
1 

 

 

Revised Formulation of Fick’s, Fourier’s, and Newton’s Laws for 

Spatially Varying Linear Transport Coefficients 

 

You-Yeon Won,* and Doraiswami Ramkrishna 

 Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, 

United States of America 

 

Abstract 

We argue that for situations involving spatially varying linear transport coefficients 

(diffusivities, thermal conductivities, and viscosities), the original Fick’s, Fourier’s, and 

Newton’s law equations should be modified to place the diffusivity, thermal conductivity, and 

viscosity inside the derivative operator; that is, in one-dimensional rectilinear situations, 𝑗 =

−
𝜕(𝐷𝑐)

𝜕𝑥
, 𝑞 = −

𝜕(𝑘𝑇)

𝜕𝑥
, and 𝜏𝑥𝑦 = −

𝜕(𝜇𝑣𝑦)

𝜕𝑥
. We present simple derivations of these formulae in 

which diffusive mass transfer, conductive heat transfer, and molecular momentum transfer 

processes are described using lattice random walk models. We also present simple examples 

demonstrating how these modifications affect calculations. 

 

1. Introduction 

Adolph Fick proposed in 1855 1 that in a simple one-dimensional situation, the diffusive 

flux, say of species A, is proportional to the concentration gradient of the species along the 

system axis (the x-axis) (“Fick’s first law”) 

𝑗 = −𝐷
𝜕𝑐

𝜕𝑥
.      (1) 

The proportionality factor 𝐷 is what is called the diffusion coefficient or diffusivity. From this 

relationship, Fick also computed the rate of change of the concentration of A by diffusion 

(“Fick’s second law” or “equation of continuity for A”) 

𝜕𝑐

𝜕𝑡
= −

𝜕𝑗

𝜕𝑥
= 𝐷

𝜕2𝑐

𝜕𝑥2     (2) 

                                             
* To whom correspondence should be addressed. E-mail: yywon@ecn.purdue.edu 
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where 𝐷 is assumed to be spatially “constant” and “dependent (only) upon the nature of the 

substances”. In general situations, however, the diffusivity is position-dependent, because of 

spatial variation of, for instance, concentration or temperature, and the dependence of the 

diffusivity on these variables. A common approach to deal with spatially varying diffusivity is to 

use the following modification of Eq. (2) above 

𝜕𝑐

𝜕𝑡
= −

𝜕𝑗

𝜕𝑥
=

𝜕

𝜕𝑥
(𝐷

𝜕𝑐

𝜕𝑥
)     (3) 

where use is still made of the Fick’s first law equation in its original form (Eq. (1)); the only 

modification is that 𝐷 is not factored out of the outer derivative 2. Recently, we proposed an 

argument that in order to exactly track spatial changes in 𝐷, the Fick’s first law equation must 

also be generalized to the form 3 

𝑗 = −
𝜕(𝐷𝑐)

𝜕𝑥
= −𝐷

𝜕𝑐

𝜕𝑥
− 𝑐

𝜕𝐷

𝜕𝑥
    (4) 

which thus also gives a different equation for the Fick’s second law 

𝜕𝑐

𝜕𝑡
=

𝜕2(𝐷𝑐)

𝜕𝑥2 .      (5) 

When mass flows have components in all directions, Eqs. (4) and (5) should be expressed in the 

vectorial form, respectively, as 

𝒋 = −∇(𝐷𝑐) = −𝐷∇𝑐 − 𝑐∇𝐷    (6) 

and 

𝜕𝑐

𝜕𝑡
= ∇2(𝐷𝑐).      (7) 

The correctness of Eq. (4) (or Eq. (6)) is intuitively obvious; Eq. (4) predicts that even in the 

absence of concentration gradient, a diffusive flux of A arises if there exists a gradient of 

diffusivity, and also that in the absence of net material flux (𝑗 = 0), a spatial gradient of 

diffusivity results in a spontaneous build-up of non-uniform concentrations of A (Note these 

phenomena are not describable within the original Fick’s law framework) 3. 

As discussed in Ref. 3, the above Eq. (4) can be obtained using the lattice model 

description of diffusion 4. For the purpose of setting the basis for the discussion to be presented 

in the present article, this derivation is briefly repeated here. In this derivation, we consider a 

steady-state situation described in Figure 1(A) where a suspension of Brownian particles 

(molecules) (species A) is contained in a tube. The concentration of this species varies only 

along the tube axis (x direction). For simplicity, the three-dimensional (3D) space within the tube 
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is pictured as being divided into square lattice sites; each site of the lattice can hold at most one 

molecule at a time, and has a characteristic dimension of λ. Under this setting, we model the 

diffusive motion of the molecules to be a 3D random walk process 4. Specifically, we assume 

that each molecule steps to an adjacent lattice site with a jump frequency of 𝜈. As illustrated in 

Figure 1(A), let us now consider a plane of constant x between two adjacent lattice layers. The 

magnitude of the flux of the molecules from lesser x to greater x across the plane (located at x) 

and that of the flux from greater x to lesser x across the same plane can be calculated, 

respectively, as 

𝑗+|𝑥 =
1

6
𝜈|

𝑥−
𝜆
2

𝑐|
𝑥−

𝜆
2

𝜆 

≈
1

6
(𝜈|𝑥 −

𝜆

2

𝑑𝜈

𝑑𝑥
|

𝑥

) (𝑐|𝑥 −
𝜆

2

𝑑𝑐

𝑑𝑥
|

𝑥

) 𝜆 

(to the first-order approximation) 

≈
1

6
𝜈|𝑥𝑐|𝑥𝜆 −

1

12
𝜈|𝑥

𝑑𝑐

𝑑𝑥
|

𝑥
𝜆2 −

1

12

𝑑𝜈

𝑑𝑥
|

𝑥
𝑐|𝑥𝜆2 

(by neglecting the square of the derivative term) 

