
Multicore Resource Isolation for
Deterministic, Resilient and Secure

Concurrent Execution of Safety-Critical
Applications

Hamza Omar, Halit Dogan, Brian Kahne,
and Omer Khan

Abstract—Multicores increasingly deploy spatial execution of safety-critical

applications that demand a deterministic, resilient, and secure environment to

meet the safety standards. However, multicores aggressively share hardware

resources that leads to non-deterministic performance due to destructive

interference from concurrent applications. Resource sharing not only hinders

efficient resilient execution, but also introduces security vulnerabilities due to

information leakage on side-channels. This work proposes a novel multicore

framework that constructs isolated clusters of cores for each concurrent

application. It guarantees concurrent applications with deterministic performance,

as well as an efficient execution environment for resiliency and security. Moreover,

the framework allows dynamic re-sizing of cluster sizes for load balanced

execution of concurrent applications. However, it leads to diminished isolation

between clusters, which opens various performance–resilience and

performance–security tradeoffs.

Index Terms—Multicore, hardware resource sharing, safety-critical systems,

resilience, security, side-channels

Ç

1 INTRODUCTION

MULTICORE processors are thriving, and much attention is devoted
to building resource sharing schemes that allow concurrent appli-
cations to utilize on-chip hardware resources. These machines
offer immense computation capabilities, making them attractive
for deployment in numerous safety-critical environments [1], [2].
However, concurrent execution of applications promote space-time
sharing of hardware resources, such as on-chip network, private
and shared caches, and off-chip memory. This resource sharing
induces interference channels that lead to undesirable performance
effects in systems executing concurrent applications. It has been
shown that resource isolation limits interference as each application
utilizes its dedicated hardware resources [3], [4]. Building on the
idea of resource isolation, a novel framework is proposed that parti-
tions multicore resources to form isolated clusters of cores. By
reverse engineering, a prototype of the proposed isolation frame-
work is developed on the Tilera Tile-Gx72 multicore processor. To
the best of our knowledge, no prior work has been done in the con-
text of incorporating isolation principles to build an execution envi-
ronment for efficient, resilient, and secure execution of concurrent
applications.

Interference channels between concurrent applications incur non-
deterministic timing behaviors in multicores. In this paper, resource
isolation at the granularity of clusters of cores is shown to demon-
strate deterministic performance guarantees. Furthermore, real-time
systems are interconnected that require secure interactions between

both cyber and physical worlds [5]. Recent works have shown that an
adversary can gain access to critical information through side chan-
nels in the shared execution hardware [6]. Moreover, one compro-
mised application in a concurrent execution environment can cause
others to perform undesirable actions, or even take control of the
entire system [7]. Therefore, it is of utmost importance to provide
safety-critical applications with a safe and secure execution environ-
ment. As isolation is considered essential for security [8], [9], the pro-
posed framework limits information leakage via resource isolation.

Real-time systems often operate in harsh settings, such as high
radiation environments. Multicores introduce numerous challenges
for protection against transient faults due to their complex communi-
cation and memory access protocols that aggressively share on-chip
resources. Indeed, it is critical to provide resiliency guarantees for
safety-critical applications deployed on multicores. Among various
resilience schemes [10], [11], recent work from AMD [12] provides
high soft-error coverage by adopting dual-modular redundancy (DMR)
to execute two copies of the same application. However, redundant
execution incurs significant performance degradation over a system
with no redundancy [12]. This degradation is attributed to loss of
thread-level parallelism, as well as destructive interference effects
due to aggressive resource sharing. This paper makes a key insight
that isolating shared resources leads to improved performance for
the DMR scheme executing two copies of the same application. The
proposed isolation framework creates isolated clusters where redun-
dant execution does not incur destructive interference effects. Conse-
quently, a performance improvement of �25 percent is observed for
iterative decision algorithms over DMR with no resource isolation.
Moreover, the proposed DMR setup provides stringent resiliency
guarantees, as it allows an application to continue execution even
when the other hasmalfunctioned or crashed.

