Accelerating Synchronization Using Moving Compute
to Data Model at 1,000-core Multicore Scale

HALIT DOGAN and MASAB AHMAD, University of Connecticut
BRIAN KAHNE, NXP Semiconductors
OMER KHAN, University of Connecticut

Thread synchronization using shared memory hardware cache coherence paradigm is prevalent in multicore
processors. However, as the number of cores increase on a chip, cache line ping-pong prevents performance
scaling for algorithms that deploy fine-grain synchronization. This article proposes an in-hardware moving
computation to data model (MC) that pins shared data at dedicated cores. The critical code sections are se-
rialized and executed at these cores in a spatial setting to enable data locality optimizations. In-hardware
messages enable non-blocking and blocking communication between cores, without involving the cache
coherence protocol. The in-hardware MC model is implemented on Tilera Tile-Gx72 multicore platform to
evaluate 8- to 64-core count scale. A simulated RISC-V multicore environment is built to further evaluate
the performance scaling advantages of the MC model at 1,024-cores scale. The evaluation using graph and
machine-learning benchmarks illustrates that atomic instructions based synchronization scales up to 512
cores, and the MC model at the same core count outperforms by 27% in completion time and 39% in dynamic
energy consumption.

CCS Concepts: « Computer systems organization — Multicore architectures;
Additional Key Words and Phrases: Multicore, synchronization, locality

ACM Reference format:

Halit Dogan, Masab Ahmad, Brian Kahne, and Omer Khan. 2019. Accelerating Synchronization Using Mov-
ing Compute to Data Model at 1,000-core Multicore Scale. ACM Trans. Archit. Code Optim. 16, 1, Article 4
(February 2019), 27 pages.

https://doi.org/10.1145/3300208

1 INTRODUCTION

With the proliferation of shared memory processors with hundreds of cores on chip, thread syn-
chronization has emerged as a significant challenge for performance scaling. Conventionally,
thread synchronization is realized using standalone atomic instructions, or using synchronization
primitives such as spin-based locks. At small core counts, spin-based synchronization primitives

This research was partially supported by the National Science Foundation under Grant No. CNS-1718481. This work was
also supported in part by Semiconductor Research Corporation (SRC). The authors wish to thank Christopher Hughes of
Intel and José Joao of Arm Research for their continued support and feedback.

Authors’ addresses: H. Dogan, M. Ahmad, and O. Khan, Department of Electrical and Computer Engineering, University
of Connecticut, 371 Fairfield Way, U-4157 Storrs, Connecticut 06269 USA; B. Kahne, NXP Semiconductors, 6501 W William
Cannon Dr, Austin, TX 78735; emails: {halit.dogan, masab.ahmad}@uconn.edu, brian.kahne@nxp.com, khan@uconn.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/02-ART4

https://doi.org/10.1145/3300208

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:2 H. Dogan et al.

are efficient. However, the overheads of such primitives exponentially increase as the core counts
go up. This primarily happens due to expensive cache line ping-pong between cores due to in-
creased on-chip network latency. It also incurs instruction retry overhead that results in higher
dynamic energy consumption. Performance scaling can be improved using atomic instructions
(when applicable), since they eliminate the overheads of lock acquisition, such as instruction re-
tries and lock variable ping-pong. However, the shared data still ping-pong between cores, and the
expensive coherence traffic leads to performance scaling challenges at higher core counts.

The key idea is to keep the shared memory cache coherence and accelerate thread synchroniza-
tion using a novel moving compute to data model (MC). In the MC model, shared data are logically
pinned to a dedicated thread, called service thread. The worker threads execute application code and
invoke requests to update shared data at the service thread. By utilizing the MC model, any type
of synchronization can be realized without ping-ponging of the shared data, as they are pinned to
a dedicated thread. For example, the critical sections can be offloaded to the service thread to ac-
celerate thread synchronization. The MC model can be implemented by utilizing hardware cache
coherence in which a software based shared buffer is deployed to communicate messages between
worker and service threads. RCL (Lozi et al. 2012) proposes a similar approach to improve per-
formance of POSIX locks using remote core locking. Unfortunately, the shared buffer ping-pongs
between the worker and service threads, leading to synchronization challenges at higher core
counts. Therefore, in this article, the communication between worker and service threads is car-
ried out using auxiliary send and receive instructions implemented at the hardware-level using
a low-latency point-to-point messaging network. Note that all on-chip and off-chip data accesses
are still managed using shared memory load and store instructions using the hardware cache co-
herence protocol.

In-hardware messaging has been investigated by researchers to overcome the limitations of
hardware cache coherence. For example, it is first explored by Alewife and ActiveMsg (Kubiatow-
icz and Agarwal 1993; von Eicken et al. 1992) in the context of shared memory multiprocessors.
More recently, RAW (Waingold et al. 1997), ADM (Sanchez et al. 2010), Active Messages (Harting
and Dally 2014), HAQu (Tiwari et al. 2011), CAF (Wang et al. 2016), and ACS (Suleman et al. 2009)
explore explicit messaging in the context of multicore processors. Commercial Tilera (Wentzlaff
et al. 2007) builds processors that support both shared memory and in-hardware messaging be-
tween cores. Intel has also announced plans for Queue Management Device (QMD) for more effi-
cient inter-core communication (Moore 2016). Although these works incorporate explicit messag-
ing in one form or another and try to improve communication between cores, they naively exploit
its capabilities in a hardware-software combined context, and do not focus on improving thread
synchronization in the context of large scale (1,000 cores) multicore processors. This article’s fo-
cus is to accelerate shared data synchronization using the MC model for futuristic 1,000-core scale
multicores.

The MC model pins shared data at the service thread, and thus enhances shared data locality.
Moreover, by utilizing hardware based explicit messaging to enable non-blocking communication,
the worker threads overlap the execution of critical code sections with other useful work. In ad-
dition, as compared to the lock based critical sections, it gets rid of the lock related overheads,
such as instruction retries and the mutex variable ping-pong. Utilizing a single service thread may
become a performance bottleneck due to serialization of multiple requests. Therefore, to exploit
concurrency across disjoint critical sections, multiple service cores are assigned as service threads
and the shared data are divided among them. The remaining worker threads exploit concurrency
in the underlying algorithmic code, and direct requests to the corresponding service threads. This
article proposes to utilize distribution of the worker and service threads among dedicated cores in
a spatial setting.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:3

The key challenge of the spatial MC model is the need to load balance the work between cores ex-
ecuting the worker and service threads to obtain near-optimal performance scaling. One idea is to
temporally map a workerand a service thread in each core, similar to Active Messages (Harting and
Dally 2014). This achieves load balance, but at the cost of doubling the number of threads relative
to the core count. More threads now participate in synchronization, and thus potentially increase
the overall communication stalls on chip. The temporal MC model is expected to outperform the
spatial model at lower core counts, but as the number of cores approach hundreds to a thousand
cores on chip, the spatial MC model is expected to better utilize the on-chip network resources.
However, load balancing the worker and service thread counts can be challenging as it is workload
dependent. Therefore, this article explores a heuristic to determine load balanced mapping of the
worker and service threads. The heuristic relies on the percentage of shared work in an application
to decide the number of service cores. If selected properly, the service cores match the concurrency
needs of the shared work, while the worker cores optimally exploit concurrency in the remaining
algorithmic work for a given workload. The contributions of this article are as follows:

(1) A spatial moving compute to data (MC) model is proposed utilizing low-latency hard-
ware explicit messages to accelerate synchronization. The MC model mitigates cache line
ping-pong, improves data locality, and hides communication latency with non-blocking
messaging. These key aspects deliver high performance scaling for both fine and coarse
grain synchronization in parallelized workloads from the machine-learning and graph
processing domains.

(2) The MC model is prototyped on Tilera Tile-Gx72 multicore machine. Up to 64 cores are
explored, and at 64 cores, the MC model demonstrates a 10% performance advantage over
atomic instruction based synchronization.

(3) To explore 1,000-core scale multicore, a RISC-V based multicore simulation environment is
utilized to characterize the spatial and temporal MC model implementations, and compare
performance and energy consumption over both spin-lock and atomic instruction based
synchronization models. In addition, the spatial MC model is evaluated against a software
shared buffer based moving compute to data model. The spatial MC model is shown to
enable superior performance scaling up to 1,024 cores.

(4) A heuristic based on profiling the percentage of shared work is introduced for efficient
spatial distribution of worker and service cores in the MC model. The proposed heuristic
automates thread distribution for a 5% performance loss compared to a manually tuned
configuration.

2 THREAD SYNCHRONIZATION MODELS

Shared memory hardware cache coherence provides ease of programming, flexibility on sharing
data between threads, and seamless data movement. However, thread synchronization becomes a
significant performance bottleneck at higher core counts. This is mainly due to expensive ping-
pong of shared data between private caches of the participating cores. Traditionally, spin-based
synchronization primitives, such as locks are realized using atomic instructions (e.g., load-link and
store-conditional instructions) to update shared data in a thread safe fashion. However, to realize
such synchronization, a separate lock variable needs to be acquired before getting into critical
code section. At lower core counts and under low contention, spin-lock is efficient as it enables
concurrent execution of critical sections. However, when there is contention on shared data, the
threads often fail to acquire the lock, therefore they spin over the shared lock variable until it is
available. This process easily boosts the locking overheads due to instruction retries and ping-
ponging of the lock variable between cores. In addition, as the number of cores in the system
increases, the cost of lock acquisition drastically goes up due to increased network latency.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:4 H. Dogan et al.

The locking overheads can be eliminated by directly utilizing atomic instructions. Instead of
acquiring a lock variable to protect a critical code region, standalone atomic instructions are em-
ployed. These instructions are implemented using the hardware coherence protocol, where each
atomic instruction performs an exclusive read to lock the cache line in the level-1 cache, per-
forms the operation, and stores the result before unlocking the cache line. If another core wants
to perform an atomic operation on the same cache line, then it needs to acquire exclusive copy
to perform the operation atomically. However, the shared cache lines still bounce between cores
when multiple threads access them temporally. Therefore, as the number of cores increases, the
bouncing affect leads to degradation in performance due to elevated network latency. Another key
limitation of atomic instruction based synchronization is the limited number of operations in the
ISA for implementing a diverse set of critical code sections. As a result, as opposed to spin-lock
based synchronization, they are not applicable to any arbitrary critical section.

In this article, for more efficient and generic thread synchronization, a novel moving compute to
data (MC) model is proposed and evaluated against both spin-based (Spin) and atomic instruction
(Atomic) based synchronization models. The MC model and its architectural implementations are
discussed in detail in subsequent sections.

