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Abstract—With the ever-increasing amount of data and input
variations, portable performance is becoming harder to exploit
on today’s architectures. Computational setups utilize single-chip
processors, such as GPUs or large-scale multicores for graph
analytics. Some algorithm-input combinations perform more
efficiently when utilizing a GPU’s higher concurrency and band-
width, while others perform better with a multicore’s stronger
data caching capabilities. Architectural choices also occur within
selected accelerators, where variables such as threading and
thread placement need to be decided for optimal performance.
This paper proposes a performance predictor paradigm for
a heterogeneous parallel architecture where multiple disparate
accelerators are integrated in an operational high performance
computing setup. The predictor aims to improve graph processing
efficiency by exploiting the underlying concurrency variations
within and across the heterogeneous integrated accelerators
using graph benchmark and input characteristics. The evaluation
shows that intelligent and real-time selection of near-optimal
concurrency choices provides performance benefits ranging from
5% to 3.8x, and an energy benefit averaging around 2.4x over
the traditional single-accelerator setup.

I. INTRODUCTION

Target applications that utilize graph processing are rising in
a plethora of architectures [1, 2]. Future HPC datacenters are
expected to have heterogeneous connected accelerators, with
Cray and NVidia already edging on similar ideas [3, 4]. It has
been indicated in prior works that graph analytics pose limita-
tions when executed on a single accelerator setup [5] [6]. Thus,
this paper proposes a multi-accelerator setup to situationally
adapt the graph problem and input to the right machine and
its concurrency configurations. To understand this problem,
consider the iterative Bellman-Ford algorithm and its variants
finding shortest paths. Such a graph algorithm lends itself for
data-parallel execution since it easily allows graph chunks to
be accessed in parallel. Hence, such an algorithm performs
well on a GPU, since it exploits massively available threading
to exploit parallelism [7]. On the other hand, algorithms such
as Triangle Counting are not as parallel, and comprise of re-
ductions on vertices that result in complex data access patterns.
These access patterns lead to increased data movement and
synchronization requirements [8]. Multicores perform well in
such cases as they incorporate caching capabilities for efficient
data movement and thread synchronization. These variations
solidify the need for diverse types of accelerators in a setup
executing graph analytic workloads.

Taking this problem into context, this paper takes a hetero-
geneous architecture that constitutes both types of competitive
multicore and GPU accelerators connected under their own
discrete memories. This setup exposes concurrency choices to
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Fig. 1: How input graph variations exhibit different perfor-
mance within and across underlying accelerators in SSSP.

graph applications, thus catering for the missing throughput
and reuse capabilities in GPUs and multicores. Performance
variations occur not only due to changes in benchmark char-
acteristics, but also input changes within a benchmark, as
well as different mappings of graph analytic benchmark-
input combinations on different accelerators. These choices
do not exist in a single accelerator setup. Algorithmically,
in the presence of expensive synchronization on shared-data
or indirect memory accesses, GPUs cannot perform as well
as multicores. Multicores possess hardware cache coherence
and a complex cache hierarchy to exploit performance in such
cases. In various cases, the massive throughput of the GPU,
or the data reuse of the multicore needs to be constrained to
reduce stress on the memory system and data communication.
One way to manage this is to spawn less threads in the
workload [7]. Thus, choices occur both within and across
accelerators, for different benchmarks and inputs.

Input dependence is known to play a big role in graph
analytic performance [9]. An example of such a trade-off is
shown in Figure 1, which shows an OpenTuner optimized [10]
A-stepping single source shortest path (SSSP) algorithm [11]
running a sparse and a dense graph on an Intel Xeon Phi
7120P multicore, and an Nvidia GTX-750TI GPU. Threads are
varied from minimum total available threads to maximum total
threads for both accelerators, and are normalized on the x-axis,
while the y-axis shows completion time. The two accelerators
are categorized as competitive as they possess similar compute
capabilities.

The multicore performs better than the GPU for the sparse
road network [12], as a higher graph diameter results in longer
dependency chains that determine the optimal path between
source and destination vertices. This linked traversal leads to
more complex data access patterns that are more expensive on
the GPU, as it does not possess the addressing capabilities to
perform such complex data accesses. Moreover, the different



phases in A-stepping result in more divergence and complex
indirect addressing, which adds to GPU overheads. The mul-
ticore in this scenario performs several orders of magnitude
faster than the GPU. The CAGE-14 graph [13] has a lower
diameter, and thus requires less iterations to converge. Due
to high density of edge connectivity, it lends itself to map
optimally on a GPU. Larger available core and thread counts
in GPU allow it to outperform the multicore by 3x. Even
when the optimal accelerator is selected, there are a slew of
machine choices within the accelerator to choose from. In the
case of CAGE-14 graph, intermediate threading performs best
on the GPU, as spawning more threads raises stress on the
GPU’s already small cache system. Machine choices within
and across accelerators therefore need to be tuned based on
different inputs to achieve optimal performance. Moreover, for
different benchmarks, the patterns that lead to concurrency and
data accesses also vary across graph analytics, which further
motivates the need to tune this accelerator choice space.

This poses several questions: What patterns in graph bench-
marks and inputs lead to best exploitation of concurrency
within and across GPUs and multicores? What are the architec-
tural differences in these machines that lend them for mapping
to the diverse benchmark-input combinations? What are the
run-time concurrency trade-offs of using one accelerator over
another in a heterogeneous setup? Benchmarks and inputs
reveal accelerator choices due to their direct correlations with
the optimal architectural choices. Thus, graph benchmark and
input choices need to be exposed systematically, after which
a high level intelligent predictor tunes the accelerator choices.
However, due to the increased high-dimensional space com-
plexity and non-linear aspects of having multiple accelerators
and their intra-concurrency choices, selecting the right choices
becomes a hard problem.

This paper proposes a novel performance predictor frame-
work, HeteroMap, which integrates benchmark and input
choices to do dynamic selection of parameters within and
across accelerators. The prediction framework captures pro-
gram characteristics by intelligently discretizing graph bench-
marks and inputs into easily expressible representative vari-
ables. Mappings of benchmark and input representations to
inter- and intra-accelerator choices are done using a decision
tree analytical model. The proposed analytical model is further
automated using machine learning to amortize costs associated
with the large graph algorithmic choice space. The automated
model is trained using synthetically generated graph bench-
marks [14, 15], and inputs [16, 17]. For a variety of graph
analytic benchmarks executing real-world inputs, HeteroMap
provides performance benefits ranging from 5% to 3.8 x when
compared to a single GPU-only or multicore-only setup.

II. MULTI-ACCELERATOR SYSTEM

The target system utilizes discrete GPU and multicore
accelerators. The setup considers either a weaker NVidia GTX-
750Ti GPU or a stronger NVidia GTX-970 GPU, but not
both at the same time. We also consider a weaker Intel Xeon
Phi 7120P multicore or a stronger 40-core Intel Xeon ES5-
2650 v3 multicore. All multicore-GPU combination pairs are
considered to analyze the inter- and intra-accelerator design
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Fig. 2: Multi-accelerator system example with the run-time
performance predictor for graph benchmarks and inputs.

space. This multi-accelerator system is used as a prototype to
convey the underlying idea of mapping architectural choices
using graph benchmarks and inputs. Figure 2 depicts an
example multi-accelerator system showcasing a GPU and a
Xeon Phi multicore with GDDRS5 memories, as well as various
architectural differences between associated accelerators. As
memory size changes require architectural reconfigurations,
evaluations are done on fixed memory sizes for each target
accelerator. The design space of various combinations of
memory sizes is also studied to analyze how main memory
size changes affect performance in accelerators.

