
1

Resilient IoT using Edge Computing
Hokeun Kim, UC Berkeley

Schahram Dustdar, TU Wien
Edward A. Lee, UC Berkeley

Abstract—Denial-of-service (DoS) attacks on the safety-critical Internet of Things (IoT) can lead to life-threatening consequences. The
risk of distributed denial-of-service (DDoS) attacks has been increasing as more Things are connected to the Internet. However,
current IoT solutions based on cloud computing cannot properly mitigate DoS threats because remote cloud servers lack means to
detect and react to the attacks on local IoT systems. In this paper, we compare cloud computing and edge computing in terms of local
context awareness and resilience for the IoT. We propose context-awareness levels to address availability threats and illustrate how
context-aware edge computing enhances IoT’s resilience against DoS attacks through our edge computing-based security solution for
the IoT.

F

Availability can be safety-critical for many IoT systems.
In October and November of 2016, a distributed denial-
of-service (DDoS) attack on the building control systems
shut down the heating systems of buildings in Finland
for more than a week [1]. Winter is harsh in Finland,
thus, failures in heating systems raised safety concerns, not
just inconvenience. Meanwhile, the risk of DDoS attacks
has almost doubled in 2017 compared to 2016 due to the
increasing number of IoT devices, according to a recent
report by Corero Networks [2]. An illustrative example
of DDoS launched by the IoT was the Mirai botnet [3]
which compromised hundreds of thousands of IoT devices
and attacked Dyn DNS (Domain Name System) servers,
disrupting Internet connections to major websites.

Breaching availability of computer systems is the main
goal of denial-of-service (DoS) attacks. DDoS attacks fall into
one category of DoS attacks, which send excessive network
traffic to the target servers to exhaust their computational
and communicational resources. For the IoT, including
cyber-physical systems (CPS) interacting with humans and
the physical world, availability attacks such as DDoS attacks
can pose safety threats. Therefore, it is crucial to build IoT
systems that are resilient against availability threats.

However, many current IoT solutions are built around
cloud computing, which makes the system’s availability
dependent on remote cloud servers. Google’s OnHub in-
cident [4] demonstrated the risk of depending on remote
servers for the IoT. On February 23, 2017, Google’s smart
routers, called OnHub, suddenly stopped working and the
IoT devices connected to the routers also became unavail-
able only because Google’s remote authentication servers
failed.

Recently, devices at the network edge are becoming
smarter and more capable. These devices are called edge
computers. Edge computing [5], which uses edge computers
to offer computational and communicational resources for
Things, brings opportunities to build resilient IoT systems.

In this paper, we propose an authentication and autho-
rization infrastructure for the IoT based on context-aware
edge computing, along with context awareness levels of
edge computers for building resilient IoT systems.

1 PERSPECTIVES OF THE IOT
Different perspectives of the IoT can lead to different IoT
system designs. This section compares two different ways of
viewing the IoT to highlight the importance of considering
an underlying network architecture in designing resilient
IoT systems.

1.1 Cloud-centric perspective
A cloud-centric perspective of the IoT is a conceptual view
which considers the cloud as a central platform for the IoT
and edge computers as the edge of the cloud as shown in
Fig. 1 (a). This perspective is widely adopted, for example,
in fog computing [6], where the cloud comprises core services
and the edge serves as local proxies for the cloud, mainly
for offloading part of cloud’s workload. From this perspec-
tive, edge computers play supportive roles for IoT services
and applications. Cloud computing-based IoT solutions [7]
use cloud servers for various purposes including massive
computation, data storage, communication between IoT sys-
tems, and security. However, the cloud-centric perspective
misses important facts in the real network architecture of
the IoT:

• In the network architecture, the cloud is also located
at the network edge, not surrounded by the edge.

• Computers at the edge do not always have to depend
on the cloud; they can operate autonomously and
collaborate with one another directly.

