

1 **TITLE:** A Fundamental Study of Charge Effects on the Melt Electrowritten Polymer Fibers

2 **Authors:** Houzhu Ding, Kai Cao, Fucheng Zhang, William Boettcher, Robert C. Chang *

3 **Affiliations:** Department of Mechanical Engineering, Stevens Institute of Technology,

4 Hoboken, NJ, 07030, USA

5 *** Name and address for correspondence:** Dr. Robert C. Chang, 1 Castle Point Hudson,

6 Hoboken, NJ 07030. Email: rchang6@stevens.edu. Tel.: 201-216-8301

7 **Abstract:**

8 Melt electrowriting (MEW) is an electrohydrodynamics (EHD)-based additive
9 manufacturing paradigm for printing microscale fibers. Although models for charge
10 transport during EHD printing have been described, significant challenges arise from the in-
11 process charge dynamics in MEW process, which limits the achievable print resolution.

12 This paper advances a methodology to analyze the effects of charge dynamics on the MEW-
13 printed structure resolution. First, fibers printed with an oscillating toolpath exhibit two
14 distinct alignment patterns with constituent fibers either successively overlapping along the
15 toolpath or diverging into individual fibers without apparent overlap on conductive and non-
16 conductive substrates, respectively, pointing to the existence of inter-fiber charge
17 phenomena. Next, a set of straight fibers are printed on two types of substrates to investigate
18 the relationship between the prescribed inter-fiber distance (set S_f) and measured S_f . Both
19 repulsion (measured $S_f >$ set S_f) and attraction (measured $S_f <$ set S_f) are observed. Moreover,
20 a mathematical model based on line-point charge interactions is advanced to explain the
21 fiber attraction-repulsion phenomenon. Finally, residual charge measurements with a
22 customized Faraday Cup reveal that printed scaffolds on conductive and non-conductive
23 substrates are negatively and positively charged for residual charge, respectively.

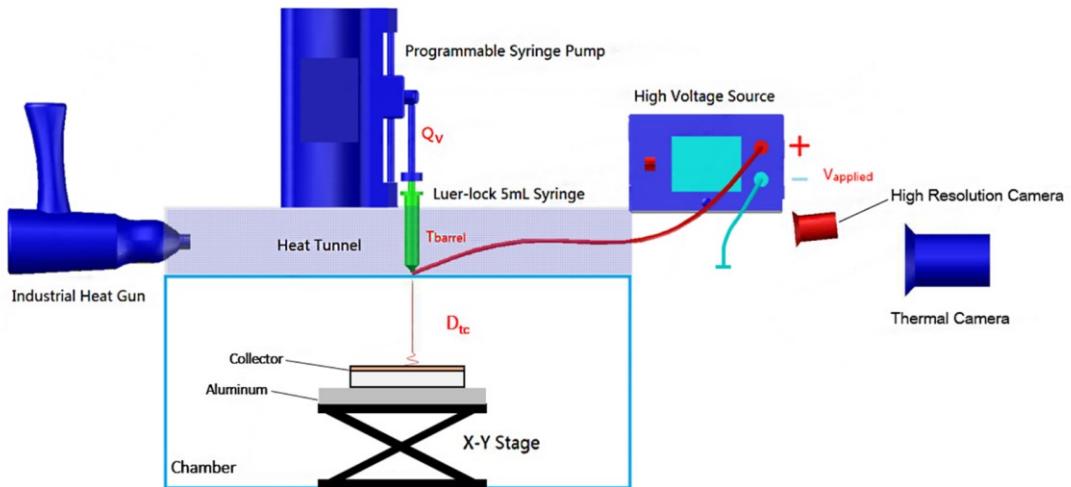
24 **Keywords:** Melt electrowriting; Residual charge; Substrate conductivity

25 **1. Introduction**

26 Additive manufacturing (AM) processes enable the fabrication of complex structures for
27 engineered tissue applications [1–4]. Among the established AM techniques, melt
28 electrowriting (MEW) based on the electrohydrodynamical (EHD) phenomenon [5–7], is a
29 prevailing technique to fabricate fibers at the micron to sub-micron scale. MEW has shown
30 biological applications due to its solvent-free processing characteristics compared to its
31 solution counterpart [8–10]. The 3D biomaterial-based porous constructs produced in this
32 way, termed scaffolds, are mainly used as engineered tissue models, typified by ordered
33 porous microarchitecture [11–13]. The two key measurement outcomes of the fabricated
34 MEW structures are tailored fiber diameter and alignment of fibers. Recently, significant
35 efforts have been made in terms of the process optimization to achieve a uniform fiber
36 diameter by altering the key parameters such as applied voltage, polymer temperature,
37 volumetric flow rate, and the tip-to-collector distance [6,14–16]. Traditionally, the second
38 feature relating to the tight control over the orderly alignment of fibers and layers, is a
39 comparatively neglected research direction, which is commonly believed to be dependent
40 more on electro-mechanical process control. However, as in other EHD produced outcomes,
41 the residual charge acquired by MEW fibers has been shown to cause intra-process jet
42 instabilities, directly affecting the deposition accuracy. Therefore, the achievable inter-fiber
43 distance is limited. The observed repulsion between adjacent printed fibers has been reported,
44 whereby the residual charge is presumed to affect the electric field when the structural print
45 reaches a prescribed number of layered fibers [17]. However, fundamental mechanism of
46 how the charge can affect the printed fiber is still challenging in MEW process although the
47 charge transport mechanism is well-established for a solution electrospinning process [18–
48 20]. During the solution electrospinning process, the positive charges are transferred from
49 the nozzle to the solution. Before the jet impacts the collector plates, charges can be

50 dissipated through coronal discharge, solution vaporization and charge removal by humidity
51 [18]. Upon deposition, partial charges, termed residual charges, are retained in the deposited
52 fibers since the electrospun fibers are essentially electrets, a dielectric material capable of
53 retaining charges at steady state [21]. Other charges are transferred to the collector substrate
54 and flow to the negative electrode of the high voltage source. The residual charges have been
55 shown to cause the instability of printing fibers, resulting in a conical accumulation shape on
56 a stationary collector. Specifically, when a lateral perturbation grows in response to the
57 repulsive forces between adjacent elements of charge carried by the fiber, the motion of the
58 jet segments rapidly evolves into an electrically-driven bending instability [20,22,23].

59 However, the mechanism of how charge affects the jet instability explains more of the
60 underlying physics when the fiber are “in-flight” rather than deposited well-aligned fibers.
61 Such explanations are not applicable to the current MEW process under study. Specifically,
62 the fundamental issue that occurs in MEW is stated as follows: When printing at a close inter-
63 fiber distance, a minimum ratio of inter-fiber distance to fiber diameter (S_f/d_f) is determined
64 to be 12, below which the adjacent fibers will either fuse into a single fiber or undergo
65 repulsion [6]. Evidence points to the fact that the residual charge is one of the critical barriers
66 to achieve precise fiber placement towards a highly ordered 3D mesh structure. However,
67 there exists limited literature that quantitatively describes the charge transport phenomena
68 between the deposited fiber and collector substrate, along with the effect of residual charge
69 on the ratio of the inter-fiber distance to the fiber diameter. Furthermore, there have been few
70 reported measurements of the residual charge due to its nanoscale magnitude [19,24].


71 To fill these knowledge gaps in printing uniform and highly ordered microstructures, a
72 systematic, mechanistic study is advanced herein to explore the effects of charge on printed
73 fiber outcomes by way of quantitative measurements and a preliminary mathematical model.
74 Based on the experiments conducted on different conductive coverslips as substrates

75 investigation of the charge effect on fiber alignment, this paper aims to provide needed
76 insights into how residual charge compromises tight control over the orderly alignment of
77 fibers under the emerging MEW paradigm to produce engineered scaffolds with precise
78 control over structural properties.

