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Abstract

We argue that for situations involving spatially varying linear transport coefficients
(diffusivities, thermal conductivities, and viscosities), the original Fick’s, Fourier’s, and
Newton’s law equations should be modified to place the diffusivity, thermal conductivity, and
viscosity inside the derivative operator; that is, in one-dimensional rectilinear situations, j =

_ d(Dc) _ o(kT) _ a(uvy)
ox ’ q= ox ’ and Txy = ox

. We present simple derivations of these formulae in

which diffusive mass transfer, conductive heat transfer, and molecular momentum transfer
processes are described using lattice random walk models. We also present simple examples

demonstrating how these modifications affect calculations.

1. Introduction
Adolph Fick proposed in 1855 ! that in a simple one-dimensional situation, the diffusive
flux, say of species A, is proportional to the concentration gradient of the species along the

system axis (the x-axis) (“Fick’s first law”)

, d

j=-D7. (1)
The proportionality factor D is what is called the diffusion coefficient or diffusivity. From this

relationship, Fick also computed the rate of change of the concentration of A by diffusion

(“Fick’s second law” or “equation of continuity for A”)

oc _ _9j _ 0%
at ax_DaxZ (2)
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where D is assumed to be spatially “constant” and “dependent (only) upon the nature of the
substances”. In general situations, however, the diffusivity is position-dependent, because of
spatial variation of, for instance, concentration or temperature, and the dependence of the
diffusivity on these variables. A common approach to deal with spatially varying diffusivity is to
use the following modification of Eq. (2) above

= n (05 ®)
where use is still made of the Fick’s first law equation in its original form (Eq. (1)); the only
modification is that D is not factored out of the outer derivative 2. Recently, we proposed an
argument that in order to exactly track spatial changes in D, the Fick’s first law equation must

also be generalized to the form ?

a(Dc) _ _ % _ B_D
B ax o0x Cax (4)

which thus also gives a different equation for the Fick’s second law

dc _ 9*(Do)
at ~ ox2 ()

When mass flows have components in all directions, Egs. (4) and (5) should be expressed in the

vectorial form, respectively, as

j=-V(Dc) = —DVc — cVD (6)
and
%:W@d (7)

The correctness of Eq. (4) (or Eq. (6)) is intuitively obvious; Eq. (4) predicts that even in the
absence of concentration gradient, a diffusive flux of A arises if there exists a gradient of
diffusivity, and also that in the absence of net material flux (j = 0), a spatial gradient of
diffusivity results in a spontaneous build-up of non-uniform concentrations of A (Note these
phenomena are not describable within the original Fick’s law framework) 3.

As discussed in Ref. 3, the above Eq. (4) can be obtained using the lattice model
description of diffusion . For the purpose of setting the basis for the discussion to be presented
in the present article, this derivation is briefly repeated here. In this derivation, we consider a
steady-state situation described in Figure 1(A) where a suspension of Brownian particles
(molecules) (species A) is contained in a tube. The concentration of this species varies only

along the tube axis (x direction). For simplicity, the three-dimensional (3D) space within the tube
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is pictured as being divided into square lattice sites; each site of the lattice can hold at most one

molecule at a time, and has a characteristic dimension of 4. Under this setting, we model the

diffusive motion of the molecules to be a 3D random walk process *. Specifically, we assume

that each molecule steps to an adjacent lattice site with a jump frequency of v. As illustrated in

Figure 1(A), let us now consider a plane of constant x between two adjacent lattice layers. The

magnitude of the flux of the molecules from lesser x to greater x across the plane (located at x)

and that of the flux from greater x to lesser x across the same plane can be calculated,

respectively, as

and

6
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where c is the concentration of 4 (e.g., in units of mass of molecules per unit volume), and the

one-sixth factor is introduced because in 3D space a molecule can move to one of the six nearest

neighbor sites with the equal probability of 1/6. Therefore, the net mass flux of the molecules

across the plane located at x is given by



=i —il.=—2(1ver2)| =%
jle=iile=jhe= =5 (Gvert)| =-Zwa| (o
where the product %vlz is the diffusion coefficient (in lattice units) for that location, i.e., D =

%VAZ. The resulting equation (Eq. (10)) is the steady-state version of Eq. (4). This derivation has

been given in an earlier publication (in the Supplementary Material of Ref. 3).

