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Abstract—This paper considers the problem of optimizing the
trajectory of an Unmanned Aerial Vehicle (UAV) Base Station
(BS). A map is considered, characterized by a traffic intensity
of users to be served. The UAV BS must travel from a given
initial location at an initial time to a final position within a given
duration and serves the traffic on its way. The problem consists
in finding the optimal trajectory that minimizes a certain cost
depending on the velocity and on the amount of served traffic.
The problem is formulated using the framework of Lagrangian
mechanics. When the traffic intensity is quadratic (single-phase),
we derive closed-form formulas for the optimal trajectory.
When the traffic intensity is bi-phase, necessary conditions
of optimality are provided and an Alternating Optimization
Algorithm is proposed, that returns a trajectory satisfying these
conditions. The Algorithm is initialized with a Model Predictive
Control (MPC) online algorithm. Numerical results show how
the trajectory is improved with respect to the MPC solution.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) are expected to play an
increasing role in future wireless networks! [1]. UAVs may be
deployed in an ad hoc manner when the traditional cellular
infrastructure is missing. They can serve as relays to reach
distant users outside the coverage of wireless networks. They
also may be used to disseminate data to ground stations or
collect information from sensors. In this paper, we address
one of the envisioned use cases for UAV-aided wireless
communications, which relates to cellular network offloading
in highly crowded areas [1]. More specifically, we focus on
the path planning problem or trajectory optimization problem
that consists in finding an optimal path for a UAV Base Station
(BS) that minimizes a certain cost depending on the velocity
and on the amount of served traffic. Our approach is based
on the Lagrangian mechanics framework.

A. Related Work

UAV trajectory optimization for networks has been tackled
maybe for the first time in [2]. The model consists in a UAV
flying over a sensor network from which it has to collect
some data. The problem consists in optimizing the trajectory
length of the UAV under the constraint that it collects the
required amount of data from every sensor. Authors use
a reinforcement learning approach where improved trajec-
tories are sequentially learned over several tour iterations.
This model is different from ours as it allows the UAV to
learn the optimal trajectory from previous experience. The
problem of optimally deploying UAV BSs to serve traffic
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Fig. 1: A UAV Base Station travels from zg at g to zp at T
and serves a user traffic characterized by its intensity.

demand has been addressed in the literature by considering
static UAVs BSs or relays, see e.g. [3], [4]. The goal is
to optimally position the UAV so as to maximize the data
rate with ground stations or the number of served users.
In a very recent work [5], a data rate-energy trade-off is
studied. In these works the notion of trajectory is either
ignored or restricted to be circular or linear. In robotics and
autonomous systems, trajectory optimization is known as path
planning [6]. In this aim, there are classical methods like
Cell Decomposition, Potential Field Method or Probabilistic
Road Map and there are heuristic approaches, e.g. bio-inspired
algorithms. Authors of [7] have capitalized on this literature
and proposed a path planning algorithm for drone BSs based
on A* algorithm. The main goal of these papers is to reach
a destination while avoiding obstacles, and in [7] the speed
cannot be controlled. In our work, we intend to minimize a
certain cost function along the trajectory by controlling the
velocity of the UAV. This goal is studied in optimal control
theory [8] and is applied for example in aircraft trajectory
planning [9]. Most numerical methods in control theory can
be classified in direct and indirect methods. Indirect methods
provide analytical solutions from the calculus of variations
and use first order necessary conditions for a trajectory to
be optimal. In direct methods, the problem is transformed
in a non linear programming problem using discretized time,
locations and controls. Direct methods are heavily applied in
a series of very recent publications in the field of UAV-aided
communications. In [10] for example, a UAV relay assists
the communication between a source and a destination. As