Input graph chunks are loaded in the accelerator’s respec-
tive DDR memory for processing. The system is used in a
way that graph benchmark-input combinations are loaded and
executed with the appropriate architectural choices for indi-
vidual accelerators with the mentioned discrete memory size
constraint. In a real-time context, it is harder to allocate graph
chunks and process them as larger graphs do not fit in main
memory. Hence, chunks from larger graphs are thus extracted
temporally using a state-of-the-art Stinger framework [18], and
streamed in the accelerator’s memory to be processed. This
is similar to works in graph streaming [19]. The prediction
paradigm takes in graph chunk characteristics, and predicts
optimal architectural concurrency parameters for each chunk.

III. PERFORMANCE PREDICTION PARADIGM

Graph inputs consist of vertices, V, which are connected to
other vertices via edges, E. Graph benchmarks loop around
outer vertices and inner edges, and different phases in work-
loads have different complexities and have diverse data access
patterns. Due to data access and synchronization pattern differ-
ences in graph inputs and workloads, different benchmarks and
inputs perform optimally on different machines with different
intra-accelerator settings. The multi-accelerator architecture in
Figure 2 exposes these intra- and inter- accelerator variations,
and we create a knowledge base from benchmarks and inputs
that can be mapped to these machine choices.

A. Tuning the Intra- and Inter- Accelerator Choices

Various capabilities in GPU and multicore accelerators
allow improved performance extraction for specific graph
benchmark and input characteristics. This trade-off between
accelerators is depicted as M1 in Figure 3, where either a GPU
or a multicore can be selected. In GPUs, massively available
threading hides data access latencies to deliver high throughput
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Fig. 3: Machine choices (M) for GPUs and multicores.

execution. This occurs in data-parallel workloads with small
dependency chains and less shared data, and thus GPU accel-
erators must be selected for such cases. Although GPUs fare
well with highly data-parallel execution, they under-perform
when benchmarks have complex data access patterns, costly
synchronization, and inter-thread data movement. Moreover,
even in data-parallel workloads, the threading and throughput
of a GPU may need to be constrained due to varying input
sizes and densities to reduce stress on the memory system for
optimal performance. This creates two choices within a GPU:
Global threading, which distributes threads across the
GPU chip, and Local threading, which specifies the
thread count on a GPU core. These choices are listed in
Figure 3 as GPU hardware choices, M19 — 20.

Multicores perform well for complex data access patterns
by taking advantage of their cache reuse and cache coherence
capabilities. Therefore, multicores should be selected if there
is ample shared data. Multi-threading usage and placement
intra-choices depend on the input graph characteristics such
as edge density. Specifically for multicore threading, KMp
affinity/place_threads are thread placement hardware choices
in Figure 3, while # pragma simd controls SIMD usage.
Thread placement may be compact or loose, and is important
for data movement along with core and cache utilization. For
example, threads may want to use cache slices of unused cores,
which can be enabled by placing threads in the center of
unused core clusters. This improves performance by reducing
data movement and synchronization costs as threads are placed
closer to the residing data. KMP blocktime is another parameter,
which defines the time a thread waits before going to sleep.
This is helpful during contention and load imbalance, as
threads can go to sleep before polling on contended data.

Other parameters, such as those in the OpenMP paradigm,
also have non-linear relationships with benchmarks and inputs,
and are used to improve shared data reuse and movement
costs. Scheduling variables in OpenMP involve dynamic
scheduling, which control work distributions across parallel
regions. Scheduling is controlled by OMP for schedule,
which is tasked with static, dynamic, guided, or auto
choices, and data tile/chunk sizes. Data scheduling is related
to access patterns, which require dynamic scheduling on
read-write shared data. This mitigates contention and data
movement overheads [20]. Additional parameters such as
OMP_Nested exploit nested parallelism within loops, while

OMP_Max_Active_Levels states how many levels of par-
allelism can be nested. GOMP_Spincount defines how long
threads actively wait for OpenMP calls. Larger times with this
variable may be used to increase waiting times for threads
if there is high contention. These OpenMP parameters are
denoted as M9,M11 — 18, and are listed in Figure 3.

The M variable space is a function of the target benchmark
and associated graph input, and this is the formulation required
to achieve tuning of M parameters. All choices symbolize
a non-linear mapping between benchmarks and graphs, and
M choices. Thus, we create a benchmark and input graph
representation space, denoted by B and I respectively. To
minimize performance, a tuple vector, X, is constructed that
takes benchmark choices E, input choices f, and accelerator
choices ML to minimize performance in the proposed archi-
tecture: X (M) = Minp,,s(B,I). The function, Minp,, () is the
proposed configurator that finds M choices. To properly relate
benchmark and inputs with M choices, B and [ variables need
to be extracted and classified for tuning. The next sections first
describe B, I variables in the context of how they are expressed,
and their relationships with machine choices.

B. Input (I) Variables

The most relevant input variables are graph size using vertex
counts (/1) and edge density (/2), which specify the size of
the graph and the density of computations. Higher graph sizes
and densities can be divided into more threads, thus thread
count selections in accelerators are directly correlated with
I1 and I2. The maximum edge count of any vertex in the
graph (13) is also relevant as it defines how much deviation
there is in edge connectivity from the average density using
I2. This is used to define average per-thread work, as well
as divergence in work between threads. Higher or lower per-
thread work is used to decide how much local threading and/or
SIMD to use, while work divergence is used to optimally
place threads, in a selected accelerator. Graph diameter (/4)
specifies the largest connectivity distance between any two
vertices, specifying dependency chain sizes between vertices
in a graph. 14 is obtained alongside input graphs or using run-
time approximations [21]. This in turn expresses how much
the memory system is going to be stressed during execution,
as longer vertex dependency chains need to be remembered
in memory. /4 is helpful in deciding which type of memory
system needs to be tuned for an input graph.

All input variables are also easily expressible in percentages,
as maximum vertex and edge count, maximum degree, and
diameter, are known in literature [14]. These proposed [
variables are used to classify a real input graphs to expose
input variations, shown in Table I. These range from sparse
road networks, social networks, to dense mouse brain graphs.
Input Graph Expression using I Variables: / variables are
deduced from graph data and are shown in Figure 4. These
representations are simply obtained by normalizing the input
graph’s characteristic data, and setting it to a value between
0 and 1, with increments of 0.1, depending on the acquired
value. [ variables are normalized by comparing the input
graph characteristics to the maximum values available in liter-
ature [25, 11] for these variables. Normalization is necessary,



TABLE I: Input Datasets.