The proposed framework also realizes a performance-adaptive
method that dynamically varies the cluster sizing to create an effi-
cient yet deterministic execution environment at the granularity
of concurrent application instances. It opens up new optimizations
for performance–resilience and performance–security tradeoffs. For resil-
ience, a novel selective approach is proposed that allows a certain
percentage of the application iterations to execute in dual modular
redundancy mode, while the remaining iterations execute in a single
cluster to exploit all available multicore parallelism. This allows the
framework to dynamically vary cluster sizing to exploit performance
benefits, however, it leads to lower output accuracy and error cover-
age (resilience). Furthermore, performance-security tradeoff is explored
where cores are added/removed via dynamic clustering to achieve
better performance through higher thread-level parallelism. How-
ever, it exposes certain side-channels for an adversary to infer confi-
dential information, leading to diminished isolation. In a nutshell,
the proposed isolation framework is shown to provide safety-critical
systems with a performance-adaptive execution model that effec-
tively trades off security and resilience for leakage-adaptive execu-
tion, alongside protection against soft-errors to avoid system failures.

2 MULTICORE ISOLATION FRAMEWORK

The proposed isolation framework is prototyped on TileraTile-Gx72
processor, which is a tiled multicore architecture consisting of 72
tiles, connected using an intelligent 2-D mesh on-chip network.
Each tile consists of a 64-bit VLIW core, private level-1 data and
instruction caches, and shared level-2 (L2) cache. A directory is
integrated at the L2 cache for directory-based cache coherence pro-
tocol. Additionally, the total capacity across each core’s L2 cache
is viewed as a large level-3 cache. It offers various configurations
for data placement and caching schemes. The default placement
utilizes hash-for-home scheme that interleaves cache lines across
L2 slices. By default, data is also interleaved among all 4 on-chip

� H. Omar, H. Dogan, and O. Khan are with the Department of Electrical and
Computer Engineering, University of Connecticut, Storrs, CT 06269.
E-mail: {hamza.omar, halit.dogan, omer.khan}@uconn.edu.

� B. Kahne is with Automotive Microcontrollers and Processors, NXP Semiconductors
Inc., Austin, TX 78735. E-mail: brian.kahne@nxp.com.

Manuscript received 17 May 2018; revised 8 Aug. 2018; accepted 9 Sept. 2018. Date of
publication 4 Oct. 2018; date of current version 9 Nov. 2018.
(Corresponding author: Omer Khan).
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2018.2874216

230 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018

1556-6056� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.



memory controllers. Tile-Gx72 allows execution of multiple con-
current applications using fork() and exec() system calls.
Moreover, it includes a switching engine to communicate between
neighboring tiles, I/Os and the on-chip memory controllers. It also
provides support for core-to-core direct messaging using special
User Dynamic Network (UDN), where threads are pinned to cores.

2.1 Establishing Isolation on TileraTile-Gx72

Using the re-configuration capabilities of Tile-Gx72 processor, an
isolated environment is created for interference-free execution of
multiple concurrent applications. The number of isolated clusters
that can be formed is a function of available on-chip memory con-
trollers, and thus, four completely isolated clusters can be con-
structed using Tile-Gx72. However, for ease of explanation, two
clusters are considered.

2.1.1 Clustering & Isolating the On-Chip Network

In Tile-Gx72, application threads are spatially distributed among
available cores. To form clusters of core(s), each cluster (say CL1) is
assigned with a set of cores (say CPU1) to execute an application
instance APP1. In order to allow CL1 to execute APP1, threads
from the application are pinned to the cores assigned to that
cluster, using Tilera’s API call tmc_cpus_set_my_cpu (tid).
Similarly, the other cluster (CL2) is formed by assigning the respec-
tive cores (CPU2) for executing APP2. Note that the cores assigned
to both clusters should never overlap each other, i.e., CPU1 \ CPU2

must be ;, otherwise applications experience interference among
each other. Additionally, for each cluster, the network traffic is
routed such that all requests and data packets remain within the
boundary of the cluster. TileraTile-Gx72 implements a smart X-Y
routing algorithm with 2-D mesh network topology. With X-Y
routing in place, the proposed framework isolates all available
networks—including UDN—by routing each packet to/from the
allocated memory resources. In the next subsections both on-chip
and off-chip memory resources are allocated to clusters so that no
packet would drift towards other clusters’ domain. Fig. 1: Step �1
shows the formed clusters where CL1 is provided with first 32 cores
of the processor, while last 32 cores are allocated to the cluster CL2.