79 **2. Materials and Methods**

80 *2.1. Material and system configuration*

81 Poly(ϵ -Caprolactone) (PCL) polymer in pellet form is selected for the MEW process
82 with an average molecular weight of 45,600 g/mol and polydispersity of 1.219 (Capa6500,
83 Perstop Ltd. of UK). The MEW system applied in this paper is schematized in Figure 1. PCL
84 melt is loaded in a glass Luer-lock 5 mL syringe (Hamilton, USA), which is extruded by a

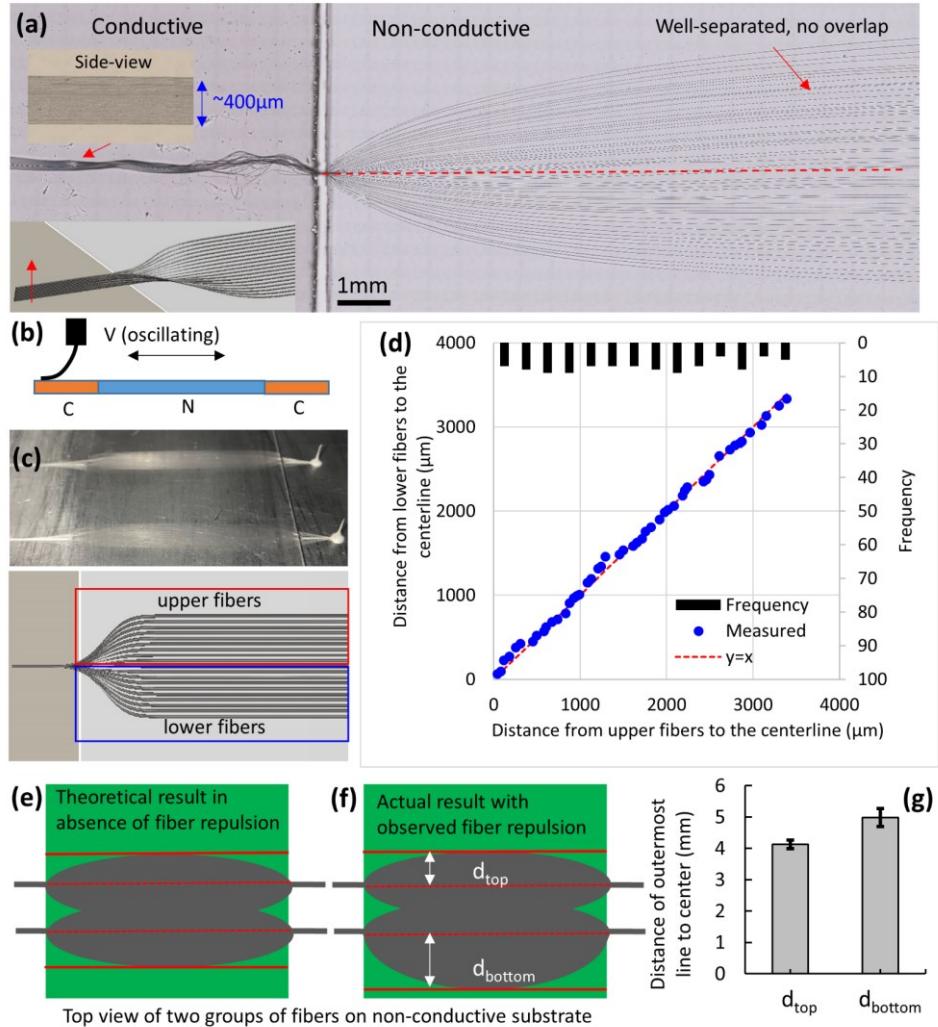
Figure 1. The MEW system configuration and details of the collector design

85 programmable syringe pump (Harvard Apparatus, USA) at a volumetric flow rate (Q_v) of 25
86 $\mu\text{L}/\text{h}$ for all the experiments. The syringe barrel is heated by the industrial heat gun (Steinel,
87 HG 2510 ESD, DE) set at 170 °C along the heat tunnel and the underside of the heat tunnel
88 is penetrated by the nozzle, surrounded by thermal insulation tape. The length of the exposed
89 nozzle is around 2 mm. An approximate voltage of 10 kV is applied between the nozzle tip

90 and a grounded copper collector plate by a high voltage source (Gamma, USA). An X-Y
91 stage (ASI Inc., USA) and the collector plate are sequentially mounted on a lab jack (Newport
92 281, USA). The distance between the nozzle tip and the collector plate (D_{tc}) is 12 mm. The
93 temperature at the base of the syringe barrel is monitored with a FLIR thermometer (Cole-
94 Parmer, USA) and kept at 59.5 ± 1 °C. The ambient temperature and relative humidity is
95 monitored with a multimeter (Extech Instruments, USA). Two types of fiber collecting
96 surfaces are used in the experiments, namely an indium tin oxide (ITO) coated conductive
97 substrates (SPI supplies, USA) with a resistivity range of 70-100 ohms and dimensions of
98 70×50 mm and a non-conductive polystyrene (PS) substrates (Fisherbrand, USA) with
99 dimensions of 70×50 mm. PS refers to the non-conductive substrate all experiments unless
100 stated otherwise. Table 1 lists the typical parameters and their range of values for the MEW
101 process. In this paper, the conductivity of collection substrates and the user input S_f (set S_f),
102 along with the process voltage and temperature are key parameters investigated.

103 *2.3. Imaging and data analysis*

104 An inverted motorized microscope (IX83, Olympus, USA) along with its imaging
105 processing software (CellSens 2.11) is used to image and characterize all samples. A 20×
106 objective lens with a magnification set at 12.6 is adopted for all samples. A 1080P,60 fps,
107 industry microscope camera with 0.5× to 4.5× objective (Lapsun, CN) is used to take high
108 resolution images and video of the printing process.

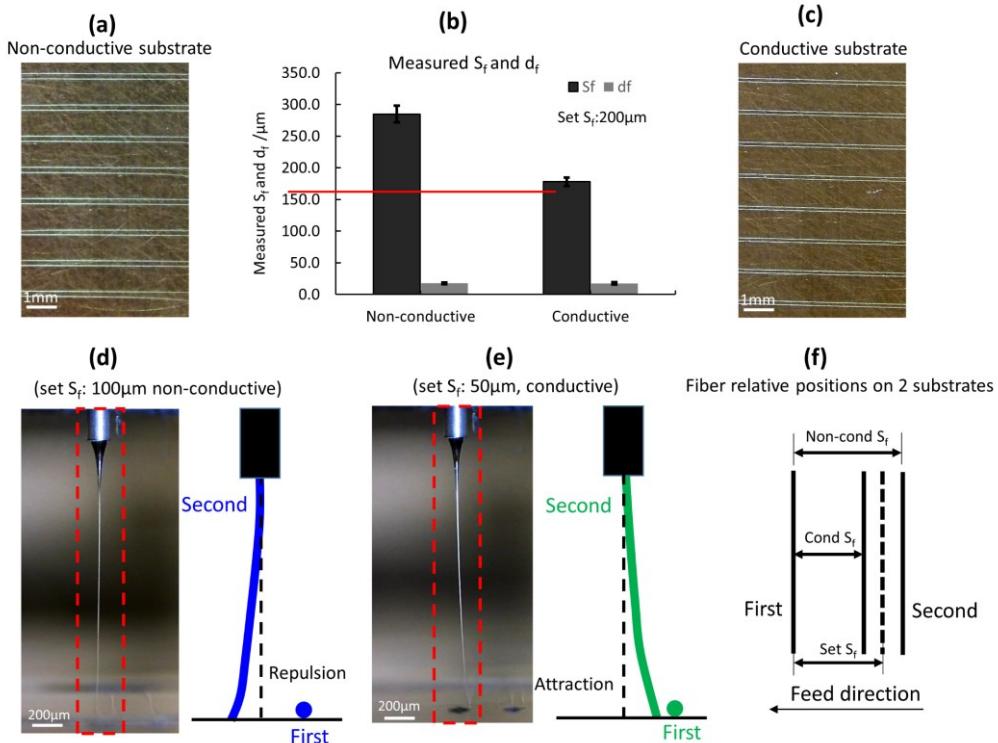

Table 1. The MEW process parameters and experimental values.

Parameters	Values
Polymer temperature (T_p)	59.5 ± 1 °C (measured)
Applied Voltage (V)	10 kV
Stage translational speed (v_s)	1~50 mm/s
Volumetric flow rate (Q_v)	25 μ L/h
Tip to collector distance (D_{tc})	12 mm
Inter-fiber distance (S_f)	0-1500 μ m
Set temperature range (T_s)	170 °C

109 **3. Results**

110 *3.1. Effect of substrate conductivity on fiber alignment*

111 During the MEW process, key parameters including voltage V , temperature T_p ,
 112 volumetric flow rate Q_v , and tip-to-collector distance D_{tc} have been previously identified


Figure 2. The printed fiber alignment patterns observed on two substrates with variable electric conductivities that are mounted in series on a moveable collecting stage: **(a)** Fibers precisely overlap on the conductive substrate and diverge into individual fibers on the non-conductive substrate; Lower left inset: color image of two groups of printed fibers (100 fibers each) **(b)** Schematic of printing configuration depicting the stage oscillating along a single toolpath; **(c)** Number of upper fibers and lower fibers are symmetric relative to the centerline prescribed by toolpath; **(d)** Symmetric plot of the distance from the upper and lower fibers to the central line along with their frequency. **(e)-(g)** Schematic illustrating the disposition for two groups of fibers printed for a theoretical case where no fiber repulsion compared to the actual result observed showing that the successively deposited fibers on non-conductive fibers are repulsed downwards.