2.1 Moving Compute to Data Model

Moving computation toward data technique has gained tremendous popularity in recent years due
to explosion of computing on massive datasets. Traditionally, distributed computing domain has
deployed computation migration to mitigate performance and energy bottlenecks of moving large
amount of data between server nodes. In this model, a data segment is pinned to a node, and the
executable is moved toward it. As the executable is significantly smaller than the data, moving
overhead is also notably smaller. In a single chip multicore processor, we propose to utilize this
approach to mitigate the bottleneck of shared memory thread synchronization, especially as the
core count approaches 1,000-core scale.

In the proposed MC model, the protected shared data are mapped to a dedicated core and up-
dated only at that specific core by moving computation toward it using explicit messages. In the
context of fine-grain synchronization, locks and atomic instructions in a traditional shared mem-
ory application are eliminated, and the critical code sections are moved to the dedicated core,
termed as service thread. The remaining cores are utilized as worker threads. The workers execute
the application work, and send explicit request messages to invoke fine-grain synchronization at
the service thread. Deploying only a single core as service thread may result in higher serialization
overhead, hence multiple cores are assigned as service thread to exploit concurrency across inde-
pendent critical code sections. In this case, shared data are distributed among the available service
threads, and the workers forward their requests to the corresponding service thread by utilizing a
software lookup function. The amount of data that is sent for a critical section request depends on
the application. While some workloads only require a single word, others need multiple words of
data. The service thread then receives the required number of words in the order they were sent, and
execute the critical code section. An application may or may not require the service thread to send a
reply back to the requesting worker thread. This decision may be needed to ensure data consistency.

Barrier synchronization is an example of coarse-grain synchronization in which blocking com-
munication is required. Instead of loading and updating the barrier variable atomically by each
core, the cores send “barrier” messages to a predefined service thread. After sending the “barrier”
message they wait for an explicit reply from the service thread that manages the barrier. When the
service thread receives all the messages, it replies with a “continue” message to each participating
core. This way, instead of spinning over a shared variable, and ping-ponging the cache line between
threads, synchronization is done by communicating with a service thread via explicit messages.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:5

This article employs one of the workers (Core 0) as the service thread to manage barrier synchro-
nization. When the Core 0 completes its worker task, it starts handling the barrier messages.

The proposed MC model can be realized either by employing software shared memory buffer
based inter-core messages, or by introducing in-hardware explicit messaging. Both implementa-
tions are discussed in the next subsections.

2.1.1 Moving Compute to Data Model Using Shared Memory Messaging (MC_shmem). Similar to
explicit communication in MPI (Gropp 2002), the messaging between worker and service threads
is accomplished using a shared software buffer per service thread. However, as opposed to MPI
programming model, MC_shmem utilizes the shared memory programming model. MC_shmem
approach is similar to RCL (Lozi et al. 2012) work in which locking is done in remote cores, and
requests are delivered using a shared request buffer per server core. Similarly, in MC_shmem, a
shared buffer per service thread is utilized for the communication between worker and service
threads. Each buffer slot contains a flag and a place holder for the data to be sent. To be able to
send a message to a particular service thread, a worker atomically increments the write pointer of
the corresponding buffer, then places its data into the slot, and sets the flag. The atomic increment
on the pointer makes sure that multiple workers do not write to the same slot. The service thread
starts from beginning of the buffer, checks the flag of each buffer entry, reads the data, and performs
the critical section. If the flag is not set, then the service thread spins over the flag until data are
available. The shared buffer is implemented in a way that it has enough capacity to hold all the
requests. It can also be implemented with limited capacity as a ring buffer. However, experimental
results for the workloads of interest suggest that utilizing a regular buffer outperforms the ring
buffer. Therefore, a large shared buffer per service thread is utilized in this article.

The MC_shmem model pins shared data at the service threads to exploit locality, and also
benefits from non-blocking communication. However, the shared buffer data itself bounces be-
tween worker and service threads. The aforementioned non-blocking communication may ease
the cost of ping-ponging by allowing the worker threads to hide communication latency. How-
ever, at higher core counts, the impact of cache line ping-pong is expected to limit performance.
As a result, to enable efficient implementation of the MC model, hardware support for explicit
messaging is introduced as an auxiliary mechanism.

2.1.2 Moving Compute to Data Model Using In-hardware Explicit Messaging. Four explicit mes-
saging instructions for low-latency core-to-core communication are introduced in the ISA, and the
required micro-architectural support is added to each core (cf. Section 3).

(1) Send instruction does not block the pipeline. It requires the destination core’s address
along with the data to be sent from the sender’s register file to the receiver’s register file.

(2) Recv instruction stalls the pipeline if the data are not present at the receive queue of the
core that issued this instruction. Once the data arrive, the recv instruction pulls the data
from the receive queue and places it into the register file.

(3) Sendr (send with rendezvous) instruction is a blocking send instruction in which an ex-
plicit reply is expected from the destination core.

(4) Resumer (resume rendezvous) instruction is a non-blocking special send instruction that
is used to reply to the sendr messages.

The details of the explicit messaging protocol and the architectural extensions are discussed in Sec-
tion 3. By utilizing these low-latency messaging instructions, worker and service cores exchange
messages between their register files without involvement of cache coherence traffic. The worker
threads make use of the send instruction to request critical section execution by pairing it with a
recv instruction at the corresponding service thread.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:6 H. Dogan et al.

In-hardware MC model provides two key advantages. First, it prevents unnecessary ping-pong
of shared data by pinning it to service threads. However, for some applications, certain shared
data benefits from concurrent reads by worker threads for work efficient implementation of the
algorithm. The MC model utilizes hardware cache coherence to enable efficient movement of such
data between cores. The second advantage is that if non-blocking communication is utilized, the
MC model enables efficient overlap of communication traffic with other computation. In addition,
the worker threads can have multiple back to back in-flight request messages, and possibly further
ease the overheads of worker to service thread communication. However, the shared memory
based models suffer from the overheads of cache line ping-pong. The benefits of the MC model are
expected to be more notable at higher core counts as the distance between sharer cores increases.

2.1.3 Worker and Service Thread Distribution. The main challenge with the MC model is the
determination of the right number of worker and service threads in the spatial setting to ex-
ploit application parallelism. This approach requires tuning the ratio of worker and service threads
to achieve near-optimal performance, otherwise the system suffers from load imbalance. Another
approach is to utilize two contexts per core and temporally employ the same core for both worker
and service threads. In the following two subsections, both distribution approaches are discussed
in more detail, and they are evaluated in Section 6.

Spatial Moving Compute to Data Model: A naive way to achieve thread mapping is to per-
form an exhaustive search by varying the number of worker and service threads, and determine the
best performing mapping. This approach may be used at low core counts, however it gets time
consuming as the number of cores increases. In addition, each workload is expected to require
different ratio due to its unique data structure and synchronization requirements. This article pro-
poses a profiling based heuristic, which relies on the correlation of the number of service threads
and the percentage of shared work in a given workload. In this method, the shared memory ver-
sion of the application is profiled to obtain the average time spent in critical code sections (shared
work) compared to the total completion time. If the time spent in critical code sections is high,
then the required service thread count is also high and vice versa. If the shared work percentage
results in less than one service thread due to very small shared work, then it is assigned a single
service thread. Moreover, at most half of the cores are assigned to the service thread task, because
the work being done by each worker thread increases as the number of workers decreases.

Temporal Moving Compute to Data Model: To support the temporal MC model, each core
needs to be extended with two register files, an explicit messaging-aware switching policy logic,
and selection logic for register reads/writes to support hardware multi-threading. Each hardware
context in a core is then mapped to a single service thread and a single worker thread for tempo-
ral mapping. Hence, the number of worker and service threads is always equal to the number of
used cores. This approach eliminates the need to tune the number of worker and service threads.
However, it requires an additional context and special switching policy that takes explicit mes-
saging into account for fast context switching. In addition, the number of threads participating
in synchronization becomes two times the number of cores, which may incur additional commu-
nication stalls at higher core counts. Consequently, the spatial MC model is preferred at higher
core counts, since (1) the available cores are relatively easier to load balance, and (2) the num-
ber of threads participating in synchronization must be kept in check to minimize unnecessary
communication stalls.

3 IN-HARDWARE IMPLEMENTATION OF THE MC MODEL

The baseline is a tiled shared memory multicore architecture. Figure 1 shows a logical view of a
tile within the proposed processor. The tiles are interconnected with a two-dimensional (2D) mesh

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:7

| F‘ D‘ E ‘ M‘ W| | Register File

recv
send recv ec

MU

Multicore
[| |

recv

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 d 1
1 L1-D L1-l sen R 1
1 1
1 Q 1
1 1
1 t 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

—

> [o=]

Fig. 1. Overview of a tile and architectural extensions.

on-chip network. Each tile includes a single issue RISC-V (Waterman et al. 2014) core, private level-
1 instruction and data caches, a shared last-level cache slice with an integrated directory for MESI
cache coherence protocol, and a network router for inter-core communication. Memory controllers
are attached to some of the tiles to enable off-chip memory accesses. Four explicit messaging in-
structions are added into the RISC-V ISA, namely send, recv, sendr, and resumer. The shaded mod-
ules in each tile are introduced to support these instructions. A receive queue (RQ) per tile is intro-
duced to buffer explicit messages. The on-chip network is also extended to ensure safe transmission
of messages. Messaging unit (MU) generates the necessary control signals to interact with the core
pipeline and the RQ. It also creates the packet for send instructions, and then forwards the packet
to the router. Similarly, received data are read from the RQ, and placed into the specified registers
by the MU. Note that the shared memory cache coherence is retained in the system, and the explicit
messaging support is added as an auxiliary support to achieve efficient implementation of the pro-
posed MC model. In addition to explicit messaging capability, per-core four-way SIMD that can
operate on four 16-bit floating point numbers is added to enable state-of-the-art implementations
of machine-learning algorithms. Associated instructions, such as fused-multiply-add are adopted
as an extension to the RISC-V ISA. Furthermore, RISC-V ISA’s standard extension for atomic in-
structions (Waterman et al. 2014) are implemented. These instructions, such as load-reserve and
store-conditional are employed to implement shared memory synchronization primitives.

In default mode, the cores are single-threaded, and the application threads are spatially dis-
tributed among available cores. In addition to spatial mode, multiple threads per core with hard-
ware level context switching are supported to enable the temporal MC model (cf. Section 2.1.3).
Each core is extended with two register files, an explicit messaging-aware switching policy logic,
and selection logic for register reads/writes to support hardware multithreading. The switching
policy interacts with the receive queue to initiate thread switching when a message arrives. In the
temporal MC model, it is crucial for service thread to perform its work prudently, because, other-
wise, the receive queue may suffer from contention, and possibly also lead to application level dead-
lock. Therefore, the service thread is given higher priority, and whenever the receive queue receives
a message, the policy switches to the service thread and all messages in the queue are processed.

3.1 Explicit Messaging Protocol

As discussed in Section 2.1, the MC model utilizes both blocking and non-blocking communica-
tion to accelerate fine and coarse-grain synchronization. The introduced explicit messaging sup-
port provides the capability to realize both types of communication between worker and service
threads.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:8 H. Dogan et al.

