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Abstract—This paper considers the problem of optimizing the
trajectory of an Unmanned Aerial Vehicle (UAV) Base Station
(BS). A map is considered, characterized by a traffic intensity
of users to be served. The UAV BS must travel from a given
initial location at an initial time to a final position within a given
duration and serves the traffic on its way. The problem consists
in finding the optimal trajectory that minimizes a certain cost
depending on the velocity and on the amount of served traffic.
The problem is formulated using the framework of Lagrangian
mechanics. When the traffic intensity is quadratic (single-phase),
we derive closed-form formulas for the optimal trajectory.
When the traffic intensity is bi-phase, necessary conditions
of optimality are provided and an Alternating Optimization
Algorithm is proposed, that returns a trajectory satisfying these
conditions. The Algorithm is initialized with a Model Predictive
Control (MPC) online algorithm. Numerical results show how
the trajectory is improved with respect to the MPC solution.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) are expected to play an

increasing role in future wireless networks1 [1]. UAVs may be

deployed in an ad hoc manner when the traditional cellular

infrastructure is missing. They can serve as relays to reach

distant users outside the coverage of wireless networks. They

also may be used to disseminate data to ground stations or

collect information from sensors. In this paper, we address

one of the envisioned use cases for UAV-aided wireless

communications, which relates to cellular network offloading

in highly crowded areas [1]. More specifically, we focus on

the path planning problem or trajectory optimization problem

that consists in finding an optimal path for a UAV Base Station

(BS) that minimizes a certain cost depending on the velocity

and on the amount of served traffic. Our approach is based

on the Lagrangian mechanics framework.

A. Related Work

UAV trajectory optimization for networks has been tackled

maybe for the first time in [2]. The model consists in a UAV

flying over a sensor network from which it has to collect

some data. The problem consists in optimizing the trajectory

length of the UAV under the constraint that it collects the

required amount of data from every sensor. Authors use

a reinforcement learning approach where improved trajec-

tories are sequentially learned over several tour iterations.

This model is different from ours as it allows the UAV to

learn the optimal trajectory from previous experience. The

problem of optimally deploying UAV BSs to serve traffic

1J. Darbon is supported by NSF DMS-1820821.

Fig. 1: A UAV Base Station travels from z0 at t0 to zT at T

and serves a user traffic characterized by its intensity.

demand has been addressed in the literature by considering

static UAVs BSs or relays, see e.g. [3], [4]. The goal is

to optimally position the UAV so as to maximize the data

rate with ground stations or the number of served users.