The realization of this generalized form of the Fick’s first law equation raises two
important questions. First, can (or even should) this same argument be applied to the Fourier’s
law of heat conduction and the Newton’s law of viscosity, respectively, for situations involving
spatially varying thermal conductivities and viscosities? The answer is intuitively obvious (yes),
because as stated in Bird, Stewart, Lightfoot and Klingenberg (BSLK) 2, “the molecular
mechanisms responsible for the transport of chemical species, energy and momentum are closely
related (the same molecular motions and interactions are responsible for diffusivity, thermal
conductivity and viscosity)”. The second question is: In reality, how much difference would
using, for instance, Eq. (5) instead of Eq. (3) (for solving mass transfer problems involving
position-dependent diffusivities) make to the result? Or, alternatively put, what is the range in
which the commonly used approximation (Eq. (3), as opposed to the more accurate equation, Eq.
(5)) 1s valid? In the context of these questions, the present paper attempts to serve two purposes.
It first presents simplistic arguments that justify the generalization of the Fourier’s thermal
conductivity and Newton’s viscosity equations, respectively, for spatially varying thermal
conductivities and viscosities; these arguments are similar to that used above for generalizing the
Fick’s first law equation for spatially varying diffusivities. It then discusses simple (but realistic)
examples demonstrating how these modifications impact the calculations and predictions of the

equations of change for mass, energy and momentum.

2. Results & Discussion
2.1 Derivations

Fick deduced his first law of diffusion (Eq. (1)) by analogy with Fourier’s law of heat
conduction (and Ohm’s law of electrical conduction) !. Likewise it is reasonable to expect that
the same generalization as in Eq. (4) is applicable to Fourier’s law. To actually show such
derivation, let us first consider heat conduction in a gaseous system. We use the same lattice

model description of diffusion as in Section 1; see Figure 1(A) for the geometry of the system.
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Assuming that the lattice dimension (4) is comparable to the mean-free path of the molecules, the
magnitude of the heat flux (i.e., the molecular transport of internal energy due to collision of the
molecules) from lesser x to greater x across the plane located at x and that of the heat flux from

greater x to lesser x across the same plane can be calculated, respectively, as

1 _
=g Vl,acl, 24C1 (T'x_g ~Tyey)

1<| Adv )(I Adc )/1 cl 1dC (TI AdT . )
S\l 2dxl, Clx 2dxl, x 2dx|_ x xl, e
(to the first-order approximation)
1 _
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X
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where C is the heat capacity per molecule (at constant volume), and T, 7 18 the reference
temperature; C (T —Tre f) thus gives the internal energy per molecule. All other parameters are
the same as in Egs. (8) and (9). The net heat flux across the plane located at x is, therefore, given
by

d

qlx = CI+|x o q—lx I EVCAZC_‘(T - Tref)”x - _dd_x(kT) x (13)

where k(= évc/lz () is the thermal conductivity; T, 7 1s set to 0. Note that the exact same
argument can also be applied to heat conduction in a solid body, simply by replacing ¢ with the

phonon concentration, vA with the mean phonon velocity, and C with the phonon heat capacity °.

Therefore, when the thermal conductivity varies with position, the original Fourier’s law

equation
T
q=-k% (14)
should be generalized to the form
_ _0kT) _ 9T 0k
- ax ke ox ox’ (15)

which yields a different expression, for instance, for the equation of temperature for a solid

=0T _ 0%(kT),

cC o PR (16)
see Eq. (11.2-10) of Ref. ? for the original version of the equation. When heat flows have
components in all directions, Eq. (15) should be expressed in the vectorial form as

q = —V(kT) = —kVT — TVk (17)

where a bold character is used to denote a vector.