the resulting problem is non-convex, it is first approximated
and then solved by successive convex optimization. In [11],
the objective is to maximize the energy efficiency of a
UAV-to-ground station communication by taking into account
the propulsion energy consumption and by optimizing the
trajectory. Again, sequential convex optimization is applied
to an approximated problem. In the same vein, [12] considers
multiple-UAV BSs used to serve fixed users. The quality of
the solution to the nonlinear program may heavily depend
on the initial guess. Authors thus propose an heuristic based
on circular trajectories to initialize their algorithm. With
direct methods, because of the discretization, the differential
equations and the constraints of the systems are satisfied only
at discrete points. This can lead to less accurate solutions
than indirect methods and the quality of the solution depends
on the quantization step [13]. Although every iteration of the
sequential convex optimization technique has a polynomial
time complexity, practical resolution time may dramatically
increase with the quantization grid and the dimension of the
problem. We thus propose in this paper an indirect approach
based on Lagrangian mechanics that has the advantage to
provide closed-form expressions for the optimal trajectories
when the potential is quadratic (we say single-phase). When
the potential is quadratic by region (or multi-phase) the
optimization process consists in finding the right crossing time
and location on the interface of the regions. This question is
an active field of research in control theory, see e.g. [14].
As explained in [15], [16], a trajectory optimization prob-
lem can be decomposed in different phases or arcs. Phases
are sequential in time, i.e., they partition the time domain.
Differential equations describing the system dynamics cannot
change during a phase. This point of view allows us to
consider the multi-phase problem.

B. Contributions

Our contributions are the following:

o Problem Formulation: To the best of our knowledge, this
is the first time that the UAV BS trajectory problem is
formulated using the formalism of Lagrangian mechan-
ics. This approach provides closed-form equations when
the potential is quadratic and thus very low complexity
solutions compared to existing solutions in the literature.

o Closed-form expression of the optimal trajectory with
single phase traffic intensity: When the traffic intensity
map is made of a single hot spot or traffic hole, has a
quadratic form (single phase), and is time-independent,
closed form expressions for the optimal trajectory are
derived. It consists in a part of hyperbole for a hot spot
and corresponds to a repulsor in mechanics. For a traffic
hole, the trajectory is on an ellipse and corresponds to
the case of an attractor in mechanics.

e Characterization of the optimal solution in multi-phase
traffic intensity: When the traffic map has several hot
spots or traffic holes (multi-phase) whose regions are
separated by interfaces and is time-independent, we
derive necessary conditions to be fulfilled by the position
and the instant at which the optimal trajectory crosses an
interface (see Theorem 2).

o An online algorithm for multi-phase time-varying traffic
intensity: When the traffic map is multi-phase and is
time-varying, we propose an online algorithm based on
MPC.

o An Alternating Optimization Algorithm for bi-phase
time-independent traffic intensity: When the traffic in-
tensity is made of two hot spots separated by an in-
terface (bi-phase) and is time-independent, we propose
an Alternating Optimization Algorithm that finds a sta-
tionary point for the cost function. This algorithm has a
complexity O(1) at every iteration, whereas iterations
of the sequential convex optimization technique have
polynomial time complexity (see Algorithm 1).

The paper is structured as follows. In Section II we give
the system model and its interpretation in terms of Lagrangian
mechanics. In Section III, we formulate the problem and give
preliminary results. Section IV is devoted to the character-
ization of the optimal trajectories. Section V presents our
algorithms and Section VI concludes the paper. All proofs
are given in the Appendix of [17].

Notations: Let f : R™ x R™ — R defined by f(z,y)
where © = (z1,...,2,) € R" and y = (y1,...,Ym) €
R™. Let a € R™ and b € R™. We denote by g—a{i(a,b)
the partial derivative of f with respect to the variable
z; at (a,b) € R™ x R™. We also introduce the nota-
tions V. f(a,b) = (5=(a,b),...,2(a,b)) € R™ and

YV, f(a,b) = (2L (a,b),..., 2L (a,b)) € R™.