1.2 Internet-centric perspective
To better discuss how to protect IoT systems from DoS
threats, we propose a new perspective for the IoT called
Internet-centric perspective shown in Fig. 1 (b). This perspec-
tive views the Internet as a center of the IoT architecture
and considers the edge as gateways to the Internet, not to
the cloud. Each local network can be organized around the
edge computers autonomously. Thus, the local systems are
not always dependent on the cloud nor the Internet. The
Internet-centric perspective captures essential aspects of the
IoT:

eal
Typewritten Text
Prepublication version of: Hokeun Kim, Schahram Dustdar, Edward A. Lee,
"Creating a Resilient IoT With Edge Computing," Computer, 52(8), pp. 43-53, August 2019.

2

Cloud

Edge

Things

Internet

Cloud

(a) A cloud-centric perspective:
Edge as “edge of the cloud”

Edge Things

(b) An Internet-centric perspective:
Edge as “edge of the Internet”

Things

Things

Cloud

Things

Things

(c) Vulnerable spots that can be
exploited to cause DoS

Internet

Cloud Edge Things

Things

Things

Cloud

Things

Things

Internet

Cloud Edge Things

Things

Things

Cloud

Things

Things

Auth

Auth
Auth

Auth

Auth

(d) SST architecture: Locally centralized, globally
distributed Auth (authentication / authorization)

Cloud’s connection
to the Internet

Things’ connection
to the Internet

Things’ local
network

Fig. 1. From perspectives of the IoT to the SST (Secure Swarm Toolkit) architecture

• Things in the IoT belong to partitioned subsystems
or local networks rather than belonging to a big
centralized system directly.

• The cloud is also connected to the Internet via the
edge of the network.

• Remote IoT systems can be connected directly via
the Internet and their communication does not have
to go through the cloud.

• The edge not only can connect Things to the Internet,
but also can disconnect the traffic from outside to
protect Things. For this, the local IoT system must
be able to operate autonomously, although the sys-
tem’s performance might be affected once it loses the
cloud’s support.

2 TOWARD RESILIENT IOT SYSTEMS

With the Internet-centric perspective discussed above, how
can we build resilient IoT systems? We can start with the
tactics that the attackers would likely take to cause DoS.

Of course, the attackers can target the cloud to exhaust
the resources of cloud servers. However, cloud servers are
inside data centers and they are well protected against
availability attacks from the outside, using many layers of
defense including firewalls. It will be very challenging for
attackers to take down a single data center, even with a lot
of resources and efforts. Moreover, many commercial cloud
services consist of globally distributed data centers, which
makes it even more difficult to take down all data centers.

Alternatively, the attackers can try other approaches.
Fig. 1 (c) shows weak points that attackers can exploit to
cause DoS in IoT systems without directly attacking the
cloud. As long as attackers can disrupt the IoT systems, the
attackers succeed. The attackers can hamper the connection
between the cloud and Things, for example, by making DNS
services unavailable, as the Mirai botnet did. They can also
attack the local network to disrupt the IoT services directly.
Therefore, it is not enough to just protect the cloud servers.
The individual local IoT networks also need to be protected.

From the discussion, we note a couple of fundamental
requirements for resilient IoT systems.

First, we must be prepared for when the cloud is not
available. The IoT systems should be able to provide at
least vital services, for example, the heating systems in cold
regions, even when the cloud is not available. In this sense,
we can use edge computers as local controllers for Things

as a backup for the cloud. In general, edge computers have
more resources than Things and can be local central points.

Second, a local IoT system itself should be equipped
with defense mechanisms against availability threats. The
defense mechanisms include detecting and mitigating the
impact of attacks, and reacting to failures to recover the
system’s availability. Edge computers can play key roles to
implement such defense mechanisms. For example, since
an edge computer sits between Things and the Internet,
it can detect an incoming DDoS attack and protect the
local network by blocking the external traffic. If the edge
computers are aware the local system’s characteristics and
how the system should behave, for example, the expected
volume of data traffic, desirable temperature ranges, they
can detect the anomaly and recover the normal state. The
edge computers can also use local resources and security
measures to recover availability.