=
1

6
𝜈|𝑥𝑐|𝑥𝜆 −

𝑑

𝑑𝑥
(

1

12
𝜈𝑐𝜆2)|

𝑥
    (8) 

and 

𝑗−|𝑥 =
1

6
𝜈|

𝑥+
𝜆
2

𝑐|
𝑥+

𝜆
2

𝜆 

≈
1

6
(𝜈|𝑥 +

𝜆

2

𝑑𝜈

𝑑𝑥
|

𝑥

) (𝑐|𝑥 +
𝜆

2

𝑑𝑐

𝑑𝑥
|

𝑥

) 𝜆 

(to the first-order approximation) 

≈
1

6
𝜈|𝑥𝑐|𝑥𝜆 +

1

12
𝜈|𝑥

𝑑𝑐

𝑑𝑥
|

𝑥
𝜆2 +

1

12

𝑑𝜈

𝑑𝑥
|

𝑥
𝑐|𝑥𝜆2 

(by neglecting the square of the derivative term) 

=
1

6
𝜈|𝑥𝑐|𝑥𝜆 +

𝑑

𝑑𝑥
(

1

12
𝜈𝑐𝜆2)|

𝑥
    (9) 

where 𝑐 is the concentration of A (e.g., in units of mass of molecules per unit volume), and the 

one-sixth factor is introduced because in 3D space a molecule can move to one of the six nearest 

neighbor sites with the equal probability of 1/6. Therefore, the net mass flux of the molecules 

across the plane located at x is given by 
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𝑗|𝑥 = 𝑗+|𝑥 − 𝑗−|𝑥 = −
𝑑

𝑑𝑥
(

1

6
𝜈𝑐𝜆2)|

𝑥
= −

𝑑

𝑑𝑥
(𝐷𝑐)|

𝑥
  (10) 

where the product 
1

6
𝜈𝜆2 is the diffusion coefficient (in lattice units) for that location, i.e., 𝐷 ≡

1

6
𝜈𝜆2. The resulting equation (Eq. (10)) is the steady-state version of Eq. (4). This derivation has 

been given in an earlier publication (in the Supplementary Material of Ref. 3). 

 The realization of this generalized form of the Fick’s first law equation raises two 

important questions. First, can (or even should) this same argument be applied to the Fourier’s 

law of heat conduction and the Newton’s law of viscosity, respectively, for situations involving 

spatially varying thermal conductivities and viscosities? The answer is intuitively obvious (yes), 

because as stated in Bird, Stewart, Lightfoot and Klingenberg (BSLK) 2, “the molecular 

mechanisms responsible for the transport of chemical species, energy and momentum are closely 

related (the same molecular motions and interactions are responsible for diffusivity, thermal 

conductivity and viscosity)”. The second question is: In reality, how much difference would 

using, for instance, Eq. (5) instead of Eq. (3) (for solving mass transfer problems involving 

position-dependent diffusivities) make to the result? Or, alternatively put, what is the range in 

which the commonly used approximation (Eq. (3), as opposed to the more accurate equation, Eq. 

(5)) is valid? In the context of these questions, the present paper attempts to serve two purposes. 

It first presents simplistic arguments that justify the generalization of the Fourier’s thermal 

conductivity and Newton’s viscosity equations, respectively, for spatially varying thermal 

conductivities and viscosities; these arguments are similar to that used above for generalizing the 

Fick’s first law equation for spatially varying diffusivities. It then discusses simple (but realistic) 

examples demonstrating how these modifications impact the calculations and predictions of the 

equations of change for mass, energy and momentum. 

 

2. Results & Discussion 

2.1 Derivations 

Fick deduced his first law of diffusion (Eq. (1)) by analogy with Fourier’s law of heat 

conduction (and Ohm’s law of electrical conduction) 1. Likewise it is reasonable to expect that 

the same generalization as in Eq. (4) is applicable to Fourier’s law. To actually show such 

derivation, let us first consider heat conduction in a gaseous system. We use the same lattice 

model description of diffusion as in Section 1; see Figure 1(A) for the geometry of the system. 
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Assuming that the lattice dimension (λ) is comparable to the mean-free path of the molecules, the 

magnitude of the heat flux (i.e., the molecular transport of internal energy due to collision of the 

molecules) from lesser x to greater x across the plane located at x and that of the heat flux from 

greater x to lesser x across the same plane can be calculated, respectively, as 

𝑞+|𝑥 =
1

6
𝜈|

𝑥−
𝜆
2

𝑐|
𝑥−

𝜆
2

𝜆𝐶̅|
𝑥−

𝜆
2

(𝑇|
𝑥−

𝜆
2

− 𝑇𝑟𝑒𝑓) 

≈
1

6
(𝜈|𝑥 −

𝜆

2

𝑑𝜈

𝑑𝑥
|

𝑥

) (𝑐|𝑥 −
𝜆

2

𝑑𝑐

𝑑𝑥
|

𝑥

) 𝜆 (𝐶̅|𝑥 −
𝜆

2

𝑑𝐶̅

𝑑𝑥
|

𝑥

) (𝑇|𝑥 −
𝜆

2

𝑑𝑇

𝑑𝑥
|

𝑥
− 𝑇𝑟𝑒𝑓) 

(to the first-order approximation) 

≈
1

6
𝜈|𝑥𝑐|𝑥𝜆𝐶̅|𝑥(𝑇|𝑥 − 𝑇𝑟𝑒𝑓) −

1

12
𝜈|𝑥𝑐|𝑥𝜆2𝐶̅|𝑥

𝑑𝑇

𝑑𝑥
|

𝑥

−
1

12
𝜈|𝑥𝑐|𝑥𝜆2

𝑑𝐶̅

𝑑𝑥
|

𝑥

(𝑇|𝑥 − 𝑇𝑟𝑒𝑓)