Evaluation Data #V #E Max.Deg | Diameter
USA-Cal(CA)[12] 1.9M 4.7 12 850
Facebook(FB)[22] 2.9M 41.9M | 90K 12
Livejournal(LJ) 4.8M 85.7M | 20K 16
Twiter(Twtr)[23] 417M | 1.47B | 3M 5
Friendster(Frnd) 65.6M | 1.81B | 5.2K 32

M. Ret. 3(CO)[24] | 562 0.57M | 1027 1
Cagel4(CAGE)[13] | 1.5M 25.6M | 80 8
rgg-n-24(Rgg)[22] 16.8M | 387M | 40 2622
Kron.-Large(Kron) 134M | 2.15B 16.0 12

as these characteristics need to be compared to each other
to predict inter- and intra-accelerator choices. Furthermore, as
graphs have extremely large variations among themselves in
terms of characteristics, a logarithmic normalization is applied
to further smoothen / values. Using the USA-Cal input graph
as an example to compute [/ variables, vertex and edge counts
in USA-Cal are low compared to the largest graphs such as
Friendster. Hence 71,2 are set to 0.1 for USA-Cal, but 0.8
for Friendster. As the maximum degree of USA-Cal is also
extremely low compared to the largest available degree in
Twitter (which is 1), I3 is set as 0 in this case. However,
its diameter is close to the highest available (850 is close to
the largest diameter of 2622 for the Rgg graph). Therefore,
we set [4 as 0.8 for USA-Cal and 1 for Twitter, and O for all
other graphs. I variables for other input graphs are extracted
similarly and shown in Figure 4.

C. Benchmark (B) Variables

In parallel graph algorithms, the outermost loop is paral-
lelized, and traverses graph vertices in various phases such
as highly parallel vertex division and pareto fronts, or less
parallel reductions and push-pop phases. An algorithm may
consist of multiple phases, where phases are separated by
global thread barriers. Inner loops traverse edges, where data is
addressed either directly using loop indexes, or indirectly using
complex pointers. Data may be either shared as read-only or as
read-write, and may require atomic updates. Read-write shared
data may require local computations with either fixed point or
floating point (FP) requirements to calculate output values to
write into global data structures. These generic primitives are
used to generate B benchmark variables. In this work, variables
B1—13 define structural differences within graph-specific data
structures and parallel phases, which are critical components
in predicting machine choices.

Initial B variables are derived using outer loop parallel
primitives. The outer loop may be data-parallel using Vertex
division (B1), lending itself easily for execution with a larger
number of independent threads. Pareto (B2) execution can
also be applied on outer loops, where chunks of vertices
mapped to threads statically increase with workload progres-
sion. These Pareto phases may also dynamically increase
vertices in threads (B3). Graph workload phases may also
take the form of Push-Pop B4 accesses, which add certain
ordering constraints for processing. This in turn enforces
dependencies, leading to complex data access patterns. Like
Push-Pop accesses, Reductions (B5) contain more sequential
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Fig. 4: Input (/) model variables. Real graphs from Table I are
discretized in increments of 0.1 from O - 1.

work than other phases, and involve synchronization primitives
with atomic operations. (B4) and (B5) phase types complicate
data access and parallelism, leading to thread divergence.
Therefore, GPUs may under perform for such scheduling
patterns [26]. However, (Bl — 3) lend themselves for high
parallelism on the GPU. These variables are important, as
they describe how much each phase constitutes a benchmark.
These vertex processing and scheduling variables (B1 —5)
are mutually exclusive, as programs are divided into phases.
For example, a program may consist of 80% vertex division,
and a 20% reduction phase. A programmer sets these variables
by finding out how much a phase constitutes each benchmark.

Compute type within phases may be FP computations done
by the inner loops of workload phases. These FP computations
determine if dedicated hardware units need to be exploited.
This is shown by how much program data is specified as
FP (B6), which trades-off accelerators, as some accelerators
may have more FP capabilities than others. For example, if
20% of program data requires FP, then (B6) is set as 0.2. FP
operations perform optimally on multicores if they are in a
dense format to exploit SIMD capabilities. Therefore, knowing
how much FP computations are needed can decide in mapping
a benchmark to either a multicore or a GPU.

In terms of memory access patterns, addressing is either
done with loop variables (B7), or by complex indirect ad-
dressing such as double pointers (B8). Complex addressing
primitives are better handled in multicores as they possess
larger caches to hold addressing metadata, and have faster
ways of resolving complex pointers and addressing. Indirectly
accessing and reusing data via addressing in the cache does
not fare well with GPUs as they do not have the capabilities
or enough cache sizes to hold such contents. A programmer
sets (B7,8) by viewing what percentage of data is accessed
indirectly, or by using loop indexes.

Runtime data movement is also diverse, and takes the
form of read-only shared data (B9), read-write shared data
(B10), and locally accessed data (B11). (B9 — 10) fare well
on multicores as they have cache management mechanisms
for efficient data movement between cores. (B11) is data



that is locally operated in thread registers, where it depends
on the accelerator’s cores on how fast they process local
computations. Each of these variables is expressed by the
programmer as a percentage of the total accessed data.

Shared data may also require updates with synchroniza-
tion (B12), where (B12) is viewed as the percentage of
data requiring locks, as certain accelerators may have better
performing atomics than others. The number of barriers in a
workload separating phases (B13) also causes variations. If
there are more locks and barriers in a benchmark, then it
produces more opportunities for inter-thread communication
to cause bottlenecks and load imbalance. (B13) is specified
as the number of barriers between phases, and each barrier
increments (B13) by 0.1, per iteration.

(B1 —5) are considered as independent variables. Although

the interactions of remaining B variables are complex, these
variables are not considered mutually exclusive. All bench-
mark variables are also easily expressible in percentages. The
programmer specifies which B variables are interesting in
a given benchmark. For simplicity, this section first uses a
v representation to signify whether each B variable is specified
or not in a benchmark. This classification is shown in the
subsequent subsection.
Benchmark Expression using B Variables: Now that bench-
mark variables are defined, these variables can be used to
classify real graph workloads. Graph workloads are thus
acquired from a variety of benchmark suites, further specified
in Section VI-B. These benchmarks are also listed in Figure 5,
with the v/ representations showing if a B variable is used in
a benchmark. Based on compile-time information about loops
and inputs, loop indexes and data structure sizes are inferred,
and are used to approximate relative strengths of B variables.
As multicore and GPU versions of benchmarks use the same
algorithms, their B variable classification remains the same.

Taking the case of SSSP-BF as an example, the only
parallelization applied is vertex division, which enables Bl to
be set as v . If the SSSP-Delta workload is used then parallel
buckets are used to push and pop edges, setting B4 as v
The GAP version also uses a reduction to select a bucket to
use in subsequent iterations, which sets BS as v/ . In terms
of program phases, the general distribution is that workloads
use data-parallel vertex division Bl along with reductions BS.
BFS uses only Pareto-division B3, and DFS uses only Push-
Pop B4, as workload phases only contain one phase of these
types. All workloads have data-driven accesses B7, and read-
write shared data B10. DFS and Conn. Comp. have complex
indirect data accesses, which are due to queuing and data-
manipulated addressing, and these set B8 to V.

B variables are percentages of program sections or percent-
ages of data types used. These variables need to be normalized
because simple v representations do not show intensities of
each B variable. B variables are depicted within a range of
0 and 1, with increments of 0.1. Finer increments may be
applied, however we keep the model simple by not using
very fine increments. As graph workloads consist of only
phases separated by barriers, values for Bl —5 variables for
phases add to 1 for all benchmarks. To assign values for more
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Fig. 5: Benchmark (B) model variables. For simplicity, B
variables that are used in a benchmark are discretized as
v here for each graph benchmark utilized in this work.

than one Bl —5 variables in a benchmark (e.g. a workload
having both Push-Pop and Reduction phases), the programmer
decides approximately how much % code is in each phase. The
programmer can statically view data structures to assign how
much % of the structures fall in each of the remaining variable
B6 — 12 categories. By specifying B variable values between
0 and 1, the programmer assigns percentages to variables,
therefore properly assigning benchmark characteristics.

