
HeteroMap: A Runtime Performance Predictor for Efficient

Processing of Graph Analytics on Heterogeneous Multi-Accelerators

Masab Ahmad1, Halit Dogan1, Christopher J. Michael2, Omer Khan1

University of Connecticut, Storrs, CT, USA1

Naval Research Laboratory (NRL), John C. Stennis Space Center, MS, USA2

Abstract—With the ever-increasing amount of data and input
variations, portable performance is becoming harder to exploit
on today’s architectures. Computational setups utilize single-chip
processors, such as GPUs or large-scale multicores for graph
analytics. Some algorithm-input combinations perform more
efficiently when utilizing a GPU’s higher concurrency and band-
width, while others perform better with a multicore’s stronger
data caching capabilities. Architectural choices also occur within
selected accelerators, where variables such as threading and
thread placement need to be decided for optimal performance.
This paper proposes a performance predictor paradigm for
a heterogeneous parallel architecture where multiple disparate
accelerators are integrated in an operational high performance
computing setup. The predictor aims to improve graph processing
efficiency by exploiting the underlying concurrency variations
within and across the heterogeneous integrated accelerators
using graph benchmark and input characteristics. The evaluation
shows that intelligent and real-time selection of near-optimal
concurrency choices provides performance benefits ranging from
5% to 3.8×, and an energy benefit averaging around 2.4× over
the traditional single-accelerator setup.

I. INTRODUCTION

Target applications that utilize graph processing are rising in

a plethora of architectures [1, 2]. Future HPC datacenters are

expected to have heterogeneous connected accelerators, with

Cray and NVidia already edging on similar ideas [3, 4]. It has

been indicated in prior works that graph analytics pose limita-

tions when executed on a single accelerator setup [5] [6]. Thus,

this paper proposes a multi-accelerator setup to situationally

adapt the graph problem and input to the right machine and

its concurrency configurations. To understand this problem,

consider the iterative Bellman-Ford algorithm and its variants

finding shortest paths. Such a graph algorithm lends itself for

data-parallel execution since it easily allows graph chunks to

be accessed in parallel. Hence, such an algorithm performs

well on a GPU, since it exploits massively available threading

to exploit parallelism [7]. On the other hand, algorithms such

as Triangle Counting are not as parallel, and comprise of re-

ductions on vertices that result in complex data access patterns.

These access patterns lead to increased data movement and

synchronization requirements [8]. Multicores perform well in

such cases as they incorporate caching capabilities for efficient

data movement and thread synchronization. These variations

solidify the need for diverse types of accelerators in a setup

executing graph analytic workloads.

Taking this problem into context, this paper takes a hetero-

geneous architecture that constitutes both types of competitive

multicore and GPU accelerators connected under their own

discrete memories. This setup exposes concurrency choices to
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Fig. 1: How input graph variations exhibit different perfor-

mance within and across underlying accelerators in SSSP.

graph applications, thus catering for the missing throughput

and reuse capabilities in GPUs and multicores. Performance

variations occur not only due to changes in benchmark char-

acteristics, but also input changes within a benchmark, as

well as different mappings of graph analytic benchmark-

input combinations on different accelerators. These choices

do not exist in a single accelerator setup. Algorithmically,

in the presence of expensive synchronization on shared-data

or indirect memory accesses, GPUs cannot perform as well

as multicores. Multicores possess hardware cache coherence

and a complex cache hierarchy to exploit performance in such

cases. In various cases, the massive throughput of the GPU,

or the data reuse of the multicore needs to be constrained to

reduce stress on the memory system and data communication.

One way to manage this is to spawn less threads in the

workload [7]. Thus, choices occur both within and across

accelerators, for different benchmarks and inputs.

Input dependence is known to play a big role in graph

analytic performance [9]. An example of such a trade-off is

shown in Figure 1, which shows an OpenTuner optimized [10]

∆-stepping single source shortest path (SSSP) algorithm [11]

running a sparse and a dense graph on an Intel Xeon Phi

7120P multicore, and an Nvidia GTX-750TI GPU. Threads are

varied from minimum total available threads to maximum total

threads for both accelerators, and are normalized on the x-axis,

while the y-axis shows completion time. The two accelerators

are categorized as competitive as they possess similar compute

capabilities.

The multicore performs better than the GPU for the sparse

road network [12], as a higher graph diameter results in longer

dependency chains that determine the optimal path between

source and destination vertices. This linked traversal leads to

more complex data access patterns that are more expensive on

the GPU, as it does not possess the addressing capabilities to

perform such complex data accesses. Moreover, the different



phases in ∆-stepping result in more divergence and complex

indirect addressing, which adds to GPU overheads. The mul-

ticore in this scenario performs several orders of magnitude

faster than the GPU. The CAGE-14 graph [13] has a lower

diameter, and thus requires less iterations to converge. Due

to high density of edge connectivity, it lends itself to map

optimally on a GPU. Larger available core and thread counts

in GPU allow it to outperform the multicore by 3×. Even

when the optimal accelerator is selected, there are a slew of

machine choices within the accelerator to choose from. In the

case of CAGE-14 graph, intermediate threading performs best

on the GPU, as spawning more threads raises stress on the

GPU’s already small cache system. Machine choices within

and across accelerators therefore need to be tuned based on

different inputs to achieve optimal performance. Moreover, for

different benchmarks, the patterns that lead to concurrency and

data accesses also vary across graph analytics, which further

motivates the need to tune this accelerator choice space.

This poses several questions: What patterns in graph bench-

marks and inputs lead to best exploitation of concurrency

within and across GPUs and multicores? What are the architec-

tural differences in these machines that lend them for mapping

to the diverse benchmark-input combinations? What are the

run-time concurrency trade-offs of using one accelerator over

another in a heterogeneous setup? Benchmarks and inputs

reveal accelerator choices due to their direct correlations with

the optimal architectural choices. Thus, graph benchmark and

input choices need to be exposed systematically, after which

a high level intelligent predictor tunes the accelerator choices.

However, due to the increased high-dimensional space com-

plexity and non-linear aspects of having multiple accelerators

and their intra-concurrency choices, selecting the right choices

becomes a hard problem.

This paper proposes a novel performance predictor frame-

work, HeteroMap, which integrates benchmark and input

choices to do dynamic selection of parameters within and

across accelerators. The prediction framework captures pro-

gram characteristics by intelligently discretizing graph bench-

marks and inputs into easily expressible representative vari-

ables. Mappings of benchmark and input representations to

inter- and intra-accelerator choices are done using a decision

tree analytical model. The proposed analytical model is further

automated using machine learning to amortize costs associated

with the large graph algorithmic choice space. The automated

model is trained using synthetically generated graph bench-

marks [14, 15], and inputs [16, 17]. For a variety of graph

analytic benchmarks executing real-world inputs, HeteroMap

provides performance benefits ranging from 5% to 3.8× when

compared to a single GPU-only or multicore-only setup.

II. MULTI-ACCELERATOR SYSTEM

The target system utilizes discrete GPU and multicore

accelerators. The setup considers either a weaker NVidia GTX-

750Ti GPU or a stronger NVidia GTX-970 GPU, but not

both at the same time. We also consider a weaker Intel Xeon

Phi 7120P multicore or a stronger 40-core Intel Xeon E5-

2650 v3 multicore. All multicore-GPU combination pairs are

considered to analyze the inter- and intra-accelerator design
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Fig. 2: Multi-accelerator system example with the run-time

performance predictor for graph benchmarks and inputs.

space. This multi-accelerator system is used as a prototype to

convey the underlying idea of mapping architectural choices

using graph benchmarks and inputs. Figure 2 depicts an

example multi-accelerator system showcasing a GPU and a

Xeon Phi multicore with GDDR5 memories, as well as various

architectural differences between associated accelerators. As

memory size changes require architectural reconfigurations,

evaluations are done on fixed memory sizes for each target

accelerator. The design space of various combinations of

memory sizes is also studied to analyze how main memory

size changes affect performance in accelerators.