2.1.2 Isolating On-Chip Memory

Tile-Gx72 offers various configurations for caching and data place-
ment. Default placement utilizes hash-for-home scheme, where an
entire page is hashed across all tiles (L2s) at the cache line granularity.
However, hashing data among all tiles violates isolation as one
cluster’s datamay bemapped outside the cluster boundary—leading
to interference among concurrent applications. Therefore, it is impor-
tant to keep one cluster’s data within its own set of cores to avoid
interference. To limit resource sharing, local homing is utilized
since it allows the programmer to pin pages/data to any specific L2.
This is done using Tilera’s API call tmc_alloc_set_home

1

(&allocation_type, core_id). Moreover, L2-replication is dis-
abled with local homing to ensure that each L2 slice is accessed by a
single application. Fig. 1: Step�2 shows specified cores for each clus-
ter tomap their respective data.

2.1.3 Isolating Off-Chip Memory

To ensure chip level isolation, all means of data accesses must be iso-
lated among clusters. Fig. 1 shows thememory controller IDs for Tile-
Gx72, where each on-chip memory controller is attached to an inde-
pendent physical memory channel. Therefore, routing each clusters’
L2 misses and data requests to a memory controller is sufficient to
achieve off-chip memory isolation. This allows each cluster to access
an independent physical channel, a memory bank, and a memory
row. The cluster CL1’s access to off-chip DDR memory components
is realized by forwarding its traffic to theMC0 andMC1. This is done
by Tilera’s API call tmc_alloc_set_nodes_interleaved

(&allocation_type, pos), where pos is set to the bit mask of
respective memory controllers to be activated. For example, CL1 will
have pos = 0b0011. Similarly, pos for CL2 is set to 0b1100—access
to memory controllersMC2, andMC3 (c.f. Fig. 1—Step�3 ). This step
guarantees no off-chip interference among the two clusters of cores.

3 SAFE/RESILIENT CONCURRENT EXECUTION

ENVIRONMENT

The proposed cluster-level isolation framework ensures no sharing
across on-chip hardware resources, and thereby allows interference-
free deterministic execution. Prior works [13], [14] have also focused
on scheduling and efficiently utilizing resources based on the
expected impact of interference in amulticore setting. In similar con-
text, the proposed framework enables a capability to dynamically
vary the number of cores assigned to each cluster in such a way
that only interference in the on-chip network and private caches is
allowed for the cores that are re-allocated to execute threads from
the other cluster. This runtime Dynamic Clustering is shown on the
right image of Fig. 1, whereCL2 uses two rows of cores to map addi-
tional threads, while CL1 still has access to the L2 caches of these
cores. After dynamic re-configuration,CL2 is providedwith 16more
cores (16� 63) for increased thread-level performance, while its
data/memory resources are unchanged, i.e., L2s from cores 32� 63,
and memory controllers MC2 and MC3. For CL1, it now has lower
thread-level parallelism (only cores 0� 15 for its threads) but still
has access to its initially allocated data/memory access resources,
i.e., L2s from cores 0� 31, and memory controllers MC0 and MC1.
Using this capability, one can allocate a larger/smaller cluster size to
a resource hungry application for efficient execution. A cluster is
allowed to only steal core resources from the other cluster, while the
L2 and memory controller resources are not altered during runtime.
This is done to avoid performance overheads from data/memory re-
allocations that are performed once at each application startup.
Therefore, Dynamic Clustering is expected to underperform slightly
as compared to a static re-configuration that optimally re-assigns on-
chip resources to each cluster. Using this feature, a performance-
adaptive capability is built in the proposed framework that dynami-
cally takes away some cores from a cluster, and assigns them to
another cluster in need of more computational power. This allows
concurrent applications to load balance their performance needs
while still guaranteeing a certain level of determinism.