In a very recent work [5], a data rate-energy trade-off is

studied. In these works the notion of trajectory is either

ignored or restricted to be circular or linear. In robotics and

autonomous systems, trajectory optimization is known as path

planning [6]. In this aim, there are classical methods like

Cell Decomposition, Potential Field Method or Probabilistic

Road Map and there are heuristic approaches, e.g. bio-inspired

algorithms. Authors of [7] have capitalized on this literature

and proposed a path planning algorithm for drone BSs based

on A* algorithm. The main goal of these papers is to reach

a destination while avoiding obstacles, and in [7] the speed

cannot be controlled. In our work, we intend to minimize a

certain cost function along the trajectory by controlling the

velocity of the UAV. This goal is studied in optimal control

theory [8] and is applied for example in aircraft trajectory

planning [9]. Most numerical methods in control theory can

be classified in direct and indirect methods. Indirect methods

provide analytical solutions from the calculus of variations

and use first order necessary conditions for a trajectory to

be optimal. In direct methods, the problem is transformed

in a non linear programming problem using discretized time,

locations and controls. Direct methods are heavily applied in

a series of very recent publications in the field of UAV-aided

communications. In [10] for example, a UAV relay assists

the communication between a source and a destination. As



the resulting problem is non-convex, it is first approximated

and then solved by successive convex optimization. In [11],

the objective is to maximize the energy efficiency of a

UAV-to-ground station communication by taking into account

the propulsion energy consumption and by optimizing the

trajectory. Again, sequential convex optimization is applied

to an approximated problem. In the same vein, [12] considers

multiple-UAV BSs used to serve fixed users. The quality of

the solution to the nonlinear program may heavily depend

on the initial guess. Authors thus propose an heuristic based

on circular trajectories to initialize their algorithm. With

direct methods, because of the discretization, the differential

equations and the constraints of the systems are satisfied only

at discrete points. This can lead to less accurate solutions

than indirect methods and the quality of the solution depends

on the quantization step [13]. Although every iteration of the

sequential convex optimization technique has a polynomial

time complexity, practical resolution time may dramatically

increase with the quantization grid and the dimension of the

problem. We thus propose in this paper an indirect approach

based on Lagrangian mechanics that has the advantage to

provide closed-form expressions for the optimal trajectories

when the potential is quadratic (we say single-phase). When

the potential is quadratic by region (or multi-phase) the

optimization process consists in finding the right crossing time

and location on the interface of the regions. This question is

an active field of research in control theory, see e.g. [14].

As explained in [15], [16], a trajectory optimization prob-

lem can be decomposed in different phases or arcs. Phases

are sequential in time, i.e., they partition the time domain.

Differential equations describing the system dynamics cannot

change during a phase. This point of view allows us to

consider the multi-phase problem.

B. Contributions

Our contributions are the following:

• Problem Formulation: To the best of our knowledge, this

is the first time that the UAV BS trajectory problem is

formulated using the formalism of Lagrangian mechan-

ics. This approach provides closed-form equations when

the potential is quadratic and thus very low complexity

solutions compared to existing solutions in the literature.

• Closed-form expression of the optimal trajectory with

single phase traffic intensity: When the traffic intensity

map is made of a single hot spot or traffic hole, has a

quadratic form (single phase), and is time-independent,

closed form expressions for the optimal trajectory are

derived. It consists in a part of hyperbole for a hot spot

and corresponds to a repulsor in mechanics. For a traffic

hole, the trajectory is on an ellipse and corresponds to

the case of an attractor in mechanics.

• Characterization of the optimal solution in multi-phase

traffic intensity: When the traffic map has several hot

spots or traffic holes (multi-phase) whose regions are

separated by interfaces and is time-independent, we

derive necessary conditions to be fulfilled by the position

and the instant at which the optimal trajectory crosses an

interface (see Theorem 2).

• An online algorithm for multi-phase time-varying traffic

intensity: When the traffic map is multi-phase and is

time-varying, we propose an online algorithm based on

MPC.

• An Alternating Optimization Algorithm for bi-phase

time-independent traffic intensity: When the traffic in-

tensity is made of two hot spots separated by an in-

terface (bi-phase) and is time-independent, we propose

an Alternating Optimization Algorithm that finds a sta-

tionary point for the cost function. This algorithm has a

complexity O(1) at every iteration, whereas iterations

of the sequential convex optimization technique have

polynomial time complexity (see Algorithm 1).

The paper is structured as follows. In Section II we give

the system model and its interpretation in terms of Lagrangian

mechanics. In Section III, we formulate the problem and give

preliminary results. Section IV is devoted to the character-

ization of the optimal trajectories. Section V presents our

algorithms and Section VI concludes the paper. All proofs

are given in the Appendix of [17].

Notations: Let f : R
n × R

m → R defined by f(x, y)
where x = (x1, . . . , xn) ∈ R

n and y = (y1, . . . , ym) ∈
R

m. Let a ∈ R
n and b ∈ R

m. We denote by ∂f
∂xi

(a, b)
the partial derivative of f with respect to the variable

xi at (a, b) ∈ R
n × R

m. We also introduce the nota-

tions ∇xf(a, b) = ( ∂f
∂x1

(a, b), . . . , ∂f
∂xn

(a, b)) ∈ R
n and

∇yf(a, b) = ( ∂f
∂y1

(a, b), . . . , ∂f
∂ym

(a, b)) ∈ R
m.

