newell (1971), we assume 

that the availability of vehicles at the origin is independent of when previous vehicles have been dispatched. Therefore, 

the fleet size at the depot is always sufficient so that there are always some vehicles available in each formation for 

dispatching at the origin. Please note that the fleet size (i.e., the number of vehicle units) can be determined after 

solving the investigated operational problem. Therefore, in the planning stage, we can just procure vehicles according 

to this fleet size (which could be further multiplied by a certain factor for reliability). Since the fleet planning problem 

is a separate problem in this investigated context, we will focus on vehicle operations assuming that a sufficient 

number of vehicles are provided. Due to limited resources and operational safety, we assume that the minimum 

headway between every two consecutive dispatches is ℎ. These dispatches result in a cumulative departure curve from 

the origin, denoted by 𝐷(𝑡), ∀𝑡 ∈ [0, 𝑇]. The vehicle formation and dispatch time of each dispatch 𝑘 ∈ 𝒦 are denoted 

by 𝑖𝑘 and 𝑡𝑘, respectively. For the convenience of notation, define 𝑡0 ≔ 0 and 𝑡𝐾+1 = 𝑇.  

Fig. 2: Cumulative passenger counts 

Note that since vehicles are only dispatched at discrete time points separated by a minimum interval of ℎ while 

passengers arrive continuously, passengers need to wait before boarding a vehicle. Following previous studies (Niu 

and Zhou, 2013; Yin et al., 2017), this study adopts the total passenger waiting cost to measure the service quality of 

a UMTS. Note that in Fig. 2, the time separation between 𝐴(𝑡) and 𝐷(𝑡) for the same passenger cumulative count 

denotes the waiting time for this passenger, and thus the total passenger waiting time is just the shaded area between 

𝐴(𝑡) and 𝐷(𝑡). We assume that each passenger has an identical unit-time waiting cost 𝑤, and thus the passenger 

waiting cost is the product of the shaded area in Fig. 2 and 𝑤. 
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Besides the customer waiting cost, the other cost component this study considers is the energy cost (including the 

traction energy and auxiliary energy) (Huang et al., 2017) consumed by each vehicle from the origin to the destination. 

The investigated problem only considers the portion of energy associated with a vehicle’s mass but not that associated 

with the number of passengers on board. This is because, first, the energy consumption is actually mainly determined 

by vehicle mass but not much affected by passengers on board (Zhao et al., 2017). Second, the total transported 

passengers (i.e., 𝐴(𝑇)) in this problem is independent of the vehicle dispatching schedule, and thus the associated 

energy consumption shall not be affected by the dispatch decisions and can be removed from the optimization. 

Therefore, since the vehicle mass is determined by the vehicle capacity (or the number of vehicle units), we denote 

the energy cost of a vehicle in formation 𝑖 as 𝑓𝑖 > 0 and assume it is concave over 𝑖 to account for the economies of 

scale Cohen and Moon (1991) and Holmberg and Tuy (1999), i.e., 

𝜆𝑓𝑖 + (1 − 𝜆)𝑓𝑗 ≤ 𝑓𝑘, ∀𝑖, 𝑗, 𝑘 ≔ 𝜆𝑖 + (1 − 𝜆)𝑗 ∈ ℐ ∪ {0}, 𝜆 ∈ [0,1], (1) 

where 𝑓0 ≔ 0. One common example is that 𝑓𝑖 = 𝐶𝐹 + 𝐶𝑉(𝑖)𝛼 , ∀𝑖 ∈ ℐ. In this function, the first term 𝐶𝐹 is the fixed 

energy cost regardless of the vehicle capacity (or the number of vehicle units), which accounts for, e.g., the locomotive 

cost and some auxiliary energy consumption. The second term refers to the variable energy cost attributable to the 

number of vehicle units. We just use a simple function 𝐶𝑉(𝑖)𝛼 for the variable energy cost, with 𝐶𝑉 being a positive 

coefficient (to account for a single unit cost) and power index 𝛼 ≤ 1. Note that this study primarily focuses on an 

operational problem in UMTS systems while fleet size design is more of a planning level problem. Further, as long as 

a sufficient number of vehicles are available for operations, the fleet cost, albeit considerable, does not much affect 

operational decisions. As pointed out in Hurdle (1973a), in a unidirectional shuttle system where vehicles make only 

one-way trips, it is legitimate to use a model with only two costs, for passenger waiting time and for vehicle operation. 

Thus, we do not consider the cost of owning the fleet in this paper. Also, this assumption is not restrictive since other 

cost components related to vehicle dispatch, e.g., capital costs for vehicles, driver costs, crew salaries and vehicle 

reconfiguration costs, can be easily incorporated into the general cost structure (1) without changing the problem 

structure. Therefore, for the simplicity of modeling, the investigated problem only considers the energy consumption. 

The objective of the joint design problem, then, is to find an optimal arrangement on both the formations of 

vehicles dispatched, i.e. 𝑖𝑘, and the corresponding dispatch times, i.e. 𝑡𝑘, ∀𝑘 ∈ 𝒦 during [0, 𝑇]. Note that along with 

𝑖𝑘  and 𝑡𝑘 , ∀𝑘 ∈ 𝒦 , the number of dispatches 𝐾 and cumulative departure curve 𝐷(𝑡), ∀𝑡 ∈ [0, 𝑇], which are also 

decision variables, will be determined. This optimal arrangement aims to achieve the best trade-off between the vehicle 

energy cost and the passenger waiting cost. The significance of such a trade-off has been well explained in Yin et al. 

(2017). Moreover, to capture the time-variant passenger process, we denote the vehicle load, i.e., the number of 

passengers boarding at dispatch 𝑘 as 𝑑𝑘, ∀𝑘 ∈ 𝒦. With these decision variables, we can now formulate the objective 

function as  

min
𝐾,[𝑡𝑘,𝑖𝑘,𝑑𝑘,∀𝑘∈𝒦],{𝐷(𝑡),∀𝑡∈[0,𝑇]}

∑ 𝑓𝑖𝑘

𝑘∈𝒦

+ 𝑤 ∫ (𝐴(𝑡) − 𝐷(𝑡))𝑑𝑡
𝑇

0

. 
(2) 

This objective function aims to search for the optimal formation of vehicle and time for each dispatch such that the 

sum of the energy cost and the waiting cost across the operational horizon can be minimized. In addition, to describe 

the dynamic operation of a UMTS, we consider four groups of constraints as follows. 

(i) Minimum headway requirement. These constraints are imposed to ensure the least time separation between two 

consecutive vehicles due to the safety consideration. 

𝑡𝑘 − 𝑡𝑘−1 ≥ ℎ, ∀𝑘 ∈ 𝒦\{1}. (3) 

(ii) Determination of the vehicle load 𝑑𝑘, ∀𝑘 ∈ 𝒦 , which is the minimum among the difference between the 

cumulative arrival demand at 𝑘 and cumulative departure at dispatch 𝑘 − 1 and the capacity of the vehicle dispatched 

at 𝑘. 

𝑑𝑘 = min{𝐴(𝑡𝑘) − 𝐷(𝑡𝑘−1), 𝑖𝑘𝑐} , ∀𝑘 ∈ 𝒦. (4) 

(iii) Departure curve conservation. These constraints are imposed to describe the passenger departure dynamics. 

Constraint (5) is the initialization condition while Constraints (6) describe the departure conservation process. 

Constraint (7) ensures that all passengers are transported at the end of the given operational horizon. Note that based 

on Constraint (7), to ensure the feasibility of the investigated problem, the arrival demand pattern in the shuttle system 

must satisfy 
𝐴(𝑇)

𝑇
<

𝑐𝐼

ℎ
. Otherwise passengers cannot be cleared at 𝑇 even if the maximum transportation capacity is 

used.  
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𝐷(0) = 0, (5) 

𝐷(𝑡) = {
𝐷(𝑡𝑘−1) + 𝑑𝑘, ∀ 𝑡 = 𝑡𝑘, 𝑘 ∈ 𝒦       ;

 𝐷(𝑡𝑘), ∀𝑡 ∈ (𝑡𝑘, 𝑡𝑘+1), 𝑘 ∈ 𝒦 ∪ {0},
 

(6) 

𝐷(𝑡𝐾) = 𝐴(𝑇). (7) 

 (iv) Feasible regions. These constraints define the domains of 𝐾, 𝑡𝑘 and 𝑖𝑘, respectively. 

𝐾 ∈ ℤ+; 𝑡𝑘 ∈ [0, 𝑇], ∀𝑘 ∈ 𝒦; 𝑖𝑘 ∈ ℐ, ∀𝑘 ∈ 𝒦 (8) 

Before further analyzing the investigated problem, we use an illustrative example to highlight the significance of 

incorporating time-varying vehicle capacity design into transit scheduling. We consider an operational horizon with a 

cumulative arrival curve 𝐴(𝑡) as Fig. 3 shows. Two formations of vehicles denoted as ℐ ≔ [1,2] can be dispatched at 

the terminal with 𝑐 = 5 passengers/vehicle unit. The cost-related parameters are set as follows: 𝑤 = 1, 𝑓1 = 4, 𝑓2 = 7. 

If time-varying capacity design is not allowed; i.e., only vehicles in formation 2 (i.e., consisting of 2 units) can be 

dispatched, then the optimal solution is to dispatch a vehicle in formation 2 at times 2, 3 and 4 respectively, as the blue 

dotted line in Fig. 3 shows. This results in a total waiting cost of 20.5 and a total energy cost of 21. However, with 

time-varying capacity design, the optimal solution is to dispatch a vehicle in formation 1 (i.e., consisting of 1 unit) at 

times 1, 2, 4 and a vehicle in formation 2 at time 3. This solution is represented as the red dashed line in Fig. 3 shows. 

This strategy results in a total waiting cost of 15.5 and a total energy cost of 19. Thus, time-varying capacity design 

reduces both the total energy cost and the total waiting cost in the shuttle system. 

 
Fig. 3: An illustrative example 

 

 

3. Theoretical property analysis 

This section investigates some theoretical properties of the optimal solution to the above-defined problem, which 

will serve as the cornerstone for developing efficient algorithms in the following sections.  