As an example, we take SSSP-BF to show this discretiza-
tion, with its pseudocode shown in Figure 6 to visualize B
variables. As all of the program code in SSSP-BF only uses
vertex division to parallelize outer loops, thus Bl is set as
1 in Figure 6, while the remaining B2 — 5 are set as 0. B6
is set as 0 because SSSP-BF does not utilize FP operations.
Most of the data accesses are done using loop indexes, such as
accesses for D_tmp[], D[], and W[] arrays, therefore setting
B7 to 0.8. B8 is set to 0 as there are no indirect accesses.
Approximately half of the program data is composed of the
input graph W/[], which is read-only by all threads. The other
half are the distance arrays (D_tmp/[] and D[]), which are read
and written frequently by all threads. This sets B9 and B10
to 0.5 each. Local computations are done on D_tmp[], which
constitutes approximately 20% of program data, hence this sets
B11to 0.2. Locks are also applied only on the D[] array, which
is half the size of the two distance arrays combined, and there
are two barrier calls in the benchmark. This sets B12 and B13
to 0.2. Now that B,[ variables are set, relationships between
B,I and M variables can be found to predict M variables.



SSSP-Bellman-Ford Example

While (terminate) ~-*Bl=1 " Vertex Div
B2=0
Parallel for (v: vertex=0 - N) B3=0
Parallel for (e: edge=0-edges[v]) pa-0
If D[v] + W[v,e] < D_tmp[e] B5=0
lock[e]
D_tmple] = D[v] + Wv,e] B6=0
unlock[e] - .~ ¥B7=0.8 Data Driv.
Barrier T T .. B8=0
Parallel for (vertex=0-N)__ *B9=05 Read-only
D[v] = D_tmpl[v] L ‘ B10=0.5 R/W Shared
if (D ==D_tmp) " *B11=0.2 Local Acc.
terminate = 1 *B12=0.2 Locks
Barrier »B13=0.2 Barriers

Fig. 6: Discretization of (B) variables for SSSP-Bellman-Ford
(SSSP-BF) with increments of 0.1 from O - 1.

IV. HETEROMAP DECISION TREE MODEL

Patterns of M mappings allow visualization of accelerator
choices with B and [ variables. For example, benchmarks uti-
lizing Push-Pop (B4) phases are expected to perform better on
multicores than on GPUs. This is due to better data movement
capabilities in multicore cache hierarchies, as well as better
core performance for queuing operations. On the other hand,
benchmarks with high data-level parallelism and local thread
computations are expected to perform well on a GPU. This
is because GPUs possess more threads to exploit available
parallelism, and large register files to hold local computations.
These relationships between B, and M variables are used to
create a simplified analytical decision tree model.

This section proposes a decision tree heuristic that analyt-
ically minimizes the choice space problem for performance
(and energy if needed). Decision trees are easily readable and
tunable, and thus allow for manual modeling. This model
is expressed as an inter-accelerator model to first select an
optimal accelerator, and then an intra-accelerator model to
select concurrency choices within the accelerator. However,
with 13 B variables, 4 [ variables, and 20 M variables, the
resulting choice space consists of thousands of combinations
to select from. Hence, to simplify the prediction model, we
only look at the most important variables that affect each M
parameter. The complete M model is provided as a C/C++
program in the URL provided'.

Inter-Accelerator (M1) Model: A 3-layer manually con-
structed decision tree is formulated, selecting an accelerator
based on (B,I) combinations. As the complete decision tree
is too large, we describe a few partial decision examples. For
example, if a combination has B1 or B2 or B3 each with a value
greater than 0.5, meaning it has lots of vertex level parallelism,
then a GPU is chosen as it exploits this available parallelism.
This allows workloads such as SSSP-BF and BFS to run on the
GPU. On the other hand, if a benchmark has serial Push-Pop
accesses (B4) with a high graph density, then the multicore
is selected as it performs well on Push-Pop accesses with the
dense graph fitting in its local caches. In another example, if
a benchmark has a high value of B5 (reductions) with some
FP (B6), and negligible local computations (B11), then the

'HeteroMap Repository: https://github.com/masabahmad/HeteroMap

GPU is selected. This is because GPUs perform well with
reductions having low local computations, meaning the small
GPU threads can make fast progress using their small caches.

The multicore is selected for the case with reductions
(B5) and read-write shared data (B10). This is because the
cache capabilities in multicores allow faster operations on
shared data, while synchronization primitives required for
reductions on vertices also perform well due to faster inter-
thread communication abilities. For large graphs with /1 >
0.5, benchmarks with indirect addressing are also run on
the multicore for this reason. Larger graphs running with
benchmarks requiring FP operations (B6) are also run on
the multicore as it has a stronger memory hierarchy and FP
capabilities. Thus, workloads such as Conn. Comp., PageRank,
and Comm. are run on multicores if graphs are large.

A threshold of 0.5 is set as default to select between the
GPU and the multicore as it shows the unbiased mid-point
in normalized B,[ values. For example, for high reduction
and read-write shared data values (B5 > 0.5 and B10 > 0.5),
multicores are selected. The execution model assumes that
the programmer has to input such values, and hence selecting
the mid-point seems to be the easiest way to acquire ample
performance. Other thresholds may also work by fine tuning
thresholds, however this is left as future work.
Intra-Accelerator (M2 —20) Selection: Intra-accelerator cal-
culations are more complicated due to non-linear B—1 to M
relationships, solidifying the need to create a simpler linear
equation model. Linear equations are of the form y = ax+k,
which are converted to the following equation when input
(B,I) and output M variables are linearized.

M =a(B,I)+k

As all M variables need to be set to a minimum value, k is used
to specify this value. For example, when using a multicore, at
least one core must be used, which sets k = 1 for variable M2. k
values for other M variables are set similarly. The term a(B,I)
may incorporate linear relationships of different B, [ variables.
These relationships are intuitively derived using visualization
of relationships between B,I and M variables. In some cases,
an M variable may either be set or unset, and thus a threshold
of 0.5 is used for such cases after resolving the equation result.
Similar to M1, B—1 to M relationships for the rest of the M
variables augment to many partial linear equations.

In GPUs, if the graph is dense (seen from [ variables), then
more local threads are desirable to parallelize edges, making
GPU local threads (M20) proportional to the graph density.
To obtain the deployable value, the acquired normalized result
from the above mentioned relationship is multiplied with the
maximum value of the machine variable being applied (GPU
local threads in this case). This is given by the variable
CL_KERNEL_WORK_GROUP_SIZE for OpenCL (simplified
to max_local_threads). This relationship with the added con-
stant (k=1 for GPU local threads as at least 1 thread must be
spawned), is thus shown by the following equation:

M?20 = Avg.Deg * max_local_threads +k
Avg.Deg = |13 — (12/11)|



GPU global threads (M19) derive from /1, as outer loops are
parallelized among threads. This implies that if there are more
vertices, then more threads can be spawned for additional
parallelism, resulting in the following relation:

M19 = I1 xmax_global_threads + k

Similarly, in multicores, cores depend on the available paral-
lelism in the outer loop, as more vertices can be parallelized
among more cores with their additional cache slices. This is
similar to the derivation of M19. Multi-threading/SIMD are
also a function of the graph density, similar to M20. The higher
the graph density, the larger the inner loops, meaning more
threads or a wider SIMD per core must be spawned. These
two variables are given by the following equations:

M2 =11 xmax_cores +k
M3,10 = Avg.Deg * max_multi — threading + k

The thread blocktime parameter (M4) defines thread wait
times (max_thread_wait_time is set to be 1000ms, while the
minimum can be set as 1ms). Threads are known to wait on
locks and barriers via OS calls, and higher wait times are
associated with higher contention levels. Thus, this parameter
is acquired by taking the average of B12 and B13 as it depends
on contention, and by setting k = 1, as shown by the following
equation. The purpose of this equation is to correlate thread
wait times to contention.