II. SYSTEM MODEL AND INTERPRETATION

A. System Model

We consider a network area characterized by a traffic

density at position z and time t. We intend to control the

trajectory and the velocity of a UAV base station, which is

located in z0 , z(t0) at t0 and shall reach a destination

zT , z(T ) at T with the aim of minimizing a cost determined

by the velocity and the traffic, defined hereafter by (1). At

(t, z), we assume that the UAV BS is able to cover an area,

from which it can serve users (see Figure 1). The velocity of

the UAV BS induces an energy cost. In this model, we control

the velocity vector a of the UAV BS. The general form of the

cost function is as follows

L(t, z, a) =
K

2
||a||2 − u(t, z) (1)

where the first term is a cost related to the velocity of the

vehicle (K is a positive constant), and ‖ · ‖ denotes the usual

Euclidean norm. The higher is the speed, the higher is the

energy cost. The second term is a user traffic intensity, i.e.,

the amount of traffic served by the UAV BS at (t, z). Note

that a non-zero energy at null speed can be incorporated in

the model by adding a constant. Without loss of generality,

we assume that this constant is null.

III. LAGRANGIAN MECHANICS FORMULATION

A. Problem Formulation

Let S(t0, z0, T, zT ) be the minimal total cost along any

trajectory between z0 at t0 and zT at T (also called the

action in mechanics or value function in control theory).



Let us define Ω(t0, T ) as the space of absolutely continuous

functions from [t0;T ] to R
2. Our problem can now be

formulated as follows

S(t0, z0, T, zT ) = min
a∈Ω(t0,T )

∫ T

t0

L(s, z(s), a(s))ds+J(z(T ))(2)

where dz
dt
(t) = a(t), z(t0) = z0, and J is the terminal

cost defined by J(z) = 0 if z = zT and J(z) = +∞
otherwise. For simplicity reasons, we assume the existence

and uniqueness of the optimal control a∗(t) in (2) and

denote the associated optimal trajectory z∗(t). In a traffic map

symmetric with respect to z0 and zT , the reader can convince

himself that the uniqueness is not guaranteed.

B. Preliminary Results From Lagrangian Mechanics

We provide in this section important results from the

Lagrangian mechanics for the convenience of the reader.

Definition 1 (Impulsion). The impulsion function is defined

as

p(t, z, a) := ∇aL(t, z, a) (3)

In the Newtonian classical framework that is used here (see

(1)), the impulsion is the product of the particle mass by its

velocity (hence the standard term ”impulsion”).

Definition 2. The Hamiltonian function is defined as

H(t, z, p) := max
a∈R2

p · a− L(t, z, a). (4)

Lemma 1 (Euler-Lagrange Equations). Along the optimal

trajectory z∗(t) that starts from z0 at t0 and ends at zT at

T , we have

d

dt
∇aL(t, z

∗(t), a∗(t)) = ∇zL(t, z
∗(t), a∗(t)) (5)

or equivalently

dp

dt
(t, z∗(t), a∗(t)) = ∇zL(t, z

∗(t), a∗(t)) (6)

The Euler-Lagrange equation is the first-order necessary

condition for optimality and holds for every point on the

optimal trajectory.

Lemma 2. If the Lagrangian L(t, z, a) is time-independent

and α-homogeneous in z and a for α > 0, i.e., L(λz, λa) =
|λ|αL(z, a) for all λ ∈ R, S given by (2) reads

S(t0, z0, T, zT ) =
1

α
[z · p]Tt0 + J(zT ). (7)

Lemma 3 (Hamilton-Jacobi). Along the optimal trajectory,

we have for t ∈ (t0;T )

∂S

∂t0
(t, z∗(t), T, zT ) = H(t, z∗(t),−p∗(t)) (8)

∂S

∂T
(t0, z0, t, z

∗(t)) = −H(t, z∗(t), p∗(t)) (9)

where

p∗(t) = ∇aL(t, z
∗(t), a∗(t)) = ∇zS(t,z

∗(t), T, zT ) (10)

From now, we assume that the Lagrangian is time-

independent, i.e., L(t, z, a) = L(z, a), and is an even function

in a, i.e., L(z,−a) = L(z, a). A direct consequence is that

H is time-independent and is an even function in p, i.e., we

write H(t, z, p) = H(z, p) and H(z,−p) = H(z, p).

IV. OPTIMAL TRAJECTORY

In this section, we characterize the optimal trajectory when

the traffic intensity is a quadratic form and also when it

is made of two regions of quadratic form separated by an

interface2. We call these two cases single-phase and multiple-

phase intensities respectively. Both cases satisfy our assump-

tions on the Lagrangian with α = 2.