−
1

12
𝜈|𝑥

𝑑𝑐

𝑑𝑥
|

𝑥
𝜆2𝐶̅|𝑥(𝑇|𝑥 − 𝑇𝑟𝑒𝑓) −

1

12

𝑑𝜈

𝑑𝑥
|

𝑥
𝑐|𝑥𝜆2𝐶̅|𝑥(𝑇|𝑥 − 𝑇𝑟𝑒𝑓) 

(by neglecting the second or higher order derivatives) 

=
1

6
𝜈|𝑥𝑐|𝑥𝜆𝐶̅|𝑥(𝑇|𝑥 − 𝑇𝑟𝑒𝑓) −

𝑑

𝑑𝑥
[

1

12
𝜈𝑐𝜆2𝐶̅(𝑇 − 𝑇𝑟𝑒𝑓)]|

𝑥
  (11) 

and 

𝑞−|𝑥 =
1

6
𝜈|

𝑥+
𝜆
2

𝑐|
𝑥+

𝜆
2

𝜆𝐶̅|
𝑥+

𝜆
2

(𝑇|
𝑥+

𝜆
2

− 𝑇𝑟𝑒𝑓) 

≈
1

6
(𝜈|𝑥 +

𝜆

2

𝑑𝜈

𝑑𝑥
|

𝑥

) (𝑐|𝑥 +
𝜆

2

𝑑𝑐

𝑑𝑥
|

𝑥

) 𝜆 (𝐶̅|𝑥 +
𝜆

2

𝑑𝐶̅

𝑑𝑥
|

𝑥

) (𝑇|𝑥 +
𝜆

2

𝑑𝑇

𝑑𝑥
|

𝑥
− 𝑇𝑟𝑒𝑓) 

(to the first-order approximation) 

≈
1

6
𝜈|𝑥𝑐|𝑥𝜆𝐶̅|𝑥(𝑇|𝑥 − 𝑇𝑟𝑒𝑓) +

1

12
𝜈|𝑥𝑐|𝑥𝜆2𝐶̅|𝑥

𝑑𝑇

𝑑𝑥
|

𝑥

+
1

12
𝜈|𝑥𝑐|𝑥𝜆2

𝑑𝐶̅

𝑑𝑥
|

𝑥

(𝑇|𝑥 − 𝑇𝑟𝑒𝑓)

+
1

12
𝜈|𝑥

𝑑𝑐

𝑑𝑥
|

𝑥
𝜆2𝐶̅|𝑥(𝑇|𝑥 − 𝑇𝑟𝑒𝑓) +

1

12

𝑑𝜈

𝑑𝑥
|

𝑥
𝑐|𝑥𝜆2𝐶̅|𝑥(𝑇|𝑥 − 𝑇𝑟𝑒𝑓) 

(by neglecting the second or higher order derivatives) 

=
1

6
𝜈|𝑥𝑐|𝑥𝜆𝐶̅|𝑥(𝑇|𝑥 − 𝑇𝑟𝑒𝑓) +

𝑑

𝑑𝑥
[

1

12
𝜈𝑐𝜆2𝐶̅(𝑇 − 𝑇𝑟𝑒𝑓)]|

𝑥
  (12) 
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where 𝐶̅ is the heat capacity per molecule (at constant volume), and 𝑇𝑟𝑒𝑓 is the reference 

temperature; 𝐶̅(𝑇 − 𝑇𝑟𝑒𝑓) thus gives the internal energy per molecule. All other parameters are 

the same as in Eqs. (8) and (9). The net heat flux across the plane located at x is, therefore, given 

by 

𝑞|𝑥 = 𝑞+|𝑥 − 𝑞−|𝑥 = −
𝑑

𝑑𝑥
[

1

6
𝜈𝑐𝜆2𝐶̅(𝑇 − 𝑇𝑟𝑒𝑓)]|

𝑥
= −

𝑑

𝑑𝑥
(𝑘𝑇)|

𝑥
  (13) 

where 𝑘(≡
1

6
𝜈𝑐𝜆2𝐶̅) is the thermal conductivity; 𝑇𝑟𝑒𝑓 is set to 0. Note that the exact same 

argument can also be applied to heat conduction in a solid body, simply by replacing 𝑐 with the 

phonon concentration, 𝜈𝜆 with the mean phonon velocity, and 𝐶̅ with the phonon heat capacity 5. 

Therefore, when the thermal conductivity varies with position, the original Fourier’s law 

equation  

𝑞 = −𝑘
𝜕𝑇

𝜕𝑥
      (14) 

should be generalized to the form 

𝑞 = −
𝜕(𝑘𝑇)

𝜕𝑥
= −𝑘

𝜕𝑇

𝜕𝑥
− 𝑇

𝜕𝑘

𝜕𝑥
,     (15) 

which yields a different expression, for instance, for the equation of temperature for a solid 

𝑐𝐶̅ 𝜕𝑇

𝜕𝑡
=

𝜕2(𝑘𝑇)

𝜕𝑥2 ;     (16) 

see Eq. (11.2-10) of Ref. 2 for the original version of the equation. When heat flows have 

components in all directions, Eq. (15) should be expressed in the vectorial form as 

𝒒 = −∇(𝑘𝑇) = −𝑘∇𝑇 − 𝑇∇𝑘    (17) 

where a bold character is used to denote a vector. 