3.1. Review of Newell’s CA model 

We first review Newell’s classical CA model to illustrate the necessity to explore the theoretical properties of the 

investigated problem. Note that only unsaturated traffic is considered in Newell’s CA model. Because in unsaturated 

traffic, passengers waiting at the station can be cleared at each dispatch, their waiting cost can be formulated as  

𝑤 ∫ (𝐴(𝑡) − 𝐷(𝑡))𝑑𝑡
𝑇

0

= ∑
1

2
𝑤(𝑡𝑘 − 𝑡𝑘−1)2𝑎(𝑡′)

𝑘∈𝒦

, 

where 𝑡′ ∈ [𝑡𝑘−1, 𝑡𝑘) . Replacing (𝑡𝑘 − 𝑡𝑘−1)  with a continuous function ℎ(𝑡)  and 𝑎(𝑡′)  with 𝑎(𝑡) , respectively, 

Newell approximated the waiting cost as 

𝑤 ∫ (𝐴(𝑡) − 𝐷(𝑡))𝑑𝑡
𝑇

0

≈ ∑ ∫
𝑤ℎ(𝑡)𝑎(𝑡)

2

𝑡𝑘

𝑡𝑘−1

𝑑𝑡

𝑘∈𝒦

. 
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However, this approximation formulation does not apply to cases where oversaturated traffic is present. Since the 

arrival demand is greater than the maximum vehicle capacity when the system is oversaturated, there might be 

passengers left behind after a dispatch, which changes the exact formulation of the passenger waiting cost. Consider 

the simplest situation with a linear 𝐴(𝑡) as Error! Reference source not found. shows. With the abovementioned 

formulation, the red shaded area that is related to the queued passengers (or oversaturated traffic) after each dispatch 

is completely omitted. Indeed, to formulate the waiting cost, we have to introduce a new variable 𝑞𝑘 to capture the 

number of passengers left in the queue after the 𝑘-th dispatch as follows:  

𝑤 ∫ (𝐴(𝑡) − 𝐷(𝑡))𝑑𝑡
𝑇

0

= ∑ (
1

2
(𝑡𝑘 − 𝑡𝑘−1)2𝑎(𝑡′) + 𝑞𝑘(𝑡𝑘 − 𝑡𝑘−1))

𝑘∈𝒦\{1}

. 

An approximation to the first term in this formulation can be easily obtained from the classical CA model. Nonetheless, 

the second term is much more difficult to approximate since variable 𝑞𝑘 actually couples decisions in relatively distant 

time neighborhoods. More specifically, the current queuing state 𝑞𝑘 may affect future queuing states {𝑞𝑘′ , ∀𝑘′ > 𝑘} 

and the more significant the oversaturated traffic, the stronger and more long-lasting this effect is. This breaks the 

very fundamental premise of CA: decisions in a local neighborhood do not much affect other distant neighborhoods, 

or the effect of local decisions attenuates across distance. Thus, the oversaturated traffic poses a great challenge to 

formulating the investigated problem into the CA model. 

 
Fig. 4: An illustrative example with linear demand. 

       As mentioned previously, the consideration of time-varying vehicle capacity also challenges a direct application 

of the classical CA framework. As can be seen from the above formulation, the passenger waiting cost in Newell’s 

CA model is not dependent on the vehicle capacity since passengers are cleared at each dispatch. However, this does 

not work when multiple vehicle formations are considered. Obviously, the amount of passengers left behind the station 

and thus the passenger waiting costs are different if vehicles with different capacities are dispatched. Further, in 

Newell’s model, the vehicle dispatch cost is a given input parameter rather than a decision variable as in the 

investigated problem. Thus, it cannot be used to search for the optimal formations of the vehicle at each dispatch.    

3.2. Theoretical property analysis 

This subsection analyzes the theoretical properties to the investigated problems. The proofs of the following 

lemmas and theorems are available in Appendix A. .  

Lemma 1. For 𝑓𝑖 satisfying concave property (1), we obtain  𝑓𝑖1
+ 𝑓𝑖2

+ ⋯ + 𝑓𝑖𝑛
≥ 𝑓𝑖1+𝑖2+⋯+𝑖𝑛

, ∀ 𝑖1, 𝑖2, ⋯ , 𝑖𝑛, 𝑖1 +

𝑖2 + ⋯ + 𝑖𝑛 ∈ ℐ, 𝑛 ∈ ℤ+.  

Lemma 2. For 𝑓𝑖  satisfying concave property (1), we obtain 𝑓𝑖1
+ 𝑓𝑖4

≤ 𝑓𝑖2
+ 𝑓𝑖3

, ∀𝑖1 ≤ 𝑖2 ≤ 𝑖3 ≤ 𝑖4 ∈ ℐ  and 𝑖2 +

𝑖3 = 𝑖1 + 𝑖4. 

With this, we will specify some optimal solution properties in the following theorems. 

Theorem 1. In an optimal dispatch solution {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦 to problem (2) ~ (8) with arrival curve 𝐴(𝑡) and departure 

curve 𝐷(𝑡), if 𝐴(𝑡𝑘) − 𝐷(𝑡𝑘−1) ≥ 𝐼𝑐, then 𝑖𝑘 = 𝐼, ∀𝑘 ∈ 𝒦. 
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Theorem 2. In an optimal dispatch solution {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦 to problem (2) ~ (8) with arrival curve 𝐴(𝑡) and departure 

curve 𝐷(𝑡), if 𝐴(𝑡𝑘) − 𝐷(𝑡𝑘−1) > 𝐼𝑐, then 𝑡𝑘 − 𝑡𝑘−1 = ℎ, ∀𝑘 ∈ 𝒦. 

Theorems 1 and 2 indicate that in an optimal solution, the best policy is always to dispatch vehicles in formation 𝐼 

with ℎ when the number of passengers who want to board is greater than the longest vehicle’s capacity. Note that 

these findings are well aligned with those in Newell (1982) and Daganzo (1997) that the maximum service rate shall 

be applied to serve a system under oversaturation. To more rigorously analyze this, for any given arrival curve 𝐴(𝑡), 
we define the oversaturated and unsaturated periods as follows.  

Definition 1. For a given arrival curve 𝐴(𝑡), the oversaturated period set denoted as  𝒯𝑆  ≔ {𝑡|𝑡 ∈ [𝒪(𝑧), ℰ(𝑧)), ∀𝑧 ∈

[1, |𝒪|] } and the unsaturated period set as 𝒯𝑈 ≔ [0, 𝑇]\ 𝒯𝑆 , where 𝒪(z) is the starting moment and ℰ(z) the ending 

moment of the 𝑧-th oversaturated period, respectively. 𝒪 and ℰ are obtained with Algorithm 1.  

Algorithm 1. Oversaturation Detection with Continuous Inputs  

    Input: 𝑇;  𝐼; 𝑐;  ℎ; 𝑎(𝑡), 𝐴(𝑡), ∀𝑡 ∈ [0, 𝑇] 

1. 𝒪 ← ∅ 

2. ℰ ← ∅ 

3. 𝑆𝑆𝑃 ← 0  

4. 𝑧 ← 0 

5. while 𝑧 = |𝒪| 

6.           𝑧 ← 𝑧 + 1 

7.           𝒪(𝑧) ← arginf
𝑡∈(𝑆𝑆𝑃,𝑇]

(∫ 𝑎(𝑡)
𝑡

max{𝑡−ℎ,0}
𝑑𝑡 > 𝐼𝑐) 

8.           ℰ(𝑧) ← arginf
𝑡∈(𝒪(𝑧),𝑇]

(
𝐴(𝑡)−𝐴(𝒪(𝑧)) 

𝑡−𝒪(𝑧)
≤

𝐼𝑐

ℎ
) 

9.           𝑆𝑆𝑃 ← ℰ(𝑧) 

10. end while 

  Output: 𝒪; ℰ 

Note that 𝑇 ∈ 𝒯𝑈 since no feasible solution will otherwise exist satisfying constraints (7). Further, since unsaturated 

and oversaturated periods appear in an alternating pattern, thus for simplicity, we can list the unsaturated periods as 

𝒯𝑈 = {[ℰ(0), 𝒪(1)), [ℰ(1), 𝒪(2)), ⋯ , [ℰ(|𝒪|), 𝒪(|𝒪| + 1)]}  where ℰ(0) = 0  and 𝒪(|𝒪| + 1) = 𝑇 . With this 

definition, we see that the starting moment of an oversaturated period, 𝒪(𝑧) , is the first 𝑡 ∈ [0, 𝑇]  during an 

unsaturated period when the cumulative arrival demand from max {𝑡 − ℎ, 0} to 𝑡 is identical to 𝐼𝑐. Further, the ending 

moment of an oversaturated period, ℰ(𝑧), is characterized as the first 𝑡 ∈ [0, 𝑇] when the queue that starts at 𝒪(𝑧) 

vanishes. With this definition, Theorems 1 and 2 imply that for any dispatch within an oversaturated period, a vehicle 

in formation 𝐼 is dispatched with headway ℎ. Following the way Newell (1982) and Daganzo (1997) decomposed the 

oversaturated delay from unsaturated delay by drawing a straight line with an even service rate, we can revise arrival 

curve 𝐴(𝑡) in the following way to simplify the problem. 

Definition 2. For a given arrival curve 𝐴(𝑡) at the origin station, the corresponding virtual arrival demand curve is 

defined as  

𝐵(𝑡) ≔ {

𝐴(𝑡) 𝑡 ∈ 𝒯𝑈

𝐼𝑐

ℎ
(𝑡 − 𝒪(𝑧)) + 𝐴(𝒪(𝑧)) 𝑡 ∈ [𝒪(𝑧), ℰ(𝑧)), ∀𝑧 ∈ [1, |𝒪|]

 

and thus the virtual arrival demand rate 𝐵′(𝑡) ≤ 𝐼𝑐/ℎ, ∀𝑡 ∈ [0, 𝑇] (the right derivative is used at points that are not 

differentiable). Obviously, 𝐴(𝑡) ≥ 𝐵(𝑡), ∀𝑡 ∈ [0, 𝑇]. This is illustrated as the red dashed curve in Fig. 5. 

Lemma 3. Denote problem (2) ~ (8) as the original problem (OP), and the same problem where the original arrival 

curve 𝐴(𝑡) is replaced with virtual arrival curve 𝐵(𝑡) as the revised unsaturated problem (RUP). Then the feasible 

regions of the OP and RUP are the same. For any feasible solution 𝐬 ≔ {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦, OP and RUP have the same 

dispatch curve, and the objective values of OP and RUP, respectively denoted as 𝑂𝑃(𝐬) and 𝑅𝑈𝑃(𝐬), are always 

separated by a constant difference: 

Fig. 5: Oversaturated and unsaturated periods 
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𝑂𝑃(𝐬) − 𝑅𝑈𝑃(𝐬) = 𝑊(𝐴) ≔ 𝑤 ∫ (𝐴(𝑡) − 𝐵(𝑡))
𝑇

0

𝑑𝑡. 

Lemma 3 directly leads to the following result.  

Theorem 3. Problems OP and RUP have the same optimal solution(s). For an optimal solution 𝐬 to both problems, 

𝑂𝑃(𝐬) − 𝑅𝑈𝑃(𝐬) = 𝑊(𝐴). 

Theorem 3 implies that instead of solving OP, we can just solve RUP with virtual arrival curve 𝐵(𝑡). Note that RUP 

has constantly unsaturated arrival demands since 𝐵′(𝑡) ≤
𝐼𝑐

ℎ
, ∀𝑡 ∈ [0, 𝑇] , which can dramatically reduce the 

complexity of the investigated problem. Further, note that oversaturated arrival demand 𝐴(𝑡)  always leads to 

oversaturated waiting cost 𝑊(𝐴). This also sheds light on the demand management side, e.g., managing the arrival 

demand to approach the unsaturated pattern 𝐵(𝑡) (which explains why we call 𝐵(𝑡) the virtual arrival curve), which 

however is out of this paper’s scope. Actually, since 𝐵(𝑡) is unsaturated throughout the time horizon, the theorem 

below shows that the corresponding optimal departure curve 𝐷(𝑡) is not far separated from 𝐵(𝑡). 