Input graph chunks are loaded in the accelerator’s respec-

tive DDR memory for processing. The system is used in a

way that graph benchmark-input combinations are loaded and

executed with the appropriate architectural choices for indi-

vidual accelerators with the mentioned discrete memory size

constraint. In a real-time context, it is harder to allocate graph

chunks and process them as larger graphs do not fit in main

memory. Hence, chunks from larger graphs are thus extracted

temporally using a state-of-the-art Stinger framework [18], and

streamed in the accelerator’s memory to be processed. This

is similar to works in graph streaming [19]. The prediction

paradigm takes in graph chunk characteristics, and predicts

optimal architectural concurrency parameters for each chunk.

III. PERFORMANCE PREDICTION PARADIGM

Graph inputs consist of vertices, V , which are connected to

other vertices via edges, E. Graph benchmarks loop around

outer vertices and inner edges, and different phases in work-

loads have different complexities and have diverse data access

patterns. Due to data access and synchronization pattern differ-

ences in graph inputs and workloads, different benchmarks and

inputs perform optimally on different machines with different

intra-accelerator settings. The multi-accelerator architecture in

Figure 2 exposes these intra- and inter- accelerator variations,

and we create a knowledge base from benchmarks and inputs

that can be mapped to these machine choices.

A. Tuning the Intra- and Inter- Accelerator Choices

Various capabilities in GPU and multicore accelerators

allow improved performance extraction for specific graph

benchmark and input characteristics. This trade-off between

accelerators is depicted as M1 in Figure 3, where either a GPU

or a multicore can be selected. In GPUs, massively available

threading hides data access latencies to deliver high throughput
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Fig. 3: Machine choices (M) for GPUs and multicores.

execution. This occurs in data-parallel workloads with small

dependency chains and less shared data, and thus GPU accel-

erators must be selected for such cases. Although GPUs fare

well with highly data-parallel execution, they under-perform

when benchmarks have complex data access patterns, costly

synchronization, and inter-thread data movement. Moreover,

even in data-parallel workloads, the threading and throughput

of a GPU may need to be constrained due to varying input

sizes and densities to reduce stress on the memory system for

optimal performance. This creates two choices within a GPU:

Global threading, which distributes threads across the

GPU chip, and Local threading, which specifies the

thread count on a GPU core. These choices are listed in

Figure 3 as GPU hardware choices, M19−20.

Multicores perform well for complex data access patterns

by taking advantage of their cache reuse and cache coherence

capabilities. Therefore, multicores should be selected if there

is ample shared data. Multi-threading usage and placement

intra-choices depend on the input graph characteristics such

as edge density. Specifically for multicore threading, KMP

affinity/place threads are thread placement hardware choices

in Figure 3, while # pragma simd controls SIMD usage.

Thread placement may be compact or loose, and is important

for data movement along with core and cache utilization. For

example, threads may want to use cache slices of unused cores,

which can be enabled by placing threads in the center of

unused core clusters. This improves performance by reducing

data movement and synchronization costs as threads are placed

closer to the residing data. KMP blocktime is another parameter,

which defines the time a thread waits before going to sleep.

This is helpful during contention and load imbalance, as

threads can go to sleep before polling on contended data.

Other parameters, such as those in the OpenMP paradigm,

also have non-linear relationships with benchmarks and inputs,

and are used to improve shared data reuse and movement

costs. Scheduling variables in OpenMP involve dynamic

scheduling, which control work distributions across parallel

regions. Scheduling is controlled by OMP for schedule,

which is tasked with static, dynamic, guided, or auto

choices, and data tile/chunk sizes. Data scheduling is related

to access patterns, which require dynamic scheduling on

read-write shared data. This mitigates contention and data

movement overheads [20]. Additional parameters such as

OMP_Nested exploit nested parallelism within loops, while

OMP_Max_Active_Levels states how many levels of par-

allelism can be nested. GOMP_Spincount defines how long

threads actively wait for OpenMP calls. Larger times with this

variable may be used to increase waiting times for threads

if there is high contention. These OpenMP parameters are

denoted as M9,M11−18, and are listed in Figure 3.

The M variable space is a function of the target benchmark

and associated graph input, and this is the formulation required

to achieve tuning of M parameters. All choices symbolize

a non-linear mapping between benchmarks and graphs, and

M choices. Thus, we create a benchmark and input graph

representation space, denoted by B and I respectively. To

minimize performance, a tuple vector, X , is constructed that

takes benchmark choices ~B, input choices ~I, and accelerator

choices ~M, to minimize performance in the proposed archi-

tecture: ~X(M) = MinPer f (~B,~I). The function, MinPer f () is the

proposed configurator that finds M choices. To properly relate

benchmark and inputs with M choices, B and I variables need

to be extracted and classified for tuning. The next sections first

describe B, I variables in the context of how they are expressed,

and their relationships with machine choices.

B. Input (I) Variables

The most relevant input variables are graph size using vertex

counts (I1) and edge density (I2), which specify the size of

the graph and the density of computations. Higher graph sizes

and densities can be divided into more threads, thus thread

count selections in accelerators are directly correlated with

I1 and I2. The maximum edge count of any vertex in the

graph (I3) is also relevant as it defines how much deviation

there is in edge connectivity from the average density using

I2. This is used to define average per-thread work, as well

as divergence in work between threads. Higher or lower per-

thread work is used to decide how much local threading and/or

SIMD to use, while work divergence is used to optimally

place threads, in a selected accelerator. Graph diameter (I4)

specifies the largest connectivity distance between any two

vertices, specifying dependency chain sizes between vertices

in a graph. I4 is obtained alongside input graphs or using run-

time approximations [21]. This in turn expresses how much

the memory system is going to be stressed during execution,

as longer vertex dependency chains need to be remembered

in memory. I4 is helpful in deciding which type of memory

system needs to be tuned for an input graph.

All input variables are also easily expressible in percentages,

as maximum vertex and edge count, maximum degree, and

diameter, are known in literature [14]. These proposed I

variables are used to classify a real input graphs to expose

input variations, shown in Table I. These range from sparse

road networks, social networks, to dense mouse brain graphs.

Input Graph Expression using I Variables: I variables are

deduced from graph data and are shown in Figure 4. These

representations are simply obtained by normalizing the input

graph’s characteristic data, and setting it to a value between

0 and 1, with increments of 0.1, depending on the acquired

value. I variables are normalized by comparing the input

graph characteristics to the maximum values available in liter-

ature [25, 11] for these variables. Normalization is necessary,



TABLE I: Input Datasets.