3 RESILIENT SECURITY SOLUTION FOR THE IOT
We present our open-source edge computing-based IoT se-
curity solution that is resilient to availability threats. Called
the Secure Swarm Toolkit (SST) [8], it is freely available on
https://github.com/iotauth. SST provides authentication
and authorization services for the IoT. Authentication is a
process of identifying devices or users and authorization
is a process of controlling access to important resources
such as control of CPS. These two processes are critical
for security, safety, and availability, as shown in Google’s
OnHub incident where authentication problems of Google
servers led to the entire system’s failure.

3.1 Resilient edge computing-based architecture

SST’s architecture is shown in Fig. 1 (d). SST has a locally
centralized, globally distributed architecture [9], which has
many potential advantages in building resilient IoT systems.

In SST, Things are authenticated and authorized by an
edge-hosted locally centralized entity, called Auth [10]. By
running security functions on the edge, the IoT systems
can continue authentication and authorization processes
even when cloud servers are unavailable. Moreover, Auths
monitor the entire access activity between Things, which
allows Auths to detect an anomaly in the system. Auths can
also protect the local IoT networks from external attackers,

3

using defense mechanisms including firewalls and physi-
cally disconnecting the DDoS traffic toward local systems.
The locally centralized architecture enables Auths to react
to compromised Things in a timely way.

The globally distributed architecture of SST not only makes
the IoT systems scalable [8] but also enhances the resiliency
of the IoT [11]. Auths hosted on edge computers will be
more geographically distributed than cloud servers, making
it even more challenging for attackers to take down the IoT
system by attacking edge computers. The cloud servers in
data centers may become unreachable by disrupting DNS
services or the Internet connection to data centers. However,
this type of attack will be less effective for SST because
many of Auths will be reachable through local networks
even when the Internet connection is unstable.

4 CONTEXT AWARENESS OF CLOUD AND EDGE

In computing, context has various meanings. Here, we
consider context as information about the environments
in which the IoT systems operate, including underlying
platforms, available devices, network topology, location and
time. Context awareness refers to the capability of computers
in the IoT to sense and react to what is happening in their
operating environments. Context awareness is crucial for
the resilience of an IoT system because it enables the com-
puters in the system to mitigate the impact of an attack and
recover from a failure. Context awareness has been related
to security of the IoT. Examples include using context aware-
ness for trust initialization [12] and trust management [13].
In the IoT, the cloud and the edge will have different types
of context awareness.

4.1 Global context in the cloud
The cloud will have a better holistic view of global context
compared to the edge. In the smart city example shown
in Fig. 2, we assume the subsystems are connected to the
cloud which receives real-time data from the subsystems.
Cloud servers will have a better understanding of what is
happening in the city and which subsystem has problems,
for example, whether the power failure in manufacturing
systems is due to a failure in power plants. The cloud will
also be able to control the subsystems and react to possible
incidents using global context awareness. When the air quality
measured by an environmental monitoring system is not
healthy, the cloud can order smart buildings to close win-
dows and activate air purifiers. For the traffic infrastructure,
the cloud can monitor traffic situation and control traffic
signals to ease a traffic jam.

4.2 Local context in the edge
The edge will have the better awareness of local context.
Edge computers will have access to the raw communication
packets and data within local IoT systems. For example,
edge computers for the traffic infrastructure will be aware of
the real-time video data at crossroads, and edge computers
for environmental monitoring can analyze raw sensor data.
Also, edge computers managed by the local administrators
can access data not available to external systems for privacy
reasons, such as the on-body monitoring data of medical

centers or surveillance camera data of smart homes. The
edge can view incoming and outgoing data from the local
system, thus, it will be able to detect DDoS attacks toward
the IoT system, which can be challenging for the cloud. Edge
computers will be better aware of the network topology
and locally available resources that can be used to mitigate
threats and recover availability. Thanks to the proximity
to local systems, edge computers will be able to detect
availability threats and take better actions in a more timely
fashion than remote cloud servers.