Theorem 4. An optimal dispatch solution {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦 to RUP satisfies: (i) if 𝑡𝑘 − 𝑡𝑘−1 > ℎ, then 𝐵(𝑡𝑘) − 𝐷(𝑡𝑘) =

0, ∀𝑘 ∈ 𝒦   and (ii) if 𝑡𝑘 − 𝑡𝑘−1 = ℎ , then 𝐵(𝑡𝑘) − 𝐷(𝑡𝑘) ∈ [0, 𝑐), ∀𝑘 ∈ 𝒦 , where 𝐷(𝑡)  is the corresponding 

departure curve. 

Interestingly, the property of having minimum queue at every dispatch (which approaches to 0 as 𝑐 → 0) echoes the 

finding in Newell (2002) that the queue in the major approach needs to be always cleared before changing the signal. 

This alludes to certain structural connection between these two seemingly unrelated problems that is worth future 

investigation. These elegant properties simplify the problem structure and largely reduce the domain where an optimal 

solution may appear for OP. They will be used to decompose the problem in the CA model in the following section.  

4. Continuum approximation 

This section presents a CA model that aims to shed macroscopic analytical insights and tackle large-scale 

problems. A CA approach can approximate a local neighborhood in the searching space with a continuous function 

whose parameters are homogenous when properties of the searching space change slowly (Li et al., 2016). If the unit-

time or unit-area cost around this neighborhood is mainly determined by the settings in its vicinity but less dependent 

on distant neighborhoods, then the optimal solution to this separable continuous function can well approximate the 

optimal solution of this neighborhood. In our problem, the total cost in a neighborhood is largely determined by the 

vehicle capacity and the dispatch headway around this neighborhood and 𝐴′(𝑡) varies relatively smoothly in each 

neighborhood (e.g., with a time period comparable to the optimal dispatch headway). Thus, we can well approximate 

the original model with CA.  

4.1. Model formulation 

Theorem 3 shows that instead of solving OP, we can just solve RUP with virtual arrival curve 𝐵(𝑡) where only 

unsaturated traffic is present. Hence, we can formulate the CA model based on the RUP. 

Given an optimal solution 𝐬 ≔ {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦 to RUP with virtual cumulative arrival 𝐵(𝑡) and departure 𝐷(𝑡), we 

define the dispatch headway at time 𝑡 ∈ [0, 𝑇]  as ℎ̂(𝑡) ≔ 𝑡𝑘 − 𝑡𝑘−1, s. t. 𝑡 ∈ (𝑡𝑘−1𝑡𝑘], ∃𝑘 ∈ 𝒦  and the vehicle 

formation at time 𝑡 ∈ [0, 𝑇]  as 𝑖(𝑡) ≔ 𝑖𝑘, s. t. 𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘], ∃𝑘 ∈ 𝒦 . For the convenience of the notation, define 

ℎ̂(0) ≔ 𝑡1 − 𝑡0 and 𝑖(0) ≔ 1. Then, the optimal objective value of RUP can be formulated as  

𝑅𝑈𝑃(𝐬) = ∑ 𝑓𝑖𝑘

𝑘∈𝒦

+ 𝑤 ∫ (𝐵(𝑡) − 𝐷(𝑡))𝑑𝑡
𝑇

0

= ∫ (
𝑓𝑖(𝑡)

ℎ̂(𝑡)
+ 𝑤(𝐵(𝑡) − 𝐷(𝑡))) 𝑑𝑡

𝑇

0

, 
(9) 

s.t. (3) ~ (8) （where 𝐴(𝑡) is replaced with 𝐵(𝑡)）.  
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Fig. 6: Revised virtual arrival demand curve 

In order to approximate the OP, we revise the virtual arrival demand curve as 𝐵̃(𝑡) ≔ 𝐵(𝑡) − (𝐵(𝑡𝑘−1) −

𝐷(𝑡𝑘−1)), ∀𝑡 ∈ (𝑡𝑘−1, 𝑡𝑘], 𝑘 ∈ 𝒦 (see the dotted line in Fig. 6). Then we reformulate (9) as  

𝑅𝑈𝑃(𝐬) = ∫ (
𝑓𝑖(𝑡)

ℎ̂(𝑡)
+ 𝑤 (𝐵̃(𝑡) − 𝐷(𝑡))) 𝑑𝑡

𝑇

0

+  𝑤 ∫ (𝐵(𝑡) − 𝐵̃(𝑡)) 𝑑𝑡
𝑇

0

= ∑ ∫ (
𝑓𝑖(𝑡)

ℎ̂(𝑡)
+ 𝑤 (𝐵̃(𝑡) − 𝐷(𝑡))) 𝑑𝑡

𝑡𝑘

𝑡𝑘−1𝑘∈𝒦

+  𝑤 ∫ (𝐵(𝑡) − 𝐵̃(𝑡)) 𝑑𝑡
𝑇

0

. 

(10) 

From Theorem 4, we learn that 𝐵(𝑡) − 𝐵̃(𝑡) < 𝑐, ∀𝑡 ∈ [0, 𝑇] and thus ∫ (𝐵(𝑡) − 𝐵̃(𝑡)) 𝑑𝑡
𝑇

0
< 𝑐𝑇. Note that 𝑐𝑇 is a 

relatively small value compared with 𝑅𝑈𝑃(𝐬). Further, numerical experiments with exact solution methods show that 

𝐵(𝑡) − 𝐵̃(𝑡) is 0 at most of the time (see Section 5.1.2). Therefore, we can drop 𝑤 ∫ (𝐵(𝑡) − 𝐵̃(𝑡)) 𝑑𝑡
𝑇

0
 from (10) and 

obtain  

𝑅𝑈𝑃(𝐬) ≈ ∑ [∫ (
𝑓𝑖(𝑡)

ℎ̂(𝑡)
) 𝑑𝑡

𝑡𝑘

𝑡𝑘−1

+ 𝑤 ∫ ((𝐵̃(𝑡) − 𝐷(𝑡))) 𝑑𝑡
𝑡𝑘

𝑡𝑘−1

]

𝑘∈𝒦

. 
(11) 

Note that in a specific neighborhood [𝑡𝑘−1, 𝑡𝑘], 𝑘 ∈ 𝒦, 𝐵̃(𝑡) is a continuous function. With 𝐵̃′(𝑡) =
𝐵̃(𝑡)−𝐵̃(𝑡𝑘−1)

𝑡−𝑡𝑘−1
, ∀𝑡 ∈

[𝑡𝑘−1, 𝑡𝑘] , we have ∫ (𝐵̃(𝑡) − 𝐷(𝑡)) 𝑑𝑡
𝑡𝑘

𝑡𝑘−1
= ∫ (𝐵̃(𝑡) − 𝐵̃(𝑡𝑘−1)) 𝑑𝑡

𝑡𝑘

𝑡𝑘−1
= ∫ (𝑡 − 𝑡𝑘−1)𝐵̃′(𝑡)𝑑𝑡

𝑡𝑘

𝑡𝑘−1
=  ∫ (𝑡 −

𝑡𝑘

𝑡𝑘−1

𝑡𝑘−1)𝐵′(𝑡)𝑑𝑡, which yields 

𝑅𝑈𝑃(𝐬) ≈ ∑ [∫ (
𝑓𝑖(𝑡)

ℎ̂(𝑡)
) 𝑑𝑡

𝑡𝑘

𝑡𝑘−1

+ 𝑤𝐵′(𝑡) ∫ (𝑡 − 𝑡𝑘−1)𝑑𝑡
𝑡𝑘

𝑡𝑘−1

]

𝑘∈𝒦

 

≈ ∑ [∫ (
𝑓𝑖(𝑡)

ℎ̂(𝑡)
) 𝑑𝑡

𝑡𝑘

𝑡𝑘−1

+ 𝑤𝐵′(𝑡)
(𝑡𝑘 − 𝑡𝑘−1)2

2
]

𝑘∈𝒦

 

≈ ∑ [∫ (
𝑓𝑖(𝑡)

ℎ̂(𝑡)
) 𝑑𝑡

𝑡𝑘

𝑡𝑘−1

+ 𝑤𝐵′(𝑡) ∫ (
𝑡𝑘 − 𝑡𝑘−1

2
) 𝑑𝑡

𝑡𝑘

𝑡𝑘−1

]

𝑘∈𝒦

 

≈ ∫ (
𝑓𝑖(𝑡)

ℎ̂(𝑡)
+

𝑤𝐵′(𝑡)ℎ̂(𝑡)

2
) 𝑑𝑡

𝑇

0

. 

 

 

(12) 

Note that in Eq.  
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(12), 𝐵′(𝑡) can be pulled out of the integral since 𝐵′(𝑡) varies relatively slowly in each local time neighborhood so 

that we can regard it approximately as a constant. Also note that ℎ̂(𝑡) is essentially a step function, to solve which is 

akin to determining 𝑡𝑘, ∀𝑘 ∈ 𝒦 themselves. To simplify this, we approximate ℎ̂(𝑡) with a smooth function ℎ(𝑡) and 

then the RUP can be decomposed across the operational horizon as the following unit-time RUP 

min
ℎ(𝑡),𝑖(𝑡)∈ℐ

𝑐𝑡(𝑖(𝑡), ℎ(𝑡))  ≔
𝑓𝑖(𝑡)

ℎ(𝑡)
+

𝑤𝐵′(𝑡)ℎ(𝑡)

2
, ∀𝑡 ∈ [0, 𝑇]. 

(13) 

Further, based on Theorem 4 and the fact that 𝐵(𝑡) − 𝐵̃(𝑡) is 0 at most of the time, we can view that 𝐵(𝑡) − 𝐵̃(𝑡) = 0 

approximately holds ∀𝑡 ∈ [0, 𝑇] in the optimal solution(s). That is to say, the queue length reduces to 0 for almost all 

dispatches across the operational horizon in the optimal solution(s). With this, ℎ(𝑡) <
𝑖(𝑡)𝑐

𝐵′(𝑡)
  must approximately hold 

in the optimal solution(s) (and otherwise 𝐵(𝑡) − 𝐵̃(𝑡) = 0, ∀𝑡 ∈ [0, 𝑇] would be violated; i.e., the queue lengths after 

some dispatches are not 0), which together with (3) yields the following constraints 

ℎ ≤ ℎ(𝑡) <
𝑖(𝑡)𝑐

𝐵′(𝑡)
, ∀𝑖(𝑡) ∈ ℐ, 𝑡 ∈ [0, 𝑇]. 

(14) 

ℎ <
𝑖(𝑡)𝑐

𝐵′(𝑡)
, ∀𝑖(𝑡) ∈ ℐ, 𝑡 ∈ [0, 𝑇]. 