113 [15,25–27]. However, the residual charge on fibers are demonstrated to have a significant
114 effect on the inter-fiber spacing between aligned fiber prints. In this section, a set of
115 qualitative experiments are designed to reveal the effect of substrate conductivities on the
116 fiber alignment geometry. First, the key parameters required for stable jet formation are
117 prescribed at: $V=10\text{kV}$, $Q_v=25\mu\text{L/h}$, $T_p=58.5^\circ\text{C}$, $D_{tc}=12\text{mm}$. Two coverslip substrates with
118 different conductivities are mounted in series on a translating stage to collect the printed
119 fibers. The stage oscillates along the prescribed toolpath at a speed of 35mm/s. As a
120 demonstration, 50 cycles of fibers are printed along a lateral center line distance of 35 mm
121 that is coincident with the prescribed toolpath. According to Figure 2(a), distinct fiber
122 alignment patterns are observed for the fiber deposition onto the left conductive substrate
123 compared to the right non-conductive substrate. Specifically, 100 printed fibers are shown to
124 precisely overlap on the conductive substrate and diverge into distinct individual fibers on
125 the non-conductive substrate. In Figure 2(b), a schematic of the printing configuration is
126 shown, in which the translating stage oscillates back and forth between the aligned substrates.
127 As a result, the upper image in Figure 2(c) shows the color image of two groups of printed
128 fibers, where the upper and bottom fibers are symmetrically distributed. To confirm that the
129 newly deposited fibers are repulsed by previous fibers, a measurement of distance from upper
130 and lower fibers to the center line coinciding with the prescribed toolpath, along with their
131 frequency are plotted in Figure 2(d). Based on an individual fiber count, an approximately
132 equal number of diverging fibers are deposited on each side of the centerline (i.e. 49 and 51
133 for upper and lower fibers, respectively). Each fiber is numbered (indexed from 1 to 49 for
134 upper fibers and 1 to 51 for lower fibers) based on increasing distance from the center line.
135 The distance of the upper fiber and lower fiber with the same index establishes the x and y
136 coordinate values of the corresponding point in Figure 2(d), respectively. The obtained points
137 are observed to be closely distributed along the line $y = x$. Additionally, considering the

138 frequency distribution, it is clearly shown that upper fibers and lower fibers are not only
139 symmetrical but also evenly distributed with respect to the center line. To further validate the
140 fiber repulsion phenomenon, Figure 2 (e)-(g) show the schematic of two groups of fibers
141 printed with a 35mm centerline distance. The d_{top} and d_{bottom} represent the distance between
142 uppermost and bottommost fibers to the center line, respectively. Actual measurement result
143 shows the later deposited fibers (bottom group) on non-conductive fibers are repulsed
144 downwards overall, which results in $d_{bottom} > d_{top}$.

145 *3.2. Effect of substrate conductivity on inter-fiber distance (S_f)*

146 According to the results shown in section 3.1, fiber spacing or alignment mechanism are
147 affected greatly by substrate conductivity. This section aims to investigate quantitative
148 relationship between user set S_f and measured S_f . Experimentally, the deposition of two fibers
149 cannot be positionally controlled when the set S_f is smaller than $8d_f$ [6]. Empirically, the
150 fiber entrapped charges are considered as the contributing factor to this fiber positional
151 constraint. In this section, a set of parallel fibers are printed on two types of substrates with
152 different conductivities. It is assumed that the conductive coverslip serves as a fiber substrate
153 to promote the release of fiber entrapped charge after the fiber is deposited. In Figure 3 (a)
154 and (c), an identical square wave patterned toolpath is designed for both experimental
155 substrate samples (PS substrate as non-conductive, ITO coated glass substrate as conductive).
156 Two aligned fibers are assigned to a group with set $S_f = 200 \mu\text{m}$ within each group and set S_f
157 = $2000 \mu\text{m}$ between groups. Figure 3 (b) displays measured S_f of grouped fibers on each
158 substrate. The fibers on the non-conductive substrate yields a larger measured S_f compared
159 with set S_f , as indicated by the solid red line. In contrast, the measured S_f on the conductive
160 substrate is slightly smaller than the set S_f . The d_f is also plotted to show repeatability for the
161 printed fiber diameter parameter. The Figure 3 (f) schematic demonstrates groups of paired
162 fibers printed with their relative positions varying a function of the substrate conductivity.