The cloud and the edge have different types of context
awareness, and they are complementary to each other. The
global context awareness of the cloud fosters collaboration
between heterogeneous subsystems while the local context
awareness of the edge enables subsystem-specific analysis
and close interaction with Things. We will focus on the local
context awareness of the edge with regard to building robust
IoT systems.

5 CONTEXT AWARENESS AND RESILIENCE

Local context awareness is especially important for re-
silience. We propose five awareness levels for the edge
computing-based IoT, event, situation, adaptability, goal, and
future awareness, as shown in TABLE 1.

Event awareness is the simplest capability of sensing and
monitoring environments. An event-aware system can react
to sensed events according to predefined rules. Examples
of defense mechanisms and tools used by event-aware sys-
tems include firewalls and rule engines. Data filtering and
dissemination are provided by this level as infrastructural
services to higher awareness levels.

Situation awareness is a more advanced capability for
understanding the implication of a series of events and re-
acting to the situation based on understanding. For example,
network intrusion detection systems (NIDS) not only mon-
itor the network traffic but also detect network intrusion
by analyzing characteristics or anomalies of the data traffic.
Situation-aware systems often use statistical tools to detect
anomalies.

An adaptability-aware system can change and modify
itself if necessary when the system detects threats or failures.
Adaptability awareness includes knowledge and control of
the available resources and how the resources can be used to
recover and maintain availability even under failures. Many
reconfigurable systems will have this level of awareness,
including software-defined networking (SDN). This level
of awareness makes IoT systems more resilient even when
some of the important components, for example the edge
computers, become unavailable.

The goal awareness level introduces goals expressing the
overall objectives and purposes of a self-adaptive system.
When there are multiple goals, an IoT system must be able to
resolve conflicting goals within resource constraints. There-
fore, a goal-aware system can take priorities and trade-offs
into account when adapting to new situations. Such systems
include mixed-criticality systems which contain tasks with
different criticality levels on a single platform.

Future awareness is an ultimate form of awareness that
enables self-sustainable IoT systems. A future-aware system
is capable of predicting longer-term effects of short-term

4

Traffic	Infrastructure

Smart	Buildings
Manufacturing	Systems

Power	Plants

Environmental	Monitoring

Medical	CentersSmart	Homes
Cloud	Servers

Edge	of
the	Internet

Fig. 2. Smart city with the edge of the Internet

adaptation actions and considering future resource provi-
sions and constraints when utilizing short-term resources.
For example, edge computers in a future-aware system
should be able to anticipate wear-out and replacement cy-
cles of Things such as battery-powered sensor nodes and
take proper actions to maintain long-term availability.

In summary, the awareness levels help us understand
what the IoT system should know to support a certain level
of resilience. Event awareness is the most basic and funda-
mental level of awareness that needs to be part of higher
levels of awareness. To reach the future awareness level, an
IoT system will require all lower levels of awareness.

6 CONTEXT-AWARE EDGE COMPUTING FOR RE-
SILIENT IOT
Even with SST’s architectural advantages, there still exist
availability threats to edge computing-based IoT systems.
To cause DoS in such systems, attackers will probably target
edge computers rather than individual Things, to maximize
the impact of an attack.

In distributed systems, it is common to replicate re-
sources across distributed computers to increase availability.
Such systems include content delivery networks (CDN),
for example Akamai and Limelight Networks. However,
distributing the authentication and authorization-related in-
formation is trickier than sharing content resources such as
web pages, images, or videos because we need to consider
trust among Things and edge computers.

6.1 Secure Migration and Awareness levels

Auths in SST maintain distributed trust relationships with
one another. This allows other trusted Auths to take over
authentication and authorization services for Things in case
of their Auth’s failure. We call this technique secure migra-
tion, in which the Things migrate from unavailable Auths
to other trusted Auths to continue security services while
keeping trust relationships intact.

Fig. 3 demonstrates how SST’s secure migration tech-
nique implements context awareness levels to mitigate
availability threats. SST’s implementation provides practical
insights for considerations in building a resilient IoT using
edge computing at all five levels of awareness.