Oy1 > OYm
II. SYSTEM MODEL AND INTERPRETATION
A. System Model

We consider a network area characterized by a traffic
density at position z and time ¢. We intend to control the
trajectory and the velocity of a UAV base station, which is
located in zp £ z(tg) at ¢y and shall reach a destination
zr 2 2(T) at T with the aim of minimizing a cost determined
by the velocity and the traffic, defined hereafter by (1). At
(t,z), we assume that the UAV BS is able to cover an area,
from which it can serve users (see Figure 1). The velocity of
the UAV BS induces an energy cost. In this model, we control
the velocity vector a of the UAV BS. The general form of the
cost function is as follows

K
L(t,2,0) = 7 [lal]* —u(t, 2) (M

where the first term is a cost related to the velocity of the
vehicle (K is a positive constant), and || - || denotes the usual
Euclidean norm. The higher is the speed, the higher is the
energy cost. The second term is a user traffic intensity, i.e.,
the amount of traffic served by the UAV BS at (¢, z). Note
that a non-zero energy at null speed can be incorporated in
the model by adding a constant. Without loss of generality,
we assume that this constant is null.

III. LAGRANGIAN MECHANICS FORMULATION

A. Problem Formulation

Let S(to, 20,7, 27) be the minimal total cost along any
trajectory between zo at top and zp at T (also called the
action in mechanics or value function in control theory).



Let us define (g, T") as the space of absolutely continuous
functions from [to;T] to R2 Our problem can now be

formulated as follows
T

S(to, 20, T, 27) = min L(s,2(s),a(s))ds+J(z(T))2)
a€Q(to,T) to

where 22(t) = a(t), z(to) = 20, and J is the terminal
cost defined by J(z) = 0 if 2z = zp and J(z) = +oo
otherwise. For simplicity reasons, we assume the existence
and uniqueness of the optimal control a*(t) in (2) and
denote the associated optimal trajectory z*(¢). In a traffic map
symmetric with respect to zg and zr, the reader can convince

himself that the uniqueness is not guaranteed.

B. Preliminary Results From Lagrangian Mechanics

We provide in this section important results from the
Lagrangian mechanics for the convenience of the reader.

Definition 1 (Impulsion). The impulsion function is defined
as

p(t, z,a) == VL(t, z,a) 3)

In the Newtonian classical framework that is used here (see

(1)), the impulsion is the product of the particle mass by its
velocity (hence the standard term “impulsion”).

Definition 2. The Hamiltonian function is defined as
H(t,z,p) :=maxp-a— L(t z,a). 4
a€R?

Lemma 1 (Euler-Lagrange Equations). Along the optimal
trajectory z*(t) that starts from zy at to and ends at zp at
T, we have

%Vaﬁ(t,z*(t),a*(t)) S VLLE (), 0" (E) ()

or equivalently

d * * * *

(620,07 (1) = VoLEZ (0" 0) 6
The Euler-Lagrange equation is the first-order necessary

condition for optimality and holds for every point on the

optimal trajectory.

Lemma 2. [f the Lagrangian L(t,z,a) is time-independent
and a-homogeneous in z and a for a > 0, i.e, L(Az, ) a) =
IAM“L(z,a) for all X € R, S given by (2) reads

1
S(thZ(th ZT) = a[z p}tj; + J(ZT) (7)

Lemma 3 (Hamilton-Jacobi). Along the optimal trajectory,
we have for t € (to;T)

0 (4,20, T, 20) = H 2 (0,0 (1) @
0
St 0t (0) = ~H(L 2 (0,0°() )

where
p*(t) = V L(t, 2% (t),a"(t)) = V. S(t,z" (), T,2r) (10)

From now, we assume that the Lagrangian is time-
independent, i.e., L(t,z,a) = L(z,a), and is an even function
in a, i.e., L(z,—a) = L(z,a). A direct consequence is that
H is time-independent and is an even function in p, i.e., we
write H(t,z,p) = H(z,p) and H(z,—p) = H(z,p).

IV. OPTIMAL TRAJECTORY

In this section, we characterize the optimal trajectory when
the traffic intensity is a quadratic form and also when it
is made of two regions of quadratic form separated by an
interface>. We call these two cases single-phase and multiple-
phase intensities respectively. Both cases satisfy our assump-
tions on the Lagrangian with oo = 2.