(15) 

Note that the above unit-time RUP at each time point 𝑡, i.e., (13), (14) and (15), has only two decision variables and 

three constraints so it is much simpler than both the original formulation and the discrete model. By solving the unit-

time RUP ∀𝑡 ∈ [0, 𝑇] , we can apply the optimal solution 𝑐∗(𝑡): = min
ℎ(𝑡),𝑖(𝑡)∈ℐ

𝑐𝑡(𝑖(𝑡), ℎ(𝑡))  to RUP to obtain the 

objective value of OP as 

𝑂𝑃(𝐬) ≈ 𝑅𝑈𝑃(𝐬) + 𝑊(𝐴) ≈ ∫ 𝑐∗(𝑡)𝑑𝑡
𝑇

0

+ 𝑊(𝐴). 
 (16) 

4.2. Analytical solution 

This section presents a closed-form analytical optimal solution to the proposed CA model. As mentioned in the 

previous section, the OP can be solved by solving the unit-time RUP across the operational horizon. Thus, the 

following analysis primarily focuses on the unit-time RUP.  

This solution approach for Problem (13) at each time 𝑡 ∈ [0, 𝑇] has two steps. The first step is to solve ℎ(𝑡) for a 

given feasible 𝑖(𝑡) ∈ ℐ(𝑡) where ℐ(𝑡) ≔ {𝑖|𝑖 ∈ ℐ, 𝑖𝑐 > ℎ𝐵′(𝑡)} is the set of vehicle formations at time 𝑡 ∈ [0, 𝑇] 

feasible to Constraints (15). The second step solves the full problem by jointly optimizing ℎ(𝑡) and 𝑖(𝑡). 

Now we describe the first step for a given 𝑖(𝑡) ∈ ℐ(𝑡). Without considering Constraints (14), note that since 

𝜕𝑐𝑡(𝑖(𝑡),ℎ(𝑡))

𝜕ℎ(𝑡)
= −

𝑓𝑖(𝑡)

(ℎ(𝑡))
2 +

𝑤𝐵′(𝑡)

2
, function 𝑐𝑡(𝑖(𝑡), ℎ(𝑡)) for a fixed 𝑖(𝑡) strictly decreases with ℎ(𝑡) ∈ (0, √

2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
) 

and strictly increases with ℎ(𝑡) ∈ (√
2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
, ∞). With this property, we will solve the optimal ℎ(𝑡) for given 𝑖(𝑡), 

denoted by ℎ𝑖(𝑡)
∗ (𝑡), after adding back Constraints (14). Solving the left hand side and right hand side of Constraints 

(14) yield 𝑎(𝑡) ≤
2𝑓𝑖(𝑡)

𝑤ℎ2  and 𝑎(𝑡) ≤
𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)
, respectively. Depending on the relationship between 

2𝑓𝑖(𝑡)

𝑤ℎ2  and 
𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)
, 

the analytical solution to the unit-time RUP can be divided into the following two cases. 

Case 1. When 0 < ℎ ≤
2𝑓𝑖(𝑡)

𝑤𝑖(𝑡)𝑐
, i.e.

𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)
≤

2𝑓𝑖(𝑡)

𝑤ℎ2 . 

If 0 ≤ 𝐵′(𝑡) ≤
𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)
, we can obtain ℎ ≤ √

2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
≤

𝑖(𝑡)𝑐

𝐵′(𝑡)
 and thus ℎ𝑖(𝑡)

∗ (𝑡) = √
2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
. If 

𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)
< 𝐵′(𝑡) <

2𝑓𝑖(𝑡)

𝑤ℎ2 , we can obtain that √
2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
>

𝑖(𝑡)𝑐

𝐵′(𝑡)
 and thus ℎ𝑖(𝑡)

∗ (𝑡) =
𝑖(𝑡)𝑐

𝐵′(𝑡)
. If 𝐵′(𝑡) ≥

2𝑓𝑖(𝑡)

𝑤ℎ2 , based on 0 < ℎ ≤
2𝑓𝑖(𝑡)

𝑤𝑖(𝑡)𝑐
, we can 
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obtain ℎ ≥
𝑖(𝑡)𝑐

𝐵′(𝑡)
, which contradicts to (15). Thus, 𝐵′(𝑡) ≥

2𝑓𝑖(𝑡)

𝑤ℎ2  cannot happen if ℎ ≤
2𝑓𝑖(𝑡)

𝑤𝑖(𝑡)𝑐
. Thus, in an optimal 

solution to the unit-time RUP for a given feasible 𝑖(𝑡) ∈ ℐ(𝑡), when 0 < ℎ ≤
2𝑓𝑖(𝑡)

𝑤𝑖(𝑡)𝑐
, the optimal solution ℎ(𝑡) is 

ℎ𝑖(𝑡)
∗ (𝑡) = {

√
2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
,     if 0 ≤ 𝐵′(𝑡) ≤

𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)

𝑖(𝑡)𝑐

𝐵′(𝑡)
,            if 𝐵′(𝑡) >

𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)

, ∀ 𝑖(𝑡) ∈ ℐ(𝑡), 𝑡 ∈ [0, 𝑇].   

 

(17) 

 

Case 2. When ℎ >
2𝑓𝑖(𝑡)

𝑤𝑖(𝑡)𝑐
, i.e., 

𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)
>

2𝑓𝑖(𝑡)

𝑤ℎ2 . 

If 0 ≤ 𝐵′(𝑡) ≤
2𝑓𝑖(𝑡)

𝑤ℎ2 , we can obtain ℎ ≤ √
2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
≤

𝑖(𝑡)𝑐

𝐵′(𝑡)
 and thus ℎ𝑖(𝑡)

∗ (𝑡) = √
2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
. If 

2𝑓𝑖(𝑡)

𝑤ℎ2 < 𝐵′(𝑡) <
𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)
, 

we can obtain √
2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
< ℎ and thus ℎ𝑖(𝑡)

∗ (𝑡) = ℎ. If 𝐵′(𝑡) ≥
𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)
, based on ℎ >

2𝑓𝑖(𝑡)

𝑤𝑖(𝑡)𝑐
, we can obtain ℎ >

𝑖(𝑡)𝑐

𝐵′(𝑡)
, 

which contradicts to (15). Thus, 𝐵′(𝑡) ≥
𝑤[𝑖(𝑡)𝑐]2

2𝑓𝑖(𝑡)
 cannot happen if ℎ >

2𝑓𝑖(𝑡)

𝑤𝑖(𝑡)𝑐
. Thus, in an optimal solution to the unit-

time RUP for a given feasible 𝑖(𝑡) ∈ ℐ(𝑡), when ℎ >
2𝑓𝑖(𝑡)

𝑤𝑖(𝑡)𝑐
, then the optimal solution ℎ(𝑡) is 

ℎ𝑖(𝑡)
∗ (𝑡) = {

√
2𝑓𝑖(𝑡)

𝑤𝐵′(𝑡)
, if 0 ≤ 𝐵′(𝑡) ≤

2𝑓𝑖(𝑡)

𝑤ℎ2

ℎ,               if 𝐵′(𝑡) >
2𝑓𝑖(𝑡)

𝑤ℎ2

, ∀ 𝑖(𝑡) ∈ ℐ(𝑡), 𝑡 ∈ [0, 𝑇].  

(18) 

With these results, we are ready to move to the next step on the joint optimization. Because the cardinality 

of ℐ(𝑡) is limited in real-world cases, we can plug (17), (18) into the unit-time RUP and then solve it simply by 

exhaustive enumeration, i.e., 

𝑖∗(𝑡), ℎ∗(𝑡) = argmin
𝑖(𝑡)∈ℐ(𝑡)

{𝑐𝑡 (𝑖(𝑡), ℎ𝑖(𝑡)
∗ (𝑡))} , ∀𝑡 ∈ [0, 𝑇], (19) 

which directly leads to the optimal unit-time cost 𝑐∗(𝑡) = 𝑐𝑡(𝑖∗(𝑡), ℎ∗(𝑡)), ∀𝑡 ∈ [0, 𝑇]. Finally, after solving the 

RUP’s for all neighborhoods 𝑡 ∈ [0, 𝑇], we can plug 𝑐∗(𝑡), ∀𝑡 ∈ [0, 𝑇] into (16) to obtain an estimated value of 𝑂𝑃(𝐬). 

4.3. Discretization 

The analytical solution provides us with a closed-

form expression of the optimal solution to the original 

problem. Yet the continuous solutions ℎ∗(𝑡), 𝑖∗(𝑡) cannot 

be directly applied to the discrete vehicle scheduling 

problem. Therefore, a discretization approach is needed to 

convert ℎ∗(𝑡) into discrete time points for each dispatch 

𝑡𝑘
∗ , ∀𝑘 ∈ 𝒦  and 𝑖∗(𝑡)  into the discrete vehicle capacity 

𝑖𝑘
∗ , ∀𝑘 ∈ 𝒦 . Daganzo (2005) proposed a systematic 

method that can find an approximate step function to the 

continuous headway function generated by the CA model 

efficiently. The idea of Daganzo’s method is to find a 

fixed headway such that area under the ℎ∗(𝑡) curve and 

that above the curve is the same. However, due to the 

potential computation difficulties in Daganzo’s method, 

e.g. evaluating the areas below and above the curve, 

finding points on the vertical axis to draw horizontal segments, we propose a method to discretize ℎ∗(𝑡) by using the 

definition of headway, i.e. ℎ∗(𝑡𝑘
∗) = 𝑡𝑘

∗ − 𝑡𝑘−1
∗ , iteratively for 𝑘 = 𝐾, 𝐾 − 1, ⋯ 1, as shown in Fig. 7. Specifically, 

Algorithm 2. Discretization  

    Input: ℎ∗(𝑡), 𝑖∗(𝑡), ∀𝑡 ∈ [0, 𝑇], ℎ 

1. 𝐾 ← 0 

2. 𝑡𝐾
∗ ← 𝑇 

3. while 𝑡𝐾
∗ ≥ ℎ 

4.           𝐾 ← 𝐾 + 1  

5.           𝑡𝐾
∗ ← argsup

𝑡∈[0,𝑡𝐾−1
∗ )

(ℎ∗(𝑡) = 𝑡𝐾−1
∗ − 𝑡) 

6.           𝑖𝐾−1
∗ ← 𝑅𝑜𝑢𝑛𝑑 (

∫ 𝑖∗(𝑡)
𝑡𝐾−1

∗

𝑡𝐾
∗ 𝑑𝑡

𝑡𝐾−1
∗ −𝑡𝐾

∗ )    

7. end while 

8. 𝑖𝐾
∗ ←

∫ 𝑖∗(𝑡)
𝑡𝐾

∗

0
𝑑𝑡

𝑡𝐾
∗  

9. Reverse (𝑖𝑘
∗ , 𝑡𝑘

∗) = (𝑖𝐾−𝑘
∗ , 𝑡𝐾−𝑘

∗ ), ∀𝑘 ∈ 𝒦 ≔ {0,1, ⋯ , 𝐾} 

Output: 𝑡𝑘
∗ , 𝑖𝑘

∗ , ∀𝑘 ∈ 𝒦 
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given 𝑡𝑘
∗ , we need to determine ℎ∗(𝑡𝑘

∗) and 𝑡𝑘−1
∗  such that ℎ∗(𝑡𝑘

∗) = 𝑡𝑘
∗ − 𝑡𝑘−1

∗ . This can obviously be realized by 

drawing a 45° line from (𝑡 = 𝑡𝑘
∗ , ℎ∗(𝑡) = 0) backward in time and find its intersection with ℎ∗(𝑡). Thus, we can 

discretize ℎ∗(𝑡) by drawing 45° lines recursively for 𝑘 = 𝐾, 𝐾 − 1, ⋯ ,1. With the discretized ℎ∗(𝑡), 𝑖∗(𝑡) can then be 

discretized with a weighted average method. The basic framework of this approach is shown as the pseudocode in 

Algorithm 2.  