 It is trivial to show the same derivation for momentum transfer in a lattice gas (flowing in 

the y direction with a velocity gradient 𝑑𝑣𝑦 𝑑𝑥⁄ ). Again assuming that the lattice dimension (λ) is 

comparable to the mean-free path of the molecules, the magnitude of the y momentum flux (i.e., 

the molecular transport of the y momentum due to collision of the molecules) across the plane of 

constant x located at x in the positive x direction and that of the y momentum flux across the 

same plane in the negative x direction (Figure 1(B)) can be calculated, respectively, as 

𝜏𝑥𝑦,+|
𝑥

=
1

6
𝜈|

𝑥−
𝜆
2

𝑐|
𝑥−

𝜆
2

𝜆𝑚𝑣𝑦|
𝑥−

𝜆
2

 

≈
1

6
(𝜈|𝑥 −

𝜆

2

𝑑𝜈

𝑑𝑥
|

𝑥

) (𝑐|𝑥 −
𝜆

2

𝑑𝑐

𝑑𝑥
|

𝑥

) 𝜆𝑚 (𝑣𝑦|
𝑥

−
𝜆

2

𝑑𝑣𝑦

𝑑𝑥
|

𝑥

) 
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(to the first-order approximation) 

≈
1

6
𝜈|𝑥𝑐|𝑥𝜆𝑚𝑣𝑦|

𝑥
−

1

12
𝜈|𝑥𝑐|𝑥𝜆2𝑚

𝑑𝑣𝑦

𝑑𝑥
|

𝑥
−

1

12
𝜈|𝑥

𝑑𝑐

𝑑𝑥
|

𝑥
𝜆2𝑚𝑣𝑦|

𝑥
−

1

12

𝑑𝑣

𝑑𝑥
|

𝑥
𝑐|𝑥𝜆2𝑚𝑣𝑦|

𝑥
 

(by neglecting the second or higher order derivatives) 

=
1

6
𝜈|𝑥𝑐|𝑥𝜆𝑚𝑣𝑦|

𝑥
−

𝑑

𝑑𝑥
(

1

12
𝜈𝑐𝜆2𝑚𝑣𝑦)|

𝑥
   (18) 

and 

𝜏𝑥𝑦,−|
𝑥

=
1

6
𝜈|

𝑥+
𝜆
2

𝑐|
𝑥+

𝜆
2

𝜆𝑚𝑣𝑦|
𝑥+

𝜆
2

 

≈
1

6
(𝜈|𝑥 +

𝜆

2

𝑑𝜈

𝑑𝑥
|

𝑥

) (𝑐|𝑥 +
𝜆

2

𝑑𝑐

𝑑𝑥
|

𝑥

) 𝜆𝑚 (𝑣𝑦|
𝑥

+
𝜆

2

𝑑𝑣𝑦

𝑑𝑥
|

𝑥

) 

(to the first-order approximation) 

≈
1

6
𝜈|𝑥𝑐|𝑥𝜆𝑚𝑣𝑦|

𝑥
+

1

12
𝜈|𝑥𝑐|𝑥𝜆2𝑚

𝑑𝑣𝑦

𝑑𝑥
|

𝑥
+

1

12
𝜈|𝑥

𝑑𝑐

𝑑𝑥
|

𝑥
𝜆2𝑚𝑣𝑦|

𝑥
+

1

12

𝑑𝑣

𝑑𝑥
|

𝑥
𝑐|𝑥𝜆2𝑚𝑣𝑦|

𝑥
 

(by neglecting the second or higher order derivatives) 

=
1

6
𝜈|𝑥𝑐|𝑥𝜆𝑚𝑣𝑦|

𝑥
+

𝑑

𝑑𝑥
(

1

12
𝜈𝑐𝜆2𝑚𝑣𝑦)|

𝑥
   (19) 

where 𝑚 is the mass of the molecule, and 𝑣𝑦 is the velocity of the gas along the y direction; 𝑚𝑣𝑦 

thus gives the y momentum of the molecule. The net y momentum flux across the plane of 

constant x located at x is, therefore, given by 

𝜏𝑥𝑦|
𝑥

= 𝜏𝑥𝑦,+|
𝑥

− 𝜏𝑥𝑦,−|
𝑥

= −
𝑑

𝑑𝑥
(

1

6
𝜈𝑐𝜆2𝑚𝑣𝑦)|

𝑥
= −

𝑑

𝑑𝑥
(𝜇𝑣𝑦)|

𝑥
 (20) 

where 𝜇 (≡
1

6
𝜈𝑐𝜆2𝑚) is the (shear) viscosity of the gas. Sir Isaac Newton proposed in 

“Principia” that “the resistance (𝜏𝑥𝑦) arising from the lack of slipperiness (𝜇) in a fluid is 

proportional to the velocity with which the parts of the fluid are separated from one another 

(𝜕𝑣𝑦 𝜕𝑥⁄ )” 6, which has been formulated later by scientists into the equation 

     𝜏𝑥𝑦 = −𝜇
𝜕𝑣𝑦

𝜕𝑥
.      (21) 

For spatially varying viscosities, this original Newton’s viscosity equation is generalized to the 

form 

𝜏𝑥𝑦 = −
𝜕

𝜕𝑥
(𝜇𝑣𝑦) = −𝜇

𝜕𝑣𝑦

𝜕𝑥
− 𝑣𝑦

𝜕𝜇

𝜕𝑥
.    (22) 

Logic suggests that for flows involving position-dependent viscosities the full vector-tensor 

expression for the viscous stress (momentum flux) tensor should also be generalized to the form 



8 

 

𝝉 = −{𝛁(𝜇𝒗) + [𝛁(𝜇𝒗)]†} + {∇ ∙ [(
2

3
𝜇 − 𝜅) 𝒗]} 𝜹   (23) 

where [𝛁(𝜇𝒗)]† is the transpose of the 𝛁(𝜇𝒗) tensor, 𝜅 is the dilatational viscosity, 𝜹 is the unit 

tensor, and bold characters denote vector and tensor quantities; further study is needed to prove 

this generalization rigorously. Accordingly, the equation of motion 2 becomes 𝜌
𝐷𝒗

𝐷𝑡
= −∇𝑝 − ∇ ∙

𝝉 + 𝜌𝒈 = −∇𝑝 + ∇2(𝜇𝒗) + ∇[∇ ∙ (𝜇𝒗)] − ∇ {∇ ∙ [(
2

3
𝜇 − 𝜅) 𝒗]} + 𝜌𝒈 (24) 

where 𝜌 is the density, 𝑝 is the pressure, 𝒈 is the gravitational acceleration, and 𝐷 𝐷𝑡⁄  is the 

substantial time derivative operator. Note that now even for an incompressible fluid (∇ ∙ 𝒗 = 0) 

the 3rd and 4th terms on the right above do not vanish in general, which will make computation 

more difficult. 