3.1 Leakage-Adaptive Secure Execution

The proposed isolation framework brings about a performance-
security tradeoff space via dynamic clustering. Referring to the right
image of Fig. 1, when clusters (CL1 and CL2) are dynamically re-
configured by adding cores to CL2, the extra cores become the source
of interaction between two clusters and lead to diminished isolation.
Each cluster is still isolated for most of its data/memory resources,

Fig. 1. Proposed framework with isolated clusters. The flexibility to dynamically
vary cluster sizes is also shown.

1. TileraTile-Gx72 specific TMC_ALLOC_INIT is used as the allocation_

type, and core_id specifies the core/L2 to map the page/data.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018 231



but the on-chip network resources may still observe interference by
CL1 due to messages routing across the cluster boundaries to access
its L2 slices. Moreover, the data of both clusters temporally co-locate
in the private L1 caches of the extra cores, creating an L1 cache interfer-
ence channel between applications. Such cases can potentially lead to
various side-channel exploits, where an adversary can infer secret
knowledge bymonitoring these interference channels.

The side-channel threats can be dealt with by invalidating the
entire L1 cache of the extra cores during dynamic re-configuration
of clusters. TileraTile-Gx72 processor features various caching
modes, such as enabling/disabling L1 or L2-replication. Similar
level of security can be achieved by disabling cache replication and
allowing these cores to only perform a regulated word-by-word
remote L2 access to CL2. Both the solutions presented above will
allow segregation among the data of CL1 and CL2 in extra cores.
The former solution allows L1 cache to hold one cluster’s data at a
time, whereas the latter solution allows the extra cores to either not
use the L1 cache at all or only allow one cluster to make use of it.
Regardless, these solutions incur performance overheads due to
expensive cache flush/invalidate operations, or word-level remote
accesses that may not fully exploit data locality in the L1 caches.
Therefore, with such a tradeoff it is natural to ask: how much infor-
mation leakage would be acceptable to achieve efficient execution, along
with an adequate level of security? Investigating this aspect of the pro-
posed framework will be a topic of future work.

3.2 Resilient Execution Environment

The proposed isolation framework can be employed to ensure a
resilient execution environment. For example, n-modular redun-
dancy (nMR) can be implemented on TileraTile-Gx72 processor,
where n instances of the same application are concurrently exe-
cuted and checked for output correctness. For illustration of this
capability, the proposed framework is utilized to demonstrate a
dual-modular redundant (DMR) execution environment. It concur-
rently executes two copies (instances) of the same application (say
APP ). To limit the adverse effects of interference, both instances
are executed on isolated clusters, i.e., instance AAPP is executed on
CL1, while instance BAPP on CL2. Upon completion of AAPP and
BAPP , results from both instances are verified to ensure correct exe-
cution. This is done using Tilera’s user dynamic network. Each
cluster computes a 32-bit XOR hash of the application output
updates, and sends the hash over to the other cluster via UDN. The
received hash is compared against the locally computed hash
value. A roll-back mechanism is developed to re-execute DMR pro-
cesses if hash values from both instances do not match. Otherwise,
the applications are allowed to terminate successfully.

3.2.1 Selective Resilience for Efficient Execution

The isolation framework mitigates performance degradation from
interference of shared resources due to DMR execution. However,
resiliency leads to loss of parallelism, and hence performance. For
safety critical systems, both resiliency and performance vary based
on the conditions and constraints surrounding the system. Hence, it
is beneficial to selectively incorporate resiliency for an application,
such that performance and error coverage demands are both fulfilled

simultaneously. Priorworks [15], [16] have shown to improve perfor-
mance by employing resilience selectively.Moreover,many analytics
and iterative applications have been shown to benefit from selective
resilience by partitioning the application into crucial and non-crucial
regions [10], [17]. For crucial code regions, DMR execution can be
used to ensure high resiliency coverage, while non-crucial regions
execute efficiently by exploiting full thread-level parallelism via clus-
ter re-configuration capabilities described earlier (c.f. Section 3).