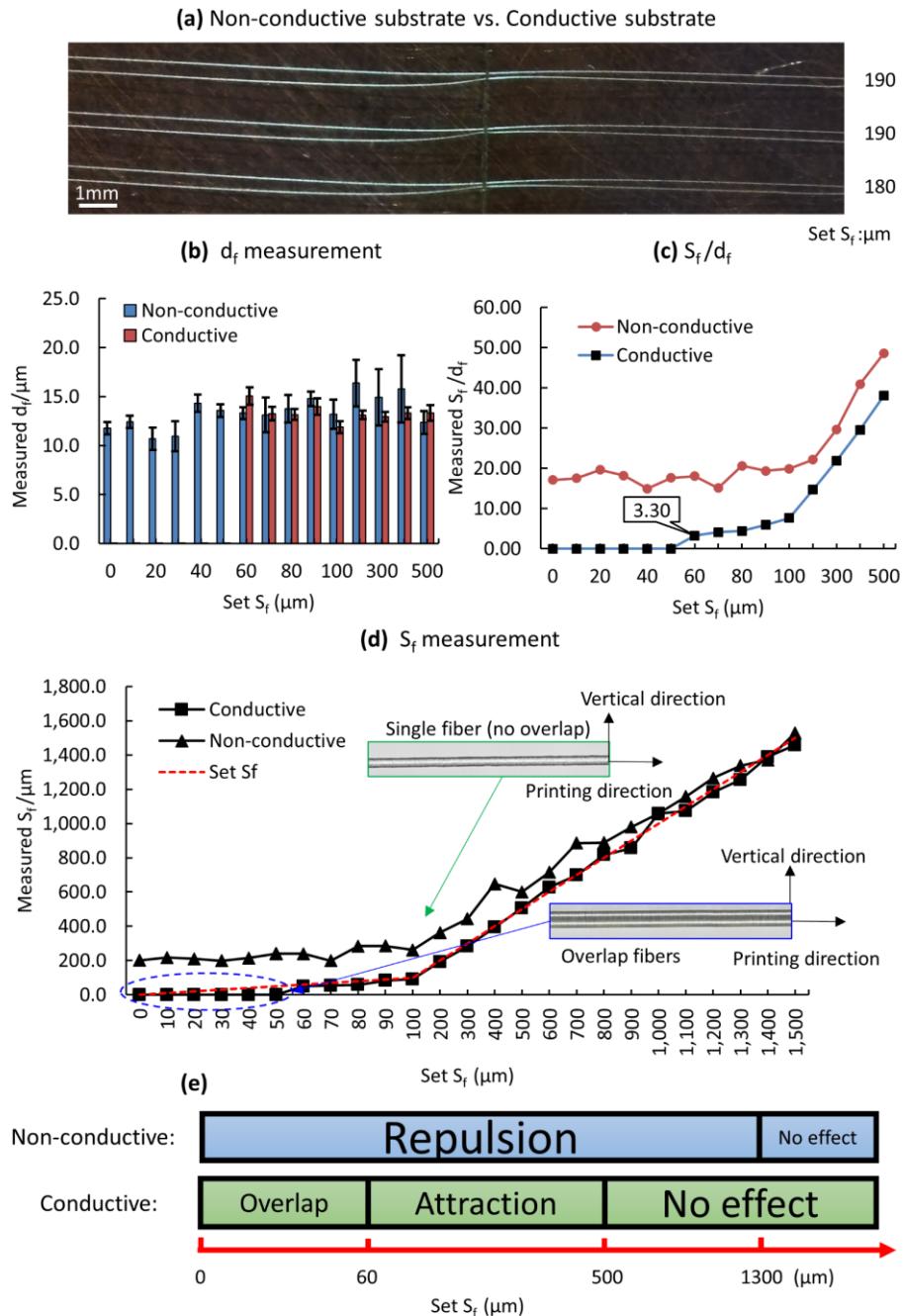


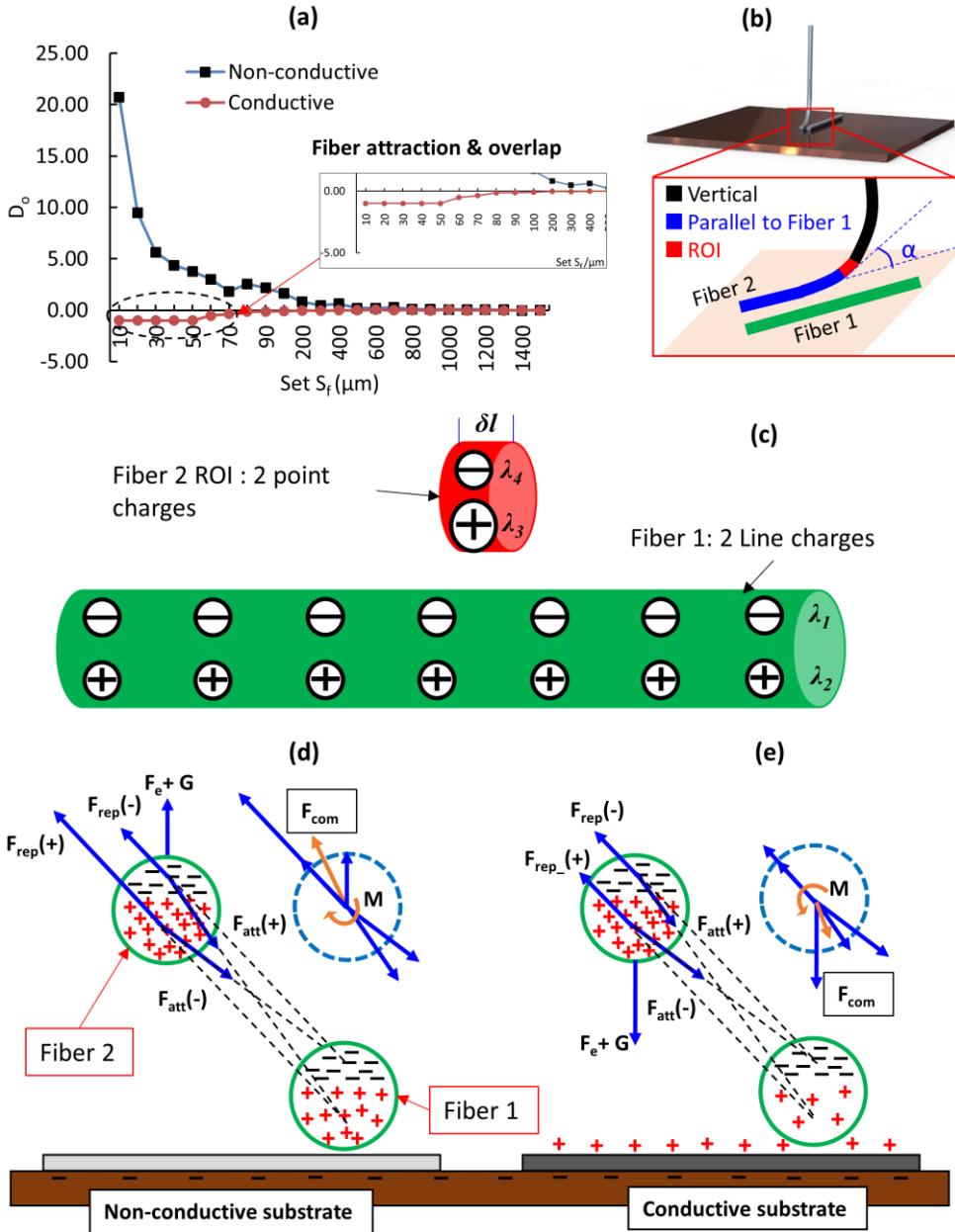
Figure 3. The effect of substrate conductivity on inter-fiber distance (S_f): (a), (c) The fibers deposited on non-conductive substrate and conductive substrate; (b) Measured S_f of the samples printed in (a), (c); (d)-(e) Attraction and repulsion phenomenon observed perpendicular to the print direction; (f) Schematic shows how two fibers are printed and possible relative positions.

163 The newly printed fiber tends to be attracted by the pre-existing fiber if the substrate is
 164 conductive, and repelled on a non-conductive substrate. This phenomenon is further verified
 165 by the captured images along the print direction in Figure 3 (d) and (e). For the two fibers
 166 shown in Figure 3 (f), the first fiber is vertically deposited at a designated position, the second
 167 fiber is deposited to the left of the first fiber at a set $S_f = 50$ μm. It is observed that the newly
 168 printed fiber is attracted and adheres to the preexisting fiber, where the fiber jet is deflected
 169 sideways in the direction perpendicular to the print direction. On the other hand, when the
 170 two fibers are deposited onto a non-conductive substrate, repulsion exerted on the newly
 171 printed fiber is observed, deflecting the jet away from the preexisting fiber. This phenomenon
 172 demonstrates the differential effects of substrate conductivity on the measured S_f compared
 173 to the set S_f at smaller set S_f regimes.

174 *3.3. Relationship between set S_f and measured S_f on variable substrate conductivities*

175 In this section, the aim is to understand the relationship between measured S_f and set S_f
 176 on substrates with divergent conductive properties. For visualization, Figure 4(a) shows

Figure 4. Relationship between set S_f and measured S_f on substrate with different conductivities; (a) The printed fibers on two aligned substrates where the left is non-conductive, and the right is conductive; (b) Measurement of d_f as a function of set S_f on two substrates; (c) The ratio of measured S_f over measured d_f ; (d) Measured S_f as a function of set S_f on two substrates, where measured S_f is larger than set S_f on the non-conductive substrate, and measured S_f is smaller than set S_f on the conductive substrate. When the set S_f is lower than 60 μm , the two fibers on the conductive substrate exhibit overlap; (e) Scale bar shows charge interaction between two fibers.


177 printed fibers on two aligned substrates, where the measured S_f on a non-conductive substrate
178 is larger than that on a conductive substrate. For quantitative analysis, several groups of fibers
179 with set S_f from 0-1500 μm are printed on the two substrate types. Specifically, the interval
180 is 10 μm when set S_f is prescribed for the 0-100 μm range while the interval is 100 μm for
181 the 100-1500 μm range. Furthermore, Figure 4(b) shows the plot of the fiber diameter d_f for
182 all samples ranging from 10.7 μm to 16.38 μm with an average $d_f = 13.39 \pm 1.38 \mu\text{m}$, thereby
183 indicating stability of the measured fiber diameter parameter during printing. The measured
184 S_f/d_f as a function of set S_f is plotted in Figure 4(c). This ratio is considered as a critical
185 indicator to evaluate how closely the adjacent fibers can approach each other. It is noted that
186 the smallest S_f/d_f achieved is 3.30 on the conductive substrate. Since the d_f parameter is stable,
187 the measured S_f is plotted in Figure 4(d) as a decoupled parameter to evaluate the fiber-fiber
188 interaction caused by residual charge. The trend of measured S_f as a function of set S_f on the
189 two substrates reveal an imbalance of forces exerted on the deposited fibers attributable to
190 the substrate conductivity. In Figure 4(d), the measured S_f on the non-conductive substrate is
191 consistently observed to be larger than the set S_f until set $S_f > 1300 \mu\text{m}$. A decrement in the
192 parametric difference (i.e. measured S_f – set S_f) is observed as the set S_f increases since the
193 square trend line denoting the measured S_f approaches the red dashed line denoting the set S_f .
194 On the other hand, the measured S_f on the conductive substrate approximates set S_f when the
195 set S_f is above 500 μm , smaller when the set S_f is between 60-500 μm , and equals to 0 (i.e
196 fiber overlap) when the set S_f is smaller than 60 μm , (circled in Figure 4 (d)). This indicates
197 that an attractive resultant force on a second fiber becomes stronger as set S_f decreases. It is
198 worth noting that, when the two fibers overlap, the fibers are aligned vertically in the layering
199 direction (see image aside from the Figure 4 (d)).