A. Single-Phase Optimal Trajectory

Assume that the traffic intensity is of the form u(z) =
1
2u0||z||

2. When u0 > 0, this function models a traffic hole

in z = 0. When u0 < 0, it models a traffic hot spot at z = 0.

We disregard the case u0 = 0 because it corresponds to a

constant traffic intensity that is not of interest in this paper.

Thus the cost function has the following form

L(z, a) =
1

2
K||a||2 −

1

2
u0||z||

2 (11)

Note that

p(z, a) = ∇aL(z, a) = Ka (12)

1) Trajectory Equation: In the single phase case, we have

a closed form expression of the trajectory.

Theorem 1. If u0 < 0, the cost function is given by (13), the

optimal trajectory is

z∗(t) =
zT sinh(ω(t− t0)) + z0 sinh(ω(T − t))

sinh(ω(T − t0))
(14)

and the control is given by

a∗(t) = ω
zT cosh(ω(t− T ))− z0 cosh(ω(T − t))

sinh(ω(T − t0))
(15)

where ω2 = −u0

K
.

If u0 > 0, the cost function is given by (16), the optimal

trajectory is

z∗(t) =
zT sin(ω(t− t0)) + z0 sin(ω(T − t))

sin(ω(T − t0))
(17)

and the control is given by

a∗(t) = ω
zT cos(ω(t− t0))− z0 cos(ω(T − t))

sin(ω(T − t0))
(18)

where ω2 = u0

K
.

Corollary 1. If the user traffic intensity is of the form

u(t, z) = 1
2u0||z||

2 + u0z · e + u1 with u0 ∈ R, u1 ∈ R

and e ∈ R
2, then define z̃ = z+ e, z̃0 = z0 + e, z̃T = zT + e

and trajectories given in Theorem 1 are valid by replacing z,

z0, zT by z̃, z̃0, z̃T , respectively. The cost function becomes:

S(t0, z0, T, zT ) =
1
α
[z · p]Tt0 + J(zT )− u1(T − t0).

Corollary 2. If the user traffic intensity is of the form

u(t, z) =
∑

i ui||z − zi||
2 with

∑

i ui 6= 0, then u(t, z) =

(
∑

i ui)||z − zb||
2 +

∑

i ui||zi − zb||
2 with zb =

∑
i
uizi∑
i
ui

.

Define z̃ = z + zb, z̃0 = z0 + zb, z̃T = zT + zb, ũ0 =
∑

i ui

and trajectories given in Theorem 1 are valid by replacing z,

z0, zT , u0 by z̃, z̃0, z̃T , ũ0 respectively.

2We leave for further work the way to approximate a realistic traffic
intensity map by a set of regions with intensities of quadratic form.



S(t0, z0, T, zT ) =
Kω

2 sinhω(T − t0)

(

(|z0|
2 + |zT |

2) coshω(T − t0)− 2z0 · zT
)

+ J(zT ) (13)

S(t0, z0, T, zT ) =
Kω

2 sinω(T − t0)

(

(|z0|
2 + |zT |

2) cosω(T − t0)− 2z0 · zT
)

+ J(zT ) (16)
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Fig. 2: Traffic hot spot (u0 < 0). Circles are iso-traffic levels.

The system is thus equivalent to the one assumed in

Theorem 1 by changing the origin of the locations to the

barycentre zb of the zi.

2) Traffic Hot Spot, Traffic Hole: We assume that there is

a hot spot or a traffic hole located in zh and that the traffic

intensity is of the form u(t, z) = 1
2u0||z − zh||

2 + u1 =
1
2u0||z||

2−u0z·zh+
1
2u0||zh||

2+u1. We can apply Corollary 1

with e = −zh. Figure 2 shows optimal trajectories when zh
is a hot spot, i.e., for u0 < 0, and different values of K.

The starting point is z0 and the destination is zT . When K

increases, the velocity cost increases and the trajectories tend

to the straight line between z0 and zT , which minimizes the

speed. When K is small, the UAV can go fast to zh, reduces

its speed in the vicinity of the hot spot and then goes fast to

the destination. Figure 3 shows optimal trajectories when zh is

a traffic hole, i.e., for u0 > 0. In Figure 3a, T is smaller than

the period of the ellipse, i.e., 2π
ω

> T . When K decreases,

the UAV can spend more time in the areas of higher traffic

intensity. In Figure 3b, T is larger than the period. In this

case, the trajectory follows one period of the ellipse whose

equation is given by (17) plus a part of the same ellipse from

z0 to zT .