It is trivial to show the same derivation for momentum transfer in a lattice gas (flowing in
the y direction with a velocity gradient dv,,/dx). Again assuming that the lattice dimension (1) is
comparable to the mean-free path of the molecules, the magnitude of the y momentum flux (i.e.,
the molecular transport of the y momentum due to collision of the molecules) across the plane of
constant x located at x in the positive x direction and that of the y momentum flux across the

same plane in the negative x direction (Figure 1(B)) can be calculated, respectively, as

)

Tay+ |x = gle_%clx_%lmvy |x_,21

~1( | Adv )<| Adc )/1 | Adv,
e\ AN P I i e PR
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(to the first-order approximation)
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where m is the mass of the molecule, and v,, is the velocity of the gas along the y direction; mv,,

thus gives the y momentum of the molecule. The net y momentum flux across the plane of

constant x located at x is, therefore, given by
= — —_a(1, 12 )| —_9 |
‘L'xylx = Txy,+|x Txy'_|x == (6 veA“mu,, Ml (,uvy) y (20)
where u (= %vc)lzm) is the (shear) viscosity of the gas. Sir Isaac Newton proposed in

“Principia” that “the resistance (7, ) arising from the lack of slipperiness (u) in a fluid is
proportional to the velocity with which the parts of the fluid are separated from one another

(v, /0x)” ©, which has been formulated later by scientists into the equation

Txy = —H ox (21
For spatially varying viscosities, this original Newton’s viscosity equation is generalized to the
form
ou
(H vy) = —ﬂg— Uy or (22)
Logic suggests that for flows 1nV01V1ng position-dependent viscosities the full vector-tensor

expression for the viscous stress (momentum flux) tensor should also be generalized to the form
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= ~{V(w) + VG +{v- [(2u— k) v|} 8 (23)
where [V(uv)]T is the transpose of the V(uw) tensor, k is the dilatational viscosity, & is the unit

tensor, and bold characters denote vector and tensor quantities; further study is needed to prove

this generalization rigorously. Accordingly, the equation of motion % becomes p % =-Vp-—-V-

T+pg = —Vp + V() + VIV- (@)] - V{v- [Cu-x)v]} +pg @9
where p is the density, p is the pressure, g is the gravitational acceleration, and D /Dt is the
substantial time derivative operator. Note that now even for an incompressible fluid (V- v = 0)

the 37 and 4 terms on the right above do not vanish in general, which will make computation

more difficult.

2.2 Implications

To our knowledge, the generalized expressions of Fick’s law of diffusion, Fourier’s law
of heat conduction, and Newton’s law of viscosity proposed in the present work (Egs. (6), (17)
and (23), respectively) have not been demonstrated in the transport phenomena/continuum
mechanics literature previously (although such formalisms have been implied in statistical
mechanics as briefly discussed in the next subsection). For instance, in COMSOL (a commercial
finite element method simulator that is widely used for solving fluid mechanics problems), non-
isothermal flow problems (involving spatially varying u and k) are typically solved using the
modified equations of motion and temperature, in which (analogously to the diffusive flux term
in Eq. (3), that is, —V - j = V - (DVc) in full vector notation) the viscous momentum flux term
(—=V - 7) and the conductive heat flux term (—V - q) are calculated, respectively, using the

original forms of Newton’s law of viscosity and Fourier’s law of heat conduction ’
2
~V.t=V-(uw) + V- [u(Vv)T] - V- [(g[.l-K)V"U]

=V (uV0) + uV(V - v) + W) - (W)t = V- |G = 1) V- 0] = V- (u¥0) + (W) - (W0)1(25)

where the simplicity of the latter expression is due to the assumption of constant p (V- v = 0),
and

—V-q=V-(kVT). (26)
We now argue that these conventional expressions (Egs. (25) and (26)) are only approximations

for the general expressions given in Egs. (24) and (17), respectively. It will require extensive
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investigations to establish the ranges of conditions under which the use of the generalized
formulas that we propose (Egs. (24) and (17)) is required rather than the standard
‘approximations’ (Egs. (25) and (26)). In the present paper, we do not intend to offer a full
analysis of this question. Instead, we will present simple examples that demonstrate a need for
further research in this direction. Ordinary examples are well suited for this purpose. For this
reason, examples have been taken from one of the most popular textbooks of transport
phenomena, BSLK.