M4 = B12+ B13/2 xmax_thread_wait_time +k

In multicores, threads are placed in a more fine-grained
manner, using variables M5 — 7. Thread placements not only
depend on the average degree of the graph, but also on the
graph diameter, as it determines temporal progression of work
within a graph. Thread placement variables consist of three
variables to create placement combinations: core ids (MS),
thread ids (M6), and thread offsets (M7). Higher deviations
between I3 and the average degree signifies variations in edge
mapping across the chip. Thus, threads need to be placed
loosely across the chip. A higher graph diameter depicts longer
dependency chains between vertices, meaning that each thread
needs to work longer to achieve desired outputs. This means
that more threads are required, as vertices remain idle due
to threads being busy waiting on longer dependencies. Thus,
variables M5 — 7 are calculated by taking the average of
average degree and the diameter:

MS5 — 7 = Avg.Deg.Dia x max_thread_placement + k
Avg.Deg.Dia = |(I4+ Avg.Deg) /2|

Thread affinities in multicores mean pinning threads to cores in
movable or strictly compact ways. Movable in this case means
threads may be moved around by the OS or OpenMP scheduler
if it determines that performance may be gained by moving
threads to other cores. Again, affinity is related to thread
placement, hence a relationship with Avg.Deg.Dia is assumed.
However, pinning threads to specific cores also relates to
read-write shared data (B10), as performance improves when
shared data is not moved between cores. In such cases, if
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Fig. 7: Decision Tree Heuristic Model flow for SSSP-BF
and SSSP-Delta with the USA-Cal input graph. The proposed
model predicts and selects nine M choices.

B10 is high then threads need not be moved between cores to
avoid unnecessary data movement. In the minimum case for
k, all threads may be moved around by the scheduler, setting
k = 0. Thus, thread affinity may be taken as the average of
Avg.Deg.Dia and B10, as shown by the following equation.

M8 = Avg.Deg.Dia+ B10/2 «xmax_thread_placement + k

If a calculated value resolves to a larger than maximum
value for an M variable, then a ceiling function sets it to its
maximum value. The proposed M variable equations are also
expected to work for other GPUs and multicores, including
CPU multicores. The remaining M parameters pertain to
OpenMP choices not shown here due to space constraints, but
are described in the HeteroMap repository!.

M Choice Selection Example: In lieu of the shown rela-
tionships of B,[ variables with M variables, we show an
example of how M variables are predicted using the proposed
model. Figure 7 shows this flow for SSSP-BF and SSSP-Delta
running with the USA-Cal (CA) input graph. Discretized B
variables are shown for the two benchmarks and the input
graph, which are acquired by benchmark profiling. Using a
visual inspection, B variables for SSSP-BF are more inclined
towards exhibiting a highly parallel workload that has low
read-write shared data and contention. This implies that SSSP-
BF is expected to perform optimally on a GPU. On the other
hand, SSSP-Delta has more sequential-like functions, such as
reductions and the use of push-pop structures. This also makes
its data more contended and shared in terms of reads and
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writes. This implies that SSSP-Delta is expected to perform
optimally on a multicore (Xeon Phi used in this case) using
the proposed B variables.

Intra-accelerator M variables are predicted using the pro-
posed equations. For SSSP-BF selecting the GPU case,
M19,20 are calculated using the vertex count, /1, and the
average degree respectively. These resolve to values of 0.1
for M19 and 1 for M20, meaning that only some global
threading is required, but maximum local threading is to be
deployed. For SSSP-Delta, M1 resolves to select the multicore.
Furthermore, M2 and M3 selections follow M19 and M20 as
the input graph retains the same /1 — 3 variables. This results
in M?2 resolving to 7 cores and M3 resolving to its maximum
value of 4 threads per core. Thread placement variables,
M5 — 17, resolve to 0.9 due the high indicated diameter in
the CA graph, meaning that very loose thread placement is
required. These calculated variables are then deployed, which
results in a selected performance as shown in Figure 7.

To find the optimal performance point, all M variables are
swept and completion times are acquired for each of the
two benchmarks. Figure 7 shows these performance curves,
along with selected and optimal performance points, where the
selected threading results in about a 15% performance differ-
ence from the optimal case. This is because the decision tree
heuristic and relationship equations do not take into account
all the B and [ variables for each M variable. Thus, some
performance exploitation remains left out, as linearizations
only help so much for non-linear relationships. Acquiring the
optimal point is only possible if all B and / variables are tuned
exhaustively for each M combination. This is not possible
using a manual decision tree and linear equations, and thus
M choice selections need to be automated with more complex
models to reason about these relationships.

V. HETEROMAP FRAMEWORK AUTOMATION

This section formulates HeteroMap’s predictors in an auto-
mated fashion, shown in Figure 8. Configuration starts with
a central performance prediction paradigm, utilizing off-line
learning, and real-time on-line evaluations. Several predictors
are evaluated, namely deep learning and regression based
predictors, that show trade-offs in terms of overhead, accuracy,
and performance. A programmer first sets (B,[) variables
for a particular benchmark and input @, after which the
variable profile is input to the model (decision tree heuristic or

Generated Synthetic Examples B Values
Example 1
Parallel for (vertex=0 to N) //vertex division Bl=1
Parallel for (edge=0 to edges|v]) gg f 82
Array[Array[edge]] //Indirect Accesses Bll-: 0 9
= Local_Computation (R/W work) ’
Example 2
Parallel for (vertex=0 to N) //Pareto Division B3=0.8
Parallel for (edge=0 to edges|[v]) B5=0.2
Lock[edge] B6=0.5
Array[edge] = Local_Computation (FP) B11=0.8
UnLock[edge] B12=0.1
Barrier B13=0.1
Parallel for (vertex=0to N) //Reduction Phase
Reduction(Array)

Fig. 9: Example synthetic benchmarks generated.