® ® ®

If “*capacity counter” >0 . .
@ If Receive Q has space Receive the message

1. Inject the message "
into network Insert the message from top of the receive queue

Construct
the message

) The message
2. Decrement capacity traverses the network R
Sender counter Router [————eoeoe® » Router Q Receiver
oo ¢
Capacity counter is incremented ACK message ACK message is sent
when the ACK message is received traverses the network when the message is deallocated

@ from the receive queue

Fig. 2. Explicit messaging protocol.

Non-blocking Communication: This communication type is utilized to implement the MC
model to achieve fine-grain non-blocking synchronization. A send instruction at the worker thread
is paired with a corresponding recv instruction at the service thread to implement non-blocking
core-to-core communication. A send instruction does not block the pipeline if the messaging net-
work is available to inject the message. This allows worker thread to continue with other useful
work while the message traverses the network to its destination. Moreover, the worker can have
multiple in-flight messages as long as the network flow-control permits. This type of communica-
tion helps overlap communication latency with other computations.

Figure 2 illustrates the protocol implementation for core-to-core non-blocking communication.
First, the destination address is calculated using the receiver CorelD, and placed into an architected
register. Then, a message is constructed by the sender core’s pipeline by executing send instruction
with the address and the data . The constructed message consists of a header containing the des-
tination address, message size, and the payload. Each send instruction supports up to four words.
The message can contain a pointer to a function along with the necessary data to be executed, or
just arbitrary data that the destination core needs to perform some computation. The programmer
needs to make sure that the receiver side decodes what type of message, and how many words are
being sent to it. The protocol utilizes a special per-core counter called “capacity counter” @, and
an implicit ACK message (© to enable flow-control for messaging. The capacity counter tracks the
number of in-flight messages, and the senders cannot have more in-flight messages than the set
capacity counter value. This counter is essential for supporting thread migration and virtualization
in the proposed architecture. The programmer sets this counter by setting a special register at
the beginning of the program execution. When a message is inserted into the network, the cor-
responding core decrements its capacity counter. When the counter value reaches to 0, the send
instruction is stalled in the pipeline. When the message is injected into the network, it is routed
to the destination core using the on-chip network ®. For this protocol to work correctly, it is as-
sumed that the messages from a source to a destination are ordered in the network. In addition,
the routing algorithm is assumed to be deadlock-free. Once a message arrives at the destination’s
receive queue (@, it is pulled by the destination core’s recv instruction . The recv instruction
always blocks the pipeline. If the core executes the recv instruction before the message arrival,
then it stalls until the data arrive at the receive queue. The programmer is responsible for adding
subsequent code to decode the received message, and initiate execution of the appropriate code
region using the received data. After each message is read from the receive queue, an implicit ACK
message is generated to traverse back to the source core (©, . The send and ACK messages use
separate networks (in addition to the ones used for cache coherence) to avoid deadlock, as utilizing
the same network for both type of messages may lead to circular dependencies in the network.
The capacity counter is incremented implicitly upon receiving the ACK (®, and the sender core (if
stalled) is allowed to proceed.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:9

Blocking Communication: In several application scenarios, strong consistency is required, or
a piece of data is needed from the destination core. In this case, the sender waits for an explicit
reply from the receiver. It can be implemented by executing a recv instruction followed by a send
instruction in the sender core, and a send instruction followed by a recv instruction in the receiver
core. Unfortunately, send and recv instruction pairs may result in a deadlock if the receive queue
has finite size, and both communicating cores use the same network to send their messages. For
example, consider a master core that dispatches work to the worker cores. All the workers send
work request messages to the master, and then wait for their explicit reply by executing a recv
instruction. If the number of messages sent are more than the receive queue size of the master
core, then the messages block the network responsible for the send traffic. When the master tries
to inject a send message to the router for replying to one of the workers, it cannot proceed, because
the send network is filled with the overflown messages. Moreover, the master core cannot pull any
more data from the receive queue, because it is stuck at executing the send instruction. Hence, the
deadlock situation occurs. Therefore, for the blocking communication, special sendr and resumer
instructions are implemented. In this case, the explicit reply messages are always sent using a
resumer instruction that flows on the dedicated reply network with ACK messages.

Unlike send, the sendr instruction blocks the pipeline until the resumer reply message is received
at the sender core. At the receiver core, the recv instruction is utilized to receive the sendr mes-
sage. However, the sender address is stored to be utilized by the resumer instruction. This explicit
resumer reply message is routed back to the sender core. This message is directly delivered to the
pipeline without getting into the receive queue. Upon receiving the message, the sendr instruc-
tion completes. The implementation of the MC based barrier as described in Section 2.1 is realized
employing these two instructions. The workers participating in the barrier utilize sendr instruc-
tion for barrier message to the master core. The master core receives all the messages with recv
instruction, and resumes the participating cores with resumer instruction.

Application Level Requirements: To avoid application level deadlock, the proposed architec-
ture allows messages from different sender cores to arrive in any order at the destination core.
Ordered message arrival can only be enforced if the architecture enables receive queues for each
sender core, which is an unnecessary burden on the hardware. To keep the overhead of receive
queue per core low, the unordered message arrival must be handled in the application software.
The programmer must decode each received message, and invoke the appropriate software rou-
tine(s) to handle the request from the corresponding sender core.

3.1.1 Message Consistency. An application may require message consistency, i.e., a sender
thread must ensure the delivery of a message to its destination before commencing with other
work. The ISA is extended with a message fence instruction, which ensures that all pending mes-
sages are observed at the receiving side. This is ensured by monitoring the capacity counter, since
it tracks all in-flight messages whose ACKs have not been observed yet. Once the capacity counter
reaches its initialized value, all sent messages have been observed at their respective destination.
At this point, the message fence instruction commits.

3.1.2 Thread Migration and Multiprocessing Support. Supporting thread migration is a neces-
sity for a general purpose processor. However, the proposed architecture can deadlock if in-flight
explicit messages are not dealt with properly. This can happen if an in-flight message is delivered
to a core where the thread is not running any more. To properly handle this situation, a cleanup
mechanism is required to ensure all in-flight messages are delivered before thread migration can
commence. The operating system (OS) halts all cores from injecting messages into the network.
After that, the OS monitors the capacity counter of each core and waits for them to get back to their
initialized values. This signifies that all cores have received ACKs for their in-flight messages, and

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:10 H. Dogan et al.

there is no explicit message in the network. At this point, the OS can perform thread migration.
It also updates the thread-to-core mapping so that future messages can get to their destination
properly. Hardware virtualization can also be supported based on this mechanism.

3.2 Explicit Messaging Hardware Overhead

The architecture requires a receive queue per core to support the proposed protocol, as seen in
Figure 1. The size of each core’s receive queue is determined empirically by conducting a study
similar to the one presented in Dogan et al. (2017). All workloads are run, and a counter is uti-
lized in the simulator to determine maximum utilization of receive queues at any given time for
each workload. Then, the maximum utilization among all the workloads is used to size the re-
ceive queue. The study is repeated by varying the capacity counter. As the capacity counter value
increases, the maximum utilization at the receive queue boosts, because each core is allowed to
have more in-flight messages. However, it also improves performance. Therefore, it is important
to determine a value that balances maximum receive queue utilization and performance. For this
work, the capacity counter is determined to be 4, and the receive queue size per core is determined
to be 2.4KB. In addition to the receive queues, cache coherence and explicit messaging traffic is
separated from each other using independent on-chip networks to avoid deadlock.

3.3 Prototyping Explicit Messaging and Cache Coherence on TILE-Gx72 Machine

Tilera’s TILE-Gx72 processor is a commercially available machine that enables similar capabilities
to the proposed messaging protocol (Dogan et al. 2018). It is a tiled multicore architecture with
72 tiles interconnected with 2D mesh networks-on-chip. Each tile consists of a 64-bit VLIW core,
private level-1 data and instruction caches, and a shared level-2 (L2) cache. The common architec-
tural features are as follows:

(1) Directory based cache coherence protocol for data movement controls

(2) Atomic instructions at hardware level for thread synchronization

(3) Auxiliary in-hardware explicit messaging (similar to send and receive) using a User Dy-
namic Network (UDN).

The explicit messaging network in TILE-Gx72 supports both blocking and non-blocking com-
munication. However, since it does not utilize separate instructions for the reply messages of the
blocking communication, it may result in deadlock situation as discussed in Section 3.1. The block-
ing communication is only used to implement barrier synchronization in this article, therefore, the
offered explicit messaging support is sufficient to realize the barrier implementation.

4 PROGRAMMING WITH MOVING COMPUTE TO DATA MODEL

The proposed MC model utilizes the shared memory parallel programming model. Threads are cre-
ated within a process using the Pthreads library, and all threads are allowed access to shared data
structures. Even though Pthreads is utilized in this article, OpenMP programming model can be
easily adopted. The programming model replaces traditional thread synchronization with the ex-
plicit messaging based MC protocol. Similar to any traditional shared memory application, threads
are created and distributed by either jumping to worker routine or service routine. The service
threads perform critical section execution with the request of the worker threads, as discussed in
Section 2.1. The process of transforming an application to the MC model can be automated by
detecting thread synchronization points in the code. The identified critical sections can be moved
to a separate procedure, then service threads are to be assigned to these procedures. As similar to
RCL (Lozi et al. 2012), Coccinelle (Padioleau et al. 2008) or similar refactoring tools can be easily
utilized to transform existing applications. However, this article performs manual transformation

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model

4:11

<< Spin Lock Implementation >>

Worker Thread Job
Divide nodes among threads
For each node v:

For each neighbor u:

spin_mutex_lock(u);
D[u]++;
spin_mutex_unlock(u);

¥

<< Atomic Implementation >>
Critical Code Section

with atomic instruction
fetch_and_add(&D[u],1);

<< MC Implementation >>

Worker Thread Job
Divide nodes among threads
For each node v:

For each neighbor u:
coreid = get_service_core(u);

sendmsg (coreid, u);

Service Thread Job
D array is statically divided
among service threads
while !terminate do
u = recvmsg();
Dlu]++;

Fig. 3. Pseudo code of triangle counting implementation using Spin, Atomic and MC.

of representative applications to illustrate how shared memory synchronization can be ported to
the MC model.

4.1 Triangle Counting (TC)

Triangle counting (Tc) is a well-known graph algorithm that counts triangles in a graph for various
statistical purposes in an application. Figure 3 demonstrates the implementation of Tc using spin-
based locks, atomic instructions and the MC model. A shared data structure is maintained to count
the connectivity of each node, and it is updated atomically using spin locks (upper left box in
Figure 3). After counting the connectivity for each node, all the participating threads hit a barrier.
Then each thread calculates its local triangle count using a heuristic. Finally, the total triangle
count is determined by aggregating the local counts. Tc does not include any test before critical
section, which results in acquiring a lock multiple times for each node. Therefore, the contention on
shared data are expected to be high for this algorithm. Consequently, the lock acquisition overhead
is also elevated due to retries and cache line ping-pong for both shared data and the lock variables.
The algorithm can be implemented using lock-free data structure by employing the atomic fetch-
and-add (FAA) instruction (lower left box in Figure 3). This significantly reduces the overhead of
acquiring locks as the atomic FAA instruction does not fail. However, the shared data themselves
still ping-pong between cores.