 

2.2 Implications 

 To our knowledge, the generalized expressions of Fick’s law of diffusion, Fourier’s law 

of heat conduction, and Newton’s law of viscosity proposed in the present work (Eqs. (6), (17) 

and (23), respectively) have not been demonstrated in the transport phenomena/continuum 

mechanics literature previously (although such formalisms have been implied in statistical 

mechanics as briefly discussed in the next subsection). For instance, in COMSOL (a commercial 

finite element method simulator that is widely used for solving fluid mechanics problems), non-

isothermal flow problems (involving spatially varying 𝜇 and 𝑘) are typically solved using the 

modified equations of motion and temperature, in which (analogously to the diffusive flux term 

in Eq. (3), that is, −∇ ∙ 𝒋 = ∇ ∙ (𝐷∇c) in full vector notation) the viscous momentum flux term 

(−∇ ∙ 𝝉) and the conductive heat flux term (−∇ ∙ 𝒒) are calculated, respectively, using the 

original forms of Newton’s law of viscosity and Fourier’s law of heat conduction 7 

−∇ ∙ 𝝉 = ∇ ∙ (𝜇∇𝒗) + ∇ ∙ [𝜇(∇𝒗)†] − ∇ ∙ [(
2

3
𝜇 − 𝜅) ∇ ∙ 𝒗] 

= ∇ ∙ (𝜇∇𝒗) + 𝜇∇(∇ ∙ 𝒗) + (∇𝜇) ∙ (∇𝒗)† − ∇ ∙ [(
2

3
𝜇 − 𝜅) ∇ ∙ 𝒗] = ∇ ∙ (𝜇∇𝒗) + (∇𝜇) ∙ (∇𝒗)†(25) 

where the simplicity of the latter expression is due to the assumption of constant 𝜌 (∇ ∙ 𝒗 = 0), 

and 

−∇ ∙ 𝒒 = ∇ ∙ (𝑘∇𝑇).     (26) 

We now argue that these conventional expressions (Eqs. (25) and (26)) are only approximations 

for the general expressions given in Eqs. (24) and (17), respectively. It will require extensive 
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investigations to establish the ranges of conditions under which the use of the generalized 

formulas that we propose (Eqs. (24) and (17)) is required rather than the standard 

‘approximations’ (Eqs. (25) and (26)). In the present paper, we do not intend to offer a full 

analysis of this question. Instead, we will present simple examples that demonstrate a need for 

further research in this direction. Ordinary examples are well suited for this purpose. For this 

reason, examples have been taken from one of the most popular textbooks of transport 

phenomena, BSLK. 

 The first example concerns the heating of an electric wire (Figure 2(A)) with 

temperature-dependent thermal and electrical conductivities, 𝑘 and 𝑘𝑒, respectively (Problem 

#10C.1 of BSLK) 

𝑘

𝑘0
= 1 − 𝛼1Θ − 𝛼2Θ2 + ⋯     (27) 

𝑘𝑒

𝑘𝑒0
= 1 − 𝛽1Θ − 𝛽2Θ2 + ⋯     (28) 

where 𝑘0 and 𝑘𝑒0 are, respectively, the thermal and electrical conductivities at a reference 

temperature 𝑇0, Θ(= (𝑇 − 𝑇0) 𝑇0⁄ ) is a dimensionless temperature, and the coefficients 𝛼𝑖 and 𝛽𝑖 

(𝑖 = 1, 2, …) are material-dependent constants. The steady-state energy balance in cylindrical 

coordinates gives 2 

1

𝑟

𝑑

𝑑𝑟
(𝑟𝑞) = −

1

𝑟

𝑑

𝑑𝑟
(𝑟𝑘

𝑑𝑇

𝑑𝑟
) = 𝑘𝑒 (

𝐸

𝐿
)

2
    (29) 

where 𝐸 is the voltage drop, and 𝐿 is the wire length; note the quantity on the right-hand side of 

the equation represents the rate of heat generation per unit length of the wire due to electrical 

energy dissipation, and the final expression is obtained by substituting the original Fourier’s law 

equation (similarly to Eq. (14), 𝑞 = −𝑘
𝜕𝑇

𝜕𝑟
 in cylindrical coordinates) for 𝑞. When this equation 

is solved using a perturbation method with the boundary conditions that 𝑇 is finite at 𝑟 = 0 and 

𝑇 = 𝑇0 at 𝑟 = 𝑅, one obtains a solution for the radial temperature profile in the electrically 

heated wire in dimensionless form 

Θ =
1

4
𝐵(1 − 𝜉2) {1 + 𝐵 [

1

8
𝛼1(1 − 𝜉2) −

1

16
𝛽1(3 − 𝜉2)] + O(𝐵2)}  (30) 

where 𝐵 = (𝑘𝑒0𝑅2𝐸2) (𝑘0𝐿2𝑇0)⁄ , 𝜉 = 𝑟 𝑅⁄ , and O(𝐵2) means terms of the order of 𝐵2 and 

higher 2. If we use the generalized form of Fourier’s law (Eq. (15), that is, 𝑞 = −
𝜕(𝑘𝑇)

𝜕𝑟
 in 

cylindrical coordinates), the energy balance equation (Eq. (29)) changes to 
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−
1

𝑟

𝑑

𝑑𝑟
[𝑟

𝑑

𝑑𝑟
(𝑘𝑇)] = 𝑘𝑒 (

𝐸

𝐿
)

2
.     (31) 

Now it can be shown that this modification leads to a (slightly) different solution 

Θ =
1

4
𝐵(1 − 𝜉2) {1 + 𝐵 [

1

4
𝛼1(1 − 𝜉2) −

1

16
𝛽1(3 − 𝜉2)] + O(𝐵2)}. (32) 

By way of example, for a copper wire of radius 𝑅 = 2 mm and length 𝐿 = 5 m across a voltage 

drop of 𝐸 = 40 volts at 𝑇0 =  20 °C (𝑘0 = 385 W/m·K, 𝛼1 = 0.0508 (estimated from Table 9.5-4 

of BSLK), 𝑘𝑒0 = 5.99 × 105 ohm-1·cm-1, 𝛽1 = 0.872 (estimated from Table 9.5-4 and Eq. 9.9-1 of 

BSLK), which gives a value of 𝐵 = 0.136 for the dimensionless heat source strength) 2, the 

temperature distributions were calculated using the two equations above, Eqs. (30) and (32). 