200 *3.4. Qualitative analysis of fiber attraction and repulsion phenomenon.*

201 Although an observable attraction and repulsion phenomenon is studied in the previous
202 sections, the reported mechanism of electric charges effects on aligned straight fibers is still
203 rudimentary. Therefore, a mathematical model of electrostatic interaction between two fibers
204 is proposed herein based on measured S_f data and a plot of the degree of offset (D_o) metric,
205 which is defined as:

$$206 \quad D_o = \frac{S_{f \text{ measured}} - S_{f \text{ set}}}{S_{f \text{ set}}} \quad (1)$$

207 The parameter D_o shown in Figure 5 (a) is indicated to correlate with the resultant force
208 exerted on the second ‘in-flight’ fiber during deposition. Figure 5(b) shows the schematic
209 illustrating the disposition for two printed adjacent fibers. To investigate the inter-fiber
210 interaction in the lateral extent, an isometric view along the print direction (enlarged in Figure
211 5 (b)) provides the relative positions of two fibers. The second ‘in-flight’ fiber undergoes
212 bending while approaching the substrate, where the angle (α in Figure 5(b)) formed between
213 the tangent line at any position on the second fiber and a line parallel to the print direction
214 ranges from 0° to 90° . It is assumed that there exists a segment of the second fiber that is
215 strongly affected by inter-fiber interaction (red region labeled as ROI (region of interest) in
216 Figure 5(b), which is a short fiber segment). Specifically, the red ROI of the second fiber is
217 considered to interact with the first fiber. Furthermore, the upstream segment of the second
218 fiber is deposited on the substrate and no longer assumed to be displaced by electrostatic
219 forces (green region labeled as ‘on substrate’). Figure 5 (c) shows the simplified model, where
220 the first fiber is considered as two line charges and the second fiber ROI as a two point
221 charges, both of which carry a polarized charge distribution in the cross-sectional plane as
222 shown in Figure 5(d-e). Here, the first fiber is polarized due to redistribution of charge
223 carriers, yielding a negatively charged top section and a positively charged bottom section.
224 The second ‘in-flight’ fiber carries a positively charged bottom section and a negatively
225 charged upper section (or virtually so) while approaching the substrate. The charge

Figure 5. Model of electrostatic interaction between two fibers (a) The plot of degree of offset (D°), proportional to the resultant force; (b) Schematic of fiber deposition shows the different segments of the second fiber where the red region is analyzed as an effective fiber segment which subjected to inter-fiber interaction; (c) Schematic shows the second fiber is simplified as two point charges and first fiber as two line charges;(d)-(e) The charge distribution of cross-sectional plane shows how substrate conductivity alters the repulsion and attraction phenomenon between two aligned fibers.

226 distribution on both substrates is indicated in Figure 5(d) and (e). Therefore, electrostatic
 227 forces exerted on the second fiber ROI is denoted in blue vectors. The resultant force F_{com} is
 228 also represented where the repulsion and attraction effects occur on the non-conductive
 229 conductive substrates, respectively.

230 Based on the simplifications of the ROI and charge distribution within fibers, the
 231 proposed simplified model is a system of two point charges (representing red ROI) and two
 232 infinitely long and uniform line charges (first fiber), where the charge densities for the cross-
 233 sectional plane are denoted by $\lambda_1, \lambda_2, \lambda_3$ and λ_4 (unit: C/m, shown in Figure 5(c)) that do not
 234 necessarily have the same magnitude. The electric field strength generated by an infinitely
 235 long and uniform line charge at a certain point A is expressed as:

$$236 \quad \vec{E} = 2k_e \lambda_i \vec{r} \quad (2)$$

237 where the k_e is the Coulomb constant ($k_e = 1/(4\pi\epsilon_0)$), and \vec{r} is the vector starting at the
 238 point on the line charge nearest to A and terminating at A. Then the forces exerted on red
 239 ROI fiber segment (as two point charges) by the two line charges (deposited fiber with
 240 polarized charge distribution) with differential length δl can be written as:

$$241 \quad \vec{F}_{ij} = 2k_e \frac{\lambda_i \lambda_j \delta l}{r_{ij}} \hat{r}_{ij}, i = 1,2, j = 3,4 \quad (3)$$

242 where and \hat{r}_{ij} denotes the unit vector in the direction of the vector starting at the point on
 243 line charge i nearest to the point charges j terminating at point charge $\lambda_j \delta l$, $i = 1,2, j = 3,4$.
 244 Also, the force exerted on the red ROI by external electric field notwithstanding the inter-
 245 fiber interaction is given as:

$$246 \quad \vec{F}_e = (\lambda_3 - \lambda_4) \vec{E}_l \quad (4)$$

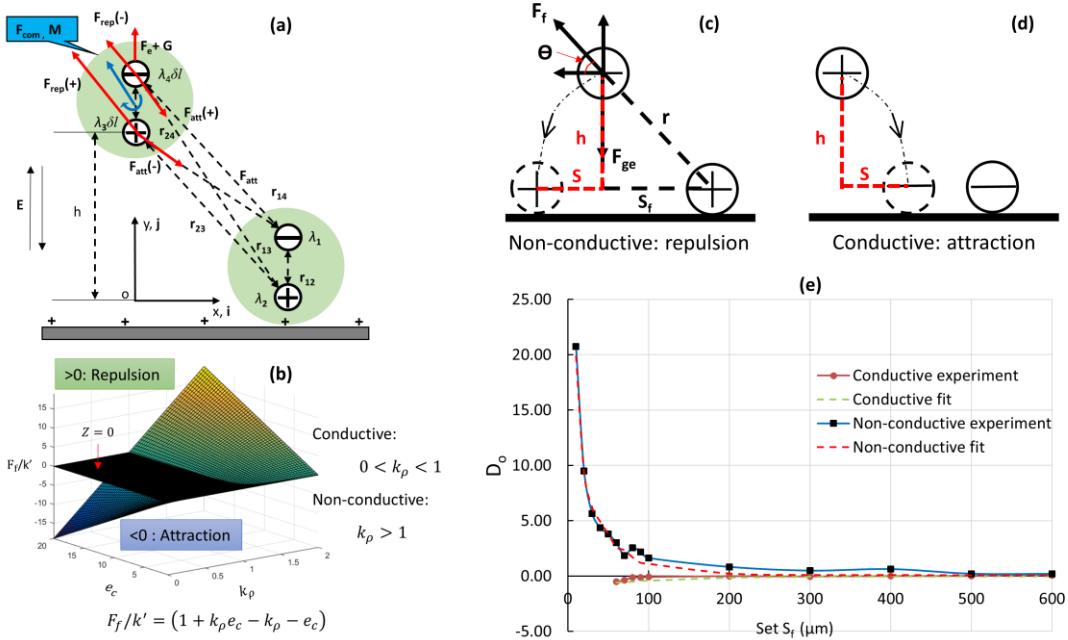
247 where \vec{E}_l represents the local electrostatic field strength as a result of the interaction between
 248 the high voltage nozzle tip, collector, and the substrate. Thus, the resultant force exerted on
 249 ROI can be represented as:

$$250 \quad \vec{F}_{com} = \sum_{i=1}^2 \sum_{j=3}^4 \vec{F}_{ij} + \vec{F}_e + \vec{G} \quad (5)$$

251 where \vec{G} is the gravity. The direction of resultant force is affected by the relative values of
 252 $\lambda_1, \lambda_2, \lambda_3$, and λ_4 as well as \vec{E}_l . In this model, the conductivity of the substrate plays a critical

253 role in altering the magnitude and direction of \mathbf{E}_l , along with the charge distribution of the
 254 two point charges and the charge density of the two line charges. Thus, the final effect can
 255 be either attractive or repulsive as a function of the substrate properties. The mechanism that
 256 supports this hypothesis is that the extent to which the excess positive charges entrapped
 257 within the fiber is transferred to the ground collector is determined by substrate conductivity,
 258 and in turn affecting the fiber interaction.

259 The substrate conductivities (or resistivity) and set S_f are two variables in this model,
 260 whose effect on inter-fiber attraction/repulsion can be further discussed for two specific
 261 cases.