The MC model pins all shared data structures at dedicated cores and ships the critical section
work to service threads (right side of Figure 3). Only the neighbor node ID is needed for critical
section, hence the worker thread sends one word of data as message to the corresponding service
thread. Similarly to Atomic, the MC model also eliminates locks and related overheads. In addition,
it also pins shared data to service threads, and prevents cache lines from unnecessarily bounce
between cores. Moreover, by utilizing non-blocking communication, it overlaps communication
overheads with other useful work. For instance, while one request is being propagated in the
network, the worker can load the next neighbor ID, and execute lookup function to determine the
service thread ID for the next request.

4.2 Single Source Shortest Path (SSSP)

sssp is used to compute the shortest path for a user defined source node in a graph. The algorithm
is parallelized using an outer loop parallelization strategy in which the nodes are accessed in a
controlled manner. The range of nodes that can be visited is calculated until all the nodes are
accessible. The nodes in each range are divided among cores, and the cores visit and relax the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:12

H. Dogan et al.

<< Spin Lock Implementation >>

Worker Thread Job
Divide nodes among threads
For each node v:
For each neighbor u:
If (D[v] + W [v, u] < D[u])

<< MC Implementation >>

Worker Thread Job
Divide nodes among threads
For each node v:

For each neighbor u:

spin_mutex lock(u);

If (D[v] + W [v, u] < D[u])
coreid = get_service_core(u);
If (D[v] + W [v, u] < D[u])

sendmsg(coreid, u, v, W[v,u]);

D[u] = D[v] + W [v, u] ;] | [~ - - - oTTTTT T m T
spin_mutex_unlock(u);
/ Service Thread Job
D array is statically divided
‘ among service threads

while !terminate do

<< Atomic Implementation >> u, v, w = recvmsg();

Critical Code Section If (D[v] + W [v, u] < D[u])

with atomic instruction D[u] = D[v] + W [v, u] ;

If (D[v] + W [v, u] < D[u])
atomic_swap(&D[u], D[v] + W [v, ul]);

Fig. 4. Pseudo code of sssp implementation using Spin, Atomic and MC.

neighbors of their nodes one at a time. As seen in Figure 4 (upper left), the node distances are
updated using locks, as threads may update the distances of common neighbors at the same time.
The lock is acquired only when the test before lock acquisition fails to eliminate unnecessary
locking. However, since the algorithm may not converge easily depending on the input, the test
may not fail as often. Therefore, this results in multiple lock acquisitions per node, hence the
contention on the shared data increases. Similar to Tc, sssp is also accelerated using an atomic
swap instruction by removing the locks and related overheads.

The MC implementation of sssp, similar to Tc, moves the critical section to service threads (the
right box in Figure 4). The relaxation critical code section is executed by the service thread. Even
though it causes the distance D-array to be read by the workers and results in additional coherence
traffic, the test before critical section is retained to make sure the algorithm is work efficient. This
prevents sending unnecessary critical section requests to the service threads. Contrary to Tc, sSsp’s
critical section requires three words to execute. The workers perform the test as in the case of
spin and atomic versions, and if the check fails, they send the critical section execution request
with the required data words to the corresponding service thread. The service threads receive their
request messages, and relax the shared distance D-array. In sssp, the shared D-array may ping-
pong between worker and service threads, since the tests before sending the request message
require the workers to read shared data. However, all updates to the D-array are performed at
a single location at the dedicated service thread. The MC model still benefits from non-blocking
communication. As this algorithm requires loading multiple data items before sending a request
message, it offers a lot of room to overlap communication overheads with the memory stalls.

4.3 AlexNet, a Deep Convolution Neural Network

AlexNet consists of five convolutional layers and three fully connected layers. Since most of the
computation is in convolutional layers, here we only discuss parallelization of the convolutional
layer. Briefly, other layers are parallelized by dividing the neurons among all available threads.

A naive coarse-grain parallelization strategy is that all the neurons are tiled, and tiles are di-
vided among available threads. Each thread performs the computations for the neurons in its tiles.
For parallelization, each layer passes its output data to the next layer by incorporating barrier
synchronization at the end of each layer.

An optimized implementation makes use of fine-grain parallelization that further improves data
reuse per thread. This is achieved by dispatching multiple threads to work on a single neuron. This

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:13

Worker Thread Job

Divide the channels among group of threads
start = thredId * nChannels/nThreads
stop (threadId+l) * nChannels/nThreads

Service Thread Job

while !terminate do
psum, nrnId = recvmsg();
Output[nrnId] += psum;

For each ch in range(start,stop)
For each y in range(0, outH)
For each x in range(0, outW)
Perform convolution for one channel and send
psum = convolution(filter, input, ch, y, x);
sendmsg (AccumCore, psum, nrnId)

Fig. 5. Pseudo code for fine-grained parallelization of convolution layers using MC model.

requires updating the same neuron output by multiple threads. The update by multiple threads
can be realized using shared memory spin locks. However, it does not scale as well as the coarse-
grain approach due to the large overheads of shared memory locks. It can also be implemented
using atomic floating point fused-multiply-and-add instruction. However, this type of operation
is not available as a single atomic instruction. Therefore, we have implemented it using the MC
model with the explicit messaging capabilities, as depicted in Figure 5. As mentioned earlier in
Section 2.1, MC generalizes atomics to any set of operations. Hence, a load, store and multiply-
add operation on floating point variables is easily realized with the MC model. As seen in the
algorithm, the cores are clustered into small thread groups, and each group works on a tile of
neurons. One of the threads in each group is assigned as service thread to accumulate the partial
sums. To calculate a neuron output, the kernel channels are divided among the worker threads in
a group, and the partial sum of each neuron for each kernel channel is calculated by the workers,
and sent to the service thread (the left box in Figure 5). The service thread receives the partial sums,
and accumulates for the corresponding neuron (the right box in Figure 5). Since this approach
deploys a fine-grain parallelization strategy, it enables higher concurrency without losing the data
reuse benefits.

This article also evaluates an inception neural network, SQUEEZENET, which is implemented
using the coarse-grain parallelization approach. This network incorporates a small number of
channels, and thus assigning multiple threads to work on a single neuron is found to be not
beneficial.

4.4 More Complex Critical Sections

The focus of this article is to utilize the MC model to accelerate critical sections in a shared mem-
ory application at 1,000-core scale. Therefore, the most common critical sections on regular data
structures are the focus of the article. As seen in the examples in previous subsections, the pro-
cess of converting an application to utilize the MC model involves moving the critical sections to
dedicated service threads, and dividing the shared data between the dedicated threads to maintain
atomicity of operation. This idea can be generalized to any data structure and critical sections.
For example, the nodes in a linked list can be mapped to service threads based on their memory
addresses. However, the critical sections may become more complex. Traditionally, a concurrent
linked list is implemented using hand-over-hand locking (Bayer and Schkolnick 1988). To be able
to perform an operation on a certain node, the lock for the current node is acquired before releas-
ing the lock of the previous node. The implementation of MC in this case requires communication
between service threads as a result of sequential nature of the linked list. Similar to any other
previously discussed workload, the workers initiate critical section requests by sending a message
to the service thread mapped to the head of the list. Then the service thread directs the message to

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:14 H. Dogan et al.

Table 1. Architectural Parameters for Evaluation

Architectural Parameter Simulator | TILE-Gx72
Number of Cores up to 1,024 @ 1GHz 72 @ 1GHz
Compute Pipeline per Core In-Order, Single-Issue 64-bit VLIW
Memorgy Subsystem
L1-I Cache per core 8-32KB, four-way Assoc., 1 cycle | 32KB, two-way Assoc., 2 cycles
L1-D Cache per core 8-32KB, four-way Assoc., 1 cycle | 32KB, two-way Assoc., 2 cycles
L2 Inclusive Cache per core 16-256KB, eight-way Assoc. 256KB, four-way Assoc., 10 cycles
2 cycle tag, 4 cycle data

Directory Protocol Invalidation-based MESI Invalidation-based

ACKwisey (Kurian et al. 2010) Fullmap
Num. of Memory Controllers 4to 16 4
DRAM Bandwidth per Controller | 10GBps 12GBps

Electrical 2D Mesh with XY Routing

Hop Latency Two cycles (1-router, 1-link)
Contention Model Only link contention

(Infinite input buffers)
Flit Width 64 bits 64 bits

Explicit Communication

Receive queue per core | 2.4KB | 4 x 128 words

the service thread where the next node is mapped to, and is blocked until it gets a reply back from
that service thread. Two service threads are blocked at a time similar to hand-over-hand locking.
This types of data structures are contended and hard to scale, hence by pinning the nodes to pre-
vent ping-ponging and utilizing non-blocking communication on the worker side, it is expected
to get benefits from the MC model. However, since the purpose of this article is to focus on the
most common critical sections on regular data structures, further discussions and analysis are not
included in the article.

5 EVALUATION METHODOLOGY
5.1 Tilera Multicore Machine

The TILE-Gx72 multicore platform is deployed for evaluation of the proposed synchronization
models. As discussed in the Section 3.3, the machine incorporates 72 cores. Each tile contains
32KB private level-1 instruction and data caches, and a 256KB shared level-2 cache slice. It exe-
cutes at 1GHz and is equipped with 16GB of DDR3 main memory. The architectural features of the
processor are summarized in Table 1. The platform supports a linux version that is modified for the
Tilera architecture. A modified version of GCC 4.4.7 that supports Tilera specific features is uti-
lized for compilation of the benchmarks. Up to 64 cores in the system are utilized for performance
evaluation. While running experiments, no other program that can interfere with the applica-
tion is active. Completion time is measured by running each workload to completion. Memory
allocations, initialization of data, and thread spawning overheads are not taken into account for
performance measurements. Each run is repeated ten times and the average number is reported
to obtain more accurate benchmarking time.