The first example concerns the heating of an electric wire (Figure 2(A)) with
temperature-dependent thermal and electrical conductivities, k and k., respectively (Problem

#10C.1 of BSLK)
k

—=1-a;0 - 0% + - (27)
0
:_e: 1— B0 — B,02% 4 - (28)
e0

where k, and k., are, respectively, the thermal and electrical conductivities at a reference
temperature Ty, ©(= (T — T,)/T,) is a dimensionless temperature, and the coefficients «; and f;
(i = 1,2, ... are material-dependent constants. The steady-state energy balance in cylindrical

coordinates gives 2

L2 (rg) = =22 (1) = k, (E) (29)

rdr rdr dr L
where E is the voltage drop, and L is the wire length; note the quantity on the right-hand side of
the equation represents the rate of heat generation per unit length of the wire due to electrical
energy dissipation, and the final expression is obtained by substituting the original Fourier’s law
equation (similarly to Eq. (14), g = —k Z—: in cylindrical coordinates) for q. When this equation
is solved using a perturbation method with the boundary conditions that T is finite at r = 0 and

T =T, at r = R, one obtains a solution for the radial temperature profile in the electrically

heated wire in dimensionless form
1 1 1
©=-B(1-¢%) {1 +B [gal(l —§) - /B - 52)] + O(BZ)} (30)

where B = (k,oR?*E?)/(kyL?T,), ¢ = r/R, and 0(B?) means terms of the order of B? and

a(kT) .

higher 2. If we use the generalized form of Fourier’s law (Eq. (15), that is, ¢ = — oy

cylindrical coordinates), the energy balance equation (Eq. (29)) changes to
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1AL aer)] =k, (5) 31)

rdr

Now it can be shown that this modification leads to a (slightly) different solution
0=-B(1-¢2) {1 +B [i a,(1-§) - =p(3 - 52)] + 0(32)}. (32)
By way of example, for a copper wire of radius R = 2 mm and length L = 5 m across a voltage
drop of E =40 volts at T, = 20 °C (ko =385 W/m-K, a; = 0.0508 (estimated from Table 9.5-4
of BSLK), k.o =5.99 x 10° ohm™'-cm™!, B; = 0.872 (estimated from Table 9.5-4 and Eq. 9.9-1 of
BSLK), which gives a value of B = 0.136 for the dimensionless heat source strength) 2, the
temperature distributions were calculated using the two equations above, Egs. (30) and (32).
These results are displayed in Figure 2(B). As shown in the figure, for these mild parameter
values used, the generalized Fourier’s law produces predictions for electrical heating of the wire
that are practically indistinguishable from those of the original Fourier’s law; the differences are
less than 0.2%, although this small difference increases as the rate of electrical energy dissipation

(B) is increased. This result is due to the fact that, as shown in Figure 2(C), the heat flux due to

the thermal conductivity gradient (—T %) is negligible relative to the heat flux due to the

temperature gradient (—k %).

Next, let us consider a non-isothermal momentum transfer process that involves a
(Newtonian) liquid flowing downward (in the positive y direction) along the surface of a vertical
plane in steady laminar flow (Figure 3(A)); this example is again taken from BSLK (Examples
11.4-3 and 2.2-2). The temperature of the free liquid surface (x = 0) is kept at a constant T, and
that of the solid surface (x = §) is kept at Ty. At these temperatures, the liquid has viscosities of
Ko and pg, respectively. For simplicity, we assume that within this given range of temperature,
the density (p) and thermal conductivity (k) of the liquid are constant. Due to the Arrhenius-type
dependence of viscosity on temperature (that is, u/py = exp[B(1/T — 1/T,)] where B is a

constant), the spatial variation of viscosity also has an exponential character 2

£ = exp [B (M) (%)] = g~®x/8, (33)

Mo ToTs
Substitution of the original Newton’s viscosity law (Eq. (21)) with variable viscosity (Eq. (33))
into the steady-state y momentum balance gives

—ax/5 Ly

Ty = —Hoe o = Pgx, (34)
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which upon integration with the no-slip boundary condition (that is, v, = 0 at x = §) gives 2

Yy _ e (l _ L) — pax/8 (% _ L) (35)

pgs&?/ug a a? a?