Evaluation Data #V #E Max.Deg Diameter

USA-Cal(CA)[12] 1.9M 4.7M 12 850

Facebook(FB)[22] 2.9M 41.9M 90K 12
Livejournal(LJ) 4.8M 85.7M 20K 16
Twiter(Twtr)[23] 41.7M 1.47B 3M 5
Friendster(Frnd) 65.6M 1.81B 5.2K 32

M. Ret. 3(CO)[24] 562 0.57M 1027 1
Cage14(CAGE)[13] 1.5M 25.6M 80 8

rgg-n-24(Rgg)[22] 16.8M 387M 40 2622
Kron.-Large(Kron) 134M 2.15B 16.0 12

as these characteristics need to be compared to each other

to predict inter- and intra-accelerator choices. Furthermore, as

graphs have extremely large variations among themselves in

terms of characteristics, a logarithmic normalization is applied

to further smoothen I values. Using the USA-Cal input graph

as an example to compute I variables, vertex and edge counts

in USA-Cal are low compared to the largest graphs such as

Friendster. Hence I1,2 are set to 0.1 for USA-Cal, but 0.8

for Friendster. As the maximum degree of USA-Cal is also

extremely low compared to the largest available degree in

Twitter (which is 1), I3 is set as 0 in this case. However,

its diameter is close to the highest available (850 is close to

the largest diameter of 2622 for the Rgg graph). Therefore,

we set I4 as 0.8 for USA-Cal and 1 for Twitter, and 0 for all

other graphs. I variables for other input graphs are extracted

similarly and shown in Figure 4.

C. Benchmark (B) Variables

In parallel graph algorithms, the outermost loop is paral-

lelized, and traverses graph vertices in various phases such

as highly parallel vertex division and pareto fronts, or less

parallel reductions and push-pop phases. An algorithm may

consist of multiple phases, where phases are separated by

global thread barriers. Inner loops traverse edges, where data is

addressed either directly using loop indexes, or indirectly using

complex pointers. Data may be either shared as read-only or as

read-write, and may require atomic updates. Read-write shared

data may require local computations with either fixed point or

floating point (FP) requirements to calculate output values to

write into global data structures. These generic primitives are

used to generate B benchmark variables. In this work, variables

B1−13 define structural differences within graph-specific data

structures and parallel phases, which are critical components

in predicting machine choices.

Initial B variables are derived using outer loop parallel

primitives. The outer loop may be data-parallel using Vertex

division (B1), lending itself easily for execution with a larger

number of independent threads. Pareto (B2) execution can

also be applied on outer loops, where chunks of vertices

mapped to threads statically increase with workload progres-

sion. These Pareto phases may also dynamically increase

vertices in threads (B3). Graph workload phases may also

take the form of Push-Pop B4 accesses, which add certain

ordering constraints for processing. This in turn enforces

dependencies, leading to complex data access patterns. Like

Push-Pop accesses, Reductions (B5) contain more sequential
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work than other phases, and involve synchronization primitives

with atomic operations. (B4) and (B5) phase types complicate

data access and parallelism, leading to thread divergence.

Therefore, GPUs may under perform for such scheduling

patterns [26]. However, (B1 − 3) lend themselves for high

parallelism on the GPU. These variables are important, as

they describe how much each phase constitutes a benchmark.

These vertex processing and scheduling variables (B1−5)

are mutually exclusive, as programs are divided into phases.

For example, a program may consist of 80% vertex division,

and a 20% reduction phase. A programmer sets these variables

by finding out how much a phase constitutes each benchmark.

Compute type within phases may be FP computations done

by the inner loops of workload phases. These FP computations

determine if dedicated hardware units need to be exploited.

This is shown by how much program data is specified as

FP (B6), which trades-off accelerators, as some accelerators

may have more FP capabilities than others. For example, if

20% of program data requires FP, then (B6) is set as 0.2. FP

operations perform optimally on multicores if they are in a

dense format to exploit SIMD capabilities. Therefore, knowing

how much FP computations are needed can decide in mapping

a benchmark to either a multicore or a GPU.

In terms of memory access patterns, addressing is either

done with loop variables (B7), or by complex indirect ad-

dressing such as double pointers (B8). Complex addressing

primitives are better handled in multicores as they possess

larger caches to hold addressing metadata, and have faster

ways of resolving complex pointers and addressing. Indirectly

accessing and reusing data via addressing in the cache does

not fare well with GPUs as they do not have the capabilities

or enough cache sizes to hold such contents. A programmer

sets (B7,8) by viewing what percentage of data is accessed

indirectly, or by using loop indexes.

Runtime data movement is also diverse, and takes the

form of read-only shared data (B9), read-write shared data

(B10), and locally accessed data (B11). (B9− 10) fare well

on multicores as they have cache management mechanisms

for efficient data movement between cores. (B11) is data



that is locally operated in thread registers, where it depends

on the accelerator’s cores on how fast they process local

computations. Each of these variables is expressed by the

programmer as a percentage of the total accessed data.

Shared data may also require updates with synchroniza-

tion (B12), where (B12) is viewed as the percentage of

data requiring locks, as certain accelerators may have better

performing atomics than others. The number of barriers in a

workload separating phases (B13) also causes variations. If

there are more locks and barriers in a benchmark, then it

produces more opportunities for inter-thread communication

to cause bottlenecks and load imbalance. (B13) is specified

as the number of barriers between phases, and each barrier

increments (B13) by 0.1, per iteration.

(B1−5) are considered as independent variables. Although

the interactions of remaining B variables are complex, these

variables are not considered mutually exclusive. All bench-

mark variables are also easily expressible in percentages. The

programmer specifies which B variables are interesting in

a given benchmark. For simplicity, this section first uses a

✦representation to signify whether each B variable is specified

or not in a benchmark. This classification is shown in the

subsequent subsection.

Benchmark Expression using B Variables: Now that bench-

mark variables are defined, these variables can be used to

classify real graph workloads. Graph workloads are thus

acquired from a variety of benchmark suites, further specified

in Section VI-B. These benchmarks are also listed in Figure 5,

with the ✦representations showing if a B variable is used in

a benchmark. Based on compile-time information about loops

and inputs, loop indexes and data structure sizes are inferred,

and are used to approximate relative strengths of B variables.

As multicore and GPU versions of benchmarks use the same

algorithms, their B variable classification remains the same.

Taking the case of SSSP-BF as an example, the only

parallelization applied is vertex division, which enables B1 to

be set as ✦. If the SSSP-Delta workload is used then parallel

buckets are used to push and pop edges, setting B4 as ✦.

The GAP version also uses a reduction to select a bucket to

use in subsequent iterations, which sets B5 as ✦. In terms

of program phases, the general distribution is that workloads

use data-parallel vertex division B1 along with reductions B5.

BFS uses only Pareto-division B3, and DFS uses only Push-

Pop B4, as workload phases only contain one phase of these

types. All workloads have data-driven accesses B7, and read-

write shared data B10. DFS and Conn. Comp. have complex

indirect data accesses, which are due to queuing and data-

manipulated addressing, and these set B8 to ✦.

B variables are percentages of program sections or percent-

ages of data types used. These variables need to be normalized

because simple ✦representations do not show intensities of

each B variable. B variables are depicted within a range of

0 and 1, with increments of 0.1. Finer increments may be

applied, however we keep the model simple by not using

very fine increments. As graph workloads consist of only

phases separated by barriers, values for B1− 5 variables for

phases add to 1 for all benchmarks. To assign values for more
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Fig. 5: Benchmark (B) model variables. For simplicity, B

variables that are used in a benchmark are discretized as

✦here for each graph benchmark utilized in this work.

than one B1− 5 variables in a benchmark (e.g. a workload

having both Push-Pop and Reduction phases), the programmer

decides approximately how much % code is in each phase. The

programmer can statically view data structures to assign how

much % of the structures fall in each of the remaining variable

B6− 12 categories. By specifying B variable values between

0 and 1, the programmer assigns percentages to variables,

therefore properly assigning benchmark characteristics.