5.2 RISC-V Multicore Simulator

To evaluate the proposed synchronization models at up to 1,000-core scale, the TILE-Gx72 is sup-
plemented with a multicore simulation environment.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:15

5.2.1 Simulator Setup. The proposed architecture is implemented using an in-house industry-
class RISC-V simulator and the associated tool chains. The simulator utilizes an Architecture De-
scription Language (Kahne 2013) for functional model implementation, which in turn drives the
performance models. Table 1 summarizes the architectural parameters of the simulated system.
Similar to TILE-Gx72, a futuristic tiled multicore processor with a private L1 and shared L2 cache
hierarchy per core is evaluated. The number of simulated cores are varied from 64 to 1024. When
increasing the core count, the cache size is kept similar to TILE-Gx72’s total on-chip cache capac-
ity of 22MB by adjusting the per tile cache sizes. The number of memory controllers are increased
when increasing the core count. While 4 memory controllers (40 Gbps) are utilized at 64 cores,
16 memory controllers (160Gbps) are utilized at 1,024 cores. Single threaded cores are utilized for
the spatial MC model, as well as Spin and Atomic models. However, two threads per core are
evaluated for the temporal MC model implementation.

5.2.2 Compiler Support. RISC-V tool chain is used for compiling benchmark applications. Since
ISA extensions are not recognized by the compiler, the wrapper functions that contain explicit
messaging instructions using GCC extended asm blocks are used to direct the compiler to use
specific registers.

5.2.3 Performance Models. The performance models used in the simulator are ported from the
Graphite multicore simulator (Miller et al. 2010). The simulator implements the following models;
core pipeline, cache hierarchy, cache coherence protocol, and on-chip network. The XY routing
is utilized for the mesh interconnection network. The per hop delay is set to 2-cycle, and the
network model accounts for the pipeline latencies related to loading and unloading the packets to
the network routers (Dally and Towles 2004; Park et al. 2012). It also includes the contention delays.
In addition, the explicit messaging instructions, and the related protocol overheads are integrated
into the performance models.

McPat (Li et al. 2009) is utilized to acquire per event dynamic energy numbers for both the core
energy and memory system energy using 22nm technology. Then, the numbers are scaled down to
11nm by using the scaling constant from Huang et al. (2011). The receive queues are also modeled
in addition to other components of the core energy. Moreover, DSENT (Sun et al. 2012) toolchain
is deployed to obtain the network-on-chip per event energy numbers.

5.2.4 Evaluation Metrics. Each benchmark is run to completion, and the completion time and
energy consumption is measured in the same regions as described for the TILE-Gx72 setup. The
measured completion time is broken down into the following categories: (1) Compute Stalls is
the time spent retiring instructions, waiting for functional unit (ALU, FPU, Multiplier, etc.), and
the stall time due to mis-predicted branch instructions. (2) Memory Stalls is the stall time due to
load/store queue capacity limits, fences, and waiting for load completion and L1 instruction cache
misses. (3) Communication Stalls is the stall time due to explicit messaging instructions.

Dynamic energy is also measured and broken down into the following components: Core energy,
L1 and L2 cache energy, Network energy, and DRAM energy.

5.3 Benchmarks and Inputs

Table 2 shows the six graph benchmarks from the CRONO (Ahmad et al. 2015) suite, and two
machine-learning workloads, AlexNet and SqueezeNet. Note that both machine-learning bench-
marks are realized using 4-way SIMD with 16-bit floating point instructions. These benchmarks
are ported using Spin, Atomic and MC models. For all models, pthread library is used to spawn
threads, and each thread is pinned to a physical core based on the thread ID. For the temporal
MC model, two threads are utilized, and the threads are again pinned to their respective hardware

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:16 H. Dogan et al.

Table 2. Problem Sizes for Our Parallel Benchmarks

| Benchmark | Input Dataset |
Graph Analytics (CRONO (Ahmad et al. 2015))
PAGERANK, TRIANGLE COUNTING California Road Network (Leskovec et al. 2009)
COMMUNITY DETECTION, BFS Facebook (Leskovec and Sosivc 2016)

CONNECTED-COMP, SSSP

Machine Learning
CNN-ALEXNET (KRIZHEVSKY ET AL. 2012) | ImageNet (Deng et al. 2009)
CNN-SQUEEZENET (IANDOLA ET AL. 2016)

contexts. For evaluation, two real world graphs with uniform weights are chosen to explore input
diversity in graph workloads, as summarized in Table 2. For machine-learning workloads an image
from the ImageNet dataset is classified.

5.4 Configurations

(1) Spin: This is the baseline system that relies on spin locks to implement both fine and
coarse-grain synchronization.

(2) Atomic: This model utilizes standalone atomic instructions to implement critical section
code.

(3) MC: The default moving computation to data model with spatial distribution of worker
and services threads implemented using in-hardware explicit messaging support (cf. Sec-
tion 2.1.2).

(4) MC_shmem: Moving computation to data model with spatial distribution of worker and
services threads implemented using shared memory cache coherence support (cf. Sec-
tion 2.1.1).

(5) MC_tmp: Moving computation to data model with temporal distribution of worker and
services threads (cf. Section 2.1.3).

6 EVALUATION

The core scaling results for the spatial MC model are first compared to Spin, Atomic, and
MC_shmem models using the TILE-Gx72 machine and the RISC-V multicore simulator. The per-
formance scaling and dynamic energy evaluations of the MC model with respect to Spin and
Atomic models are also presented. Furthermore, temporal MC and MC_shmem models are com-
pared against the spatial MC model.

6.1 Core Scaling on TILE-Gx72 and the Simulator

Figure 6 shows the average speedup of the spatial MC model over the Spin, Atomic and MC_shmem
models as the core count increases. While the core count is varied from 8 to 64 in TILE-Gx72, it is
scaled up from 8 to 1024 in the RISC-V simulator. There are some noteworthy differences between
simulated architecture and the Tilera TILE-Gx72. First, each tile in Tilera utilizes a VLIW core that
contains three parallel pipelines that do not have support for explicit floating point units. However,
the simulator deploys in-order single-issue pipelined cores with support for 16-bit four-way SIMD
instructions. Second, Tile-Gx72 uses data replication in L2 cache slices, whereas the cache lines
are not replicated in the L2 cache slices of the simulated multicore. Third, Tilera utilizes atomic
compare-and-swap for spin locks, whereas the simulation environment utilizes load-link and store-
conditional instructions for spin-based synchronization. Overall, the performance trends are very
similar between TILE-Gx72 and the simulated machine at 8-64 core counts.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:17

H Tilera-Spin B Simulator-Spin = Tilera-Atomic

M Simulator-Atomic M Tilera-MC-Shmem # Simulator-MC-Shmem

32

1024

g

=]

Fig. 6. Average speedup of spatial MC over Spin and Atomic models as the core counts increase.

____|
I
[

Average Speedup
o un = : N W

=

0\

Number of Cores

M Instruction M Memory ®Comm

g
'=1A2
51
§0.8 I
2 0.6
£ 04 i l i
o Il -
5 02 I I I
2% 1L | s,
E £ L2UE LU ERLULELUYELUYECLUYECLUYCcLUCScLUcluueluelueeucey £ eV
§ 5T ASTASSAGSASSASSASSASSASASARALALAEE 553
2 < < < < < < < < < < < < < < <
CA FB CA FB CA FB CA FB CA FB CA FB
SSSP TC BFS PageRank cc COMM AlexNet SgNet GeoMean

Fig. 7. Completion time results for Spin, Atomic, and MC at 512 cores; all normalized to Spin.

The relative performance of spatial MC model improves as the core count goes up in both TILE-
Gx72 and the simulator. The MC model outperforms Spin at all core counts, since it does not suffer
from instruction retries and cache line ping-pongs. It is also more efficient than the MC_shmem
model at all core counts. As discussed in Section 2.1.1, the communication between worker and
service threads is realized using a shared buffer per service thread. Whenever a message is being
sent, the cache lines of the shared buffer bounce between the worker and service threads. Hence,
even at smaller core counts, the performance of MC_shmem is worse than the MC model. The
Atomic model fares well as it provides more concurrent execution of critical code sections, as
well as other work. The MC model suffers from the challenge of load balancing work between the
worker and service threads at lower core counts. However, the Atomic model utilizes all its cores
but suffers from some cache line ping-pong overhead, which impacts performance as core counts
increase. At smaller core counts, the Atomic model outperforms the MC model by more than 10%.
The MC model closes the gap, and provides superior performance as core counts approach 64
and higher. The relative performance of the MC model significantly improves beyond 256 cores,
and delivers significant advantages at both 512 and 1,024 cores. Although not shown here, the
Atomic model delivers performance scaling for all benchmarks at 512 cores, but not at 1,024 cores.
However, the spatial MC model consistently delivers performance scaling at both 512 and 1,024
cores. Detailed performance and energy consumption results are discussed for 512 cores, followed
by various sensitivity analysis of the synchronization models.

6.2 Evaluation of 512-core Multicore

6.2.1 Performance Evaluation. Figure 7 illustrates the performance results of Spin, Atomic, and
the spatial MC implementations of graph and machine-learning benchmarks at 512 cores. For
graph workloads, results of both California Road Network (CA) and Facebook (FB) graphs are
presented separately. Each data point is normalized to its Spin model’s completion time. The

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:18 H. Dogan et al.

geometric mean shows that the MC model outperforms Spin by 60%, and the Atomic model
by 27%.

Graph Workloads with Fine-grained Synchronization: sssp, TC, and BFs benchmarks sig-
nificantly benefit from the Atomic model as it removes locks, and uses an atomic instruction to
implement each critical code section. As a result, instruction counts and memory stalls are dras-
tically alleviated. However, the Atomic model does not remove cache line ping-pong, hence it is
still limited in performance compared to the MC model. TC with Facebook graph is the only data
point where Atomic slightly surpasses the MC model. There are two reasons that contribute to
this performance loss for the MC model. TC does not involve any test to eliminate redundant crit-
ical section executions, as discussed in Section 4. So it requires atomic update for each neighbor.
Therefore, it requires higher concurrency in the execution of its critical code section. In addition,
Facebook is a sequential graph that does not have many common neighbors between its graph
chunks. Hence, the shared data bouncing between cores is limited. Therefore, Tc with Facebook
graph benefits from higher concurrency. However, the CA graph contains more random connec-
tions, which leads to shared data bouncing in the Atomic model. Therefore, the MC model enhances
the execution time as a result of pinning shared data, and overlapping the communication latency
using non-blocking send instructions. In addition, the MC model’s barrier synchronization es-
chews instruction retries and improves instruction stalls. However, it incurs communication stalls
due to the explicit messaging instructions.

On the contrary to Tc, the BFs algorithm guarantees that each critical section is executed at most
once during its program execution. Therefore, higher concurrency in the execution of critical code
sections is not as helpful for Brs. However, barrier synchronization becomes dominant at 512 cores.
BFs is an iterative algorithm and it involves multiple thread barriers in each iteration. Hence, most
of the communication stalls in completion time distribution are due to barriers. Consequently,
employing an efficient MC barrier leads to the observed performance gain by reducing instruction
count, and preventing the barrier variable ping-pong between cores.