 

Fig. 7: Discretization of ℎ∗(𝑡) 

Since the investigated problem requires that all passengers must be transported at the end of the operational 

horizon, this algorithm starts from the last time point 𝑇, i.e. 𝑡𝐾
∗ = 𝑇. From this point (𝑡 = 𝑇, ℎ∗(𝑡) = 0), we draw a 

45° line backward in time and find its intersection with ℎ∗(𝑡), the abscissa of which is the time point of the previous 

dispatch, 𝑡𝐾−1
∗ . Then we compute the weighted average of 𝑖∗(𝑡), ∀𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘] and round it to an integer, which 

results in the vehicle formation for the 𝐾th dispatch, i.e. 𝑖𝐾
∗ . This step locates 𝑡𝐾−1

∗  given 𝑡𝐾
∗  and determines 𝑖𝐾

∗ . We 

repeat this procedure from 𝑡𝐾−1
∗  to locate the previous dispatch times and formations until reaching a point whose 

distance to the origin is no greater than the minimum headway. Note that when implementing this algorithm, the index 

starts from 0 to 𝐾, so at the end we need to reverse the indexes to obtain the correct solution. Once the discrete time 

point 𝑡𝑘
∗ , ∀𝑘 ∈ 𝒦 and vehicle formation 𝑖𝑘

∗ , ∀𝑘 ∈ 𝒦 are obtained, we can plug them into objective function (2) to 

obtain the total system cost with respect to the discrete design. 

5. Numerical experiments  

This section presents two sets of numerical examples. All the experiments are run in MATLAB 2017b on a DELL 

Studio PC with 3.60 GHz of Intel Core i7-7700 CPU and 16 GB of RAM in a Windows environment. The first set of 

experiments is built on smart card data collected from Batong line in the Beijing Metro System, China where strong 

temporal demand fluctuations and oversaturated traffic can be observed. The objectives of these experiments are to 

compare the computation performances of the proposed solution methods and demonstrate the effectiveness of the 

time-varying capacity design. The second set of experiments investigates modular autonomous vehicle (MAV) by 

simulating a shuttle system with MAV information from Next Future Transportation Inc. (http://www.next-future-

mobility.com/) and future travel demand data in Tampa Bay Area, USA (obtained from Gannett Fleming, Inc.). With 

these numerical experiments, we demonstrate how future autonomous transportation technology can benefit from 

time-varying capacity design and reveal managerial insights into optimal system operators. 

5.1. Case study 1: Batong Line in Beijing Metro System 

We first explain how we set up the numerical experiments by transforming a corridor system in Beijing Metro to 

a shuttle system that our model can address. As shown in Fig. 8, Batong line is a bi-directional line with a total length 

of 18.964 km and 13 stations that are numbered sequentially from 1 to 13. Since both directions show strong temporal 

demand fluctuations and an evident oversaturated period in each direction over a day, without loss of generality, we 

selected the direction with a morning oversaturated period (i.e., the direction from Stations 13 to 1) for our experiments. 

The maximum passenger flow section in this direction is 4-3, so we treat stations 4-13 as a virtual origin while stations 

1-3 and all stations on other lines in the metro network a virtual destination. Note that all stations on other lines in the 

network are considered since the destinations of a large portion of demand emanating from stations 4-13 are out of 

Batong line. In this way, this metro line is converted into a one-to-one shuttle system that essentially represents the 

bottleneck of the metro line. Then, we count the number of passengers that will cross the maximum passenger flow 

section (i.e. passengers whose origins are one of stations 4-13 and destinations are one of the rest of stations in the 

network) per 0.1 minute and obtain the time-dependent cumulative arrival demand curve and the arrival demand rate 
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curve over the entire operational horizon as Fig. 9. Note that in this case study we are solving an optimal schedule to 

the converted shuttle system (as if trips not passing through the bottleneck do not exist) rather than to the original 

corridor system. Such an analysis (i.e. operational design for multiple stop systems based on simply demands passing 

through the maximum load points) has been applied in Salzborn (1972) and Daganzo (1997). Further, though they are 

not optimal, solutions from the converted shuttle system suffice to provide an approximate optimal or at least a feasible 

solution to the optimal operation of the original corridor system. Therefore, results in this case study can still provide 

managerial insights to system operators. 

 

 
Fig. 8: Batong Line and its corresponding shuttle system and the converted shuttle system 

 
Fig. 9: Cumulative arrival demand (left) and arrival demand rate (right) over an operational day 

 

The trains serving on this line are composed of 6 carriages, each with a capacity of 226 pax (i.e., passengers). 

Hence, we set ℐ = [1,2,3,4,5,6] and 𝑐 = 226 pax/carriage. The minimum dispatch headway is set as ℎ = 3 minutes. 

We adopt the monthly average salary per capita to compute the waiting cost per passenger per unit time. Beijing 

Municipal Human Resources and Social Security Bureau reports that the average monthly salary per capita is $1096.19 

in 2017 (http://www.bjrbj.gov.cn/). Provided that one works 22 days a month and 8 hours per day, the hourly average 

salary per capital is around $6.35 and thus 𝑤 = 0.11 $/min. The dispatch energy cost function we adopt in this case 

is 𝑓𝑖 = 𝐶𝐹 + 𝐶𝑉(𝑖)𝛼 , ∀𝑖 ∈ ℐ and we obtain 𝛼 = 0.5, 𝐶𝐹=2.049 $, and 𝐶𝑉=5.56 $ through a calibration process that is 

explained in Appendix B. . 

http://www.bjrbj.gov.cn/
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5.1.1. Computation performances  

We first design 21 instances with three operational horizons, i.e., 3 hours (7:00-10:00), 9 hours (5:00-14:00), and 

18 hours (5:00-23:00), and 7 discretization intervals, i.e., 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, and 3.0 minutes to investigate the 

computation performance of the proposed CA method. Fig. 10 plots the computation times of CA of these instances, 

which are indexed as 1-7 for the instances with the 3-hour operational horizon and the discretization interval 

decreasing from 3 through 0.1 minutes, 8-14 for the instances with the 9-hour operational horizon and the 

discretization interval decreasing from 3 through 0.1 minutes, and 15-21 for the instances with the 18-hour operational 

horizon and the discretization interval decreasing from 3 through 0.1 minutes. We see that the CA method can solve 

all instances in less than 1 second, as opposed to over thousands of seconds from the discrete methods (see Table 4 in 

Chen et al., (2018) for the detailed computation time comparison). Further, CA’s computational time does not increase 

too fast with the instance size. Actually, since each neighborhood is just solved analytically in a constant time, the 

computational time increases only linearly with the number of total neighborhoods, which depends on the discrete 

size of a neighborhood and the total time horizon. The linear time complexity of CA is much more computationally-

friendly than discrete models whose solution time often exponentially increases with the instance size. Further, 

comparison with the exact solutions from the counterpart discrete models (see Table 3 in Chen et al., (2018)) shows 

that the CA methods can produce satisfactory approximations of the optimal objective value across all instances, with 

the largest optimality gap of 0.63% from CA-I (CA with integral) and 1.11% from CA-D (CA with discretization) 

across all these instances. Overall, CA is a very efficient solution approach without much approximation error for the 

investigated problem, and it is particularly suitable for extremely large scale instances (which would not be solved 

otherwise) or real-time applications (which may require sub-second response time) in engineering contexts striving 

for a reasonably good (yet not necessarily the exact optimal) solution with limited computational resources. 

 

Fig. 10: Computation performance of CA. 

 

5.1.2. Result demonstration 

In this subsection, we present some numerical results to verify the analytical theorems in Section 3.2 and further 

analyze the accuracy of the CA model. We select 2 instances with a discretization interval of 3 minutes from the 

previous subsection and plot their 𝐴(𝑡) , 𝐵(𝑡)  and 𝐷(𝑡)  obtained from G-NSR (the discrete model solved by an 

existing commercial solver, Gurobi) on the left in Fig. 11, with a zoom in of the oversaturated periods. As can be seen 

from these figures, there is an oversaturated period (i.e. where 𝐴(𝑡) > 𝐵(𝑡), 𝑡 ∈ [0, 𝑇]) and trains with 6 modular units 

are dispatched with a headway of 3 minutes within this period, which verifies Theorems 1 and 2. Further, we solve 

these 2 instances with G-NSR using 𝐴(𝑡)  and 𝐵(𝑡)  as the demand; i.e., we solve the original problem and the 

corresponding revised unsaturated problem for these instances. The OP and RUP result in the same optimal solution 

and the objective values of the RUP (i.e., 12346 and 23741) and those of the corresponding OP (i.e., 95708 and107120) 

are separated by a constant value 83375, which verifies Theorem 3. Besides, we plot the differences between the 

cumulative arrival and departure across the operational horizon obtained from three solution methods on the right in 

Fig. 11, respectively. As can be seen from these figures, when we solve the instances with G-NSR and using 𝐵(𝑡) as 

the demand, 𝐵(𝑡) − 𝐷(𝑡) drops to 0 whenever a train is dispatched, which verifies Theorem 4. It also demonstrates 

that dropping 𝑤 ∫ (𝐵(𝑡) − 𝐵̃(𝑡)) 𝑑𝑡
𝑇

𝑡=0
 in the CA model will not significantly affect the results. Besides, there are not 

significant differences between the blue lines and red lines in these figures, which again demonstrates that the CA 

model can offer near-optimal solutions to the original problem with high accuracy. 
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Fig. 11: Arrival and departure curves of the (a) 3-hour and (b) 18 hour instances with a discretization interval of 3 mins 

 

Next, to provide a demonstration of the accuracy of the discretization method proposed in Section 4.3. We select 

2 instances with a discretization interval of 0.1 minutes from the previous section and plot the continuous dispatch 

headways and vehicle formations as well as their corresponding discrete values obtained from Algorithm 2 from top 

to bottom in Fig. 12. It can be observed from these figures that the discretized values show a similar trend as the 

continuous functions and are very close to the continuous values most of the time. Although some local fluctuations 

can be seen in some neighborhoods (e.g. some gaps of ℎ∗(𝑡) exist at the beginning of the operational horizon in the 

left figures in Fig. 12 (b), (c)), these errors can actually be offset by the inherent mechanism of the method itself and 

thus will not affect the near-optimal solution evidently, which is why the CA solutions after discretization is very close 

to the exact solution approaches.  
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Fig. 12: Optimal dispatch headway (left) and vehicle formation (right) from CA-I and CA-D of the (a) 3-hour and (b) 18 hour instance with a 

discretization interval of 0.1 minutes 

5.1.3. Effectiveness of time-varying train capacity adjustment under different demand scenarios 

In this subsection, we assess the effectiveness of time-varying train capacity adjustment (TCA) under various 

demand scenarios. We benchmark the system performance with TCA against that in a benchmark system without TCA 

where only trains with 6 modular units can be dispatched. The arrival demand profile of the 18-hour operational 

horizon with a discretization interval of 0.1 minutes is used as the base case. To illustrate how different demand levels 

impact the effectiveness of the TCA, we test several demand scenarios. Thus, we multiplied the demand data in the 

base scenario by 0.25, 0.5, 1.0 and 1.5 to obtain 4 demand datasets, labeled sequentially from Scenario 1 to 4 in the 

following analysis. We use average load percentage (ALP), total energy cost (TEC) and total waiting cost (TWC) as 

system performance metrics. ALP is defined as 
1

𝐾
∑

𝑑𝑘

𝑖𝑘𝑐𝑘∈𝒦  while TEC and TWC refer to the first and second terms in 

objective function (2), respectively, and TC is the sum of this two terms. Note that a larger value of ALP imply better 

system performance while TWC, TEC and TC act in the opposite way. Further, to quantitatively compare the system 

performance, we define a gap measure as 
𝑉𝑇𝐶𝐴−𝑉𝐵𝐸𝑁

𝑉𝐵𝐸𝑁
, where 𝑉𝑇𝐶𝐴 denotes the system performance value (ALP, TWC 

or TEC) with TCA while 𝑉𝐵𝐸𝑁 denotes the corresponding value of the benchmark system without TCA. 