As an example, we take SSSP-BF to show this discretiza-

tion, with its pseudocode shown in Figure 6 to visualize B

variables. As all of the program code in SSSP-BF only uses

vertex division to parallelize outer loops, thus B1 is set as

1 in Figure 6, while the remaining B2− 5 are set as 0. B6

is set as 0 because SSSP-BF does not utilize FP operations.

Most of the data accesses are done using loop indexes, such as

accesses for D tmp[], D[], and W[] arrays, therefore setting

B7 to 0.8. B8 is set to 0 as there are no indirect accesses.

Approximately half of the program data is composed of the

input graph W[], which is read-only by all threads. The other

half are the distance arrays (D tmp[] and D[]), which are read

and written frequently by all threads. This sets B9 and B10

to 0.5 each. Local computations are done on D tmp[], which

constitutes approximately 20% of program data, hence this sets

B11 to 0.2. Locks are also applied only on the D[] array, which

is half the size of the two distance arrays combined, and there

are two barrier calls in the benchmark. This sets B12 and B13

to 0.2. Now that B, I variables are set, relationships between

B, I and M variables can be found to predict M variables.



SSSP-Bellman-Ford Example
.

While (!terminate)

Parallel for (v: vertex=0 - N)

Parallel for (e: edge=0 - edges[v])

If D[v] + W[v,e] < D_tmp[e]

lock[e]

D_tmp[e] = D[v] + W[v,e]

unlock[e]

Barrier

Parallel for (vertex=0 - N)

D[v] = D_tmp[v]

if (D == D_tmp)

terminate = 1

Barrier

B1 = 1

B2 = 0

B3 = 0

B4 = 0

B5 = 0

B6 = 0

B7 = 0.8

B8 = 0

B9 = 0.5

B10 = 0.5

B11 = 0.2

B12 = 0.2

B13 = 0.2

Vertex Div

Data Driv.

Read-only

R/W Shared

Local Acc.

Locks

Barriers

Fig. 6: Discretization of (B) variables for SSSP-Bellman-Ford

(SSSP-BF) with increments of 0.1 from 0 - 1.

IV. HETEROMAP DECISION TREE MODEL

Patterns of M mappings allow visualization of accelerator

choices with B and I variables. For example, benchmarks uti-

lizing Push-Pop (B4) phases are expected to perform better on

multicores than on GPUs. This is due to better data movement

capabilities in multicore cache hierarchies, as well as better

core performance for queuing operations. On the other hand,

benchmarks with high data-level parallelism and local thread

computations are expected to perform well on a GPU. This

is because GPUs possess more threads to exploit available

parallelism, and large register files to hold local computations.

These relationships between B, I and M variables are used to

create a simplified analytical decision tree model.

This section proposes a decision tree heuristic that analyt-

ically minimizes the choice space problem for performance

(and energy if needed). Decision trees are easily readable and

tunable, and thus allow for manual modeling. This model

is expressed as an inter-accelerator model to first select an

optimal accelerator, and then an intra-accelerator model to

select concurrency choices within the accelerator. However,

with 13 B variables, 4 I variables, and 20 M variables, the

resulting choice space consists of thousands of combinations

to select from. Hence, to simplify the prediction model, we

only look at the most important variables that affect each M

parameter. The complete M model is provided as a C/C++

program in the URL provided1.

Inter-Accelerator (M1) Model: A 3-layer manually con-

structed decision tree is formulated, selecting an accelerator

based on (B, I) combinations. As the complete decision tree

is too large, we describe a few partial decision examples. For

example, if a combination has B1 or B2 or B3 each with a value

greater than 0.5, meaning it has lots of vertex level parallelism,

then a GPU is chosen as it exploits this available parallelism.

This allows workloads such as SSSP-BF and BFS to run on the

GPU. On the other hand, if a benchmark has serial Push-Pop

accesses (B4) with a high graph density, then the multicore

is selected as it performs well on Push-Pop accesses with the

dense graph fitting in its local caches. In another example, if

a benchmark has a high value of B5 (reductions) with some

FP (B6), and negligible local computations (B11), then the

1HeteroMap Repository: https://github.com/masabahmad/HeteroMap

GPU is selected. This is because GPUs perform well with

reductions having low local computations, meaning the small

GPU threads can make fast progress using their small caches.

The multicore is selected for the case with reductions

(B5) and read-write shared data (B10). This is because the

cache capabilities in multicores allow faster operations on

shared data, while synchronization primitives required for

reductions on vertices also perform well due to faster inter-

thread communication abilities. For large graphs with I1 >
0.5, benchmarks with indirect addressing are also run on

the multicore for this reason. Larger graphs running with

benchmarks requiring FP operations (B6) are also run on

the multicore as it has a stronger memory hierarchy and FP

capabilities. Thus, workloads such as Conn. Comp., PageRank,

and Comm. are run on multicores if graphs are large.

A threshold of 0.5 is set as default to select between the

GPU and the multicore as it shows the unbiased mid-point

in normalized B, I values. For example, for high reduction

and read-write shared data values (B5 > 0.5 and B10 > 0.5),

multicores are selected. The execution model assumes that

the programmer has to input such values, and hence selecting

the mid-point seems to be the easiest way to acquire ample

performance. Other thresholds may also work by fine tuning

thresholds, however this is left as future work.

Intra-Accelerator (M2−20) Selection: Intra-accelerator cal-

culations are more complicated due to non-linear B− I to M

relationships, solidifying the need to create a simpler linear

equation model. Linear equations are of the form y = ax+ k,

which are converted to the following equation when input

(B, I) and output M variables are linearized.

M = a(B, I)+ k

As all M variables need to be set to a minimum value, k is used

to specify this value. For example, when using a multicore, at

least one core must be used, which sets k= 1 for variable M2. k

values for other M variables are set similarly. The term a(B, I)
may incorporate linear relationships of different B, I variables.

These relationships are intuitively derived using visualization

of relationships between B, I and M variables. In some cases,

an M variable may either be set or unset, and thus a threshold

of 0.5 is used for such cases after resolving the equation result.

Similar to M1, B− I to M relationships for the rest of the M

variables augment to many partial linear equations.

In GPUs, if the graph is dense (seen from I variables), then

more local threads are desirable to parallelize edges, making

GPU local threads (M20) proportional to the graph density.

To obtain the deployable value, the acquired normalized result

from the above mentioned relationship is multiplied with the

maximum value of the machine variable being applied (GPU

local threads in this case). This is given by the variable

CL_KERNEL_WORK_GROUP_SIZE for OpenCL (simplified

to max local threads). This relationship with the added con-

stant (k=1 for GPU local threads as at least 1 thread must be

spawned), is thus shown by the following equation:

M20 = Avg.Deg∗max local threads+ k

Avg.Deg = |I3− (I2/I1)|



GPU global threads (M19) derive from I1, as outer loops are

parallelized among threads. This implies that if there are more

vertices, then more threads can be spawned for additional

parallelism, resulting in the following relation:

M19 = I1∗max global threads+ k

Similarly, in multicores, cores depend on the available paral-

lelism in the outer loop, as more vertices can be parallelized

among more cores with their additional cache slices. This is

similar to the derivation of M19. Multi-threading/SIMD are

also a function of the graph density, similar to M20. The higher

the graph density, the larger the inner loops, meaning more

threads or a wider SIMD per core must be spawned. These

two variables are given by the following equations:

M2 = I1∗max cores+ k

M3,10 = Avg.Deg∗max multi− threading+ k

The thread blocktime parameter (M4) defines thread wait

times (max thread wait time is set to be 1000ms, while the

minimum can be set as 1ms). Threads are known to wait on

locks and barriers via OS calls, and higher wait times are

associated with higher contention levels. Thus, this parameter

is acquired by taking the average of B12 and B13 as it depends

on contention, and by setting k = 1, as shown by the following

equation. The purpose of this equation is to correlate thread

wait times to contention.