The sssp benchmark is in between BFs and Tc. It involves a test to prevent redundant critical
section executions, which reduces the number of critical sections in each iteration, as similar to
BFs. As the algorithm converges, the number of active nodes goes down. However, unlike BFs, it
does not guarantee only one critical section invocation per node. Hence, the parallelism needed
to execute critical sections is not as small as BFs, but also not as much as Tc. As a result, better
performance is observed for both graphs under the MC model. The MC model also does not prevent
shared data bouncing in sssp, as discussed in Section 4.2. Hence, the main advantage of MC over
atomic instructions for sssp is latency hiding using the non-blocking explicit message requests.
In addition, similar to BFs, sssP also involves multiple barriers per iteration. Therefore, using MC
barrier helps improve performance by removing instruction retries, and expensive shared variable
bouncing between cores.

As previously discussed, the MC model takes advantage of latency hiding using the non-
blocking send instructions. To better understand this performance enhancement, the MC model is
also implemented with blocking sendrinstruction (MC-reply) to prevent more than one in-flight re-
quest per core. This averts overlapping communication stalls with other useful work in the worker
threads. Figure 8 shows the performance comparison of the default spatial MC with Atomic and
the MC-reply models. As seen, when implemented with MC-reply, both sssp and tc lose their
performance gains. The outcome is more severe in TC as most of its work is shared work. The per-
formance gets worse, because concurrency is limited with MC as compared to the Atomic model.
However, BFs does not show any change in completion time. This suggests that Brs does not benefit
from non-blocking send messages, because the workers temporally send requests after significant
local computations.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:19

M |nstruction ®Memory ®Comm

35
o
E 3
EZ.S H|nstruction ®Memory ®Comm
3 . 25
£ 15 £
3 t?
3! R £ 15
N 2
oo Ppdlaalanbnnbechin 1
E o S 1
S gLz ey ey 2Ly 2oy > =4 | |
§*PE*EE=EE=EEEEE 2 os I
< o < O < o < o < o < o ®
s s s s s s E |
=]
CA FB CA FB CA FB z MC-with-test MC-wo-test C-with-test MC-wo-test
SSSP TC BFS CA FB
Fig. 8. Performance comparison of MC-reply Fig. 9. Performance comparison of sssp under
with default MC and Atomic at 512 cores; all nor- MC with and without test before critical section
malized to Atomic. request at 512 cores; all normalized to MC.

Graph Workloads with Coarse-grained Synchronization: For PAGERANK, cC and comm, the
Atomic model reduces instruction count by replacing the lock in the barrier implementation with
an atomic fetch-and-add instruction. The decrease in instruction count depends on whether the
barrier variable is contended or not. If there is load imbalance and threads reach the barrier at
different timestamps, then utilizing the atomic instruction does not help much. It makes updating
the barrier variable more efficient; however, it still requires spinning until all threads arrive at the
barrier. However, if threads participate in the barrier at similar timestamps, the shared variable
gets contended at 512 cores, which leads to more costly barrier implementation with Spin. Atomic
eliminates this costly lock acquisition but the shared variable still bounces between cores. Hence,
the penalty of contention on barrier becomes a noticeable portion of the completion time even
though these benchmarks are highly parallel and the input graphs are sufficiently large in size.
However, the MC model eliminates instruction retries and expensive shared barrier variable ping-
pongs. The spinning cost is replaced with more efficient explicit communication that leads to
enhanced performance compared to both Spin and Atomic models.

Machine Learning Workloads: The MC models yields significant performance improvements
for the two machine-learning workloads. For ALEXNET, it utilizes the fine-grain parallelization
strategy explained in Section 4.3, while SQUEEZENET is realized using coarse-grain parallelization.
As load imbalance is very small in both workloads, the threads reach barrier synchronizations at
similar timestamps. Therefore, the barriers are contended. Consequently, as a result of more effi-
cient barrier implementation, the Atomic model improves performance over the Spin model. How-
ever, the Atomic model also suffers from bouncing the shared barrier variable between cores. The
MC model improves performance by removing the cache line ping-pongs. SQUEEZENET contains
less work between barriers, and the number of barriers are also more than ALEXNET. Therefore, it
benefits more from explicit messaging based barrier.

The Role of Hardware Cache Coherence: The above discussions show that core-to-core di-
rect communication is an effective approach to mitigate bottlenecks of the shared memory based
synchronization. However, hardware cache coherence is still needed to effectively move data at
fine (cache line) granularity between cores. For example, sssp contains a test before sending crit-
ical section invocations. The test ensures that no redundant messages are being sent, hence this
results in a work efficient parallel implementation. The workers read the shared distance array to
perform a test to determine if critical code section execution should be invoked or not. As the cache
coherence protocol thrives on exploiting locality in read data sharing, the overhead of performing
the test is more work efficient even though it results in some coherency traffic. Under all synchro-
nization models, the redundant critical code section invocations are eliminated, which results in

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:20 H. Dogan et al.

WCore L1Cache M™L2Cache #Network ®WDRAM

—_ 1t

cooo
[CRSRCNE-S)

Normalized Dynamic Energy
(=}

SSSp TC BFS PageRank cC COMM AlexNet| SqNet GeoMea

Fig. 10. Dynamic energy results for Spin, Atomic, and MC at 512 cores; all normalized to Spin.

superior performance. To evaluate this hypothesis, the sssp benchmark is also implemented with-
out the test, and its performance is compared against the spatial MC implementation with test.
Figure 9 illustrates this result. By eliminating the test, memory stalls slightly go down due to re-
duced cache coherence traffic. However, the communication stalls drastically increase due to the
elevated serialization at service threads, since the workers send a lot more critical section requests.

6.2.2 Dynamic Energy Evaluation. Figure 10 illustrates the dynamic energy results at 512 cores.
As seen, the spatial MC model provides a geometric mean of 60% and 39% better dynamic energy
consumption as compared to the Spin and Atomic models, respectively.

The dynamic energy trends for sssp, Tc, and BFs are similar to their respective completion time
results. In general, reductions in instruction and memory stalls also show up in the dynamic energy.
The Atomic model reduces core and L1 cache energy by removing synchronization overheads
due to instruction retries. Furthermore, the MC model notably reduces both components due to
reasons discussed in Section 6.2.1. Moreover, the network energy drastically reduces from the
Spin to Atomic model, since lock acquisition related network messages are removed. However, the
MC model increases network energy compared to Atomic for sssp and Tc. This is due to the fact
that the MC model adds critical section request messages, whereas Atomic only involves network
activities related to the atomic operation. Other notable observation is that dynamic energy benefit
for BFs is way more than its performance gain. This is due to the fact that the biggest portion of
the completion time breakdown is communication stalls, which do not contribute to the dynamic
energy in the MC model as the core stays idle during this stall time.

The figure also shows the results for graph workloads with coarse-grain synchronization. As
seen, dynamic energy again follows very similar trends with performance. As mentioned previ-
ously, one important advantage of the MC model is that since it just utilizes blocking sendr in-
struction to implement barrier synchronization, the communication stall seen in the completion
time does not show up in dynamic energy. However, both Spin and Atomic models need to execute
some instructions and perform memory accesses while waiting on the barrier. This can be clearly
observed in the comm benchmark. Due to load imbalance, both Atomic and Spin barriers need to
execute many instructions to wait for the other threads, which increases both memory and core
energy. However, the MC model stalls the pipeline and does not execute any instructions or make
memory accesses. Similar discussions are also applicable to the two machine-learning benchmarks.

6.3 Performance Scaling as On-Chip Core Counts Varied from 64 to 1024

Figures 11, 12, and 13 show the performance scaling results of all benchmarks as the number of
cores per multicore chip are increased from 64 to 1,024. The total on-chip cache capacity is kept
nearly constant at ~22MB, that is to say that per tile cache sizes are scaled down as more cores

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model

PageRank

)

i
@
S

[
© o N B
S &S5

[S)
SE

Completion Time (ms|
N B
o O o

o

in
in

Sp
Atomic
Spi

64
Cores

128

Cores Cores

512
Cores

£
=
@

Atomic IEE—

1024
Cores

[e)
=

cc

Completion Time (ms)

Spin EEEE——
Atomic EEE——

Spin E——
Atomic Em——

128
Cores

256
Cores

Instructions B Memory Stalls

Cores

MC —
Spin ME—
Atomic Em—

512
Cores

MC —

Spin IEEE———

Atomic EEm——

MC -

1024
Cores

600

500

Completion Time (ms|
= N [
o © & ©
8 8 & &

o

£LeQ

&E=
<

64

Cores

1 Communication Stalls

Spin N
5 Atomic EEER—

1
Cores

4:21

coMm

Spin EEE———
Atomic IEE—
MC m—

512
Cores

1024

Cores Cores

Fig. 11. Core scaling results for Spin, Atomic, and MC implementations of PAGERANK, cc, and comMm.

SSSP TC BFS
2500 50 2500
= =z @
E 2000 E 40 E 2000
g g g
E 1500 B 30 & 1500
s s s
% 1000 = 20 = 1000
3 K 2
%500 I III %10 I I I E-SOO II I I
S S S
o o o
0 II II 0 II ||III 5 o I Biil:
£ L2QELQc Loy £2QeL2QecL2QeceQceeeyg £L2QEcLQeLgeLeeeg
§E253E£25533¢825¢8°2 §E23535e253525¢°3 3E253E£25523¢825¢8°2
< < < < < < < < < < < < < < <
64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024
Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores
W Instructions B Memory Stalls I Communication Stalls
Fig. 12. Core scaling results for Spin, Atomic, and MC implementations of sssp, Tc, and BFs.
AlexNet SqNet
113 129
_. 50 _ 40
2 2 35
% 40 % 30
E 30 g 25
£ i 20
c 20 € 15
S S
£ Ll
E- o EEESEEEESEEEEEES=SEERZS = E- (S) I l | Es . - -
o cC L OVl ooe oo cl vy O cC LU Cc LU LUV LU Cc Lo
= 2 2E s 2 £ 2 2E s 2 £ & £ 2 £ 2 £ 2 £ 2 £ 2
© BELSRELSREEERELSRELESE © 3ES3ES3ES3ES5ES
289 28¢ 8¢ 8¢ z8¢g 2 z 2 z 4
o2 o= o2 o= o2
= = = = =
64 128 256 512 1024 64 128 256 512 1024

Cores Cores Cores Cores Cores

Cores

Cores Cores Cores

M Instructions B Memory Stalls W Communication Stalls

Fig. 13. Core scaling results for Spin, Atomic, and MC implementations of ALEXNET and SQUEEZENET.

are integrated on-chip. The results of all graph benchmarks are the average of California Road
Network and Facebook graphs, and reported as raw completion times in each figure.

Figure 11 shows that graph workloads with coarse-grain synchronization scale up to 512 cores
for all three communication models. The main reason is that the communication is not the bottle-
neck, since much computation is performed locally in parallel. However, barrier synchronization
overhead shows up in completion time beyond 512 cores, and prevents the Spin model to scale.
The Atomic model scales better than the Spin model, since it utilizes atomic fetch-and-add instruc-
tion for its barrier variable update. However, it slows down drastically as core counts are increased
from 512 to 1024. However, the spatial MC model achieves superior performance scaling compared
to both Spin and Atomic models.