As shown in Fig. 2, an efficient selective resiliency mechanism is
proposed for iterative algorithms that utilize the dynamic cluster re-
sizing capability to guarantee both resiliency and efficiency. The
scheme initializes two clusters, CL1 and CL2, with half of the cores,
L2s, and memory controllers allocated to each cluster. Initially, for
resiliencemode, bothAPP1 andAPP2 are executed using 32 threads
each for a certain number of iterations (say X percent), and compute
an intermediate output (@-Output). To ensure correct resilient execu-
tion, @-Output verification is done for both clusters by comparing
the 32-bit hash of the outputs (c.f. Section 3.2). Upon completion of
resiliencemode, the system is switched to non-resiliencemode to exe-
cute remaining N-X percent iterations, where CL1 is provided with
64 cores to exploit thread-level parallelism. However, CL1 still exe-
cutesAPP1 with half of the L2 and memory controller resources. To
achieve output correctness, a bound checking process is added to ver-
ify that the computed results are within certain bounds. These
bound checks are fine granular, as each thread is enforced to check
the result it produces before it commits to the output data struc-
tures. Upon failure, the bound checking step uses @-Output (an
already verified intermediate output) as a back up, and either com-
mits it to the final output or deploys some other error correction
strategy. The bound checker checks for lower and upper cut-off values
which vary from one application to the other. For applications
which have predetermined bound values, these values can be
directly employed for bound checking purposes. Otherwise, the
bound values are approximated using the intermediate @-Output.

4 METHODOLOGY

The Tile-Gx72multicore implements 72 tiles with each tile featuring
a 64-bit VLIW core, 32 KB L1-I/D caches, and a 256 KB shared L2
cache slice. The off-chip DRAM memory is accessible using four
on-chip 72-bit ECC protected DDR3 controllers that are attached to
independent physical memory channels. Moreover, it consists of 5
independent 2-D mesh networks with X-Y routing, one for on-chip
cache coherence traffic, one for memory controller traffic, and
others for core-to-core and I/O traffic. To isolate shared hardware
resources, the default hash-for-homing scheme is overridden to use
the local homing scheme for pinning data structures on specified
L2s. Overheads introduced by the use of local homing, data checker
mechanism, and switching from resilience to non-resilience modes
are all considered in the completion times of the applications.

All simulations are conducted by utilizing 64 of the 72 available
tiles. Two graph benchmarks, Single Source Shortest Path (SSSP)
and PageRank (PR) are acquired from the Pannotia [18] and
CRONO [19] benchmark suites, respectively. These graphworkloads
are executed using a real world California Road Network graph [20].
Moreover, a mission planning algorithm, Artificial Bee Colony
(ABC) is adopted from advanced driver-assistance system (ADAS).

5 EVALUATION

5.1 Deterministic & Secure Execution via Isolation

Fig. 3 shows the impact of resource sharing on the performance of
concurrent applications, where each cluster is provided with 32
cores. For each experiment (ðaÞ � ðiÞ), cluster CL1 always runs a
fixed reference application, and CL2 is provided with different
application scenarios, such as None refers to no application. For
any workload x, x� 1 and x� 2 identifies two instances of x

Fig. 2. Design flow of selective resilience scheme for the proposed framework.
APP1 runs non-crucial iterations in non-resilience mode. APP2 sits idle, and waits
until the resiliencemode is initiated.

232 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018



executed on CL1 and CL2 respectively. Fig. 3a, 3b, 3c refer to the
concurrent execution with default parameters, and no isolation.
Therefore, the reference application when executed with None

exhibits the ideal completion time. However, when a co-located
application induces interference due to resource sharing, the com-
pletion times for the reference application vary non-deterministi-
cally. When the applications are executed under the proposed
isolation setup (Fig 3d, 3e, 3f), the completion times for the refer-
ence applications stay constant and thus predictable. In the context
of secure execution, it has been theoretically shown that isolation
of shared resources serve as a fundamental primitive for a secure
execution environment [8]. Therefore, no interference across
concurrent applications in Fig. 3d, 3e, 3f enables side channel
attack mitigation. In such an environment, even if one cluster gets
compromised, an attacker would require ample amount of resour-
ces to infer any knowledge from another concurrent safety-critical
application executing on the other cluster.