M4 = B12+B13/2∗max thread wait time+ k

In multicores, threads are placed in a more fine-grained

manner, using variables M5−7. Thread placements not only

depend on the average degree of the graph, but also on the

graph diameter, as it determines temporal progression of work

within a graph. Thread placement variables consist of three

variables to create placement combinations: core ids (M5),

thread ids (M6), and thread offsets (M7). Higher deviations

between I3 and the average degree signifies variations in edge

mapping across the chip. Thus, threads need to be placed

loosely across the chip. A higher graph diameter depicts longer

dependency chains between vertices, meaning that each thread

needs to work longer to achieve desired outputs. This means

that more threads are required, as vertices remain idle due

to threads being busy waiting on longer dependencies. Thus,

variables M5 − 7 are calculated by taking the average of

average degree and the diameter:

M5−7 = Avg.Deg.Dia∗max thread placement + k

Avg.Deg.Dia = |(I4+Avg.Deg)/2|

Thread affinities in multicores mean pinning threads to cores in

movable or strictly compact ways. Movable in this case means

threads may be moved around by the OS or OpenMP scheduler

if it determines that performance may be gained by moving

threads to other cores. Again, affinity is related to thread

placement, hence a relationship with Avg.Deg.Dia is assumed.

However, pinning threads to specific cores also relates to

read-write shared data (B10), as performance improves when

shared data is not moved between cores. In such cases, if
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Fig. 7: Decision Tree Heuristic Model flow for SSSP-BF

and SSSP-Delta with the USA-Cal input graph. The proposed

model predicts and selects nine M choices.

B10 is high then threads need not be moved between cores to

avoid unnecessary data movement. In the minimum case for

k, all threads may be moved around by the scheduler, setting

k = 0. Thus, thread affinity may be taken as the average of

Avg.Deg.Dia and B10, as shown by the following equation.

M8 = Avg.Deg.Dia+B10/2∗max thread placement + k

If a calculated value resolves to a larger than maximum

value for an M variable, then a ceiling function sets it to its

maximum value. The proposed M variable equations are also

expected to work for other GPUs and multicores, including

CPU multicores. The remaining M parameters pertain to

OpenMP choices not shown here due to space constraints, but

are described in the HeteroMap repository1.

M Choice Selection Example: In lieu of the shown rela-

tionships of B, I variables with M variables, we show an

example of how M variables are predicted using the proposed

model. Figure 7 shows this flow for SSSP-BF and SSSP-Delta

running with the USA-Cal (CA) input graph. Discretized B

variables are shown for the two benchmarks and the input

graph, which are acquired by benchmark profiling. Using a

visual inspection, B variables for SSSP-BF are more inclined

towards exhibiting a highly parallel workload that has low

read-write shared data and contention. This implies that SSSP-

BF is expected to perform optimally on a GPU. On the other

hand, SSSP-Delta has more sequential-like functions, such as

reductions and the use of push-pop structures. This also makes

its data more contended and shared in terms of reads and
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writes. This implies that SSSP-Delta is expected to perform

optimally on a multicore (Xeon Phi used in this case) using

the proposed B variables.

Intra-accelerator M variables are predicted using the pro-

posed equations. For SSSP-BF selecting the GPU case,

M19,20 are calculated using the vertex count, I1, and the

average degree respectively. These resolve to values of 0.1

for M19 and 1 for M20, meaning that only some global

threading is required, but maximum local threading is to be

deployed. For SSSP-Delta, M1 resolves to select the multicore.

Furthermore, M2 and M3 selections follow M19 and M20 as

the input graph retains the same I1−3 variables. This results

in M2 resolving to 7 cores and M3 resolving to its maximum

value of 4 threads per core. Thread placement variables,

M5 − 7, resolve to 0.9 due the high indicated diameter in

the CA graph, meaning that very loose thread placement is

required. These calculated variables are then deployed, which

results in a selected performance as shown in Figure 7.

To find the optimal performance point, all M variables are

swept and completion times are acquired for each of the

two benchmarks. Figure 7 shows these performance curves,

along with selected and optimal performance points, where the

selected threading results in about a 15% performance differ-

ence from the optimal case. This is because the decision tree

heuristic and relationship equations do not take into account

all the B and I variables for each M variable. Thus, some

performance exploitation remains left out, as linearizations

only help so much for non-linear relationships. Acquiring the

optimal point is only possible if all B and I variables are tuned

exhaustively for each M combination. This is not possible

using a manual decision tree and linear equations, and thus

M choice selections need to be automated with more complex

models to reason about these relationships.

V. HETEROMAP FRAMEWORK AUTOMATION

This section formulates HeteroMap’s predictors in an auto-

mated fashion, shown in Figure 8. Configuration starts with

a central performance prediction paradigm, utilizing off-line

learning, and real-time on-line evaluations. Several predictors

are evaluated, namely deep learning and regression based

predictors, that show trade-offs in terms of overhead, accuracy,

and performance. A programmer first sets (B, I) variables

for a particular benchmark and input 1 , after which the

variable profile is input to the model (decision tree heuristic or

Parallel for (vertex=0 to N)   //vertex division

Parallel for (edge=0 to edges[v])

Array[Array[edge]]   //Indirect Accesses

= Local_Computation (R/W work)

Generated Synthetic Examples

Parallel for (vertex=0 to N)   //Pareto Division

Parallel for (edge=0 to edges[v])

Lock[edge] 

Array[edge] = Local_Computation (FP)

UnLock[edge] 

Barrier

Parallel for (vertex=0 to N)   //Reduction Phase

Reduction(Array)

B1 = 1

B8 = 0.8

B9 = 0.9

B11 = 0.9

B3 = 0.8

B5 = 0.2

B6 = 0.5

B11 = 0.8

B12 = 0.1

B13 = 0.1

B Values

Example 1

Example 2

Fig. 9: Example synthetic benchmarks generated.

automated) 2 . The predicted M parameters are then deployed

on the heterogeneous accelerator setup 3 .

Offline Learning Formulation: As learning and evalua-

tion cannot be done on the same benchmarks and inputs,

synthetically generated mechanisms are required for off-line

training. Synthetic variants are generated using formulations

in existing benchmark tools [15, 27], and graph generators

(Uniform random [16] and Kronecker [17]). These are well-

known to represent real inputs [28], and are thus considered

good contenders for training. For synthetic benchmarks, the

formulation described in Section III generates various generic

micro benchmarks. This generalization follows the V − E

formulation of graph loops, and these loops form phases in

a benchmark, with each phase having unique characteristics

such as read-write shared data or FP arithmetic. Phases are

separated by barriers to propagate values to other threads.