6.1.1 Event awareness

In SST, edge computers (Auths) and Things use simple
mechanisms to sense network conditions and health status
of the system. Auths check each other periodically using a
heartbeat protocol. Things send authentication and autho-
rization requests to Auths. They will notice communication
failures with their Auths as events. Event awareness pro-
vides the base for higher-level awareness for taking further
security measures.

6.1.2 Situation awareness

Situation awareness is used to trigger secure migration.
With more resources and better local context awareness
than Things, Auths can use resource-demanding but more
accurate methods. Examples include sharing heartbeat re-
sponse information for a possibly failed Auth and actively
monitoring communication channels to make sure it is not
because of issues in the communication media. Things keep
track of failures in Auth’s responses using simple counters
and check whether the counter value exceeds a certain
threshold. By cross-checking the information gathered by
Auths and Things, the SST infrastructure can determine
whether the events indicate a false alarm or an actual failure.
When an actual failure is detected, the secure migration
process begins.

6.1.3 Adaptability awareness

Auths are aware of the IoT systems’ adaptability before
failures. Adaptability awareness is critical for recovering
availability in case of DoS attacks. In SST, Auths construct
migration policies describing which Things should migrate to

5

TABLE 1
Awareness levels in IoT systems

Awareness Levels Characteristics Capabilities Examples
Event-aware A system collects simple events that trigger basic

Event-Condition-Action rules. The system has no
explicit knowledge of the resources needed nor
whether the adaptation has a long-lasting (positive)
effect.

To react to events based on
predefined rules, regardless
of any other factors in the
situation.

Firewalls, Rule engines
(e.g., Drools), IFTTT.com (If
This Then That)

Situation-aware Ability to perceive the status of a system by
aggregating relevant events. The system understands
the implication of individual events in a greater
context.

To react to events properly
in context, with the
capability to collect and
understand local contextual
information.

Network Intrusion
Detection Systems (NIDS),
Anomaly detection systems

Adaptability-aware Awareness of the possible adaptation capability of a
system in its environment. At this level, cooperative
adaptation can be conducted spontaneously based on
the knowledge of adaptability.

To initiate spontaneous
collaboration with other
edge computers and
controllable environmental
conditions.

Reconfigurable
Software-Defined
Networking (SDN),
Reconfigurable CPS

Goal-aware Awareness of the goals of a system as a whole. In IoT
systems, a goal not only includes the desired
functionality of a service, but also non-functional
properties and resource constraints imposed by the
environment. In the presence of conflicting goals, this
level of awareness also considers the potential
trade-offs and priorities (criticalities) between goals.

To negotiate with other edge
computers regarding
resource allocation. To
understand the significance
of a potential failure and
attempt to avoid it
accordingly.

Mixed-criticality systems,
(e.g., Avionic systems,
Autonomous vehicles)

Future-aware Awareness of a system’s lifecycle describing long-term
utilization and resource provisioning by the
environment. This requires information on the
probable future system state based on scheduled or
expected future events. Ultimately, this level describes
systems that can select appropriate short-lived
adaptation actions that respect long-term resource
constraints and goals.

To predict resource
consumption, user behavior,
and future resource
requirements. To act
according to predictions.

Self-sustainable smart city

Auth

Levels of Awareness

Resiliency

Event-aware Situation-aware Adaptability-aware Goal-aware Future-aware

Auth

Auth Auth
t

t

t

t

t

tt

t

t
t t

t
t

Auth

t

• Edge computer hosting local authentication
& authorization entity (Auth)

• Thing registered with Auth

• Simple heartbeat
protocol for monitoring
health status of Auths.
• Things track Auth’s

authorization responses.

•When both Auths and
Things observe failure
of an Auth, the IoT
system triggers
secure migration.

• Failed Auth had known
available nearby Auths
and prepared for failure.
• Things migrate to

available Auths using
secure migration
protocol.

•When configuring
migration policies,
Auths consider various
constraints including
migration costs,
feasibility, and
communication
requirements.