B. Multi-Phase Trajectory Characterization

We now consider a traffic intensity (or potential) consisting

in two quadratic functions separated by an interface I of equal

potentials delimiting two regions 1 and 2. The interface is

defined by an equation f(z) = C, where C is a constant and

f is a differentiable function. We assume that the optimal

trajectory crosses only once the interface at position ξ at τ .
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Fig. 3: Traffic hole (u0 > 0).

Theorem 2. The location and time (ξ, τ) of interface crossing

are characterized by the following equations

H1(ξ(τ), p
∗(τ−))−H2(ξ(τ), p

∗(τ+)) = 0 (19)

p∗(τ−)− p∗(τ+)− µ ∇zf(ξ) = 0 (20)

f(ξ) = C (21)

for some Lagrange multiplier µ ∈ R, where we recall that

p∗ is defined with respect to the optimal trajectory between

(t0, z0) and (T, zT ), and where p∗(τ−) = lims→τ,s<τ p
∗(s)

and p∗(τ+) = lims→τ,s>τ p
∗(s).

Equation (19) expresses the fact the energy is conserved

when crossing the interface. One can show that actually the

energy is conserved along the whole trajectory. Equation (20)

is related to the conservation of the tangential component of

the impulsion at the interface. Equation (21) is the interface

equation at ξ. One can show that under the assumption

of equal potential on the interface, the kinetic energy, the
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Fig. 4: MPC trajectory and Alternating Optimization Algo-

rithm trajectory with two hot spots.

impulsion, and the velocity vector are conserved across the

interface.

V. ALGORITHMS

A. An Online Algorithm: MPC

In this section, we first present an online algorithm based

on MPC [18] (we omit the pseudo-code for space reasons).

In a traffic intensity landscape made of multiple phases, the

idea is to assume at every t that the current phase won’t

change from t to T . Using this assumption, we compute the

optimal trajectory as in the single phase case and take the

next decision based on this trajectory. This algorithm has the

advantage of being online, of low complexity and can be used

in multiphase time-dependent traffic maps. We have however

no guarantee of optimality.

B. An Alternating Optimization Algorithm

We now study a time-independent bi-phase scenario, in

which a trajectory from z0 to zT crosses the interface at

time τ and location ξ. We present an Alternating Optimization

Algorithm (Algorithm 1) that provides a stationary trajectory

in the sense of Theorem 2. The algorithm consists in alter-

natively optimizing τ (steps 9-17) and ξ (steps 18-26) by

using the results of Theorem 2. For every fixed τ and ξ, the

current trajectory is the concatenation of the optimal trajectory

between (t0, z0) and (τ, ξ) and the optimal trajectory between

(τ, ξ) and (T, zT ) (step 27). Every iteration of the algorithm

only requires the evaluation of two Hamiltonians or the

computation of a point B, see (23), and its projection on the

interface. Therefore the complexity of an iteration is O(1). In

simulations, MPC is used to produce an initial trajectory.

1) Procedure for seeking an optimal τ given a fixed ξ: We

use the result of Theorem 2. As shown in its proof [17], the

gradient of S with respect to τ is given by H2(ξ, p
∗(τ+))−

H1(ξ, p
∗(τ−)). We can thus compute the Hamiltonians in

every region by differentiating the cost function (13) with

respect to the final time in region 1 (see (9)) and with respect

to the initial time in region 2 (see (8)). We then update τ by

using a simple gradient descent scheme in step 11.

0 20 40 60 80 100

-29.5

-29

-28

Fig. 5: Cost function along the iterations of the Alternating

Optimization Algorithm trajectory.