Figure 9 shows how diverse synthetic benchmarks are cre-

ated. Mixes of phases (varying B1−5 values) are obtained by

having different B1−5 phases, along with loop variations such

as read-write data, contention, and FP requirements (varying

B6−13 values). This creates a large synthetic space, as B1−5

can create up to a hundred combinations, while variations of

B6−13 create many more. Two generated examples are shown

in Figure 9, with the first example having a vertex division

phase writing local computations to shared data using indirect

addressing. The second example shows two phases separated

by barriers, with the first phase having pareto division updating

a shared array using local computation via locks, and the

second phase doing a reduction. B values are also shown for

each of the examples (derived using Figure 5), and these are

input to the learning model to be run as training data.

Training: Several million samples are generated from different

B, I combinations mapping to M variables, which shows the

complexity of this space. This stems from several thousand

synthetic B, I-varying combinations. For a particular synthetic

graph B, I combination, only one ~M combination tuple is se-

lected, which provides the best performance, as a model would

like to train on close to optimal parameters. The resulting

training dataset thus has output architecture variable values

that provide the best performance on synthetic benchmark-

input combinations. In the case of the GTX-750 - Xeon Phi

setup, training takes several hours if millions of combinations



are run in parallel on each accelerator. These B, I combinations

are run and their optimal M selections are stored in an off-line

database for training. These performance results are highly

optimized using auto-tuning (OpenTuner used in this case).

This creates a profiler database of B, I,M tuples residing in

the CPU file system, which is indexed using B, I tuples to get

M solutions. Overheads with this training are performed per

multi-accelerator setup, and are not included in evaluation, as

training only needs to be done once per setup.

A. Online Evaluation

After training the automated model, HeteroMap takes in

real benchmarks and graphs for evaluation. Benchmarks and

inputs are first discretized into (B, I) variables, after which

their M variables are predicted. This process is depicted in

Figure 7. This work does not consider temporal aspects, where

program parts are run on either accelerator. As only on-

chip architectural characteristics of accelerators are compared

to simplify complexity, memory transfer variations are not

taken into account, and only the time spent in processing the

graph on-chip is analyzed. However, we still do a sensitivity

study in Section VII-D to show how HeteroMap responds to

memory and architecture changes. Model training and database

derivations are all done on a host CPU. Once all architectural

choices are decided, HeteroMap deploys the benchmark-input

combination on an accelerator. The overhead of HeteroMap

during runtime evaluation phase is added to the overall com-

pletion time. Different predictors are analyzed for automation,

namely the Deep Learning model, and the Regression model.

B. Deep Learning Prediction Model

Neural networks are known to effectively learn on non-

linear characteristics, and may be efficiently re-trained for

various configurations and programmer-driven strategies. Such

networks learn on non-linear performance curves, which

changes neuron weights and biases to create complex equation

representations within the neural network path from inputs

to outputs. Figure 10 shows the proposed neural network

with 4 layers and 32 neurons per layer. Benchmark-input

characteristics are characterized as 17 input neurons, with

each neuron set for a benchmark and input variable. Similarly,

output neurons are categorized for each M choice. Several

works use the internal hidden neuron amount that is at least

twice the size of the output neurons [29]. We thus take the

internal neuron count as 128 (rounding off to the nearest

power of 2) [30]. The network is configured as a feed-forward

neural network and the size of the network is selected by

balancing the trade-offs between learner complexity, accuracy,

and overhead. Non-linear performance curves can also be

captured using a regression model, as outlined next.

C. Regression Prediction Model

A non-linear regression (similar to [31]) is presented that

finds the optimal choice configurations. Regression models

are much simpler than neural models, as they need fewer

equations. However, they do require higher orders and variable

coefficients, which demand more multiplications, increasing

complexity. These trade-offs may cause variations in deciding

17 Input Neurons

13 B’s + 4 I’s

20 Output Neurons

20 M’s

Input Graph 

characteristics (I1 - I4)

Deep Learning FeedForward Network

4 Layers

32 Neurons/Layer Inter-Accelerator Choice

(M1)

Intra-Accelerator Choices

(M2 – M20)

Internal Hidden Layers/Neurons
Benchmark Characteristics

(B1 – B13)

Fig. 10: Neural Network showing network parameters.

which learning model to use for optimal performance. This

proposed regression model is fitted via Matlab, and then ported

to C++ for performance comparisons. It is analyzed that a 7th

order model fits well (provides an 85% accuracy for curve

predictions) for the target choices. Models with lower order

do not have sufficient classification accuracy, and models with

higher orders have higher performance overheads.

VI. METHODOLOGY

A. Accelerator Configurations

Two accelerators are primarily evaluated to build the multi-

accelerator architecture, NVidia GTX-750TI and Intel Xeon

Phi 7120P (parameters listed in Table II). These accelerators

are competitive as their compute performance (single/double

precision) overlap. Although the double precision capability

of the Xeon Phi is higher, not all benchmark combinations

require it during execution, and hence it contributes to the

chip differences between accelerators which vary performance.

The main memory used by both accelerators is pinned to

the smallest one available. Memory size is not considered

as a first-order effect in our work due to the fact that the

whole architecture needs to be reconfigured and relearned

for memory size changes. Still, a sensitivity study is done

to show memory size effects, where the memories of both

accelerators are swept and performance is acquired for all

combinations. Storage to stand-alone memory transfer times

are not measured, as they are assumed to be constant.

To evaluate with a more powerful GPU, we choose an

NVidia GTX-970 to replace the smaller GPU for the multi-

accelerator setup. GTX-970 incorporated 1664 cores with 3.5

TFLOPs single-precision and 0.1 TFLOPs double-precision

compute capability, and has a larger 4 GB memory size.

This work also evaluates an Intel Xeon E5-2650 v3 multi-

core having 10 hyper-threaded cores in 4 sockets, executing

at 2.30GHz, with a 1TB DDR4 RAM. In addition to the

primary (GTX-750TI, Xeon Phi) configuration, the following

accelerator combinations are analyzed: (GTX-970, Xeon Phi),

(GTX-750TI, CPU-40-Core), and (GTX-970, CPU-40-Core).

B. Benchmarks

For multicore benchmarks, SSSP-Bellman-Ford (SSSP-

BF), BFS, DFS, PageRank, PageRank-DP, Triangle Counting

(Tri.Cnt.), Community Detection (Comm.), and Connected

Components (Conn. Comp.) are acquired from CRONO [8],

MiBench [32], and Rodinia [33]. As SSSP-BF may not provide

optimal performance on lower core counts in multicores, an

SSSP implementation using ∆-Stepping (SSSP-Delta) is also

acquired from the GAP benchmark suite [11] and compared.



TABLE II: Primary Accelerator Configuration.

GTX-750Ti Xeon Phi 7120P

Cores, Threads 640, Many 61, 244
Cache Size, Coherence 2MB, No 32MB, Yes
Mem. (GB), BW. (GB/s) 2, 86 2, 352
Single-Precision (TFlops) 1.3 2.4
Double-Precision (TFlops) 0.04 1.2

TABLE III: Synthetic Input Datasets.

Training Data #Vertices #Edges Avg.Deg. Size(GB)

Unif. Rand. [16] 16-65M 16-2B 1-32K 0.01-32
Kronecker [17] 16-65M 16-2B 1-32K 0.01-32

These versions use pthread/OpenMP implementations to run

on multicores (using the offload programming model). For

GPUs, benchmarks are acquired from Pannotia [5] and Ro-

dinia [33] for OpenCL workloads, which provide SSSP, BFS,

PageRank, and PageRank-DP. The remaining benchmarks are

ported from the multicore implementations to OpenCL.