automated) @. The predicted M parameters are then deployed
on the heterogeneous accelerator setup €.
Offline Learning Formulation: As learning and evalua-
tion cannot be done on the same benchmarks and inputs,
synthetically generated mechanisms are required for off-line
training. Synthetic variants are generated using formulations
in existing benchmark tools [15, 27], and graph generators
(Uniform random [16] and Kronecker [17]). These are well-
known to represent real inputs [28], and are thus considered
good contenders for training. For synthetic benchmarks, the
formulation described in Section III generates various generic
micro benchmarks. This generalization follows the V — FE
formulation of graph loops, and these loops form phases in
a benchmark, with each phase having unique characteristics
such as read-write shared data or FP arithmetic. Phases are
separated by barriers to propagate values to other threads.
Figure 9 shows how diverse synthetic benchmarks are cre-
ated. Mixes of phases (varying B1 —5 values) are obtained by
having different B1 —5 phases, along with loop variations such
as read-write data, contention, and FP requirements (varying
B6 — 13 values). This creates a large synthetic space, as Bl —5
can create up to a hundred combinations, while variations of
B6 — 13 create many more. Two generated examples are shown
in Figure 9, with the first example having a vertex division
phase writing local computations to shared data using indirect
addressing. The second example shows two phases separated
by barriers, with the first phase having pareto division updating
a shared array using local computation via locks, and the
second phase doing a reduction. B values are also shown for
each of the examples (derived using Figure 5), and these are
input to the learning model to be run as training data.
Training: Several million samples are generated from different
B,I combinations mapping to M variables, which shows the
complexity of this space. This stems from several thousand
synthetic B, I-varying combinations. For a particular synthetic
graph B,I combination, only one M combination tuple is se-
lected, which provides the best performance, as a model would
like to train on close to optimal parameters. The resulting
training dataset thus has output architecture variable values
that provide the best performance on synthetic benchmark-
input combinations. In the case of the GTX-750 - Xeon Phi
setup, training takes several hours if millions of combinations



are run in parallel on each accelerator. These B,/ combinations
are run and their optimal M selections are stored in an off-line
database for training. These performance results are highly
optimized using auto-tuning (OpenTuner used in this case).
This creates a profiler database of B,I,M tuples residing in
the CPU file system, which is indexed using B, I tuples to get
M solutions. Overheads with this training are performed per
multi-accelerator setup, and are not included in evaluation, as
training only needs to be done once per setup.

A. Online Evaluation

After training the automated model, HeteroMap takes in
real benchmarks and graphs for evaluation. Benchmarks and
inputs are first discretized into (B,I) variables, after which
their M variables are predicted. This process is depicted in
Figure 7. This work does not consider temporal aspects, where
program parts are run on either accelerator. As only on-
chip architectural characteristics of accelerators are compared
to simplify complexity, memory transfer variations are not
taken into account, and only the time spent in processing the
graph on-chip is analyzed. However, we still do a sensitivity
study in Section VII-D to show how HeteroMap responds to
memory and architecture changes. Model training and database
derivations are all done on a host CPU. Once all architectural
choices are decided, HeteroMap deploys the benchmark-input
combination on an accelerator. The overhead of HeteroMap
during runtime evaluation phase is added to the overall com-
pletion time. Different predictors are analyzed for automation,
namely the Deep Learning model, and the Regression model.

B. Deep Learning Prediction Model

Neural networks are known to effectively learn on non-
linear characteristics, and may be efficiently re-trained for
various configurations and programmer-driven strategies. Such
networks learn on non-linear performance curves, which
changes neuron weights and biases to create complex equation
representations within the neural network path from inputs
to outputs. Figure 10 shows the proposed neural network
with 4 layers and 32 neurons per layer. Benchmark-input
characteristics are characterized as 17 input neurons, with
each neuron set for a benchmark and input variable. Similarly,
output neurons are categorized for each M choice. Several
works use the internal hidden neuron amount that is at least
twice the size of the output neurons [29]. We thus take the
internal neuron count as 128 (rounding off to the nearest
power of 2) [30]. The network is configured as a feed-forward
neural network and the size of the network is selected by
balancing the trade-offs between learner complexity, accuracy,
and overhead. Non-linear performance curves can also be
captured using a regression model, as outlined next.

C. Regression Prediction Model

A non-linear regression (similar to [31]) is presented that
finds the optimal choice configurations. Regression models
are much simpler than neural models, as they need fewer
equations. However, they do require higher orders and variable
coefficients, which demand more multiplications, increasing
complexity. These trade-offs may cause variations in deciding

Internal Hidden Layers/Neurons

Benchmark Characteristics EY Neurons/Layer Inter-Accelerator Choice
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Fig. 10: Neural Network showing network parameters.

which learning model to use for optimal performance. This
proposed regression model is fitted via Matlab, and then ported
to C++ for performance comparisons. It is analyzed that a 7th
order model fits well (provides an 85% accuracy for curve
predictions) for the target choices. Models with lower order
do not have sufficient classification accuracy, and models with
higher orders have higher performance overheads.

VI. METHODOLOGY
A. Accelerator Configurations

Two accelerators are primarily evaluated to build the multi-
accelerator architecture, NVidia GTX-750TI and Intel Xeon
Phi 7120P (parameters listed in Table II). These accelerators
are competitive as their compute performance (single/double
precision) overlap. Although the double precision capability
of the Xeon Phi is higher, not all benchmark combinations
require it during execution, and hence it contributes to the
chip differences between accelerators which vary performance.
The main memory used by both accelerators is pinned to
the smallest one available. Memory size is not considered
as a first-order effect in our work due to the fact that the
whole architecture needs to be reconfigured and relearned
for memory size changes. Still, a sensitivity study is done
to show memory size effects, where the memories of both
accelerators are swept and performance is acquired for all
combinations. Storage to stand-alone memory transfer times
are not measured, as they are assumed to be constant.

To evaluate with a more powerful GPU, we choose an
NVidia GTX-970 to replace the smaller GPU for the multi-
accelerator setup. GTX-970 incorporated 1664 cores with 3.5
TFLOPs single-precision and 0.1 TFLOPs double-precision
compute capability, and has a larger 4 GB memory size.
This work also evaluates an Intel Xeon E5-2650 v3 multi-
core having 10 hyper-threaded cores in 4 sockets, executing
at 2.30GHz, with a 1TB DDR4 RAM. In addition to the
primary (GTX-750TI, Xeon Phi) configuration, the following
accelerator combinations are analyzed: (GTX-970, Xeon Phi),
(GTX-750TI, CPU-40-Core), and (GTX-970, CPU-40-Core).

B. Benchmarks

For multicore benchmarks, SSSP-Bellman-Ford (SSSP-
BF), BFS, DFS, PageRank, PageRank-DP, Triangle Counting
(Tri.Cnt.), Community Detection (Comm.), and Connected
Components (Conn. Comp.) are acquired from CRONO [8],
MiBench [32], and Rodinia [33]. As SSSP-BF may not provide
optimal performance on lower core counts in multicores, an
SSSP implementation using A-Stepping (SSSP-Delta) is also
acquired from the GAP benchmark suite [11] and compared.



TABLE II: Primary Accelerator Configuration.

GTX-750Ti | Xeon Phi 7120P
Cores, Threads 640, Many 61, 244
Cache Size, Coherence 2MB, No 32MB, Yes
Mem. (GB), BW. (GB/s) 2, 86 2, 352

Single-Precision (TFlops) 1.3 2.4
Double-Precision (TFlops) | 0.04 1.2

TABLE III: Synthetic Input Datasets.

Training Data #Vertices | #Edges | Avg.Deg. | Size(GB)
Unif. Rand. [16] | 16-65M 16-2B 1-32K 0.01-32
Kronecker [17] 16-65M 16-2B 1-32K 0.01-32

These versions use pthread/OpenMP implementations to run
on multicores (using the offload programming model). For
GPUs, benchmarks are acquired from Pannotia [5] and Ro-
dinia [33] for OpenCL workloads, which provide SSSP, BFS,
PageRank, and PageRank-DP. The remaining benchmarks are
ported from the multicore implementations to OpenCL.