Figure 12 shows the core scaling results for the benchmarks with fine-grain synchronization.
When the core count rises, the overheads boost exponentially for the Spin model after 256 cores
in sssp. Both the number of instructions and memory stalls blow up due to instruction retries and
expensive cache line ping-pongs. Better completion time is accomplished with the Atomic model

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:22 H. Dogan et al.

64 Cores 128 Cores 256 Cores 512 Cores 1024 Cores

40 80 160 280 600
3 y-05177x-0.443 3 y=0981x+1.1815 3 y=18889x+26063 8 Y =3.7988x+5.29 8 y = 6.5302x + 45.094
2 30 2 60 Q@ 120 2 210 2 450
E 20 E 40 E 80 E 140 k 300 i
3 Q 3 o o
@ 10 @ 20 o 40 a 70 @ 150
@ A @ @ a —=TC
s k] ‘s G s
* 0 * 0 I* 0 * 0 I* 0

0 15 30 45 60 75 0 15 30 45 60 75 0 15 30 45 60 75 0 15 30 45 60 75 0 15 30 45 60 75
Shared Work (%) Shared Work (%) Shared Work (%) Shared Work (%) Shared Work (%)

Fig. 14. Correlation of service core count with shared work for sssp, Tc and BFs at different core counts.

by employing more efficient barrier and lock-free data structures. However, its performance also
slows down after 512 cores due to the increased sharing and enlarged network size, which make
atomic updates more costly. The MC model helps sssp scale to 1,024 cores. BFs also follows similar
trends as observed for sssp. The Spin version stops scaling beyond 256 cores, and Atomic achieves
performance scaling up to 512 cores. However, the MC model provides superior performance up
to 1024 cores. Unlike sssp, barrier synchronization is the biggest bottleneck in BFs, since the locks
are not contended (cf. Section 6.2.1). Subsequently, providing faster barrier with the MC model
pushes scaling to thousand cores.

Figure 13 shows the scaling of both machine-learning benchmarks, ALEXNET and SQUEEZENET.
The four-way SIMD with 16-bit floating point capability per core significantly reduces both in-
struction counts and memory stalls for these benchamrks. Hence, synchronization at the end of
each layer becomes important at higher core counts. As SQUEEZENET contains more layers (and
barriers), it experiences performance degradation for the Spin model at 256 cores and higher.
The Atomic model also stops scaling at 512 cores. The MC model, on the other hand, scales to
1,024 cores for SQUEEZENET with more efficient barrier synchronization. Similarly, the MC model
also helps achieve superior performance for ALEXNET up to 1,024 core. However, as discussed in
Section 4.3, it has two implementations for the spatial MC model. One is naive implementation
(MC-coarse) that only replaces the barrier synchronization. This implementation does not scale to
1,024 cores as it suffers from load imbalance due to limited concurrency. The fine-grain strategy
exposes more concurrency without sacrificing data reuse. Hence, MC-fine provides performance
improvements up to 1,024 cores.

6.4 Determining Service Thread Count in the Spatial MC Model

Despite its notable performance achievements, the spatial MC model has a challenge to tune the
right number of worker and service threads for fine-grain synchronization. This is important, be-
cause it changes from workload to workload, and using the same service thread count for two
different workloads may result in significant performance loss. For example, sweep study for sssp
at 64 cores reveals that it requires only 2 service threads. If the same service thread count is de-
ployed for Tc, then it results in 3X worse performance as compared to Spin. Therefore, TC also
requires a separate search. As the number of cores goes up, the search space for the best perform-
ing ratio also increases. Hence, it gets more time consuming. Therefore, we propose a profiling
driven heuristic to determine the near-optimal service thread count.

As discussed in Section 2.1.3, the number of service threads are expected to correlate with the
average amount of time spent in the critical code sections. The Spin version of benchmarks with
fine-grain synchronization is profiled to obtain the percentage shared work each thread performs
at 64, 128, 256, 512, and 1,024 cores. Also, for each core count, a sweep study is conducted to
obtain the best performing service thread count. Figure 14 shows the shared work against the
best performing number of service threads. As seen, there is a linear correlation between the best
performing service thread count and the shared work for all benchmarks. This suggests that by
profiling the Spin version, one can easily determine the required number of service threads. For

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:23

SSSP BFS
1.2
s
2 1
= 08
E o 06
S Eoa
S 02
T Blaias Biaasi Ilanas
‘o' o a O a O o O a O Q. o a O a O a O a O o o a O a O a O a O Q.
2 S E 2 E = E = E = E S E: E:EZ:ESE = E = EZ=E = E=SE
ul ul L)I L)I L)I L)I U‘ UI UI L)I U| L)I U| U| L)I
= =3 = = = = = = = = = = = = =
64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024
Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores

M Instructions B Memory Stalls M Communication Stalls
Fig. 15. Normalized core scaling results of MC, and MC_tmp; all normalized to MC at 64 cores.

example, at 512 cores, sssp has 7% shared work, which results in 35 service threads. This number is
very close to the optimal number of 32 acquired from the sweep study. As discussed in Section 2.1.3,
the workerto service threadratio is bound to at most 50%. Therefore, in some cases such as Tc where
the shared work is more than 50% of the total completion time, no more than half the cores are
assigned as service threads. At 512 cores, picking the right number of service threads with this
heuristic on average causes only 5% performance loss compared to the near optimal performance
obtained with exhaustive sweep study.

6.5 Spatial versus the Temporal MC Model

This section evaluates the spatial MC model against the MC_tmp model that eliminates the need
for tuning the service thread count. It does so by utilizing temporal mapping of service and worker
threads in the same core, as explained in Section 2.1.3. Figure 15 demonstrates the results of spatial
MC and the temporal MC model for three fine-grain graph benchmarks. The presented results are
the average of California Road Network and Facebook graphs, and the results are normalized to
the spatial MC model at 64 cores.

MC_tmp improves performance over the spatial MC model at 64 core count. At lower core
counts, finding the optimal service thread count is easier, however load balancing the service and
worker threads is difficult. If the thread count assigned for critical section execution is higher, then
it hurts performance by taking away parallelism from the worker threads. However, if it is smaller, it
may create serialization at the service threads. The temporal approach makes load balancing easier
as each core is both a worker and a service thread. Using same number of service and worker threads
with the MC_tmp model helps improve concurrency on both algorithm work, as well as the critical
section execution. However, as the number of cores increases, the benefits of the MC_tmp model
diminish. At higher core counts, the number of cores are abundant, hence the work per thread is
smaller. Therefore, it is easier to spare some of the cores as service thread with the spatial approach.
In addition, 2X more threads participate in barrier synchronization with MC_tmp, and this enlarges
the barrier communication overheads. Moreover, assigning two different tasks in the same core
stress the private cache capacity, which results in higher memory stalls. Consequently, employing
the MC_tmp model at 512 cores and beyond leads to degradation in performance. Overall, these re-
sults suggest that even though MC_tmp does not require tuning the service thread count, it does not
scale as well as the spatial MC model at high core counts. In addition, it also requires two hardware
contexts per core, and context switching policy logic that takes explicit messaging into account.

6.6 Evaluation of MC against MC_shmem

This section discusses the shared memory version of the moving computation to data model. As
discussed in Section 2.1.1, the spatial MC model is implemented using the shared memory cache

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:24 H. Dogan et al.

P TC BFS
o 12 = 4.2 1.2
2 1 35 1
2
g o8 28 0.8
S gos 21 06
- £
§F o4 I I 14 04
S
i ilanal i i o 1l
5 iisl i1 0.1 I

o 1) =) [} 1) o Q Q o o o o 1) [} 1)

s §2§8 85§32 § s §3§2§25§ % § s 5§52 8 26§
£ £ £ £ £ £ £ £ £ £ £ £ £ £ £
< = = < < = < = = = < = < = <
mI ml wl wl m‘ ml ml ml wl L"I mI ml ml lhl ml
=) =) =) =) =) [} Q Q [S) () o 1) =) 1) =)
= = = = = > = = =3 = = = = = =

64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024

Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores Cores

B Instructions B Memory Stalls B Communication Stalls

Fig. 16. Normalized core scaling results of MC, and MC_shmem:; all normalized to MC at 64 cores.

coherence protocol without in-hardware explicit messaging support. Figure 16 shows the normal-
ized completion time of spatial MC and the MC_shmem models for the sssp, Tc and BFs bench-
marks at different core counts. The presented results are the average of California Road Network
and Facebook graphs, and the results are normalized to spatial MC at 64 cores.

The figure shows that the performance scaling of Brs follows almost the same trend with the
Atomic model in Figure 12. As discussed in Section 6.2.1, BFs is not contended, hence the imple-
mentation of the critical section does not make much difference in performance. Most benefits
come from the explicit messaging based barrier implementation. Therefore, at higher core counts,
the performance of the MC_shmem model degrades due to ping-pong of the shared barrier vari-
able. In the case of sssp, MC_shmem provides similar performance as the MC model up to 256
cores. At 512 cores, the performance of MC_shmem is 1.22X worse than the MC model with ex-
plicit messaging. This is better than the completion time of the Atomic model at the same core
count (1.35X worse than MC), because MC_shmem benefits from non-blocking critical section re-
quests. However, due to ping-ponging of the shared buffer between worker and service threads,
the performance benefit is still limited. In addition, similar to Atomic, the barrier synchroniza-
tion also becomes a limiting factor at these core counts. At 1,024 cores, the ping-ponging affect
becomes worse, hence more than 2x performance difference is observed. Tc is the only workload
in which MC_shmem is always worse than the MC model at all core counts. Unlike other two
workloads, the MC model version of TC prevents ping-ponging of shared data, because the shared
data is not accessed anywhere outside the service thread task. MC_shmem also pins the shared
data in the service thread and enables non-blocking communication. However, it adds constant
ping-ponging of the shared buffer to enable communication between worker and service threads.
This happens even when there is no contention on the shared data. In the case of Atomic model, if
there is no contention on shared data, there is no bouncing, hence it can benefit from elevated con-
currency on the critical section. As a result, it provides better performance. However, as a result of
constant ping-ponging of the shared buffer, the performance of the MC_shmem model is always
worse than both Atomic and MC models. The results show that on average the MC model with
explicit messaging is 2.3X faster than the equivalent shared memory implementation, MC_shmem.
Therefore, it suggests that in-hardware explicit messaging support is required to enable efficient
implementation of the MC model.