C. Processing Metrics

Original benchmarks from various benchmark suites are

not optimized. In this case, they manually tuned as well to

compare the proposed architecture and configuration frame-

work to an ideal case. For fair comparison, the same al-

gorithm within the benchmark is run on both accelerators.

Training is therefore done to optimize all parameters off-

line using OpenTuner [10]. HeteroMap’s output is compared

with an ideal output that manually optimizes by running all

possible configurations. Percentage accuracies are found by

comparing the integer outputs (constituting choice selections)

of the learners. Accuracy is measured by finding the per-

centage difference acquired performance using the proposed

predictors, to the ideal case that optimizes all M variables.

Target baselines are also taken from multicore-only and GPU-

only runs. Different learners, namely regression and adaptive

libraries, are also compared with HeteroMap in terms of

accuracy and overheads. Completion times are compared for

all benchmarks. Synthetically generated graphs for training the

automated learners are depicted in Table III.

Graphs that are larger than the accelerator’s main memory

size are broken into chunks and processed one by one spatio-

temporally using the Stinger framework [18]. To maintain

fairness between accelerators, memory transfer times are not

included in the completion time. Thus, only the time spent on

the accelerator is measured, where the overhead of HeteroMap

is added to the completion time. Energy numbers are also

compared to allow the framework to utilize it as a metric.

Power measurements are acquired using micsmc [34] and

powerstat [35] utilities. Core utilization is measured using

nvprof and PAPI [36, 37], and is the time each core spends

in executing instructions in the pipeline.

VII. EVALUATION

This section first evaluates HeteroMap by selecting an

optimal learning model, and then compares to multicore-only

and GPU-only baselines. Primary comparisons and analysis

are done using the Xeon Phi and GTX-750Ti GPU setup. The

TABLE IV: Learning Model Strategies. Speedup shown over

the GTX-750 GPU as it is the better baseline case.

Learner SpeedUp Accuracy Overhead
(%) (%) (ms)

Decision Tree 28 86.2 0.10

Linear Regression 6 50.1 0.05
Multi Regression 27 85.4 4.11

Adaptive Library[38] 8 56.5 0.17

Deep.16[26, 39] 11 59.3 1.52
Deep.32 22 68.4 2.52
Deep.64 26 82.2 3.01

Deep.128 31 90.5 3.48
Deep.256 30 92.9 6.39

various automated performance predictors are also compared

with a baseline which optimizes all choices with no learner

overheads (marked as ideal).

A. Selecting a Learning Model

It is important to understand whether different learners in

HeteroMap are optimal for the given choice space. We there-

fore take different parallel learning algorithms for compari-

son. Multiple Non-Linear Regression (fitted equations from

Section V-C) and Decision Trees (IF-ELSE systems using

thresholds from Section IV) are thus compared. A simple

linear regression is also trained and compared. XAPP [31]

uses regression with more than 7 variables, similar to the one

evaluated in this paper. Rinnegan [38] uses a performance

model adaptive library scheme, which profiles program per-

formance and then uses a simple model equation to predict

performance. The equation’s output is directly proportional to

only the data movement and accelerator utilization parameters

given by a programmer/profiler. Deep learners are compared

using various model sizes (explained in Section V-B). All are

trained with the same amount of training data/time used for

the proposed learners. Geomean completion times are taken

for all benchmark-input combinations, and the speedup of each

performance predictor is shown over the GPU.

Table IV shows that the adaptive library and linear re-

gression paradigms do not perform well for our setup. This

happens because of non-linear variations associated with graph

benchmark-input combinations and multi-accelerator architec-

ture choices. Regression does perform well enough, and results

in a higher overhead, as complex equations are required to

maintain accuracy. The decision tree model from Section IV

provides low overhead, but does not provide a comparable

speedup to the best deep learning model. Larger deep learners

follow quadratic trends in overheads and classification accu-

racy. This raises the acquired speedup to a certain extent,

after which returns diminish due to the increasing overhead.

Overall, a speedup of 31% is acquired using the deep learning

model as shown in Table IV, with a classification accuracy of

90.5% and overhead of 3.48ms. Hence, all further evaluations

are done using the deep learning model with 128 neurons.

B. Performance Variations

In various cases either accelerator will be better in perfor-

mance over the other. Figure 11 shows these variations for all
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Fig. 12: Energy benefits averaged for various inputs for a given

benchmark. (Xeon Phi vs. GTX 750Ti). All results normalized

to the maximal energy used for any B− I combination.

benchmark-input combinations with the deep learning model.

The results include the framework’s performance overhead in

selecting a combination.

GPU-Biased Combinations: Benchmark-input combina-

tions with highly concurrent algorithms, such as SSSP-BF,

BFS, and DFS mostly fare well with the GPU. Their work

division and parallelization strategy benefits from an excess

of threads, which are available on the GPU. Due to the nature

of their critical sections and data structures, the Xeon Phi

cannot exploit its SIMD capabilities, and hence it performs

poorly compared to a GPU. In the case of DFS-CO, the

multicore outperform the GPU, as it uses additional inner

loop parallelization. Such workloads are therefore easier for

the learner to configure, as their performance curves remain

biased towards the GPU.

Multicore-Biased Combinations: When benchmarks re-

quire FP capabilities they perform well on the multicore. Thus,

PR, PR-DP, and COMM benchmarks perform well on the
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Fig. 13: Core Utilization benefits averaged for various inputs

for each benchmark.

Xeon Phi as they require FP capabilities. When benchmarks

require push-pop accesses on structures, alongside reductions

(SSSP-Delta), then these benchmark-input combinations also

perform well on the Xeon Phi. Some notable exceptions in

these cases are Frnd. and Kron. graphs, which perform better

on the GPU because they are large and require more threads.

PR-CA does not perform well on a Xeon Phi, because it cannot

take advantage of the SIMD capabilities due to the lack of

density. The critical section in PR is also not large enough for

the multicore to have any advantage, hence the smaller threads

of the GPU exploit it better. Due to larger variations, the deep

learning scheduler does not calculate optimal M choices, hence

the scheduler exhibits some overhead over the GPU for some

cases. Overall, the framework is 31% better than a GPU-only

and 75% better than a Xeon-Phi-only setup.

HeteroMap vs. Manual Tuning: HeteroMap is within 10%

performance of an ideal case utilizing manual tuning, which

shows significant accuracy improvement compared to prior

learning works. The overhead of the HeteroMap framework

rises in some cases where performance is competitive. Exam-

ples such as PR-LJ perform equally well in both accelerators,

which causes HeteroMap to select slightly different intra-

accelerator choices, leading to some overheads.

C. Understanding Energy & Utilization Variations

HeteroMap is also trained for the energy objective. Fig-

ure 12 shows normalized energy (normalized to the maximum

energy for B, I combinations) for various benchmarks. Ge-

omeans of energy are taken across the different inputs for each

benchmark. The Xeon Phi has a larger power rating compared

to the two GPUs, and hence it dissipates more energy. Certain

inputs take more time to complete on the GPU, which adds

to its energy woes. HeteroMap reduces energy usage in this

case from (0.15, 0.16) to just 0.06, by a factor of 2.4×. This is

fairly close to the ideal case (0.03). This favors the deployment

of HeteroMap in energy constrained environments.