The system performance metrics of all demand scenarios are summarized in Table 1. We can see that the ALP 

gaps are positive while the TEC gaps are negative across all demand scenarios. It indicates that although time-varying 

train capacity adjustment introduces extra costs on assembling and dissembling trains, it still improves the train 
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capacity utilization and reduces the total energy cost. Further, while in some instances the small positive gaps of TWC 

reveal that the total waiting cost is slightly increased, the total system cost still experience a reduction (i.e. the TC 

gaps are negative). Thus, in general, time-varying train capacity design can improve the overall system performances. 

Further, the improvements are more significant when the passenger demand is relatively low since the maximum ALP 

and minimum TC are both observed in the lowest demand scenario. The main reason is that, as proved in Section 3, 

the best policy is always to dispatch the trains in formation 𝐼 in relatively high demand scenarios so there is not much 

possibility to adjust train capacities according to the time-varying demand. In contrast, a low demand scenario provides 

us with sufficient flexibilities to time-varying train capacity design.  

Table 1. System performance metrics of different demand scenarios 

Demand 

scenario 
With TCA Without TCA Gap   

ALP 

(%) 

TWC 

(103 $) 

TEC 

(103 $) 

ALP (%) TWC (103 

$) 

TEC 

(103 $) 

ALP  

(%) 

TWC 

(%)  

TEC 

(%)  

TC 

(%) 

1 31.63 5.97 3.34 7.81 6.90 5.45 305.19 -13.44 -38.85 -24.66 

2 47.66 10.28 3.66 14.48 10.12 5.88 229.18 1.55 -37.77 -12.90 

3 67.78 104.08 4.08 28.44 103.93 5.99 138.33 0.14 -31.84 -1.60 

4 73.16 680.55 4.59 42.28 680.78 6.04 73.04 -0.03 -24.06 -0.25 

 

 

Fig. 13 Optimal dispatch headway and train formation with (left) or without (right) time-varying capacity design of Batong Line for demand 

scenarios 1 to 4 (from top to bottom)  

To explore variations of the dispatch headway and train capacity under various demand levels, we plot the 

temporal headways and train formations in all demand scenarios by ranking them in a descending order from top to 

bottom in Fig. 13. As can be seen from these figures, the optimal headways obtained with and without TCA show 

similar patterns over the operational horizon. Moreover, the differences between them are not evident in most cases, 

which indicates that the capability to improve system performance by simply adjusting the dispatch headway is limited. 

In contrast, train capacities show great variations with demand fluctuations when TCA is allowed. Indeed, it is not 

necessary to dispatch trains in formation 𝐼  during unsaturated periods, especially in Scenarios 1 and 2 where 

oversaturated periods are not present. Since the oversaturated period lasts longer in high demand scenarios, the 

flexibility to adjust train capacity is restricted. This, again, justifies that the effectiveness of TCA is stronger when the 

demand is relatively low. 
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5.2. Case study 2: Future modular autonomous vehicle services in Tampa 

In this section, we investigate a hypothetical shuttle transportation system with modular autonomous vehicles 

(MAV) serving between downtown Tampa and Palm River-Clair Mel (see Fig. 14) in 2040. The travel demand over 

the designated operational horizon (i.e., 6:00 a.m. to 24:00 p.m., see Fig. 15) is predicted with an activity-based travel 

demand simulator, Daysim 2.0 (Bownman, 2018). To address the temporal demand fluctuations, pods (i.e., a single 

AV unit) are joint and detached dynamically during operation. According to information from the official website of 

Next Future Transportation Inc. (2018) and pre-experiments, we set ℐ = [1,2,3,4,5] and 𝑐 = 6 pax/pod. Based on the 

bus schedules of a public transit service provider in Tampa (HART, 2018), we adopt the minimum dispatch headway 

in their existing schedules for this case study and thus set ℎ = 12 minutes. Since no empirical data about the energy 

consumption of the MAV’s are available, we estimate the energy cost function as follows: 

1. Compute the electricity consumption ∀𝑖 ∈ ℐ. First, compute the longitudinal tractive force using Eq. (1) in 

(Yi and Shirk, 2018). Second, we divide the route into 5 segments based on their maximum speed limits and 

then compute the energy consumption on each segment by multiplying the longitudinal tractive forces on 

that segment and its length. Third, we sum up the electricity consumption along the routes to obtain the 

electricity consumption for the entire route. 

2. Estimate the dispatch energy cost function through regression analysis. Eq. (1) in Yi and Shirk (2018) 

describes a linear relationship between the longitudinal tractive force and vehicle weight. We adopted it here 

since the vehicle weight is the only variable in this case study. Therefore, we apply linear regression to 

estimate the dispatch energy cost function.  

Following the abovementioned steps, we obtain 𝛼 = 1, 𝐶𝐹 = 1.912 $ and 𝐶𝑉 = 3.540 $. Besides, based on the 

household income information in 2017 in Tampa (Statistical Atlas, 2017), the unit time waiting cost per passenger is 

set as 𝑤 = 0.8 $/min. 

 

 

  
     We assess the effectiveness of time-varying AV capacity design (TCA) under different demand scenarios by using 

system operations without TCA as a benchmark. In the benchmark system, only vehicles consisting of 5 units can be 

dispatched. Eight demand scenarios are considered, which are obtained by multiplying the demand profile shown in 

Fig. 15 by 0.1, 0.3, 0.6, 0.9, 1.0, 2.0, 3.0, 4.0. The first 5 scenarios correspond to different market penetration rates (or 

modal share) of the AV services while the last three consider further mature markets where more trips are induced by 

the sophisticated AV services. The same performance metrics proposed in Section 5.1.3 are used here. The optimal 

design of dispatch headway and vehicle capacity for different demand scenarios are plotted in Fig. 16 from top to 

bottom. The variations of performance metrics are shown in Fig. 17. As can be seen from Fig. 16, the demand in the 

studied area is so low that even when the market penetration rate of the AV service reaches 100%, only vehicles in 

formation 1 are dispatched most of the time when TCA is allowed. Further, different from rail rapid transit systems, 

the minimum dispatch headway in a bus transit system is a relatively large value, so there is not much space to improve 

the system performance through changing the dispatch headways. As a result, the optimal solutions of the first five 

scenarios without TCA are basically the same, which justifies the necessity to reduce the system cost through time-

varying capacity design. When additional trips are induced, larger vehicles are needed due to the oversaturated traffic. 

In these scenarios, both operational strategies tend to select the minimum dispatch headway so the total waiting costs 

are the same. Yet by adjusting vehicle capacities based on the time-dependent demand, TCA can not only increase the 

vehicle utilization rate but reduce the total energy costs (Fig. 17).  

Fig. 15: Arrival demand rate 

 Fig. 14: Route information (source: Google Map) 
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Fig. 16 Optimal dispatch headway and vehicle formation with (left) or without (right) TCA of the future MVA services for demand scenarios 1 to 

8 from top to bottom 

 

6. Conclusions 

This paper investigates the joint design problem of dispatch headway and capacity for a shuttle system under 

oversaturated traffic. By proving that the optimal solution is to dispatch vehicles with the maximum capacity and the 

minimum headway within the oversaturated period, we propose a virtual arrival demand curve to investigate some 

theoretical properties of the RUP. Based on the theoretical property that the original problem can be solved by just 

solving its corresponding RUP, a macroscopic CA model is proposed to efficiently solve the problem with reasonable 

approximation accuracy in real-world contexts. This model decomposes the operational horizon into finite small 

neighborhoods with homogeneous properties such that the headway can be approximated with a continuous function.  
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Fig. 17: Performance metrics with (left) or without (right) TCA under various demand scenarios 

 

Then integrating the solutions of all local neighborhoods yields a near-optimum design to the original problem. 

Numerical experiments based on real-world traffic data collected from Batong line in Beijing Subway System and 

Tampa Bay Area are conducted to assess the computation performances of the proposed solution approach and verify 

the theoretical properties. The main findings are summarized as follows. 

1. Compared with the exact solutions, the CA model offers near-optimal solutions with excellent approximation 

accuracy in almost no time. Therefore, the proposed modeling method holds a promising future in solving both 

large-scale traditional transit schedule planning problem (e.g. rail timetable design) and real-time scheduling 

for next-generation transportation systems (e.g. modular autonomous vehicle provided by Next Future 

Transportation Inc.). 

2. The analytical theoretical properties are verified by the numerical experiments. Unsurprisingly, it is optimal to 

dispatch vehicles with the maximum capacity and the minimum headway during oversaturated periods. The 

joint design problem can actually be solved by simply solving its revised unsaturated problem, whose optimal 

solution ensures that the queue length right after each dispatch is less than the unit vehicle capacity. These 

results shed important managerial insights and more importantly, can be used to design efficient algorithms to 

find the exact solutions to the joint design problem. 

3. Incorporating time-varying capacities adjustment into transit scheduling can improve the vehicle utilization 

rates and reduce the total cost (i.e. the total of energy cost and passenger waiting cost) for the shuttle system 

in both unsaturated and oversaturated traffic. The effectiveness of this innovative operational strategy is 

stronger when unsaturated traffic is present since vehicle capacities can be changed more flexibly. 