7 RELATED WORK

Parallel architectures that combine shared memory paradigm and explicit messaging have been
explored by researchers. Alewife and ActiveMsg (Kubiatowicz and Agarwal 1993; von Eicken et al.
1992) have integrated the idea of message passing into shared memory multiprocessors to mitigate

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:25

the bottleneck of inter-processor communication. More recently, Tesseract (Ahn et al. n.d.) utilizes
message passing only architecture, and demonstrates the benefits of such communication style. It
utilizes a near memory approach in which a high number of simple cores are located closer to a
3D stacked memory. However, as it does not support shared memory paradigm, it differs from the
investigated architecture. ADM (Sanchez et al. 2010) supports both shared memory coherence and
hardware messaging, and tries to accelerate task scheduling by employing core-to-core messaging.
However, it falls short of exploring it for general purpose thread synchronization.

The commercial Tilera (Wentzlaff et al. 2007) architecture implemented a multicore processor
that supports both cache coherence and hardware messaging using a UDN. However, its messag-
ing capability is not fully explored with novel communication models. Barrier synchronization
is investigated using the low-latency hardware messaging by TSHMEM (Lam et al. 2013) work.
However, it does not explore these capabilities for real parallel workloads to accelerate synchro-
nization. Moreover, Tilera does not offer products with higher core counts, which as shown to
benefit most from the proposed spatial MC model.

The idea of MC style critical section execution is investigated in RCL (Lozi et al. 2012). It utilizes
a software only approach without any hardware support. The critical section requests are placed
into a shared buffer, then server thread executes them as remote procedure calls. They only target
48 cores system and the investigated applications contain only a single lock. As it utilizes a shared
buffer for the critical section requests, it is expected to limit performance at higher core counts. It
is also not clear how the proposed model works for applications with fine-grain critical sections.
In this article, a similar implementation of MC termed as MC_shmem is presented to illustrate the
shortcomings of such approach.

Similar to RCL, ACS (Suleman et al. 2009) explores the critical section migration, however, with
hardware support. ACS also ships the critical section block to a dedicated core. However, its target
architecture is a small-scale heterogeneous multicore, where it contains several small cores and
a large core. It ships the critical section execution to the large core. However, the proposed MC
model is implemented targeting symmetric multicores at 1,000-core scale. In both approaches, the
serialization of the critical section plays a significant role in performance. ACS tries to solve the
serialization problem at the dedicated core by utilizing two approaches. The first one is to use
simultaneous multithreading to enable multiple threads to execute critical sections concurrently.
The second method is to utilize a serialization detection scheme to determine whether or not to
offload the critical section execution to the large core. Our work addresses the serialization problem
by assigning multiple cores to concurrently perform the execution of critical code sections. For
this purpose a profiling based heuristic method is proposed to determine the number of service
cores that are dedicated for managing work on shared data. Moreover, our work utilizes emerging
workload domains from graphs and machine learning to evaluate the proposed spatial MC model.

Recently, Active Messages (AM) (Harting and Dally 2014) also showed the usage of hardware
message passing on top of a shared memory architecture. However, it only explores a model similar
to the temporal MC model in which a separate hardware context is used as a message handler. Our
work investigates both spatial and temporal approaches and shows better scaling with the spatial
MC model as compared to the temporal model. In addition, AM has not been evaluated against
efficient atomic instruction based synchronization in real workloads.

HAQu (Tiwari et al. 2011) and CAF (Wang et al. 2016) demonstrate that fine-grain synchro-
nization can be accelerated in multicores using hardware queues. HAQu accelerates queues in
the program’s address space with the extension of new instructions. However, CAF utilizes new
hardware extensions to the on-chip network to mitigate queuing bottlenecks. Both approaches in-
vestigate similar models to the proposed MC model using the architectural extensions. However,

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

4:26 H. Dogan et al.

the application domains differ, and the proposed spatial MC model is shown to accelerate thread
synchronization at 1,000-core scale.

8 CONCLUSION

This article proposes a novel moving compute to data (MC) model for accelerating synchronization
on a 1,000-core scale single-chip multicore processor. The proposed model accelerates synchro-
nization by executing critical code sections at dedicated cores using low-latency and non-blocking
core-to-core explicit messaging hardware. The spatial MC model is evaluated against atomic in-
structions and the traditional spin-lock based synchronization primitives for graph analytics and
machine-learning benchmarks. Variants of the MC model are also evaluated, such as the MC_tmp
and the MC_shmem models. The experimental results show that the spatial MC model scales per-
formance up to 1,000 cores. It offers an average 60% improvement over lock based synchronization,
and 27% better performance over atomic instruction based synchronization at 512 cores. Further-
more, the MC model achieves an average of 39% efficiency on dynamic energy as compared to the
atomic instruction based synchronization model.

REFERENCES

M. Ahmad, F. Hijaz, Qingchuan Shi, and O. Khan. 2015. CRONO: A benchmark suite for multithreaded graph algorithms
executing on futuristic multicores. In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC’15). 44-55. DOI : https://doi.org/10.1109/IISWC.2015.11

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. [n.d.]. A scalable processing-in-memory accelerator for parallel graph
processing. In Proceedings of the 42nd Annual International Symposium on Computer Architecture (ISCA’15). ACM.

R. Bayer and M. Schkolnick. 1988. Concurrency of Operations on B-trees. In Readings in Database Systems. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, 129-139.

William J. Dally and Brian Towles. 2004. Principles and Practices of Interconnection Networks.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 248-255.

H. Dogan, M. Ahmad, J. Joao, and O. Khan. 2018. Accelerating synchronization in graph analytics using moving compute
to data model on Tilera TILE-Gx72. In Proceedings of the IEEE International Conference on Computer Design (ICCD’18).

H. Dogan, F. Hijaz, M. Ahmad, B. Kahne, P. Wilson, and O. Khan. 2017. Accelerating graph and machine-learning workloads
using a shared memory multicore architecture with auxiliary support for in-hardware explicit messaging. In Proceedings
of the Annual International Parallel and Distributed Processing Symposium (IPDPS’17).

William Gropp. 2002. MPICH2: A new start for MPI implementations. In Proceedings of the European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting. Springer, 7-7.

R. Curtis Harting and William J. Dally. 2015. On-chip active messages for speed, scalability, and efficiency. IEEE Transactions
on Parallel and Distributed Systems 26, 2 (2015), 507-515.

W. Huang, K. Rajamani, M. R. Stan, and K. Skadron. 2011. Scaling with design constraints: Predicting the future of big chips.
IEEE Micro 31, 4 (2011), 16-29.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. 2016. SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv:1602.07360 preprint (2016).

Brian Kahne. 2013. FreescaleADL: An Industrial-Strength Architectural Description Language For Programmable Cores.
Retrieved from http://opensource.freescale.com/fsl-oss-projects/.

A. Krizhevsky, L. Sutskever, and G. E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems.

John Kubiatowicz and Anant Agarwal. 1993. The anatomy of a message in the alewife multiprocessor. In Proceedings of the
Industrial Control Systems Cyber Security Conference (ICS’93).

G. Kurian, J. Miller, J. Psota,]J. Eastep,]J. Liu, J. Michel, L. Kimerling, and A. Agarwal. 2010. ATAC: A 1000-core cache-
coherent processor with on-chip optical network. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT’10).

B. C.Lam, A. D. George, and H. Lam. 2013. TSHMEM: Shared-memory parallel computing on tilera many-core processors.
In Proceedings of the 2013 IEEE International Symposium on Parallel Distributed Processing. 325-334. DOI : https://doi.org/
10.1109/IPDPSW.2013.154

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. 2009. Community structure in large networks: Natural cluster
sizes and the absence of large well-defined clusters. Internet Mathematics 6, 1 (2009), 29-123.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

Accelerating Synchronization Using Moving Compute to Data Model 4:27

Jure Leskovec and Rok Sosivc. 2016. SNAP: A general-purpose network analysis and graph-mining library. ACM Trans.
Intell. Syst. Technol. 8, 1 (2016), 1.

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT: An
integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’42). ACM, New York, NY, 469-480.
DOI :https://doi.org/10.1145/1669112.1669172

Jean-Pierre Lozi, Florian David, Gaél Thomas, Julia L. Lawall, Gilles Muller, et al. 2012. Remote core locking: Migrating
critical-section execution to improve the performance of multithreaded applications. In Proceedings of the USENIX An-
nual Technical Conference. 65-76.

J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and A. Agarwal. 2010. Graphite: A
distributed parallel simulator for multicores. In Proceedings of the IEEE Symposium on High Performance Computer Ar-
chitecture (HPCA’10).

Samuel K. Moore. 2016. Breaking the Multicore Bottleneck. Retrieved from https://spectrum.ieee.org/semiconductors/
processors/breaking-the-multicore-bottleneck.

Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller. 2008. Documenting and automating collateral evo-
lutions in Linux device drivers. In ACM SIGOPS Operating Systems Review, Vol. 42. ACM, 247-260.

Sunghyun Park, T. Krishna, C. Chen, B. Daya, A. Chandrakasan, and Li-Shiuan Peh. 2012. Approaching the theoretical
limits of a mesh NoC with a 16-node chip prototype in 45nm SOL In Proceedings of the Annual Design Automation
Conference (DAC’12).

D. Sanchez, R. M. Yoo, and C. Kozyrakis. 2010. Flexible architectural support for fine-grain scheduling. In Proceedings of the
15th Annual Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM,
New York, NY, 311-322.

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt. 2009. Accelerating critical section execution with
asymmetric multi-core architectures. In Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 09). ACM.

C. Sun, C. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. Peh, and V. Stojanovic. 2012. DSENT-a tool connecting
emerging photonics with electronics for opto-electronic networks-on-chip modeling. In Proceedings of the IEEE/ACM
International Symposium on Networks on Chip (NoCS’12). IEEE, 201-210.

D. Tiwari, J. Tuck, Solihin Y, and S. Lee. 2011. HAQu: Hardware-accelerated queueing for fine-grained threading on a chip
multiprocessor. In Proceedings of the IEEE 17th International Symposium on High Performance Computer Architecture
(HPCA’11).

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. 1992. Active messages: A mechanism for integrated com-
munication and computation. In Proceedings of the International Symposium on Computer Architecture (ISCA’92). 11.

E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe,
and A. Agarwal. 1997. Baring it all to software: Raw machines. IEEE Computer 30, 9 (1997), 86—93.

Y. Wang, R. Wang, A. Herdrich, J. Tsai, and Y. Solihin. 2016. CAF: Core to core communication acceleration framework. In
Proceedings of the 2016 International Conference on Parallel Architectures and Compilation (PACT’16). ACM.

Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanovi. 2014. The RISC-V Instruction Set Manual. Volume 1:
User-Level ISA, Version 2.0. Technical Report. Department of Electrical Ingineering and Computer Sciences, University
of California-Berkeley.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C. Miao, J. F. Brown III, and A. Agarwal.
2007. On-chip interconnection architecture of the tile processor. IEEE Micro 27, 5 (Sep. 2007), 15-31.

Received July 2018; revised November 2018; accepted December 2018

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 1, Article 4. Publication date: February 2019.