•Auths can dynamically
add or remove available
resources including edge
computers and Things.
• Long-term effects of

migration are considered.
• The edge is aware of life

cycles of devices and can
predict future resource
requirements.

t

Heartbeat protocol t

Authorization
request/response

!!
!

! !

!

!

Auth Auth

Auth
t

t

t

t

t

tt

t

t
t t

t
t

t

t

Auth

Fig. 3. Levels of awareness and resilience in Secure Swarm Toolkit (SST)

6

which Auths when there is an Auth failure. An adaptability-
aware migration policy considers factors that affect avail-
ability after migration, for example, access requirements
between Things and trust between Auths.

During normal operations, an Auth sets up migration
credentials, cryptographic tokens used to establish new trust
relationships, for its Things and sends them out to other
trusted Auths. The Auth also sends a list of trusted Auths
and their network addresses to its Things. When an Auth
failure occurs, the Things try sending migration requests to
other available trusted Auths. Trusted Auths will accept the
migration request when a Thing requests to the designated
Auth, or will reject the request otherwise. This scheme
allows dynamic changes in migration policies.

6.1.4 Goal awareness
For a given IoT system based on SST, there can be multiple
possible migration policies due to a multitude of combina-
tions of Auths and Things. Goal awareness is used to decide
which migration policies lead to better availability by con-
sidering various constraints including communication costs,
the capacity of Auths, load balancing, and signal reachabil-
ity between Things and Auths. Specifically, SST uses Integer
Linear Programming (ILP) to find the best migration policies
under given constraints, including the computing power of
the edge computer solving the ILP problem. SST currently
supports up to this level of awareness.

6.1.5 Future awareness
Self-sustainable and future-aware IoT systems should be
able to replace and renew worn-out resources. SST’s secure
migration can be easily extended to remove or add edge
computers hosting Auths. To remove an old Auth, we can
set a migration policy without the old Auth, turn it off, and
trigger secure migration. When we have a new Auth, we
may need to move Things from other Auths to the new Auth
for better load balancing. For this, we first set up a migration
policy that migrates Things to the new Auth, provide the
Things with new Auth’s network information, and enforce
migration.

Thanks to SST’s locally centralized and globally dis-
tributed architecture, adding and removing Things can be
done completely locally without any global-level changes.
A newly added Thing will be able to communicate with
other Things that are authorized by the other Auth, as long
as their Auths maintain trust and allow communication
between those Things. Also, a removed Thing will not be
able to communicate with others anymore as its access will
be revoked by its Auth.

Auths can formulate and solve ILP problems considering
longer-term effects of the short-term migration activities, for
example, “what if an Auth to which Things have migrated
fails later?”. Although the current design of SST does not
include awareness of future resources, we can extend ILP
formulation to include the edge computers expected to be
added in the future.

7 EXPERIMENTS AND RESULTS

To show the resilience of the proposed approach with dif-
ferent context awareness levels, we carried out experiments

by extending the experimental setup used in our previous
work [11]. Fig. 4 illustrates the extended experimental setup,
a simulated environment of a smart building with door
controllers and user devices with door opening apps. This
environment was modeled using floor plans of the 4th and
5th floors of Cory Hall at UC Berkeley and included 7 Auths
hosted on edge computers, 35 door controllers and 45 user
devices positioned as in Fig. 4 (a). In this environment,
a user device must be authorized by its Auth to open a
door. Each user device tried to open the nearby door every
minute. Availability was measured by the portion of user
devices successfully opened nearby doors. Each of Auths,
door controllers, and user devices was executed on a Linux
Container. The network was simulated using the ns-3 simu-
lator (https://www.nsnam.org/) with a wired network for
Auth-to-Auth communication and a wireless network for
Auth-to-Thing and Thing-to-Thing communication. Each
simulation was performed on Amazon AWS for 20 minutes
in real time, 5 minutes before Auth failures and 15 minutes
after failures.