C. Processing Metrics

Original benchmarks from various benchmark suites are
not optimized. In this case, they manually tuned as well to
compare the proposed architecture and configuration frame-
work to an ideal case. For fair comparison, the same al-
gorithm within the benchmark is run on both accelerators.
Training is therefore done to optimize all parameters off-
line using OpenTuner [10]. HeteroMap’s output is compared
with an ideal output that manually optimizes by running all
possible configurations. Percentage accuracies are found by
comparing the integer outputs (constituting choice selections)
of the learners. Accuracy is measured by finding the per-
centage difference acquired performance using the proposed
predictors, to the ideal case that optimizes all M variables.
Target baselines are also taken from multicore-only and GPU-
only runs. Different learners, namely regression and adaptive
libraries, are also compared with HeteroMap in terms of
accuracy and overheads. Completion times are compared for
all benchmarks. Synthetically generated graphs for training the
automated learners are depicted in Table III.

Graphs that are larger than the accelerator’s main memory
size are broken into chunks and processed one by one spatio-
temporally using the Stinger framework [18]. To maintain
fairness between accelerators, memory transfer times are not
included in the completion time. Thus, only the time spent on
the accelerator is measured, where the overhead of HeteroMap
is added to the completion time. Energy numbers are also
compared to allow the framework to utilize it as a metric.
Power measurements are acquired using micsmc [34] and
powerstat [35] utilities. Core utilization is measured using
nvprof and PAPT [36, 37], and is the time each core spends
in executing instructions in the pipeline.

VII. EVALUATION

This section first evaluates HeteroMap by selecting an
optimal learning model, and then compares to multicore-only
and GPU-only baselines. Primary comparisons and analysis
are done using the Xeon Phi and GTX-750Ti GPU setup. The

TABLE IV: Learning Model Strategies. Speedup shown over
the GTX-750 GPU as it is the better baseline case.

Learner SpeedUp Accuracy Overhead
(%) (%) (ms)
Decision Tree 28 86.2 0.10
Linear Regression 6 50.1 0.05
Multi Regression 27 85.4 4.11
Adaptive Library[38] 8 56.5 0.17
Deep.16[26, 39] 11 59.3 1.52
Deep.32 22 68.4 2.52
Deep.64 26 82.2 3.01
Deep.128 31 90.5 3.48
Deep.256 30 92.9 6.39

various automated performance predictors are also compared
with a baseline which optimizes all choices with no learner
overheads (marked as ideal).

A. Selecting a Learning Model

It is important to understand whether different learners in
HeteroMap are optimal for the given choice space. We there-
fore take different parallel learning algorithms for compari-
son. Multiple Non-Linear Regression (fitted equations from
Section V-C) and Decision Trees (IF-ELSE systems using
thresholds from Section IV) are thus compared. A simple
linear regression is also trained and compared. XAPP [31]
uses regression with more than 7 variables, similar to the one
evaluated in this paper. Rinnegan [38] uses a performance
model adaptive library scheme, which profiles program per-
formance and then uses a simple model equation to predict
performance. The equation’s output is directly proportional to
only the data movement and accelerator utilization parameters
given by a programmer/profiler. Deep learners are compared
using various model sizes (explained in Section V-B). All are
trained with the same amount of training data/time used for
the proposed learners. Geomean completion times are taken
for all benchmark-input combinations, and the speedup of each
performance predictor is shown over the GPU.

Table IV shows that the adaptive library and linear re-
gression paradigms do not perform well for our setup. This
happens because of non-linear variations associated with graph
benchmark-input combinations and multi-accelerator architec-
ture choices. Regression does perform well enough, and results
in a higher overhead, as complex equations are required to
maintain accuracy. The decision tree model from Section IV
provides low overhead, but does not provide a comparable
speedup to the best deep learning model. Larger deep learners
follow quadratic trends in overheads and classification accu-
racy. This raises the acquired speedup to a certain extent,
after which returns diminish due to the increasing overhead.
Overall, a speedup of 31% is acquired using the deep learning
model as shown in Table IV, with a classification accuracy of
90.5% and overhead of 3.48ms. Hence, all further evaluations
are done using the deep learning model with 128 neurons.

B. Performance Variations

In various cases either accelerator will be better in perfor-
mance over the other. Figure 11 shows these variations for all
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Fig. 12: Energy benefits averaged for various inputs for a given
benchmark. (Xeon Phi vs. GTX 750Ti). All results normalized
to the maximal energy used for any B —I combination.

benchmark-input combinations with the deep learning model.
The results include the framework’s performance overhead in
selecting a combination.

GPU-Biased Combinations: Benchmark-input combina-
tions with highly concurrent algorithms, such as SSSP-BF,
BFS, and DFS mostly fare well with the GPU. Their work
division and parallelization strategy benefits from an excess
of threads, which are available on the GPU. Due to the nature
of their critical sections and data structures, the Xeon Phi
cannot exploit its SIMD capabilities, and hence it performs
poorly compared to a GPU. In the case of DFS-CO, the
multicore outperform the GPU, as it uses additional inner
loop parallelization. Such workloads are therefore easier for
the learner to configure, as their performance curves remain
biased towards the GPU.

Multicore-Biased Combinations: When benchmarks re-
quire FP capabilities they perform well on the multicore. Thus,
PR, PR-DP, and COMM benchmarks perform well on the
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Fig. 13: Core Utilization benefits averaged for various inputs
for each benchmark.

Xeon Phi as they require FP capabilities. When benchmarks
require push-pop accesses on structures, alongside reductions
(SSSP-Delta), then these benchmark-input combinations also
perform well on the Xeon Phi. Some notable exceptions in
these cases are Frnd. and Kron. graphs, which perform better
on the GPU because they are large and require more threads.
PR-CA does not perform well on a Xeon Phi, because it cannot
take advantage of the SIMD capabilities due to the lack of
density. The critical section in PR is also not large enough for
the multicore to have any advantage, hence the smaller threads
of the GPU exploit it better. Due to larger variations, the deep
learning scheduler does not calculate optimal M choices, hence
the scheduler exhibits some overhead over the GPU for some
cases. Overall, the framework is 31% better than a GPU-only
and 75% better than a Xeon-Phi-only setup.

HeteroMap vs. Manual Tuning: HeteroMap is within 10%
performance of an ideal case utilizing manual tuning, which
shows significant accuracy improvement compared to prior
learning works. The overhead of the HeteroMap framework
rises in some cases where performance is competitive. Exam-
ples such as PR-LJ perform equally well in both accelerators,
which causes HeteroMap to select slightly different intra-
accelerator choices, leading to some overheads.

C. Understanding Energy & Utilization Variations

HeteroMap is also trained for the energy objective. Fig-
ure 12 shows normalized energy (normalized to the maximum
energy for B,I combinations) for various benchmarks. Ge-
omeans of energy are taken across the different inputs for each
benchmark. The Xeon Phi has a larger power rating compared
to the two GPUs, and hence it dissipates more energy. Certain
inputs take more time to complete on the GPU, which adds
to its energy woes. HeteroMap reduces energy usage in this
case from (0.15, 0.16) to just 0.06, by a factor of 2.4x. This is
fairly close to the ideal case (0.03). This favors the deployment
of HeteroMap in energy constrained environments.