262 *Case 1: Fiber repulsion/interaction as a function of substrate conductivity.*

263 Empirically, the fiber deposited retains a certain amount of negative charge which cannot be
 264 transferred to the ground or substrates. Based on this, the charge density of second fiber ROI
 265 and first fiber are:

266
$$\lambda_1 = -\lambda, \lambda_2 = k_\rho \lambda, q_3 = e_c \lambda, q_4 = -\lambda, (k_\rho, e_c \in R^+)$$

267 where λ represents absolute value of negative charge density in the upper part of both fibers.
 268 The denoted k_ρ is the charge transport coefficient representing the capability of positive
 269 charge transport between fiber and substrate by way of contact, and e_c (≥ 1) is the charge
 270 emission coefficient representing the capability of two mechanisms that inject charge carriers
 271 into a viscous polymer, namely electrical-field induced emission and the induced charge
 272 dissociation [7]. The forces exerted on the second fiber from the pre-existing first fiber along
 273 the line direction (i.e. formed by the two centers of the fiber cross-sectional planes) can be
 274 written as:

275
$$\vec{F}_f = \sum_{i=1}^2 \sum_{j=3}^4 \vec{F}_{ij} = 2k_e \delta l \left(\frac{\lambda^2}{r_{14}} \hat{\mathbf{r}}_{14} + \frac{k_\rho e_c \lambda^2}{r_{23}} \hat{\mathbf{r}}_{23} - \frac{k_\rho \lambda^2}{r_{24}} \hat{\mathbf{r}}_{24} - \frac{e_c \lambda^2}{r_{13}} \hat{\mathbf{r}}_{13} \right) \quad (6)$$

Figure 6. (a) Schematic of electrostatic interactions between line-point charge in a static electric field; (b) The 3D force plane exerted on the second fiber as a function of e_c and k_ρ ; (c)-(d) Model of force D_o and S_f on the non-conductive and conductive substrates; (e) The plot of fitted model (Equation (11)) and experimental data of D_o as a function of S_f .

276 Since the distance between λ_1 , λ_2 (as well as λ_3 , λ_4) is negligible compared to the distance
277 between λ_1 , λ_4 (as well as λ_2 , λ_3), therefore $r_{ij} \cong r$, $i = 1, 2, j = 3, 4$. The magnitude of \vec{F}_f can
278 be denoted as:

$$279 \quad F_f = k' (1 + k_\rho e_c - k_\rho - e_c) \quad (7)$$

280 where $k' = 2k_e \delta l \lambda^2 / r^2$. Based on Equation (7), the force along the line (formed by the two
281 centers of the fiber cross-sectional planes) is correlated to k_ρ and e_c . The relative force plane
282 (F_f/k') as a function of the two parameters is plotted in Figure 6(b). When printing on the
283 conductive substrate, $0 < k_\rho < 1$, $F_f/k' < 0$, representing attraction. When printing on the
284 non-conductive substrate, $k_\rho > 1$, $F_f/k' > 0$, representing repulsion.

285 *Case 2: Fiber repulsion/interaction as a function of set S_f .*

286 As set S_f changes, F_f varies. D_o is positively related to F_f based on the model. By letting F_{ge}
287 represent the magnitude of $\vec{F}_e + \vec{G}$, the fiber segment is assumed to be stationary in the cross-

288 sectional plane. As S_f changes, the distance between the fibers changes. According to Figure

289 6 (c), Equation (7) can be re-written as:

290
$$F_f = \frac{k_{e_c\rho}}{r} \quad (8)$$

291 where

292
$$k_{e_c\rho} = 2k_e \delta l (1 + k_\rho e_c - k_\rho - e_c) \lambda^2 \quad (9)$$

293 Two assumptions are made to determine the relationship between D_o and S_f :

294 (1) The first fiber is stretched by the translational stage and becomes parallel to the
295 previously deposited fiber at an initial height of h_0 , with a velocity of v_h ($0 < v_h < v_c$), (v_c
296 represents the critical translational stage speed, measured to be ~ 0.02 m/s in the
297 experiments) where the fiber interaction starts.

298 (2) After the fiber segment (ROI) is falls below h_0 , the charge within the fiber redistribute
299 and the ROI is subjected to electrostatic forces from the first fiber, where the
300 following non-linear ordinary differential equation system can be derived:

301
$$\begin{cases} \delta m \frac{d^2 S}{dt^2} = F_h = F_f \cos \theta \\ \delta m \frac{d^2 H}{dt^2} = F_v = -F_{ge} + F_f \sin \theta \end{cases} \quad (10)$$

302 where δm is the mass of the prescribed ROI fiber segment. Substitution of equation (8) into

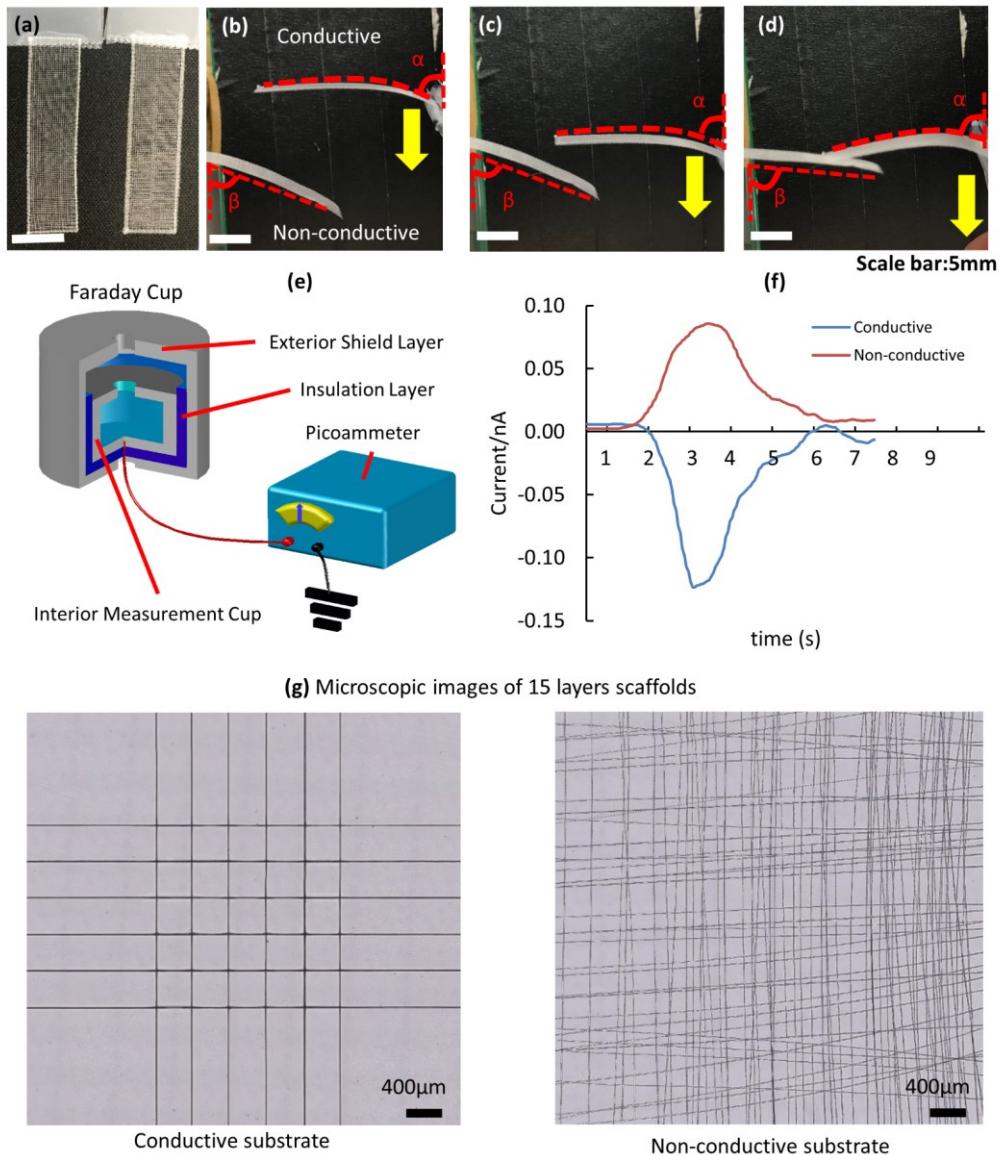
303 (10) yields:

304
$$\begin{cases} \delta m \frac{d^2 S}{dt^2} = \frac{k_{e_c\rho} (S + S_f)}{\sqrt{((S + S_f)^2 + h^2)}} \\ \delta m \frac{d^2 h}{dt^2} = F_{ge} - \frac{k_{e_c\rho} h}{\sqrt{((S + S_f)^2 + h^2)}} \end{cases} \quad (11)$$

305 where h denotes the vertical distance between ROI and substrate. Letting S denote the
306 horizontal distance that the ROI travels, the initial conditions can be obtained as:

307
$$\begin{cases} h(0) = h_0, h'(0) = v_0 \\ S(0) = 0, S'(0) = 0 \end{cases} \quad (12)$$

308 In addition to the independent variable time (t), and dependent variables (S, h), the unknown
 309 parameters are $[h_0, v_0, k_{mew}, g_e]$, where the h_0 is the height that inter-fiber interaction occurs,
 310 at when the fiber has a vertical speed of v_0 . Based on the experimental configuration, $0 < v_0$


Table 2. The fitted parameters in Equations (11) and (12).