Overall, this paper provides a methodological foundation for jointly design the dispatch headway and vehicle 

capacity in a shuttle system. The results in this paper can be applied to various shuttle transportation systems, such as 

subways, high-speed trains, bus rapid transits, modular autonomous vehicles, etc. The analytical theorems in this paper 

can help design efficient algorithms to solve the exact solution(s) to the joint design problem, which will be discussed 

in Chen et al. (2018). Also, although this study only considers the simplest one-to-one demand scenario, it constitutes 

a building block to develop methodologies for solving the problem in more complex settings (e.g., a corridor system 

with multiple OD pairs where a much more complex many to many demand scenario should be considered), which 

will be an interesting future research direction. Moreover, this paper solves a time-vary demand problem, addressing 

the dynamic design of vehicle dispatch time and capacity in more complex contexts would also be a challenging but 

meaningful research question. To tackle this problem, other optimization approaches such as simulation and the 

combination of CA tools together with advances in other related areas (discrete optimization, simulation, etc.) may be 

needed. Further, incorporating the fleet size management into the system dynamics is also an interesting topic. Finally, 

this study focuses on modular vehicles whose capacity can be adjusted at any stations in an UMTS without additional 

operational and delay costs. It is interesting to investigate how time-varying capacity operations can be achieved in 

existing UMTS where such operations incur costs and must be done in certain places in the network. 
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Appendix A. Proofs of lemmas and theorems in Section 3.2 

Appendix A. includes the proofs for the lemmas and theorems in Section 3.2. 

Lemma 1. For 𝑓𝑖 satisfying concave property (1), we obtain  𝑓𝑖1
+ 𝑓𝑖2

+ ⋯ + 𝑓𝑖𝑛
≥ 𝑓𝑖1+𝑖2+⋯+𝑖𝑛

, ∀ 𝑖1, 𝑖2, ⋯ , 𝑖𝑛, 𝑖1 +

𝑖2 + ⋯ + 𝑖𝑛 ∈ ℐ, 𝑛 ∈ ℤ+.  

Proof: Property (1) yields 
𝑖

𝑗
𝑓𝑖 +

𝑗−𝑖

𝑗
𝑓𝑖+𝑗 ≤ 𝑓𝑗 , ∀𝑖 ≤ 𝑗, 𝑖 + 𝑗 ∈ ℐ , which yields 𝑓𝑖 + 𝑓𝑗 ≥

𝑖+𝑗

𝑗
𝑓𝑖 +

𝑗−𝑖

𝑗
𝑓𝑖+𝑗 . Further, 

𝑖

𝑖+𝑗
𝑓𝑖+𝑗 =

𝑖

𝑖+𝑗
𝑓𝑖+𝑗 +

𝑗

𝑖+𝑗
𝑓0 ≤ 𝑓𝑖, which together with the previous equation yields 𝑓𝑖 + 𝑓𝑗 ≥ 𝑓𝑖+𝑗 .Then this lemma can 

be easily proved by iteratively applying this relationship; i.e., 𝑓𝑖1
+ 𝑓𝑖2

+ ⋯ + 𝑓𝑖𝑛
≥ 𝑓𝑖1+𝑖2

+ 𝑓𝑖3
+ ⋯ + 𝑓𝑖𝑛

≥ ⋯ ≥

𝑓𝑖1+𝑖2+⋯+𝑖𝑛
. This completes the proof. □ 

Lemma 2. For 𝑓𝑖  satisfying concave property (1), we obtain 𝑓𝑖1
+ 𝑓𝑖4

≤ 𝑓𝑖2
+ 𝑓𝑖3

, ∀𝑖1 ≤ 𝑖2 ≤ 𝑖3 ≤ 𝑖4 ∈ ℐ  and 𝑖2 +

𝑖3 = 𝑖1 + 𝑖4. 

Proof: Based on property (1), 
𝑖4−𝑖2

𝑖4−𝑖1
𝑓𝑖1

+
𝑖2−𝑖1

𝑖4−𝑖1
𝑓𝑖4

≤ 𝑓𝑖2
 and 

𝑖4−𝑖3

𝑖4−𝑖1
𝑓𝑖1

+
𝑖3−𝑖1

𝑖4−𝑖1
𝑓𝑖4

≤ 𝑓𝑖3
. This yields 

2𝑖4−𝑖2−𝑖3

𝑖4−𝑖1
𝑓𝑖1

+

𝑖3+𝑖2−2𝑖1

𝑖4−𝑖1
𝑓𝑖4

≤ 𝑓𝑖2
+ 𝑓𝑖3

 . Since 𝑖2 + 𝑖3 = 𝑖1 + 𝑖4, the pervious equation yields 𝑓𝑖1
+ 𝑓𝑖4

≤ 𝑓𝑖2
+ 𝑓𝑖3

. This completes the 

proof. □ 

Theorem 1. In an optimal dispatch solution {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦 to problem (2) ~ (8) with arrival curve 𝐴(𝑡) and departure 

curve 𝐷(𝑡), if 𝐴(𝑡𝑘) − 𝐷(𝑡𝑘−1) ≥ 𝐼𝑐, then 𝑖𝑘 = 𝐼, ∀𝑘 ∈ 𝒦. 

Proof. This theorem will be proven by contradiction. If the condition in 

this theorem does not hold, then in this optimal solution, there exists a 

 𝑘̅ ∈ 𝒦 with 𝑖𝑘̅ < 𝐼 and 𝐴(𝑡 𝑘̅) − 𝐷(𝑡 𝑘̅−1) ≥ 𝐼𝑐. Then find 𝑚 such that 
∑ 𝑖𝑘̅+𝑚′

𝑚
𝑚′=0 < 𝐼 and ∑ 𝑖𝑘̅+𝑚′

𝑚
𝑚′=0 ≥ 𝐼, as Case 1 in Fig. 18 shows. Note 

that since 𝑖𝑘̅ < 𝐼 , then 𝑚 ≥1. Further, as Case 2 in Fig. 18 shows, 

construct an alternate solution {𝑡𝑘, 𝑖𝑘
′ }∀𝑘∈𝒦\{ 𝑘̅+1,⋯,𝑘̅+𝑚−1} where 𝑖𝑘̅

′ = 𝐼, 

𝑖𝑘̅+𝑚
′ = ∑ 𝑖𝑘̅+𝑚′

𝑚
𝑚′=0 − 𝐼  (i.e., 𝐼 + 𝑖𝑘̅+𝑚

′ = ∑ 𝑖𝑘̅+𝑚′
𝑚
𝑚′=0 ), and 𝑖𝑘

′ = 𝑖𝑘 

for all other 𝑘 indexes. Note that if ∑ 𝑖𝑘̅+𝑚′
𝑚
𝑚′=0 = 𝐼, then 𝑖𝑘̅+𝑚

′ = 0, 

which means no vehicles are dispatched at time 𝑡𝑘̅+𝑚 in the alternate 

solution. Denote the cumulative departure curves of Case 2 as 𝐷′ (𝑡). 

Then the difference in the waiting cost between the optimal and alternate 

solutions is proportional to the shaded area with vertical lines in Fig. 18, 

formulated as  

∫ (𝐴(𝑡) − 𝐷(𝑡))
𝑡𝑘̅+𝑚

𝑡𝑘̅
𝑤𝑑𝑡 − ∫ (𝐴(𝑡) − 𝐷′(𝑡))𝑤𝑑𝑡

𝑡𝑘̅+𝑚
𝑡𝑘̅

= ∫ (𝐷′(𝑡) − 𝐷(𝑡))
𝑡𝑘̅+𝑚

𝑡𝑘̅
𝑤𝑑𝑡  

= 𝑤 ∑ ((𝑡𝑘̅+𝑚′+1 − 𝑡𝑘̅+𝑚′) (𝐼𝑐 − ∑ 𝑖𝑘̅+𝑚′′
𝑚′

𝑚′′=0 )) > 0 𝑚−1
𝑚′=0 .  

Then we investigate the difference in the energy cost between the optimal and the alternate 

solution  ∑ 𝑓𝑖
𝑘+𝑚′

 𝑚
𝑚′=0 − 𝑓𝐼 − 𝑓𝑖

𝑘̅+𝑚
′ .  Lemma 1 indicates that ∑ 𝑓𝑖

𝑘+𝑚′
 𝑚−1

𝑚′=0 ≥ 𝑓𝑖𝑘̅
 where 𝑖𝑘̅ ≔ ∑ 𝑖𝑘̅+𝑚′

𝑚−1
𝑚′=0 . Next, 

Lemma 2 indicates that 𝑓𝑖𝑘̅
+ 𝑓𝑖𝑘+𝑚

≥ 𝑓𝐼 + 𝑓𝑖
𝑘̅+𝑚
′ . This indicates ∑ 𝑓𝑖

𝑘+𝑚′
 𝑚

𝑚′=0 − 𝑓𝐼 − 𝑓𝑖
𝑘̅+𝑚
′ ≥ 0 . With this, the 

objective value of the optimal solution is always strictly greater than that of the alternate solution, which is a 

contradiction. This completes the proof.□ 

Theorem 2. In an optimal dispatch solution {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦 to problem (2) ~ (8) with arrival curve 𝐴(𝑡) and departure 

curve 𝐷(𝑡), if 𝐴(𝑡𝑘) − 𝐷(𝑡𝑘−1) > 𝐼𝑐, then 𝑡𝑘 − 𝑡𝑘−1 = ℎ, ∀𝑘 ∈ 𝒦. 

Fig. 18: An illustrative example 
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Proof. This theorem will be proven by contradiction. If the condition in this theorem does not hold, then in this optimal 

solution, there exists a  𝑘̅ ∈ 𝒦 with 𝑡𝑘̅ − 𝑡𝑘̅−1 > ℎ and 𝐴(𝑡𝑘̅) − 𝐷(𝑡𝑘̅−1) > 𝐼𝑐, as Case 2 in Fig. 18 shows. With this, 

as Case 3 in Fig. 18 shows, we can construct an alternate feasible solution {𝑡𝑘
′ , 𝑖𝑘

′ }∀𝑘∈𝒦 \{𝑘̅+1,⋯,𝑘̅+𝑚−1} such that 𝑡′𝑘̅ <

𝑡𝑘̅, 𝑡𝑘
′ = 𝑡𝑘 for all other 𝑘 indexes and 𝑖𝑘

′ = 𝑖𝑘 for all 𝑘 indexes. Obviously, the energy cost remains the same since 

the number of dispatches are exactly the same. As to the waiting cost, we only need to make a comparison in the 

interval [𝑡𝑘̅−1, 𝑡𝑘̅]. Denote the cumulative departure curve of Case 3 as 𝐷′′(𝑡), and we can obtain 

∫ (𝐴(𝑡) − 𝐷′(𝑡))
𝑡𝑘̅

𝑡𝑘̅−1

− ∫ (𝐴(𝑡) − 𝐷′′(𝑡))
𝑡𝑘̅

𝑡𝑘̅−1

𝑤𝑑𝑡 = (𝑡𝑘̅ − 𝑡𝑘̅
′) 𝐼𝑐 > 0. 

Thus, the objective value of the optimal solution is greater than that of the alternate solution, which is a contradiction. 