These results are displayed in Figure 2(B). As shown in the figure, for these mild parameter 

values used, the generalized Fourier’s law produces predictions for electrical heating of the wire 

that are practically indistinguishable from those of the original Fourier’s law; the differences are 

less than 0.2%, although this small difference increases as the rate of electrical energy dissipation 

(𝐵) is increased. This result is due to the fact that, as shown in Figure 2(C), the heat flux due to 

the thermal conductivity gradient (−𝑇
𝑑𝑘

𝑑𝑟
) is negligible relative to the heat flux due to the 

temperature gradient (−𝑘
𝑑𝑇

𝑑𝑟
). 

 Next, let us consider a non-isothermal momentum transfer process that involves a 

(Newtonian) liquid flowing downward (in the positive 𝑦 direction) along the surface of a vertical 

plane in steady laminar flow (Figure 3(A)); this example is again taken from BSLK (Examples 

11.4-3 and 2.2-2). The temperature of the free liquid surface (𝑥 = 0) is kept at a constant 𝑇0, and 

that of the solid surface (𝑥 = 𝛿) is kept at 𝑇𝛿. At these temperatures, the liquid has viscosities of 

𝜇0 and 𝜇𝛿, respectively. For simplicity, we assume that within this given range of temperature, 

the density (𝜌) and thermal conductivity (𝑘) of the liquid are constant. Due to the Arrhenius-type 

dependence of viscosity on temperature (that is, 𝜇 𝜇0⁄ = exp[𝐵(1 𝑇⁄ − 1 𝑇0⁄ )] where 𝐵 is a 

constant), the spatial variation of viscosity also has an exponential character 2 

    
𝜇

𝜇0
≅ exp [𝐵 (

𝑇0−𝑇𝛿

𝑇0𝑇𝛿

) (
𝑥

𝛿
)] = 𝑒−𝛼𝑥 𝛿⁄ .    (33) 

Substitution of the original Newton’s viscosity law (Eq. (21)) with variable viscosity (Eq. (33)) 

into the steady-state 𝑦 momentum balance gives 

𝜏𝑥𝑦 = −𝜇0𝑒−𝛼𝑥 𝛿⁄ 𝑑𝑣𝑦

𝑑𝑥
= 𝜌𝑔𝑥,    (34) 
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which upon integration with the no-slip boundary condition (that is, 𝑣𝑦 = 0 at 𝑥 = 𝛿) gives 2 

𝑣𝑦

𝜌𝑔𝛿2 𝜇0⁄
= 𝑒𝛼 (

1

𝛼
−

1

𝛼2
) − 𝑒𝛼𝑥 𝛿⁄ (

𝑥

𝛼𝛿
−

1

𝛼2
).   (35) 

If we use the generalized Newton’s law of viscosity (Eq. (22)), the above momentum balance 

equation (Eq. (34)) is changed to 

−
𝑑

𝑑𝑥
(𝜇0𝑒−𝛼𝑥 𝛿⁄ 𝑣𝑦) = 𝜌𝑔𝑥.     (36) 

This equation yields a different velocity profile under the same no-slip boundary condition 

𝑣𝑦

𝜌𝑔𝛿2 𝜇0⁄
=

1

2
[1 − (

𝑥

𝛿
)

2
] 𝑒𝛼𝑥 𝛿⁄ .    (37) 

Note that in the constant viscosity limit (that is, when 𝛼 = 0), both Eqs. (35) and (37) reduce to 

an identical form 

lim
𝛼→0

𝑣𝑦

𝜌𝑔𝛿2 𝜇0⁄
=

1

2
[1 − (

𝑥

𝛿
)

2
],    (38) 

which supports consistency between the two equations. For demonstration of the difference 

between the predictions based on the original vs. generalized Newton’s law equations, we now 

assume that the liquid is an oil whose viscosity is 𝜇0 = 0.16 Pa·s and density is 𝜌 = 0.8 × 103 

kg/m3 at temperature 𝑇0 = 20 °C, the falling film has a thickness of 𝛿  = 2.5 mm, the vertical wall 

is kept at a temperature of 𝑇𝛿 = 10 °C, and the Arrhenius activation energy for viscosity has a 

value of 𝐵 = 1.04 × 103 K (for n-heptane 8) (which gives a value of -0.125 for the dimensionless 

constant 𝛼). For these parameter values, the velocity profiles were calculated using the two 

different versions of the velocity equation shown above. As shown in Figure 3(B), Eqs. (35) and 

(37) predict significantly different velocity profiles. This difference further increases as the 

temperature gradient (𝛼) is increased. As shown in Figure 3(C), near the free liquid surface (at 

small 𝑥), the 𝑦 momentum flux due to the viscosity gradient (−𝑣𝑦
𝑑𝜇

𝑑𝑥
) is, in fact, comparable in 

magnitude to the 𝑦 momentum flux due to the velocity gradient (−𝜇
𝑑𝑣𝑦

𝑑𝑥
). 

Lastly, let us discuss a mass transfer example (discussed in Section 18.3 of BSLK). As 

shown in Figure 4(A), a solid sphere of potassium permanganate (KMnO4) is placed in a 

stationary reservoir of water. KMnO4 is only slightly soluble in water; the solubility of KMnO4 in 

water is about 0.0758 g/cc at 25 °C 9. Therefore, the outward flux of the dissolved MnO4
- ions 

(away from the sphere surface) is predominantly diffusive (the convective flux is negligible). 