2) Procedure for seeking an optimal ξ given a fixed τ :

From Hamilton-Jacobi, the gradient of the total cost function

with respect to ξ is p∗(τ−)−p∗(τ+) (see proof of Theorem 2

in [17]). Since in the Newtonian framework the impulsion is

proportional to the control variable a (see (12)) and since in

a quadratic model the velocity vector is, at any time a linear

combination of centered initial and final positions (15), this

gradient appears to be an affine function of ξ which reads

∇zT S1(t0, z0, τ, ξ) +∇z0S2(τ, ξ, T, zT ) = Kh (ξ −B)

Scalar Hessian h and position B, where the spatial gradient

cancels i.e., p∗(τ−) = p∗(τ+) at fixed τ are given by:

h = ω1 coth(ω1(τ − t0)) + ω2 coth(ω2(T − τ)) (22)

B =
1

h

[

ω1 zh1 coth(ω1(τ − t0)) + ω2 zh2 coth(ω2(T − τ))

+
ω1 (z0 − zh1)

sinh(ω1(τ − t0))
+

ω2 (zT − zh2)

sinh(ω2(T − τ))

]

(23)

The equation involving the Lagrange multiplier (20) new

reads

K h (ξ −B)− µ ∇ξf(ξ) = 0 (24)

and shows that the optimal location ξ∗ is the orthogonal pro-

jection of B on the interface I. This projection is performed

in steps 19-20 of the algorithm.

Figure 4 shows the MPC trajectory and the trajectory

obtained from Algorithm 1 after 60 iterations in a bi-phase

landscape. The traffic intensity is shown in three dimensions

in Figure 1: It is a bi-phase landscape made of two hot-

spots, where the peak of traffic in zh2 is higher than in zh1.

The Alternating Optimization Algorithm has gradually moved

the interface crossing time and location in order to spend

more time in the second hot-spot and to go closer to zh2.

Figure 5 shows how the cost function has decreased along the

iterations and thus how our algorithm has improved over the

MPC solution. From iterations 1 to 45, τ has been gradually

updated; at iteration 46, ξ is updated once; ξ is again updated

once at iteration 59.

VI. CONCLUSION

In this paper, we have proposed a Lagrangian approach

to solve the UAV base station optimal trajectory problem.

When the traffic intensity exhibits a single phase, closed-

form expressions for the trajectory and speed are given. When

the traffic intensity exhibits multiple phases, we characterize

the crossing time and location at the interface. In a first



Algorithm 1 Alternating Optimization Algorithm

1: Input: t0, T , z0, zT , zh1, zh2, u01, u02, ω1, ω2, u11,

u12, an initial trajectory z(t), the initial crossing time

and position (τ, ξ) ∈ [τ ;T ]× I, δτ > 0, ǫτ > 0, ǫξ > 0,

ǫS > 0.

2: Output: (τ, ξ) ∈ [τ ;T ] × I such that the conditions of

Theorem 2

3: τ ′ ← τ ; ξ′ ← ξ

4: timenotfound← 1; positionnotfound← 0
5: {z(t)}t0≤t≤T ← an initial feasible trajectory, e.g. from

MPC

6: Compute S along {z(t)}t0≤t≤T

7: do

8: S′ ← S

9: if timenotfound then

10: Compute H1 and H2 at (τ, ξ) according to (8-9)

11: τ ← τ + sign(H1 −H2)δτ
12: if |τ ′ − τ | < ǫτ then

13: timenotfound← 0
14: positionnotfound← 1
15: end if

16: τ ′ ← τ

17: end if

18: if positionnotfound then

19: Compute B according to (23)

20: ξ ← projI(B), see (24)

21: if ||ξ′ − ξ|| < ǫξ then

22: timenotfound← 1
23: positionnotfound← 0
24: end if

25: ξ′ ← ξ

26: end if

27: {z(t)}t0≤t≤T ← OPTTRAJ(zh1, u01, u11, ω1, z0, t0,

ξ, τ) ∪ OPTTRAJ(zh2, u02, u12, ω2, ξ, τ, zT , T )
(OPTTRAJ provides optimal trajectory using (14),(17))

28: Compute S for {z(t)}t0≤t≤T according to (13)

29: while |S′ − S| > ǫS

approach, we propose an online algorithm based on MPC

for multi-phase and time-dependent traffic intensity, which

allows to take into account the impact of each phase. We

then propose an offline Alternating Optimization Algorithm

for bi-phase time-independent traffic intensities that provides

a stationary trajectory with respect to the crossing time and

location on the interface and fulfills the necessary conditions

of optimality. Numerical results show that we improve the

trajectory obtained with MPC.
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