This completes the proof. □ 

Lemma 3. Denote problem (2) ~ (8) as the original problem (OP), and the same problem where the original arrival 

curve 𝐴(𝑡) is replaced with virtual arrival curve 𝐵(𝑡) as the revised unsaturated problem (RUP). Then the feasible 

regions of the OP and RUP are the same. For any feasible solution 𝐬 ≔ {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦, OP and RUP have the same 

dispatch curve, and the objective values of OP and RUP, respectively denoted as 𝑂𝑃(𝐬) and 𝑅𝑈𝑃(𝐬), are always 

separated by a constant difference: 

𝑂𝑃(𝐬) − 𝑅𝑈𝑃(𝐬) = 𝑊(𝐴) ≔ 𝑤 ∫ (𝐴(𝑡) − 𝐵(𝑡))
𝑇

0

𝑑𝑡. 

Proof. First, given a feasible dispatch solution 𝐬 ≔ {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦 ,  to OP, we will use induction to show that the OP and 

RUP have the same departure curve. Let 𝐷(𝑡) and 𝐷𝐵(𝑡) denote the departure curves corresponding to arrival curves 

𝐴(𝑡) and 𝐵(𝑡), respectively. 

Base case: When 𝑧 = 1, 𝐴(𝑡) = 𝐵(𝑡), thus 𝐷(𝑡) = 𝐷𝐵(𝑡), ∀𝑡 ∈ [ℰ(0), 𝒪(1)) for the same dispatch solution. 

Induction step: Assume 𝐷(𝑡) = 𝐷𝐵(𝑡), ∀𝑡 ∈ [ℰ(0), 𝒪(𝑧))  for a 0 ≤ 𝑧 ≤ |𝒪 .. Then for the oversaturated period 

[𝒪(𝑧), ℰ(𝑧)) , the facts that 𝐷𝐵(𝑡) ≤ 𝐵(𝑡)  and 𝐵′(𝑡) = 𝐼𝑐/ℎ  yield that at any dispatch point 𝑡𝑘 ∈ [𝒪(𝑧), ℰ(𝑧)) , if 

exists, then 𝐵(𝑡𝑘) − 𝐷𝐵(𝑡) ≥ 𝐼𝑐. Thus 𝐷𝐵(𝑡) always grows 𝑖𝑘𝑐 at 𝑡𝑘. Since 𝐴(𝑡) ≥ 𝐵(𝑡), similarly, we obtain that 

𝐷(𝑡)  also grows to 𝑖𝑘𝑐  at 𝑡𝑘 . In this way, 𝐷(𝑡) = 𝐷𝐵(𝑡), ∀𝑡 ∈ [ℰ(0), ℰ(𝑧)) . Further, since 𝐴(𝑡) = 𝐵(𝑡)  during 

unsaturated period [ℰ(𝑧), 𝒪(𝑧 + 1))  (or [ℰ(|𝒪|), 𝒪(|𝒪|)]  for the last unsaturated period), then we obtain 𝐷(𝑡) =

𝐷𝐵(𝑡), ∀𝑡 ∈ [ℰ(0), 𝒪(𝑧 + 1)). 

The above induction proves that a feasible solution to OP is feasible to RUP and yields the same departure curve. With 

the same induction, we can show that a feasible solution to RUP is feasible to OP and yields the same departure curve 

as well. With this, the formulation of objective function (2) yields 𝑂𝑃(𝐬) − 𝑅𝑈𝑃(𝐬) = 𝑤 ∫ (𝐴(𝑡) − 𝐵(𝑡))
𝑇

0
𝑑𝑡. □ 

Theorem 4. An optimal dispatch solution {𝑡𝑘, 𝑖𝑘}∀𝑘∈𝒦 to RUP satisfies: (i) if 𝑡𝑘 − 𝑡𝑘−1 > ℎ, then 𝐵(𝑡𝑘) − 𝐷(𝑡𝑘) =

0, ∀𝑘 ∈ 𝒦   and (ii) if 𝑡𝑘 − 𝑡𝑘−1 = ℎ , then 𝐵(𝑡𝑘) − 𝐷(𝑡𝑘) ∈ [0, 𝑐), ∀𝑘 ∈ 𝒦 , where 𝐷(𝑡)  is the corresponding 

departure curve. 

Proof. We first prove 𝐵(𝑡𝑘) − 𝐷(𝑡𝑘) ∈ [0, 𝑐), ∀𝑘 ∈ 𝒦 holds for both cases by induction. 

Base case: First investigate the base case with 𝑘 = 1. When 𝐵(𝑡1) − 𝐷(𝑡1) > 0, if 𝑖1 = 𝐼, then Theorem 2 indicates 

that 𝑡1 ≤ ℎ, which contradicts to 𝐵(𝑡) being unsaturated. Therefore, 𝐵(𝑡1) − 𝐷(𝑡1) = 0 if 𝑖1 = 𝐼. Otherwise, if 𝑖1 <

𝐼 and 𝐵(𝑡1) − 𝐷(𝑡1) ≥ 𝑐, then we can raise the first dispatch to 𝑖1 + 1 and drop the second dispatch to 𝑖2 − 1. Then 

with similar analysis in Theorem 1, we can show that this will always strictly reduce the objective value, which 

obviously contradicts to this solution being optimal. Therefore 𝐵(𝑡1) − 𝐷(𝑡1) ∈ [0, 𝑐) holds for the base case.  

Induction step: Assume that for a 𝑘 ∈ 𝒦\{𝐾}, 𝐵(𝑡𝑘) − 𝐷(𝑡𝑘) ∈ [0, 𝑐). Then at time 𝑡𝑘+1, when 𝐵(𝑡𝑘+1) − 𝐷(𝑡𝑘+1) >
0, if 𝑖𝑘 = 𝐼, Theorem 2 indicates that 𝑡𝑘+1 − 𝑡𝑘 = ℎ, and thus 𝐵(𝑡𝑘+1) − 𝐷(𝑡𝑘+1) = [𝐵(𝑡𝑘) − 𝐷(𝑡𝑘)] + [𝐵(𝑡𝑘+1) −

𝐵(𝑡𝑘)] − 𝐼𝑐 < 𝑐 + [𝐵(𝑡𝑘+1) − 𝐵(𝑡𝑘)] − 𝐼𝑐 (with the induction assumption) < 𝑐 (since 𝐵(𝑡) is unsaturated any time). 

Next, consider the case when 𝑖𝑘+1 < 𝐼. If 𝐵(𝑡𝑘+1) − 𝐷(𝑡𝑘+1) ≥ 𝑐, then 𝑘 + 1 < |𝒦|} due to constraints (6). Then 
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with similar analysis in Theorem 1, we can show that raising 𝑖𝑘+1  to 𝑖𝑘+1 + 1  and dropping 𝑖𝑘+2  to 𝑖𝑘+2 − 1  will 

always strictly reduce the objective value, which obviously contradicts to this solution being optimal. Therefore, 

𝐵(𝑡𝑘+1) − 𝐷(𝑡𝑘+1) ∈ [0, 𝑐) also holds. 

The above induction shows that 𝐵(𝑡𝑘) − 𝐷(𝑡𝑘) ∈ [0, 𝑐) holds for both cases in an optimal solution. Next we further 

prove that 𝐵(𝑡𝑘) − 𝐷(𝑡𝑘) = 0, ∀𝑘 ∈ 𝒦 holds if 𝑡𝑘 − 𝑡𝑘−1 > ℎ by contradiction. If the condition does not hold, then 

in this optimal solution, there exists a 𝑘̅ ∈ 𝒦 with 𝑡𝑘̅ − 𝑡𝑘̅−1 > ℎ and 𝐵(𝑡𝑘̅) − 𝐷(𝑡𝑘̅) > 0. Then, we can construct an 

alternate solution {𝑡𝑘
′ , 𝑖𝑘

′ }∀𝑘∈𝒦  such that 𝑡𝑘̅
′ < 𝑡𝑘̅ , 𝑡𝑘

′ = 𝑡𝑘  for all other 𝑘  indexes and 𝑖𝑘
′ = 𝑖𝑘  for all 𝑘  indexes, and 

there are two cases. If 𝑡𝑘̅
′ − 𝑡𝑘̅−1

′ > ℎ can be satisfied, as Fig. 19 (a) shows, we can always find a 𝑡𝑘̅
′  such that 𝐵(𝑡𝑘̅

′ ) −

𝐷(𝑡𝑘̅
′ ) = 0. With similar analysis in Theorem 2, we can show that this will always strictly reduce the objective value, 

which obviously contradicts to this solution being optimal. Otherwise, if 𝑡𝑘̅
′ − 𝑡𝑘̅−1

′ = ℎ, as  Fig. 19 (b) shows, this 

reduces to the first case and we have shown that 𝐵(𝑡𝑘) − 𝐷(𝑡𝑘) ∈ [0, 𝑐), ∀𝑘 ∈ 𝒦 holds if 𝑡𝑘 − 𝑡𝑘−1 = ℎ. 

 

Fig. 19: An illustrative example 

This completes the proof. □ 

Appendix B. Calibration of the energy cost function in Case study 1 

Since there are not empirical data from the Beijing Metro System to calibrate the parameters in this function, we 

combine the data obtained from a field experiment in Shenzhen Subway System (Jian, 2017) and the traction energy 

consumption data from Batong line to estimate these parameters. The field experiment was conducted on Line 7 in 

Shenzhen Subway System to test the energy consumption of different train lengths (3 and 6 carriages) under three 

load conditions, denoted as AW0, AW2 and AW3. The unit-carriage traction and auxiliary energy consumption are 

shown in Table 2. Besides, the traction energy consumption of Batong line is 160.99 kWh/(100 carriage km) and the 

electricity price is 0.13 $/(kWh). With these data, we estimate the parameters as follows. 

(1) Compute the average traction and auxiliary energy consumption over three load conditions of the 3- and 6-

carriage trains on Line 7, respectively.   

(2) Divide the traction energy of Batong line by the average traction energy of Line 7, which results in the traction 

ratio. Then for both train formations, multiply the average traction energy of Line 7 by the traction ratio, which results 

in the unit-carriage traction energy of Batong line. Compute the unit-carriage auxiliary energy of Batong line for both 

train formations in a similar way.  

(3) Sum up the unit-carriage traction and auxiliary energy consumption of Batong Line for both train formations 

respectively, which results in the unit-carriage energy consumption of Batong Line for both train formations. 

(4) Estimate the total energy consumption of both train formations for Batong line by multiplying the number of 

carriages and its unit-carriage energy consumption. 

(5) Apply the energy consumption and the corresponding carriage number into the dispatch energy cost function, 
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which yields two equations with 3 parameters (i.e. 𝐶𝐹, 𝐶𝑉, 𝛼). Arbitrarily set a value to 𝛼 and we can solve these 

equations. Here, we set 𝛼 = 0.5 and obtain 𝐶𝐹=2.049 $, 𝐶𝑉=5.56 $. 

Table 2 Results of the field experiment in Line 7, Shenzhen Subway System 

Energy consumption 

(kWh/carriage) 

3-carraige 6-carriage 

Traction energy Auxiliary energy Traction energy Auxiliary energy 

AW0 1.77 0.40 2.28 0.43 

AW2 2.12 0.60 2.92 0.83 

AW3 2.71 0.73 3.13 1.03 

Average 2.20 0.58 2.78 0.76 
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