Also, the slowness of the dissolution process allows us to make a quasi-steady state 
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approximation; the mass transfer process can be approximated as occurring at steady state. The 

steady state mass balance for dissolved MnO4
-1 ions in spherical coordinates can be written as 

𝑑

𝑑𝑟
(𝑟2𝑛) =

𝑑

𝑑𝑟
(𝑟2𝑗) = −

𝑑

𝑑𝑟
(𝑟2𝐷

𝑑𝑐

𝑑𝑟
) = 0   (39) 

where the total mass flux of MnO4
-1 (𝑛 (= 𝑐𝑣 + 𝑗)) is equated to the diffusive mass flux of MnO4

- 

(𝑗) in the absence of convection (𝑣 = 0), and then 𝑗 is replaced by −𝐷
𝑑𝑐

𝑑𝑟
, as related by the 

original Fick’s first law equation in spherical coordinates (similarly to Eq. (1)). The diffusivity 

for binary liquid mixtures is typically non-negligibly dependent on species concentration. By 

substituting an approximate expression for the concentration dependence of the diffusivity 10 

𝐷 ≅ 𝐷0(1 − 𝑣𝑐)     (40) 

in which 𝐷0 is the diffusion coefficient in infinite dilution (= 1.632 × 10-5 cm2/s for MnO4
- in 

water at 25 °C 9), and 𝑣 is the specific volume of the MnO4
-1 ion (estimated to be about 0.3699 

cm3/g) into Eq. (39), we obtain 

−
𝑑

𝑑𝑟
[𝑟2𝐷0(1 − 𝑣𝑐)

𝑑𝑐

𝑑𝑟
] = 0.    (41) 

Integration of this equation with the boundary conditions that 𝑐 = 𝑐𝑅 (which we assume to be 

equal to the solubility of KMnO4 in water, that is, 0.0758 g/cc at 25 °C) at 𝑟 = 𝑅 (assumed to be 

1 μm) and 𝑐 = 0 at 𝑟 → ∞ gives the concentration profile of MnO4
- at (quasi) steady state 

𝑐

𝑐𝑅
=

1

𝑣𝑐𝑅
[1 − √1 − 𝑣𝑐𝑅(2 − 𝑣𝑐𝑅)

𝑅

𝑟
].   (42) 

Alternatively, we can use the generalized Fick’s first law (Eq. (4)) to obtain 

−
𝑑

𝑑𝑟
{𝑟2 𝑑

𝑑𝑟
[𝐷0(1 − 𝑣𝑐)𝑐]} = 0.   (43) 

Upon integration of this equation with the same boundary conditions, we get 

𝑐

𝑐𝑅
=

1

2𝑣𝑐𝑅
[1 − √1 − 4𝑣𝑐𝑅(1 − 𝑣𝑐𝑅)

𝑅

𝑟
].   (44) 

The two expressions for 
𝑐

𝑐𝑅
 (Eqs. (42) and (44)) are plotted as a function of 

𝑟

𝑅
 in Figure 4(B). The 

two curves are supposed to have common asymptotes for small and large 
𝑟

𝑅
 (as required by the 

boundary conditions), but in fact they are found to be practically identical to each other at all 

distances. This result justifies the use of the original Fick’s law to model the mass transfer 

associated with dissolution and diffusion of a slightly soluble material in a solvent. In this case, 
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the mass flux due to the diffusivity gradient (−𝑐
𝑑𝐷

𝑑𝑟
) is negligible in magnitude compared to the 

mass flux due to the concentration gradient (−𝐷
𝑑𝑐

𝑑𝑟
) (Figure 4(C)). 

 

2.3 Consistency 

 We would like to add a few remarks regarding whether the proposed correction to Fick’s, 

Fourier’s, and Newton’s laws fits within (or violates any of) the established principles of 

thermodynamics and statistical physics. Firstly, we note that Eq. (17) (or Eq. (15)) suggests an 

interesting possibility that net conductive heat flow may occur even in the direction of increasing 

temperature if the magnitude of the 𝑇∇𝑘 term is greater than the magnitude of the 𝑘∇𝑇 term 

(e.g., at very high temperature); this is possible, for instance, in solids because (as can be seen 

from Eq. (27)) the thermal conductivity of a solid typically decreases with increasing 

temperature, and thus ∇𝑇 and ∇𝑘 have opposite signs. We note that this prediction, though 

somewhat counterintuitive, does not violate the second law of thermodynamics (“no process is 

possible which consists solely in the transfer of heat from one temperature level to a higher one” 

11). The second law of thermodynamics concerns processes that start and end with equilibrium 

states within globally isolated systems (e.g., heat exchange between two heat reservoirs), 

whereas the Fourier’s law is an energy balance equation for a local differential control volume, 

which is, by definition, an open system. Therefore, it is generally impertinent to discuss whether 

predictions of the Fourier’s law are consistent with the second law of thermodynamics. 

 As noted in Section 1 (also discussed in Ref. 3), Eq. (6) (or Eq. (4)) implies that even in 

the absence of concentration gradient (∇𝑐 = 0), net material flow occurs when the diffusivity 

gradient is non-zero (𝒋 = −𝑐∇𝐷). This situation is not unphysical. It is the chemical potential 

gradient that actually drives diffusion (not the concentration gradient), and a uniform 

concentration does not necessarily mean that the chemical potential (𝜇) is uniform. Note that 

     𝜇 = 𝜇𝑜 + 𝑅𝑇ln(𝛾𝑐)     (45) 

where 𝜇𝑜 and 𝛾 are the standard state chemical potential and activity coefficient of the solute, 

respectively, and 𝑅 is the universal gas constant. Therefore, even under constant 𝑐, a non-zero 

∇𝜇 may develop if 𝛾 varies spatially (due to spatially varying 𝐷); it is known that 𝛾 and 𝐷 are 

related by the following equation 12 

     D=
𝑘𝐵𝑇

𝑓
(1 +

𝑑ln𝛾

𝑑ln𝑐
)     (46) 
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where 𝑘𝐵 is the Boltzmann’s constant, and 𝑓 is the friction factor of the solute molecule. 