A. Single-Phase Optimal Trajectory

Assume that the traffic intensity is of the form u(z) =
2uo||z]|2. When uo > 0, this function models a traffic hole
in z = 0. When ug < 0, it models a traffic hot spot at z = 0.
We disregard the case uy = 0 because it corresponds to a
constant traffic intensity that is not of interest in this paper.
Thus the cost function has the following form

1 1
L(z,a) = SK|lal[* = Suol|=|* (11)

Note that

p(z,a) = VoL(z,a) = Ka (12)

1) Trajectory Equation: In the single phase case, we have
a closed form expression of the trajectory.

Theorem 1. If ug < 0, the cost function is given by (13), the
optimal trajectory is

zp sinh(w(t — t9)) + 2o sinh(w(T —t))

*(t) = 14
2 Sinh(w(T — o)) (14
and the control is given by
. zp cosh(w(t —T)) — zp cosh(w(T — t))
t) = 15
a’(t) =w sinh(w(T — tp)) (15)
where w? = -4,

If ug > 0, the cost function is given by (16), the optimal
trajectory is

zp sin(w(t — o)) + 2o sin(w(T — t))

*(t) = 17
=) sin(w(T — to)) a7
and the control is given by
ot (1) = s cos(w(t - to)) — 2o cos(w(T —t)) (18)
sin(w(T — tg))
where w? = 2.

Corollary 1. If the user traffic intensity is of the form
u(t,z) = Suo||z|[* + woz - e + uy with ug € R, ug € R
and e € R2, then define 2 = z+e, 2y =20 +e, 27 = 2r +e
and trajectories given in Theorem I are valid by replacing z,
20, 2T by Z, Zo, ZT, respectively. The cost function becomes:
S(to, 20, T’7 ZT) = é[z p]g; + J(ZT) - Ul(T - to).

Corollary 2. If the user traffic intensity is of the form
u(t,z) = >, willz — z||* with 3, u; # 0, then u(t,z) =
(Tiu)llz — 2l? + Xy uillzi — 2l[? with 2, = Z=
Define z = z + 2y, Zo0 = 20 + 2, 27 = 27 + 21, Up = ) _; Uy
and trajectories given in Theorem 1 are valid by replacing z,
Z0, 2T, Uo by Z, Zo, Z7, Ug respectively.

2We leave for further work the way to approximate a realistic traffic
intensity map by a set of regions with intensities of quadratic form.



Kw
S(to, 20, T, 27) = ———2
(o 20, T 21) = 5 T — 20)

((|20]* + |27|?) coshw (T — to) — 220 - z7) + J(21)

13)

Kw

S(to, 20, T, zr) = 2sinw(T —to)

((|Zo|2 + |ZT|2) [¢0)] w(T — to) - 220 . ZT) + J(ZT)

(16)

Fig. 2: Traffic hot spot (uy < 0). Circles are iso-traffic levels.

The system is thus equivalent to the one assumed in
Theorem 1 by changing the origin of the locations to the
barycentre z; of the z;.

2) Traffic Hot Spot, Traffic Hole: We assume that there is
a hot spot or a traffic hole located in z; and that the traffic

intensity is of the form wu(t,z) = fugllz — zu||* + u1 =
Lupl|2]|?—uoz-2n+ 2o |2n||*+u1. We can apply Corollary 1
with e = —zj,. Figure 2 shows optimal trajectories when zj,

is a hot spot, i.e., for ug < 0, and different values of K.
The starting point is zo and the destination is zz. When K
increases, the velocity cost increases and the trajectories tend
to the straight line between zp and z7, which minimizes the
speed. When K is small, the UAV can go fast to zj, reduces
its speed in the vicinity of the hot spot and then goes fast to
the destination. Figure 3 shows optimal trajectories when zj, is
a traffic hole, i.e., for ug > 0. In Figure 3a, 7" is smaller than
the period of the ellipse, i.e., %’r > T. When K decreases,
the UAV can spend more time in the areas of higher traffic
intensity. In Figure 3b, T is larger than the period. In this
case, the trajectory follows one period of the ellipse whose
equation is given by (17) plus a part of the same ellipse from
zo to z7.