If we use the generalized Newton’s law of viscosity (Eq. (22)), the above momentum balance

equation (Eq. (34)) is changed to

d _
——(oe™/%v) = pgx. (36)
This equation yields a different velocity profile under the same no-slip boundary condition
Yy _ 114 _ (% 2 ax/§
pgd2/uy 2 [1 (6) ] e (37)

Note that in the constant viscosity limit (that is, when a = 0), both Egs. (35) and (37) reduce to

an identical form

2

(lxi_r)ré pg;;/uo - %[1 B (g) ]' (38)
which supports consistency between the two equations. For demonstration of the difference
between the predictions based on the original vs. generalized Newton’s law equations, we now
assume that the liquid is an oil whose viscosity is o = 0.16 Pa-s and density is p = 0.8 x 103
kg/m? at temperature Ty, = 20 °C, the falling film has a thickness of § = 2.5 mm, the vertical wall
is kept at a temperature of T = 10 °C, and the Arrhenius activation energy for viscosity has a
value of B = 1.04 x 10° K (for n-heptane ®) (which gives a value of -0.125 for the dimensionless
constant ). For these parameter values, the velocity profiles were calculated using the two
different versions of the velocity equation shown above. As shown in Figure 3(B), Egs. (35) and
(37) predict significantly different velocity profiles. This difference further increases as the

temperature gradient («) is increased. As shown in Figure 3(C), near the free liquid surface (at

. . . duwy . . .
small x), the y momentum flux due to the viscosity gradient (—vy ﬁ) is, in fact, comparable in

. . ) d
magnitude to the y momentum flux due to the velocity gradient (—u %)

Lastly, let us discuss a mass transfer example (discussed in Section 18.3 of BSLK). As
shown in Figure 4(A), a solid sphere of potassium permanganate (KMnQOy) is placed in a
stationary reservoir of water. KMnOQs is only slightly soluble in water; the solubility of KMnO4in
water is about 0.0758 g/cc at 25 °C °. Therefore, the outward flux of the dissolved MnOy" ions
(away from the sphere surface) is predominantly diffusive (the convective flux is negligible).
Also, the slowness of the dissolution process allows us to make a quasi-steady state

11



approximation; the mass transfer process can be approximated as occurring at steady state. The

steady state mass balance for dissolved MnOs! ions in spherical coordinates can be written as

d (2.) — =-_2

—(r?n) = (T %j) = ( D ) 0 (39)
where the total mass flux of MnO4™! (n (= cv + j)) is equated to the diffusive mass flux of MnO4
(j) in the absence of convection (v = 0), and then j is replaced by —D g, as related by the

original Fick’s first law equation in spherical coordinates (similarly to Eq. (1)). The diffusivity
for binary liquid mixtures is typically non-negligibly dependent on species concentration. By
substituting an approximate expression for the concentration dependence of the diffusivity '

D = Dy(1 - vc) (40)
in which Dy is the diffusion coefficient in infinite dilution (= 1.632 x 10~ cm?/s for MnOy™ in
water at 25 °C ), and v is the specific volume of the MnO4 ! ion (estimated to be about 0.3699
cm’/g) into Eq. (39), we obtain

~Z]r2py(1-ve)E| = 0. 41)
Integration of this equation with the boundary conditions that ¢ = ¢z (which we assume to be

equal to the solubility of KMnO4 in water, that is, 0.0758 g/cc at 25 °C) at r = R (assumed to be

I um) and ¢ = 0 at r — oo gives the concentration profile of MnOy at (quasi) steady state

L1 1—\[ —ch(Z—ch) l (42)

VCR

Alternatively, we can use the generalized Fick’s first law (Eq. (4)) to obtain

~L{r2 L [Dy(1 - ve)e]} = 0 43)

Upon integration of this equation with the same boundary conditions, we get

CR 2vcp

.

l1 - \]1 — 4vcg(1 - gcR)gl. (44)

The two expressions for Ci (Egs. (42) and (44)) are plotted as a function of % in Figure 4(B). The
R

two curves are supposed to have common asymptotes for small and large % (as required by the

boundary conditions), but in fact they are found to be practically identical to each other at all
distances. This result justifies the use of the original Fick’s law to model the mass transfer

associated with dissolution and diffusion of a slightly soluble material in a solvent. In this case,

12



the mass flux due to the diffusivity gradient (—c ZD) is negligible in magnitude compared to the

r

mass flux due to the concentration gradient (—D %) (Figure 4(C)).