HeteroMap also improves core utilization by selecting
optimal architectural choices, and this is the main reason
performance benefits are exhibited. Figure 13 shows the raw
core utilization (%), averaged across cores and inputs, for each
benchmark. Utilization for throughput-dependent benchmarks
such as SSSP is low for the Xeon Phi as its cores spend most
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the GPU implementation.

of their time waiting for low-locality memory accesses. GPUs
can hide such latencies via thread switching, and thus have
better core utilization. HeteroMap improves the geomean by
20% over both machines, which is primarily due to optimal
accelerator and intra-accelerator threading selections.

D. Changing Fixed Accelerator & Memory Sizes

Accelerator Changes: As accelerators change across var-
ious HPC setups, a stronger GTX-970 GPU having more
resources is considered, increasing concurrency choices. A
weaker GPU was compared first to show whether the GPU
architecture inherently benefits benchmark-input combinations
or not (which was shown to be the case). Machine learning
models are re-learned for this architectural change. As shown
in Figure 14, benchmark trends compared to the smaller GPU
remain mostly the same, with concurrent workloads such as
SSSP-BF still performing well on the GPU. Comparing other
workloads that were only slightly better on the Xeon Phi
before, such as TRI-LJ, the stronger GPU performs better.
Overall, HeteroMap outperforms a GPU-only case by 14% and
a Xeon-Phi-only case by 3.8, as the magnitude by which the
GPU outperforms Xeon Phi in some cases is higher compared
to the GTX-750. But the Xeon Phi still beats the GTX-970 for
other combinations, and 14% is remarkable as the GTX-970
has twice the single-precision compute power.

A 40-core multicore CPU is also compared with the GTX-
750Ti and the GTX-970 GPUs. Figure 15 shows the nor-
malized to GPU completion times averaged for all inputs
for a particular benchmark. The GPUs in both cases are
seen to outperform the CPU for highly parallel benchmarks

such as SSSP-BF and BFS. For other benchmarks, the CPU
outperforms the weaker GTX-750 GPU. In the case of the
GTX-970, the GPU performs better than the CPU for DFS
and Conn. Comp. This is because the stronger GPU has larger
caches and more cores than the smaller GPU, allowing the two
benchmark’s indirect accesses to be able to perform better in
the GTX-970. The 40-core multicore outperforms the GTX750
by 3% for a 2 GB memory size for each accelerator. For the
case with the GTX-970, the GPU outperforms the 40-core
multicore by 10% for a 4 GB memory size for each accelerator.
Using HeteroMap, performance gains of 22% and 5% are
acquired over the GTX-750 and the GTX-970 respectively.
HeteroMap achieves these gains as it selects the optimal
accelerator for each benchmark-input combination. Averaging
across inputs, HeteroMap picks the better result of the two
accelerators to produce better results than either of the two
accelerators for each benchmark.

GPU-Xeon Phi memory size sensitivity: Main memory
is an important parameter that one can re-architect to change
a system. However, in our system we only sweep memory
sizes that the accelerators support i.e., up to 2-4 GB for
GPUs, and up to 16GB for the Xeon Phi. Figure 16 shows
various memory sizes for the target accelerators. Error bars
show variation in performance of either accelerator. Geometric
mean of all the benchmark-input combinations is taken for a
particular memory size (GPU, Xeon Phi). The y-axis shows
the completion time normalized to the max (the upper error bar
for (1,1)), with the geomean of the average of all combinations
normalized to the GPU. The overall trend is that the Xeon Phi
performs better when it is exposed to its full main memory
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compared to both GPUs (30% better than the GTX-750TI
and 15% better than the GTX-970). This is because it can
exploit the full memory bandwidth and size, forgoing the
need for memory transfers compared to GPUs. Even though
GPU memory saturates at 2 or 4 GB, keeping the GPU
performance constant after maximizing memory, the Xeon
Phi’s performance is still off by 10-20%. HeteroMap is able
to exploit this memory variation as an addition to the vector
M, and is able to learn with performance benefits higher than
acquired with limited main memory for the Xeon Phi.

GPU-40-Core CPU memory size sensitivity: This work
also compares a 40-core multicore CPU in conjunction with
GPU accelerators. Figure 16 shows performance with various
memory sizes for this setting. The 40-core CPU performs
better than the two GPUs on average. The CPU also improves
when it is exposed to its full memory capacity, which allows
larger graphs such as Twitter and Friendster to fit in its main
memory. The CPU improves over the GTX-750Ti by 18%,
and over the GTX-970 by 5%, for the maximum memory
sizes. Although HeteroMap improves slightly in the geomean
case over the GPU, there are many individual cases where
it improves over both machines by up to 3x. The primary
reason why the 40-core CPU is better than the GTX-750 and
the GTX-970 is that the CPU runs at a higher frequency (2.3
GHz vs. GTX750’s 1.3 GHz and GTX-970’s 1.7 GHz). Other
reasons that improve the CPUs performance include its better
caching capabilities and stronger core pipelines.

VIII. RELATED WORK

Prior works in performance prediction mainly involve op-
erating system runtimes [38] [40] [41] to improve utilization
in single machine setups. Such works do not analyze graphs
and input dependence due to space complexity. There is
a plethora of work that optimizes unary single-accelerator
CPU-GPU systems [42] [6]. HeteroMap differs from these
works to justify how architectural aspects across accelera-
tors can be exploited in real-time to overcome unary setup
limitations. Schemes proposed in this paper can be deployed
on top of runtimes (OpenMP utilized in this paper). Some
works generate predictive models [31] to optimize for inputs
[43], and optimize intra-machine choices [26]. However none
of these works generate analytical models or optimize for

different competitive accelerators, such as GPUs and Xeon
Phis, for graph analytics. Such multicores have many more
concurrency choices compared to CPUs due to more thread
count, placement, dynamic scheduling, and synchronization,
combinations [44]. Prior predictive models also suffer from
high error rates (e.g. 26.9% in [31]), making QoS [45] an issue.
Therefore a proper learning analysis is necessary to enable
real-world deployment aspects.

Other works in auto-tuning such as PetaBricks [46, 9]
and OpenTuner [10] exploit algorithmic choices, and have
not explored architectural variations. Moreover, as algorithmic
spaces constitute higher complexities, learning takes unreason-
able amounts of time [47]. Regression based autotuners [31]
have lower complexities, but these are still high enough to
defer near real-time deployment. Thus developing runtimes
for optimizing such spaces in graph processing remains an
intractable problem for now, and the optimal way is to learn
intelligently on a limited number of choices to configure
accordingly. Such works also lack characterization of graph
workloads as targeted in this paper, which are more un-
predictable due to input dependencies. However, OpenTuner
is used for off-line training in this work, as it is used to
exhaustively search the complex B,I,M choice space.

IX. CONCLUSION

This paper presents a prediction framework, HeteroMap,
for a multi-accelerator architecture that optimizes architectural
choices for real-time processing of graph analytics. When
inter- and intra-accelerator and graph benchmark-input choices
are coupled together, the near-optimal choice selection prob-
lem is very complex. This work not only quantifies graph
benchmark and input choices, but also relates them to machine
choices in a multi-accelerator system using an analytical model
and automated machine learning predictors. Automation of
the framework is done using off-line training and on-line
evaluation to select an optimal accelerator and its architectural
choices. Evaluations show performance gains of 5% to 3.8x
when comparing single accelerators, and the proposed learner
is within 10% of an ideal case, which is a boost in predictive
concurrency analysis compared to prior works.
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