Lastly, we would like to point out that the proposed correction to Fick’s first law is 

already suggested in the form of the Fokker-Planck equation derived using Ito’s stochastic 

calculus (also known as the Kolmogorov forward equation) for the probability density of a 

stochastic process 13; in one dimensional situations, 

𝜕𝑝

𝜕𝑡
= −

𝜕

𝜕𝑥
(𝑣𝑝) +

𝜕2

𝜕𝑥2
(𝐷𝑝)    (47) 

where 𝑝 is the probability density, 𝑣 is the average (convection) velocity, and 𝐷 is the diffusion 

coefficient. Similarly to Eq. (2), a probability continuity equation can be written in terms of the 

probability flux (𝑗𝑝) 

𝜕𝑝

𝜕𝑡
= −

𝜕𝑗𝑝

𝜕𝑥
.      (48) 

Comparing Eq. (48) with Eq. (47) gives 

𝑗𝑝 = 𝑣𝑝 −
𝜕(𝐷𝑝)

𝜕𝑥
.     (49) 

In the absence of convection (𝑣 = 0), Eq. (49) reduces to a form analogous to Eq. (4) 

(generalized Fick’s first law) 

𝑗𝑝 = −
𝜕(𝐷𝑝)

𝜕𝑥
.      (50) 

Interestingly, if we assume that the system obeys the principle of detailed balance (microscopic 

reversibility (𝑗𝑝 = 0 at all 𝑥) which is a sufficient condition for equilibrium), we obtain 13 

𝑣 =
1

𝑝𝑒

𝜕(𝐷𝑝𝑒)

𝜕𝑥
      (51) 

where 𝑝𝑒 is the probability density at equilibrium. Assuming that 𝑝𝑒 is a weak function of 𝑥, we 

get 

𝑣 ≈
𝜕𝐷

𝜕𝑥
.      (52) 

Substitution of this equation into Eq. (47) gives 

     
𝜕𝑝

𝜕𝑡
≈

𝜕

𝜕𝑥
(𝐷

𝜕𝑝

𝜕𝑥
) ,     (53) 

which coincides with the conventional form of the Fick’s second law equation for position-

dependent diffusivity (Eq. (3)); thus, the original Fick’s second law can be considered a 

restricted form of the Fokker-Planck equation. We note that detailed balance is a sufficient 

condition for entropy maximization in an isolated system 14. Therefore, detailed balance is not 
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generally necessary for the continuity (Fokker-Planck) equation to be consistent with the second 

law of thermodynamics. 

 

3. Conclusion 

 The diffusion(-like) equations representing Fick’s, Fourier’s, and Newton’s laws were 

originally derived for constant diffusivity, thermal conductivity, and viscosity, respectively. 

However, even when dealing with problems involving spatially varying diffusivity, thermal 

conductivity, and viscosity, the original Fick’s, Fourier’s, and Newton’s laws have always been 

used (i.e., in their original forms) without questioning the validity of such uses. We here argue 

that for position-dependent diffusivity, thermal conductivity, and viscosity, the Fick’s, Fourier’s, 

and Newton’s law formulas should, in principle, be changed such that the viscosity, thermal 

conductivity, and viscosity are moved inside the derivative (gradient) operator; that is, in one-

dimensional situations, for instance, 𝑗 = −
𝜕(𝐷𝑐)

𝜕𝑥
, 𝑞 = −

𝜕(𝑘𝑇)

𝜕𝑥
, and 𝜏𝑥𝑦 = −

𝜕(𝜇𝑣𝑦)

𝜕𝑥
, respectively. 

Our examples demonstrate that even with moderate spatial variations of diffusivity, thermal 

conductivity, or viscosity, the proposed modifications of the Fick’s, Fourier’s, and Newton’s law 

equations might lead to predictions that are discernibly different from those of the original 

formulas under certain circumstances. This issue is expected to become more important, for 

instance, for highly non-isothermal processes, particularly, those that involve viscous dissipation 

of energy that induces large spatial temperature gradients such as in fluids around rapidly 

moving objects. In a previous publication, we have shown that there exists a special situation in 

which a diffusive flux of a species can occur solely because of the gradient of diffusivity even 

though the concentration of the species is constant throughout, that is, 𝑗 = −
𝜕(𝐷𝑐)

𝜕𝑥
= −𝑐

𝜕𝐷

𝜕𝑥
 3; 

such phenomenon (“pH phoresis” discussed in Ref. 3) cannot be described using the original 

Fick’s first law equation. Further study on this general topic is desirable. 
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Figure 1. Molecular transport of (A) mass, internal energy, and (B) y momentum due to 

gradients of Dc, kT, and μvy along the x-direction, respectively. 
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Figure 2. (A) Electrically heated wire. (B) Dimensionless temperature profiles predicted using 

Eqs. (30) vs. (32). Difference (%) is defined as (Θ(Eq. (30)) – Θ(Eq. (32)))/Θ(Eq. (32))×100. (C) 
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Figure 3. (A) Non-isothermal falling liquid film. (B) Velocity profiles predicted using Eqs. (35) 

vs. (37). Difference (%) is defined as (𝑣𝑦(Eq. (35)) – 𝑣𝑦(Eq. (37)))/𝑣𝑦(Eq. (37))×100. (C) 
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Figure 4. (A) Diffusion from a slightly soluble sphere. (B) Concentration profiles predicted 

using Eqs. (42) vs. (44). Difference (%) is defined as (𝑐(Eq. (42)) – 𝑐(Eq. (44)))/𝑐(Eq. (44))×100. 
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