2.3 Consistency

We would like to add a few remarks regarding whether the proposed correction to Fick’s,
Fourier’s, and Newton’s laws fits within (or violates any of) the established principles of
thermodynamics and statistical physics. Firstly, we note that Eq. (17) (or Eq. (15)) suggests an
interesting possibility that net conductive heat flow may occur even in the direction of increasing
temperature if the magnitude of the TVk term is greater than the magnitude of the kVT term
(e.g., at very high temperature); this is possible, for instance, in solids because (as can be seen
from Eq. (27)) the thermal conductivity of a solid typically decreases with increasing
temperature, and thus VT and Vk have opposite signs. We note that this prediction, though
somewhat counterintuitive, does not violate the second law of thermodynamics (“no process is
possible which consists solely in the transfer of heat from one temperature level to a higher one”
1), The second law of thermodynamics concerns processes that start and end with equilibrium
states within globally isolated systems (e.g., heat exchange between two heat reservoirs),
whereas the Fourier’s law is an energy balance equation for a local differential control volume,
which is, by definition, an open system. Therefore, it is generally impertinent to discuss whether
predictions of the Fourier’s law are consistent with the second law of thermodynamics.

As noted in Section 1 (also discussed in Ref. ?), Eq. (6) (or Eq. (4)) implies that even in
the absence of concentration gradient (Vc = 0), net material flow occurs when the diffusivity
gradient is non-zero (j = —cVD). This situation is not unphysical. It is the chemical potential
gradient that actually drives diffusion (not the concentration gradient), and a uniform
concentration does not necessarily mean that the chemical potential (u) is uniform. Note that

u = u° + RTIn(yc) (45)
where p° and y are the standard state chemical potential and activity coefficient of the solute,
respectively, and R is the universal gas constant. Therefore, even under constant ¢, a non-zero
Vu may develop if y varies spatially (due to spatially varying D); it is known that y and D are

related by the following equation !2

_ kgT dlny
p- 221+ ) o




where kg is the Boltzmann’s constant, and f is the friction factor of the solute molecule.
Lastly, we would like to point out that the proposed correction to Fick’s first law is

already suggested in the form of the Fokker-Planck equation derived using Ito’s stochastic

calculus (also known as the Kolmogorov forward equation) for the probability density of a

stochastic process !3; in one dimensional situations,

0y 4 P
5 - ax (vp) + 0x2 (Dp) (47)

where p is the probability density, v is the average (convection) velocity, and D is the diffusion

coefficient. Similarly to Eq. (2), a probability continuity equation can be written in terms of the

probability flux (j,)
o _ _9p
at  ox’ (48)
Comparing Eq. (48) with Eq. (47) gives
, a(Dp)
Jp = vp == (49)
In the absence of convection (v = 0), Eq. (49) reduces to a form analogous to Eq. (4)
(generalized Fick’s first law)
_ _0p)
P T o (50)

Interestingly, if we assume that the system obeys the principle of detailed balance (microscopic
reversibility (j, = 0 at all x) which is a sufficient condition for equilibrium), we obtain 13

_ ia(Dpe)
v = o ox (51)

where p, is the probability density at equilibrium. Assuming that p, is a weak function of x, we

get

aD
v (52)

Substitution of this equation into Eq. (47) gives

w0 (por

Z=5(0%) (53)
which coincides with the conventional form of the Fick’s second law equation for position-
dependent diffusivity (Eq. (3)); thus, the original Fick’s second law can be considered a

restricted form of the Fokker-Planck equation. We note that detailed balance is a sufficient

condition for entropy maximization in an isolated system '4. Therefore, detailed balance is not
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generally necessary for the continuity (Fokker-Planck) equation to be consistent with the second

law of thermodynamics.

3. Conclusion

The diffusion(-like) equations representing Fick’s, Fourier’s, and Newton’s laws were
originally derived for constant diffusivity, thermal conductivity, and viscosity, respectively.
However, even when dealing with problems involving spatially varying diffusivity, thermal
conductivity, and viscosity, the original Fick’s, Fourier’s, and Newton’s laws have always been
used (i.e., in their original forms) without questioning the validity of such uses. We here argue
that for position-dependent diffusivity, thermal conductivity, and viscosity, the Fick’s, Fourier’s,
and Newton’s law formulas should, in principle, be changed such that the viscosity, thermal

conductivity, and viscosity are moved inside the derivative (gradient) operator; that is, in one-

owe) 3G oo vy

dimensional situations, for instance, j = — o 4= o> and Ty = P , respectively.