B. Multi-Phase Trajectory Characterization

We now consider a traffic intensity (or potential) consisting
in two quadratic functions separated by an interface Z of equal
potentials delimiting two regions 1 and 2. The interface is
defined by an equation f(z) = C, where C' is a constant and
f is a differentiable function. We assume that the optimal
trajectory crosses only once the interface at position £ at 7.

(a) T is smaller than the ellipse period.
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(b) T is larger than the ellipse period.
Fig. 3: Traffic hole (ug > 0).

Theorem 2. The location and time (€, T) of interface crossing
are characterized by the following equations

Hy(&(r),p"(77)) = Ha(&(7),p" (7)) 0 (19

p(r7) =p (") = n VL£(§) 0 (20)

f§) = ¢ @2

for some Lagrange multiplier 1 € R, where we recall that

p* is defined with respect to the optimal trajectory between

(to, z0) and (T, zr), and where p*(T7) = lims_r s« p*(s)
and p*(17) = limsr o7 p*(5).

Equation (19) expresses the fact the energy is conserved
when crossing the interface. One can show that actually the
energy is conserved along the whole trajectory. Equation (20)
is related to the conservation of the tangential component of
the impulsion at the interface. Equation (21) is the interface
equation at £&. One can show that under the assumption
of equal potential on the interface, the kinetic energy, the



MPC
o6k trajectory

Fig. 4: MPC trajectory and Alternating Optimization Algo-
rithm trajectory with two hot spots.

impulsion, and the velocity vector are conserved across the
interface.

V. ALGORITHMS

A. An Online Algorithm: MPC

In this section, we first present an online algorithm based
on MPC [18] (we omit the pseudo-code for space reasons).
In a traffic intensity landscape made of multiple phases, the
idea is to assume at every t that the current phase won’t
change from ¢ to T'. Using this assumption, we compute the
optimal trajectory as in the single phase case and take the
next decision based on this trajectory. This algorithm has the
advantage of being online, of low complexity and can be used
in multiphase time-dependent traffic maps. We have however
no guarantee of optimality.

B. An Alternating Optimization Algorithm

We now study a time-independent bi-phase scenario, in
which a trajectory from zy to zp crosses the interface at
time 7 and location £. We present an Alternating Optimization
Algorithm (Algorithm 1) that provides a stationary trajectory
in the sense of Theorem 2. The algorithm consists in alter-
natively optimizing 7 (steps 9-17) and & (steps 18-26) by
using the results of Theorem 2. For every fixed 7 and &, the
current trajectory is the concatenation of the optimal trajectory
between (o, z9) and (7, £) and the optimal trajectory between
(1,€) and (T, zr) (step 27). Every iteration of the algorithm
only requires the evaluation of two Hamiltonians or the
computation of a point B, see (23), and its projection on the
interface. Therefore the complexity of an iteration is O(1). In
simulations, MPC is used to produce an initial trajectory.

1) Procedure for seeking an optimal T given a fixed £&: We
use the result of Theorem 2. As shown in its proof [17], the
gradient of S with respect to 7 is given by Ha (&, p* (7)) —
Hy(&,p*(17)). We can thus compute the Hamiltonians in
every region by differentiating the cost function (13) with
respect to the final time in region 1 (see (9)) and with respect
to the initial time in region 2 (see (8)). We then update 7 by
using a simple gradient descent scheme in step 11.

n
©

N
©
T

S: Cost function

L L ‘)"M
20 40 60 80 100
Number of iterations

-29.5
0

Fig. 5: Cost function along the iterations of the Alternating
Optimization Algorithm trajectory.