Fitted parameters	Vertical height: h_0 (μm)	Vertical speed v_0 (m/s)	MEW coefficient: k_{mew} (N)	Gravitational and electric field acceleration: g_e (N/m^2)
non-conductive	~110	~0.0008	10^{-5}	0.1
conductive	~90	~0.00014	-10^{-6}	0.01

311 < 0.02 m/s, $0 < h_0 < 0.012$ m. The generalized coefficient called MEW coefficient is denoted
 312 by $k_{mew} = k_{e_c\rho} / \delta m$ and $g_e = F_{ge} / \delta m$, represents the acceleration caused by gravity and
 313 electric field. S_f and D_o are experimental data applied to fit the $S(t)$ and $h(t)$. By using Matlab
 314 (ode45 solver) to solve the ordinary differential equation system with properly tuning the
 315 unknown parameters by grid search method, a parameter set of the line-point charge model
 316 fit of the experimental data in Figure 5(a) is derived, which is shown in Table 2. The fitted
 317 results provide an approximate range of unknown parameters, which is not necessarily the
 318 actual data due to small sample size of experimental data.

319 *3.5 Model verification by measuring residual charge using Faraday cup*

320 Based on the model proposed in the previous section, the residual net charge entrapped
 321 within the aligned fibers is negative and positive on the conductive and non-conductive
 322 substrates, respectively. Therefore, within a range of prescribed layer thickness, the
 323 fabricated layered structures, termed scaffolds herein, should assume a negative charged on
 324 the conductive substrate, and a net positive charge on the non-conductive substrate. To verify
 325 this model, two 15-layer scaffolds with dimensions of 10×50 mm are printed on two different

Figure 7. Verification of the line-point charge fiber interaction model: (a) Two printed scaffolds, the left is on conductive substrate, right on non-conductive substrate; (b)-(d) The three images show that when the two scaffolds approach one another, attraction is observed; (e) Schematic of a Faraday cup for a residual charge measurement; (f) Charge measurement of two scaffolds in (a); (g) 15 layers of scaffolds in both substrates.

326 substrates as shown in Figure 7(a). The scaffolds are then gently removed from the substrate
 327 with insulating tweezers, which is verified in advance to be neutral by a customized Faraday
 328 cup design as shown in Figure 7(e). First, when the two scaffolds approach one another, an
 329 attraction phenomenon is observed (in Figure 7(b)-(d)), where both angles (α and β)
 330 measured between the one end of the scaffolds and a vertical mount increase. To further
 331 quantify the amount of net charge for the two scaffolds, the Faraday cup measurement is

332 carried out. Upon insertion of the two scaffolds into the Faraday cup, the net charge on the
333 scaffold for the conductive and non-conductive substrates is determined to be negative and
334 positive, respectively. In addition, microscopic images of 15-layered scaffolds on the two
335 substrates are shown in Figure 7(g), indicating that the fibers align vertically with precise
336 overlap on the conductive substrate but randomly deposit on the non-conductive substrate.
337 These results are consistent with the model proposed in the preceding section.

338 **4. Discussion**

339 As a current state-of-art AM technique, MEW enables the fabrication of micron or sub-
340 micron scale engineered biological cell substrates. Although the essential role of fiber
341 diameter is well-recognized [17,27], tight control over the inter-fiber distance parameter S_f
342 and the underlying mechanism is still under development. In the context of observed fiber
343 repulsion and attraction phenomena during the MEW process, systematic experiments and
344 mathematical models are necessary to understand the charge mechanisms that dictate the
345 printed fiber-based structural outcomes. By printing a series of aligned fibers on substrates
346 with different conductivities and measuring current during the fiber printing process, insights
347 into this phenomenon are reported herein.

348 First, fibers printed with an oscillating toolpath assume two distinct types of alignment
349 patterns on substrates with different conductivities. When the substrate is conductive, fibers
350 are strongly polarized by the local electric field whose positive charges will be largely
351 transported to the substrate due to direct physical contact or inverse corona discharge. This
352 results in the fiber's weak electric negativity but strong polarization accompanied by fiber
353 overlap at small set S_f and attraction at large set S_f . When the substrate is non-conductive,
354 fiber polarization is weakened due to the relatively weak local electric field and abundant
355 positive charges retained in the fibers, both of which result in the inter-fiber repulsion and
356 random deposition of the printed fibers. From the symmetric plot of the measured divergent

357 fibers, it is noteworthy that the weakened electrical field on a non-conductive substrate
358 confers a random and unbiased effect on the fiber positioning whereby the inter-fiber spacing
359 between fibers can be primarily attributed to preexisting fibers.

360 Therefore, during the printing process on substrates with various conductivities, the
361 repulsive and attractive forces are observable between (1) the second “in-flight” fiber and
362 substrate (repulsion on non-conductive substrate, attraction on conductive substrate), (2) the
363 second “in-flight” fiber and deposited fiber (repulsion on non-conductive substrate, attraction
364 on conductive substrate), which compromise the accuracy of S_f . The type (1) instability is
365 primarily caused by weak local electrical field near substrate, which can be compensated by
366 selecting an appropriate critical translational stage speed. However, type (2) instability is
367 primarily attributed to the fiber-fiber and fiber-substrate interaction. Systematically, by
368 setting different S_f (0-1500 μm) on both substrates, the repulsion between fibers is strong
369 enough to prevent fibers from overlapping on non-conductive substrate even with set $S_f = 0$
370 μm . However, the fiber overlaps the previous one once the set $S_f < 60 \mu\text{m}$ (approximately,
371 not exactly the same every time) when printing on conductive substrate. The trend line for
372 D_o suggests that a line-point charge model can explain the repulsion and attraction
373 phenomenon on two substrates. According to the line-point charge model, the substrate
374 conductivity alters the local electrical field strength and charge amount on the substrate
375 surface, and in turn the net charge amount and distribution in the fibers once in contact with
376 the substrate. Therefore, the final resultant force can be either repulsive or attractive. The
377 model explains why the fibers only overlap in vertical direction as well, where negative
378 charge carriers are forced to distribute at the topmost region of the fiber, the final resultant
379 force becomes vertical as the two fibers come into close apposition. Also, based on the model,
380 the function between D_o and set S_f can be derived and fitted, where the ROI of newly
381 deposited fiber is forced to move laterally at some height due to the existence of electrostatic

382 forces. Furthermore, post-measurement of charge amount by using a Faraday cup verifies the
383 model effectively.

384 **5. Conclusions**

385 In this paper, experimental studies are conducted to investigate the charge effect on fiber
386 alignment accuracy. The relationship between electrostatic forces and the repulsive-attractive
387 phenomenon has been revealed and modeled. The advanced mathematical model explains
388 the repulsion and attraction interaction, as well as the fiber-overlapping phenomenon. In the
389 two cases of analyses of the model, as set S_f or substrate conductivity changes, the resultant
390 force exerted on the second newly deposited fibers is altered. Based on the experimental
391 results, the charge transport path during the fiber printing process can be revealed: (1)
392 Pathway. The positively charged fiber (or material droplets) transfers charge carriers to the
393 substrates. A conductive substrate has superior conductivity to allow charge transport to the
394 ground/substrate surface compared to a non-conductive substrate. (3) Residual. More
395 positive charges remain in the deposited fibers on the non-conductive substrate than those on
396 the conductive substrate, as evidenced by the repulsion phenomenon between fibers on a non-
397 conductive substrate and attraction on a conductive substrate.

398 Once the underlying mechanism is well-understood, charge removal strategies can be
399 proposed to exert precision control over the fiber print structural outcomes. For example, a
400 heat-based charge removal method may be applied, where the entrapped charge within the
401 fiber may be radially transported to the fiber surface as the process temperature increases.
402 Another potential method is to use an electrolytic substrate, such as a hydrogel material to
403 allow the charge carriers to be neutralized upon deposition. However, the specific scope of
404 this paper is to investigate charge effects during the MEW process. Additional quantitative
405 variations in the substrate conductivities would need to be tested to confirm the overall trend
406 of the resultant force exerted on the newly deposited fibers. The relationship between the

407 charge amount and the scaffold layer-height is another key consideration for large-scale
408 fabrication of ordered three-dimensional scaffolds. Finally, a refined mathematical model is
409 essential to identify the fundamental physics of charge transport inherent to the MEW
410 process.

411 **Acknowledgments:** The work presented in this paper was supported by the National Science
412 Foundation under Award No. CMMI-MME-1663095. Any opinions, findings and
413 conclusions or recommendations expressed in this publication are those of the authors and
414 do not necessarily reflect the views of the National Science Foundation.