Our examples demonstrate that even with moderate spatial variations of diffusivity, thermal
conductivity, or viscosity, the proposed modifications of the Fick’s, Fourier’s, and Newton’s law
equations might lead to predictions that are discernibly different from those of the original
formulas under certain circumstances. This issue is expected to become more important, for
instance, for highly non-isothermal processes, particularly, those that involve viscous dissipation
of energy that induces large spatial temperature gradients such as in fluids around rapidly
moving objects. In a previous publication, we have shown that there exists a special situation in

which a diffusive flux of a species can occur solely because of the gradient of diffusivity even

6(DC) _ oD 3.
ax ox ’

though the concentration of the species is constant throughout, that is, j = —

such phenomenon (“pH phoresis” discussed in Ref. *) cannot be described using the original

Fick’s first law equation. Further study on this general topic is desirable.

Acknowledgement:

YYW is grateful for funding from NSF (CBET-1803968). We would also like to thank the

anonymous Reviewer #2 for very helpful comments.

15



References

(1) Fick, A. On liquid diffusion. Lond. Edinb. Dubl. Phil. Mag. 1855, 10, 30-39.

(2) Bird, R. B.; Stewart, W. E.; Lightfoot, E. N.; Klingenberg, D. J. Introductory
Transport Phenomena; John Wiley & Sons, 2015.

3) Won, Y. Y.; Lee, H. "pH phoresis": A new concept that can be used for
improving drug delivery to tumor cells. J. Control. Release 2013, 170, 396-400.

4) Philibert, J. Atom Movements: Diffusion and Mass Transport in Solids; Les
Editions de Physique, 1991.

(%) Kittel, C. Introduction to Solid State Physics; 7th ed.; John Wiley & Sons, 1996.

(6) Newton, 1. Philosophiae Naturalis Principia Mathematica; 1st English ed., 1687.

(7) COMSOL Metaphysics 5.4, Buoyancy Flow in Free Fluids (Application ID: 665).

(8) Viswanath, D. S.; Ghosh, T. K.; Prasad, G. H. L.; Dutt, N. V. K.; Rani, K. Y.
Viscosity of Liquids:Theory, Estimation, Experiment, and Data; Springer: Dordrecht, The
Netherlands, 2007.

9) CRC Handbook of Chemistry and Physics; 84th ed.; CRC Press, 2003.

(10) Han, C. C. Concentration dependence of the diffusion coefficient of polystyrene
at theta condition. Polymer 1979, 20, 259-261.

(11)  Smith, J. M.; Van Ness, H. C.; Abbott, M. M. Introduction to Chemical
Engineering Thermodynamics; Tth ed.; McGraw-Hill, 2005.

(12) Hiemenz, P. C.; Lodge, T. P. Polymer Chemistry; 2nd ed.; CRC Press Taylor &
Francis Group, 2007.

(13)  Van Kampen, N. G. Stochastic Processes in Physics & Chemistry; 3rd ed.;
Elsevier, 2007.

(14)  Boltzmann, L. Lectures on Gas Theory (English Translation of "Vorlesungen
tiber Gastheorie"); University of California Press, 1964.

16



Figure 1. Molecular transport of (A) mass, internal energy, and (B) y momentum due to

gradients of Dc, kT, and uv, along the x-direction, respectively.
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Figure 2. (A) Electrically heated wire. (B) Dimensionless temperature profiles predicted using

Egs. (30) vs. (32). Difference (%) is defined as (O(Eq. (30)) — ©(Eq. (32)))/0(Eq. (32))x100. (C)
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Figure 3. (A) Non-isothermal falling liquid film. (B) Velocity profiles predicted using Egs. (35)
vs. (37). Difference (%) is defined as (v, (Eq. (35)) — vy, (Eq. (37)))/v,,(Eq. (37))x100. (C)

as a function of x/0; absolute magnitudes are

terms have opposite signs.
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Figure 4. (A) Diffusion from a slightly soluble sphere. (B) Concentration profiles predicted
using Eqgs. (42) vs. (44). Difference (%) is defined as (c(Eq. (42)) — c(Eq. (44)))/c(Eq. (44))x100.
Note all Ci points and curves overlap with one another. (C) Dimensionless deviation factor
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