2) Procedure for seeking an optimal & given a fixed T:
From Hamilton-Jacobi, the gradient of the total cost function
with respect to £ is p* (77 ) —p*(7+) (see proof of Theorem 2
in [17]). Since in the Newtonian framework the impulsion is
proportional to the control variable a (see (12)) and since in
a quadratic model the velocity vector is, at any time a linear
combination of centered initial and final positions (15), this
gradient appears to be an affine function of ¢ which reads

vZTsl(t()?ZO?T?E) + VZOSQ(T7§’T7 ZT) = Kh (f - B)

Scalar Hessian h and position B, where the spatial gradient
cancels ie., p*(77) = p*(7+) at fixed 7 are given by:

h = wy coth(wy (T — tp)) + wa coth(wa(T — 7))  (22)

B = [ w1 zp1 coth(wy (7 — tg)) + wa zpa coth(we (T — 7))

S

(23)

wi (20 — 2n1) wo (21 — 2n2) ]
sinh(wy (7 —tp))  sinh(we(T — 7))

The equation involving the Lagrange multiplier (20) new
reads

K h (€ B)—pu Vef(§) =0

and shows that the optimal location £* is the orthogonal pro-
jection of B on the interface Z. This projection is performed
in steps 19-20 of the algorithm.

Figure 4 shows the MPC trajectory and the trajectory
obtained from Algorithm 1 after 60 iterations in a bi-phase
landscape. The traffic intensity is shown in three dimensions
in Figure 1: It is a bi-phase landscape made of two hot-
spots, where the peak of traffic in 25 is higher than in z;.
The Alternating Optimization Algorithm has gradually moved
the interface crossing time and location in order to spend
more time in the second hot-spot and to go closer to zpso.
Figure 5 shows how the cost function has decreased along the
iterations and thus how our algorithm has improved over the
MPC solution. From iterations 1 to 45, 7 has been gradually
updated; at iteration 46, £ is updated once; ¢ is again updated
once at iteration 59.

(24)

VI. CONCLUSION

In this paper, we have proposed a Lagrangian approach
to solve the UAV base station optimal trajectory problem.
When the traffic intensity exhibits a single phase, closed-
form expressions for the trajectory and speed are given. When
the traffic intensity exhibits multiple phases, we characterize
the crossing time and location at the interface. In a first



Algorithm 1 Alternating Optimization Algorithm

1:

W

27:

28:
29:

Input: ¢, T, 20, 21, Zn1, Zh2, Uo1, U02, W1, W2, Ull,
w19, an initial trajectory z(t), the initial crossing time
and position (7,¢) € [1;T] X Z, 7 >0, e > 0, e > 0,
es > 0.

Output: (7,£) € [7;T] x Z such that the conditions of
Theorem 2

T 1 ¢

: timenotfound ¢ 1; positionnotfound <« 0

{#(t) }to<t< < an initial feasible trajectory, e.g. from
MPC
Compute S along {z(¢) }i,<i<r
do
S+ S
if timenot found then
Compute Hq and Hj at (7,§) according to (8-9)
T+ 7+ sign(Hy — Hy)oT
if |7 — 7| < €, then
timenotfound + 0
positionnotfound < 1
end if
T T
end if
if positionnotfound then
Compute B according to (23)
& « projz(B), see (24)
if [|{' — &[] < e then
timenotfound +1
positionnotfound < 0
end if
¢
end if
{Z(t)}tOStST — OPTTRAJ(Zhl, Up1, UL1, W1, 20, Lo,
f,T) U OPTTRAJ(ZhQ,’U;OQ,UlQ,WQ,E,T,ZT,T)
(OPTTRAJ provides optimal trajectory using (14),(17))
Compute S for {z(¢)}+,<t<T according to (13)
while |S" — S| > eg

approach, we propose an online algorithm based on MPC

for

multi-phase and time-dependent traffic intensity, which

allows to take into account the impact of each phase. We
then propose an offline Alternating Optimization Algorithm
for bi-phase time-independent traffic intensities that provides
a stationary trajectory with respect to the crossing time and
location on the interface and fulfills the necessary conditions
of optimality. Numerical results show that we improve the
trajectory obtained with MPC.
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