415 **Conflicts of Interest:** The authors declare no conflict of interest.

416 **Data Availability:** The raw/processed data required to reproduce these findings cannot be
417 shared at this time as the data also forms part of an ongoing study.

418 **References**

- 419 [1] D.B. Kolesky, K.A. Homan, M.A. Skylar-Scott, J.A. Lewis, Three-dimensional
420 bioprinting of thick vascularized tissues, *Proc. Natl. Acad. Sci.* . 113 (2016) 3179–
421 3184. <http://www.pnas.org/content/113/12/3179.abstract>.
- 422 [2] G. Hochleitner, T. Jüngst, T.D. Brown, K. Hahn, C. Moseke, F. Jakob, P.D. Dalton, J.
423 Groll, Additive manufacturing of scaffolds with sub-micron filaments via melt
424 electrospinning writing, *Biofabrication*. 7 (2015). doi:10.1088/1758-5090/7/3/035002.
- 425 [3] Current status of three-dimensional printing inks for soft tissue regeneration, *Tissue
426 Eng. Regen. Med.* 13 (2016) 636. <http://dx.doi.org/10.1007/s13770-016-0125-8>.
- 427 [4] H. Ding, R.C. Chang, Simulating image-guided in situ bioprinting of a skin graft onto
428 a phantom burn wound bed, *Addit. Manuf.* 22 (2018).
429 doi:10.1016/j.addma.2018.06.022.
- 430 [5] D.A. Saville, Electrohydrodynamics :The Taylor-Melcher Leaky Dielectric Model,
431 *Annu. Rev. Fluid Mech.* 29 (1997) 27–64. doi:10.1146/annurev.fluid.29.1.27.
- 432 [6] F. Tourlomousis, H. Ding, D.M. Kalyon, R.C. Chang, Melt electrospinning writing
433 process guided by a “Printability Number,” *J. Manuf. Sci. Eng. Trans. ASME.* 139
434 (2017). doi:10.1115/1.4036348.
- 435 [7] F.M. Wunner, M. Wille, T.G. Noonan, O. Bas, P.D. Dalton, E.M. De-juan-pardo, D.W.
436 Hutmacher, Melt Electrospinning Writing of Highly Ordered Large Volume Scaffold
437 Architectures, 1706570 (2018) 1–6. doi:10.1002/adma.201706570.

438 [8] T.D. Brown, P.D. Dalton, D.W. Hutmacher, Melt electrospinning today: An opportune
439 time for an emerging polymer process, *Prog. Polym. Sci.* 56 (2016) 116–166.
440 doi:<https://doi.org/10.1016/j.progpolymsci.2016.01.001>.

441 [9] P. Luana, C. Andrea, T. Cagri, P. Dario, Industrial Upscaling of Electrospinning and
442 Applications of Polymer Nanofibers: A Review, *Macromol. Mater. Eng.* 298 (2013)
443 504–520. doi:[10.1002/mame.201200290](https://doi.org/10.1002/mame.201200290).

444 [10] J. Ko, N.K. Mohtaram, F. Ahmed, A. Montgomery, M. Carlson, P.C.D. Lee, S.M.
445 Willerth, M.B.G. Jun, Fabrication of poly (ϵ -caprolactone) microfiber scaffolds with
446 varying topography and mechanical properties for stem cell-based tissue engineering
447 applications, *J. Biomater. Sci. Polym. Ed.* 25 (2014) 1–17.
448 doi:[10.1080/09205063.2013.830913](https://doi.org/10.1080/09205063.2013.830913).

449 [11] Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of Polymeric Nanofibers for
450 Tissue Engineering Applications: A Review, *Tissue Eng.* 12 (2006) 1197–1211.
451 doi:[10.1089/ten.2006.12.1197](https://doi.org/10.1089/ten.2006.12.1197).

452 [12] P.D. Dalton, C. Vaquette, B.L. Farrugia, T.R. Dargaville, T.D. Brown, D.W.
453 Hutmacher, Electrospinning and additive manufacturing: converging technologies,
454 *Biomater. Sci.* 1 (2013) 171–185. doi:[10.1039/C2BM00039C](https://doi.org/10.1039/C2BM00039C).

455 [13] Y. Wu, B. Wu, S. Vijayavenkataraman, Y.S. Wong, J.Y.H. Fuh, Crimped fiber with
456 controllable patterns fabricated via electrohydrodynamic jet printing, *Mater. Des.* 131
457 (2017) 384–393. doi:<https://doi.org/10.1016/j.matdes.2017.06.027>.

458 [14] F. Tourlomousis, A. Babakhanov, H. Ding, R.C. Chang, A novel melt electrospinning
459 system for studying cell substrate interactions, in: ASME 2015 Int. Manuf. Sci. Eng.
460 Conf. MSEC 2015, 2015. doi:[10.1115/MSEC20159443](https://doi.org/10.1115/MSEC20159443).

461 [15] E. McColl, J. Groll, T. Jungst, P.D. Dalton, Design and fabrication of melt
462 electrowritten tubes using intuitive software, *Mater. Des.* 155 (2018) 46–58.
463 doi:<https://doi.org/10.1016/j.matdes.2018.05.036>.

464 [16] Modeling 3D melt electrospinning writing by response surface methodology, *Mater.*
465 *Des.* (2018). <http://dx.doi.org/10.1016/j.matdes.2018.03.053>.

466 [17] T.D. Brown, F. Edin, N. Detta, A.D. Skelton, D.W. Hutmacher, P.D. Dalton, Melt
467 electrospinning of poly(ϵ -caprolactone) scaffolds: Phenomenological observations
468 associated with collection and direct writing, *Mater. Sci. Eng. C* 45 (2014) 698–708.
469 doi:<https://doi.org/10.1016/j.msec.2014.07.034>.

470 [18] G. Collins, J. Federici, Y. Imura, L.H. Catalani, Charge generation, charge transport,
471 and residual charge in the electrospinning of polymers: A review of issues and
472 complications, *J. Appl. Phys.* 111 (2012) 44701. doi:[10.1063/1.3682464](https://doi.org/10.1063/1.3682464).

473 [19] L.H. Catalani, G. Collins, M. Jaffe, Evidence for Molecular Orientation and Residual
474 Charge in the Electrospinning of Poly(butylene terephthalate) Nanofibers,
475 *Macromolecules.* 40 (2007) 1693–1697. doi:[10.1021/ma061342d](https://doi.org/10.1021/ma061342d).

476 [20] D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of
477 electrically charged liquid jets of polymer
478 solutions in electrospinning, *J. Appl. Phys.* 87 (2000) 4531–4547. doi:[10.1063/1.373532](https://doi.org/10.1063/1.373532).

479 [21] J. van Turnhout, Thermally Stimulated Discharge of Polymer Electrets, *Polym. J.* 2
480 (1971) 173. <http://dx.doi.org/10.1295/polymj.2.173>.

481 [22] A.L. Yarin, S. Koombhongse, D.H. Reneker, Bending instability in electrospinning of
482 nanofibers, *J. Appl. Phys.* 89 (2001) 3018–3026. doi:10.1063/1.1333035.

483 [23] M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Electrospinning and electrically
484 forced jets. I. Stability theory, *Phys. Fluids.* 13 (2001) 2201–2220.
485 doi:10.1063/1.1383791.

486 [24] Y.M. Shin, M.M. Hohman, M.P. Brenner, G.C. Rutledge, Experimental
487 characterization of electrospinning: the electrically forced jet and instabilities,
488 *Polymer (Guildf).* 42 (2001) 9955–9967. doi:[https://doi.org/10.1016/S0032-3861\(01\)00540-7](https://doi.org/10.1016/S0032-3861(01)00540-7).

490 [25] J.H. and P.X. and D. Li, Development of melt electrohydrodynamic 3D printing for
491 complex microscale poly (ϵ -caprolactone) scaffolds, *Biofabrication.* 8 (2016) 35008.
492 <http://stacks.iop.org/1758-5090/8/i=3/a=035008>.

493 [26] A.Y. and S.J.H. and P.D. Dalton, Additive manufacturing of polymer melts for
494 implantable medical devices and scaffolds, *Biofabrication.* 9 (2017) 12002.
495 <http://stacks.iop.org/1758-5090/9/i=1/a=012002>.

496 [27] B.T. D., D.P. D., H.D. W., Direct Writing By Way of Melt Electrospinning, *Adv. Mater.*
497 23 (2011) 5651–5657. doi:10.1002/adma.201103482.

498