We compared four different awareness levels, event,
situation, adaptability, and goal awareness levels. The event-
aware SST was set to just retry and wait for the recovery of
Auths. The situation-aware level was able to detect Auth
failures and trigger an ad-hoc migration which migrates
Things to nearest Auths first. The migration policy of the
adaptability-aware SST considered trust between Auths and
communication requirements between Things, in this case,
which user device should be able to communicate with
which door controller. The goal-aware SST also considered
the overall system’s goal, including Auths’ capacity and
load balancing.

The experimental results in Fig. 4 (b) and Fig. 4 (c)
show the availability of the experimental IoT system when
3 Auths failed and when 4 Auths failed, respectively. The
results show that higher awareness levels recovered higher
availability, for example, the situation-aware SST detected
the failures and triggered ad-hoc secure migration while the
event-aware SST did not. The adaptability-aware SST could
recover even higher availability by considering which Auths
can be trusted by Things after migration and which Things
need to communicate. The goal-aware SST performed better
especially in the 4 Auths failure case because load balancing
became more critical when less Auths were left after failures.

8 CONCLUSIONS AND FUTURE WORK

Guaranteeing availability is critical to making the IoT secure
and safe. In addition to the architectural merits of edge com-
puting against availability threats, better context awareness
leads to a more resilient design of IoT systems as shown
with our authentication and authorization infrastructure for
the IoT. Context awareness levels proposed in this paper
can be concrete guidelines for IoT system designers. Imple-
menting each level of awareness may not always be possible
due to constraints, however, it is important to consider
lower-level awareness as a foundation on which higher-
level awareness is implemented.

As future work, we plan to study awareness levels for
other aspects of protecting the IoT. Context awareness can be
used to authenticate a user’s identity, for instance, based on

7

Card key accessed doors
(Door controllers)

s519

s518

s503s502
s501

s504

s505

s515

s508

s506

s507

s509

s510

s516

s513 s514

s517

Positions of Auths
(Edge computers)

s512s511

Possible user positions
(User devices) c505

c504

30ft. (≈ 9.14m)
c502

c501

c506

c508

c503

c525

c526

c523
c524

c522

c521

c520
c519

c518

c514

c513

c507

c509

c511

c510

c512

c517

c515 c516

Auth registration range

5th floor

s411

c401

s401

s404

s406

s405

s407

s408

s409 s410

s403

s402
s412

s414s413

s416

s415

c404

c405

c406

c402

c407

c409

c412

c410

c411

c413

c408 c418 c419

c417

c414

c416
c415

c403

Auth ID Capacity
(# Entities)

1 24
2 55
3 25
4 21
5 18
6 23
7 30

Auth Capacity Information

Auth ID Trusted
Auth IDs

1 2, 4, 7
2 1, 3, 4, 5
3 2, 6
4 1, 2, 5
5 2, 4, 6, 7
6 3, 5
7 1, 5

4th floor

4

3

2

1

6

5

7

Auth Trust Relationships

(b) Availability after 3 Auths fail (Auth 4, 6, 1)

(a) Experimental setup: simulated environment with Auths,
door controllers, and user devices with door opening apps

* Distance between floors: 13.1ft. (4m)

0
10
20
30
40
50
60
70
80
90

100

Before
failure

1-5 min
after failure

6-10 min
after failure

11-15 min
after failure

Av
ai

la
bi

lit
y

(%
)

Availability after 3 Auths fail

Goal-Aware
Adapatability-Aware
Situation-Aware
Event-Aware

0
10
20
30
40
50
60
70
80
90

100

Before
failure

1-5 min
after failure

6-10 min
after failure

11-15 min
after failure

Av
ai

la
bi

lit
y

(%
)

Availability after 4 Auths fail

Goal-Aware
Adapatability-Aware
Situation-Aware
Event-Aware

0
10
20
30
40
50
60
70
80
90

100

Before
failure

1-5 min
after failure

6-10 min
after failure

11-15 min
after failure

Av
ai

la
bi

lit
y

(%
)

Availability after 3 Auths fail

Goal-Aware
Adapatability-Aware
Situation-Aware
Event-Aware

0
10
20
30
40
50
60
70
80
90

100

Before
failure

1-5 min
after failure

6-10 min
after failure

11-15 min
after failure

Av
ai

la
bi

lit
y

(%
)