HeteroMap also improves core utilization by selecting

optimal architectural choices, and this is the main reason

performance benefits are exhibited. Figure 13 shows the raw

core utilization (%), averaged across cores and inputs, for each

benchmark. Utilization for throughput-dependent benchmarks

such as SSSP is low for the Xeon Phi as its cores spend most
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Fig. 15: Geomean results averaged for different inputs for each benchmark for the 40-core CPU. All results are normalized to

the GPU implementation.

of their time waiting for low-locality memory accesses. GPUs

can hide such latencies via thread switching, and thus have

better core utilization. HeteroMap improves the geomean by

20% over both machines, which is primarily due to optimal

accelerator and intra-accelerator threading selections.

D. Changing Fixed Accelerator & Memory Sizes

Accelerator Changes: As accelerators change across var-

ious HPC setups, a stronger GTX-970 GPU having more

resources is considered, increasing concurrency choices. A

weaker GPU was compared first to show whether the GPU

architecture inherently benefits benchmark-input combinations

or not (which was shown to be the case). Machine learning

models are re-learned for this architectural change. As shown

in Figure 14, benchmark trends compared to the smaller GPU

remain mostly the same, with concurrent workloads such as

SSSP-BF still performing well on the GPU. Comparing other

workloads that were only slightly better on the Xeon Phi

before, such as TRI-LJ, the stronger GPU performs better.

Overall, HeteroMap outperforms a GPU-only case by 14% and

a Xeon-Phi-only case by 3.8×, as the magnitude by which the

GPU outperforms Xeon Phi in some cases is higher compared

to the GTX-750. But the Xeon Phi still beats the GTX-970 for

other combinations, and 14% is remarkable as the GTX-970

has twice the single-precision compute power.

A 40-core multicore CPU is also compared with the GTX-

750Ti and the GTX-970 GPUs. Figure 15 shows the nor-

malized to GPU completion times averaged for all inputs

for a particular benchmark. The GPUs in both cases are

seen to outperform the CPU for highly parallel benchmarks

such as SSSP-BF and BFS. For other benchmarks, the CPU

outperforms the weaker GTX-750 GPU. In the case of the

GTX-970, the GPU performs better than the CPU for DFS

and Conn. Comp. This is because the stronger GPU has larger

caches and more cores than the smaller GPU, allowing the two

benchmark’s indirect accesses to be able to perform better in

the GTX-970. The 40-core multicore outperforms the GTX750

by 3% for a 2 GB memory size for each accelerator. For the

case with the GTX-970, the GPU outperforms the 40-core

multicore by 10% for a 4 GB memory size for each accelerator.

Using HeteroMap, performance gains of 22% and 5% are

acquired over the GTX-750 and the GTX-970 respectively.

HeteroMap achieves these gains as it selects the optimal

accelerator for each benchmark-input combination. Averaging

across inputs, HeteroMap picks the better result of the two

accelerators to produce better results than either of the two

accelerators for each benchmark.

GPU-Xeon Phi memory size sensitivity: Main memory

is an important parameter that one can re-architect to change

a system. However, in our system we only sweep memory

sizes that the accelerators support i.e., up to 2-4 GB for

GPUs, and up to 16GB for the Xeon Phi. Figure 16 shows

various memory sizes for the target accelerators. Error bars

show variation in performance of either accelerator. Geometric

mean of all the benchmark-input combinations is taken for a

particular memory size (GPU, Xeon Phi). The y-axis shows

the completion time normalized to the max (the upper error bar

for (1,1)), with the geomean of the average of all combinations

normalized to the GPU. The overall trend is that the Xeon Phi

performs better when it is exposed to its full main memory
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Fig. 16: Geomean Memory Size Variations for various target accelerators

compared to both GPUs (30% better than the GTX-750TI

and 15% better than the GTX-970). This is because it can

exploit the full memory bandwidth and size, forgoing the

need for memory transfers compared to GPUs. Even though

GPU memory saturates at 2 or 4 GB, keeping the GPU

performance constant after maximizing memory, the Xeon

Phi’s performance is still off by 10-20%. HeteroMap is able

to exploit this memory variation as an addition to the vector
~M, and is able to learn with performance benefits higher than

acquired with limited main memory for the Xeon Phi.

GPU-40-Core CPU memory size sensitivity: This work

also compares a 40-core multicore CPU in conjunction with

GPU accelerators. Figure 16 shows performance with various

memory sizes for this setting. The 40-core CPU performs

better than the two GPUs on average. The CPU also improves

when it is exposed to its full memory capacity, which allows

larger graphs such as Twitter and Friendster to fit in its main

memory. The CPU improves over the GTX-750Ti by 18%,

and over the GTX-970 by 5%, for the maximum memory

sizes. Although HeteroMap improves slightly in the geomean

case over the GPU, there are many individual cases where

it improves over both machines by up to 3×. The primary

reason why the 40-core CPU is better than the GTX-750 and

the GTX-970 is that the CPU runs at a higher frequency (2.3

GHz vs. GTX750’s 1.3 GHz and GTX-970’s 1.7 GHz). Other

reasons that improve the CPUs performance include its better

caching capabilities and stronger core pipelines.

VIII. RELATED WORK

Prior works in performance prediction mainly involve op-

erating system runtimes [38] [40] [41] to improve utilization

in single machine setups. Such works do not analyze graphs

and input dependence due to space complexity. There is

a plethora of work that optimizes unary single-accelerator

CPU-GPU systems [42] [6]. HeteroMap differs from these

works to justify how architectural aspects across accelera-

tors can be exploited in real-time to overcome unary setup

limitations. Schemes proposed in this paper can be deployed

on top of runtimes (OpenMP utilized in this paper). Some

works generate predictive models [31] to optimize for inputs

[43], and optimize intra-machine choices [26]. However none

of these works generate analytical models or optimize for

different competitive accelerators, such as GPUs and Xeon

Phis, for graph analytics. Such multicores have many more

concurrency choices compared to CPUs due to more thread

count, placement, dynamic scheduling, and synchronization,

combinations [44]. Prior predictive models also suffer from

high error rates (e.g. 26.9% in [31]), making QoS [45] an issue.

Therefore a proper learning analysis is necessary to enable

real-world deployment aspects.

Other works in auto-tuning such as PetaBricks [46, 9]

and OpenTuner [10] exploit algorithmic choices, and have

not explored architectural variations. Moreover, as algorithmic

spaces constitute higher complexities, learning takes unreason-

able amounts of time [47]. Regression based autotuners [31]

have lower complexities, but these are still high enough to

defer near real-time deployment. Thus developing runtimes

for optimizing such spaces in graph processing remains an

intractable problem for now, and the optimal way is to learn

intelligently on a limited number of choices to configure

accordingly. Such works also lack characterization of graph

workloads as targeted in this paper, which are more un-

predictable due to input dependencies. However, OpenTuner

is used for off-line training in this work, as it is used to

exhaustively search the complex B, I,M choice space.

IX. CONCLUSION

This paper presents a prediction framework, HeteroMap,

for a multi-accelerator architecture that optimizes architectural

choices for real-time processing of graph analytics. When

inter- and intra-accelerator and graph benchmark-input choices

are coupled together, the near-optimal choice selection prob-

lem is very complex. This work not only quantifies graph

benchmark and input choices, but also relates them to machine

choices in a multi-accelerator system using an analytical model

and automated machine learning predictors. Automation of

the framework is done using off-line training and on-line

evaluation to select an optimal accelerator and its architectural

choices. Evaluations show performance gains of 5% to 3.8×
when comparing single accelerators, and the proposed learner

is within 10% of an ideal case, which is a boost in predictive

concurrency analysis compared to prior works.
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