Availability after 4 Auths fail

Goal-Aware
Adapatability-Aware
Situation-Aware
Event-Aware

(c) Availability after 4 Auths fail (Auth 4, 6, 1, 7)

Floor plans of Cory Hall, UC Berkeley

Fig. 4. Experimental setup and results

a user’s location or temporal behavior. For event awareness,
the edge computers can use sensors to detect other types
of DoS attacks, including signal jamming attacks, or power-
drain attacks. Auths can use situation awareness based on
statistics to detect application-layer threats such as service
abuse or cybercrimes. Adaptability-aware edge computers
can protect the privacy of sensitive information depending
on the on-going agenda in smart conference rooms. Future
awareness is the most under-explored area where we will
research further for an IoT system’s life-cycle speculations
such as demand prediction for IoT services.

REFERENCES

[1] L. Mathews, “Hackers Use DDoS Attack To Cut Heat
To Apartments,” Forbes, Nov. 2016. [Online]. Available:
https://www.forbes.com/sites/leemathews/2016/11/07/ddos-
attack-leaves-finnish-apartments-without-heat/

[2] “Corero DDoS Trends Report | Q2Q3 2017,” Corero Network
Security, Tech. Rep., 2017.

[3] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the
IoT: Mirai and Other Botnets,” Computer, vol. 50, no. 7, pp. 80–84,
2017.

[4] I. Morris, “Google’s Latest Failure Shows How Immature
Its Hardware Is,” Forbes, Feb. 2017. [Online]. Available:
http://www.forbes.com/sites/ianmorris/2017/02/24/googles-
latest-failure-shows-how-immature-its-hardware-is/

[5] W. Shi and S. Dustdar, “The Promise of Edge Computing,” Com-
puter, vol. 49, no. 5, pp. 78–81, May 2016.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing
and Its Role in the Internet of Things,” in Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, ser. MCC
’12. New York, NY, USA: ACM, 2012, pp. 13–16.

[7] A. Botta, W. de Donato, V. Persico, and A. Pescap, “Integration
of Cloud computing and Internet of Things: A survey,” Future
Generation Computer Systems, vol. 56, pp. 684–700, Mar. 2016.

[8] H. Kim, E. Kang, E. A. Lee, and D. Broman, “A Toolkit for
Construction of Authorization Service Infrastructure for the In-
ternet of Things,” in Proceedings of the 2nd ACM/IEEE International
Conference on Internet-of-Things Design and Implementation (IoTDI),
Pittsburgh, PA, Apr. 2017, pp. 147–158.

[9] H. Kim and E. A. Lee, “Authentication and Authorization for the
Internet of Things,” IT Professional, vol. 19, no. 5, pp. 27–33, Oct.
2017.

[10] H. Kim, A. Wasicek, B. Mehne, and E. A. Lee, “A Secure Network
Architecture for the Internet of Things Based on Local Authoriza-
tion Entities,” in Proceedings of the 4th IEEE International Conference
on Future Internet of Things and Cloud (FiCloud), Vienna, Austria,
Aug. 2016, pp. 114–122.

[11] H. Kim, E. Kang, D. Broman, and E. A. Lee, “An Architectural
Mechanism for Resilient IoT Services,” in Proceedings of the 1st
ACM Workshop on Internet of Safe Things (SafeThings), Delft, The
Netherlands, Nov. 2017.

[12] M. Lohstroh, H. Kim, and E. A. Lee, “Contextual Callbacks for Re-
source Discovery and Trust Negotiation on the Internet of Things:
Work-in-progress,” in Proceedings of the 13th ACM International
Conference on Embedded Software (EMSOFT), Seoul, South Korea,
Oct. 2017, pp. 14:1–14:2.

[13] Y. Ben Saied, A. Olivereau, D. Zeghlache, and M. Laurent, “Trust
management system design for the Internet of Things: A context-
aware and multi-service approach,” Computers & Security, vol. 39,
pp. 351–365, Nov. 2013.