Clearly, in some cases there is imbalance in terms of how con-
current applications complete. Consider the SSSP-PR tuple in
Fig. 3d. PR completes �3.5 times faster as compared to SSSP,
when both applications have equal resources. It would be helpful
to rebalance resources to tackle the variation is utilization. As dis-
cussed in Section 3, cluster sizes can be varied in a performance
adaptive fashion. Fig. 3g shows that when SSSP is provided
with 48 cores/threads and PR with 16 cores/threads, the proposed
framework exhibits more balanced completion numbers (difference
reduced to �1:5� from � 3:5�). However, by doing so the pro-
posed scheme only guarantees deterministic execution at the appli-
cation–core-count tuple granularity. For example, Fig. 3i shows
that PR at 16 cores/threads demonstrates deterministic completion
timewhen coupledwithSSSP orABC. The idea of dynamic cluster-
ing leads to load balanced execution, while ensuring a semi-
deterministic execution environment. However, it also introduces a
performance–security tradeoff, as adding or removing resources
among clusters introduce certain interference channels that poten-
tially leak information. This aspect of the proposed framework will
be a topic of future research. However, the application of the pro-
posed framework for system resiliency is discussed in detail next.

5.2 Isolation-Based Resilient Execution

Fig. 4 shows the normalized completion times for all workloads
when executed under dual-modular redundancy, with and with-
out isolation mechanisms (DMRþ Isol, and DMR-Isol respectively).
Results are normalized to the baseline (B-HFH) which runs the
application with 64 cores, hash-for-homing scheme and all available
memory controllers. B-LH is considered to show the overheads
incurred by the use of local homing scheme. On average, local hom-
ing incurs an overhead of �10.5 percent over hash-for-home.

The “DMR-Isol” scheme incurs an average overhead of � 2:84�
over the baseline, primarily due to loss of thread-level parallelism

and interference on shared hardware resources. In the context of
interference, the application instances compete for same shared cache
resources that lead to increased stress on the available cache capacity
and reduced data locality. Moreover, increased L2 misses stress
the memory controller queues leading to higher contention delays
to access main memory. Finally, application instances generate
traffic that interferes in the routers, causing high contention delays in
the on-chip networks. The “DMRþ Isol” scheme elegantly isolates
the resources among the clusters to limit interference, and reduces
DMRperformance overheads from� 2:84� to� 2:18�—resulting in
an improvement of 24%. The reported completion times in Fig. 4 also
include the UDN checker overheads. These overheads include the
time taken by both clusters to compute, send, receive, and compare
the 32-bit XOR hash. On average, the UDN checker incurs an insignifi-
cant overhead of less than 1 percent.

5.2.1 Selective Resiliency

The selective resilience scheme discussed in Section 3.2.1 is evalu-
ated for the three iterative optimization benchmarks. The applica-
tion software requires the necessary bound checking mechanisms
during the non-resilient iterations of each benchmark. For SSSP,
the upper bound is set at the @-Output values of the distance array
since each vertex relaxation step is always guaranteed to decrease
as iteration counts increase. If any distance array value increases in
non-resilient mode, it indicates a soft-error perturbation. However,
determining the lower bound for each vertex distance array value
is challenging since the shortest distance update calculation is
data dependent. The strategy to determine the lower bound relies
on approximating its value to decrease no more than a pre-
determined percentage of the @-Output. This percentage value is
application and system dependent and can be set in the software.
For the purpose of evaluation, this work employs a @-Output per-
centage cut-off of 15 percent. For PR benchmark, the rank values for
each vertex are predetermined and must stay in the range of 0 and
1. Similarly, for ABC, the output vector (acceleration, velocity, jerk)
values also have predetermined lower and upper bound values.
Therefore, both PR and ABC utilize their predetermined bounds
for their checker mechanisms during the non-resilient mode of
execution.

Fig. 4 shows the average normalized completion time break-
downs for the selective resilience switching scheme (SEL). Selective
resilience executes X percent of iterations (as suggested by
SELðXpercentÞ) in the resiliencemode. The resiliencemode operates
with two clusters whose data structures are pinned to their respec-
tive cores. When switched to the non-resiliencemode using dynamic
clustering, one cluster is provided with all available resources i.e.,
64 cores/threads, where it executes the remaining iterations to
achieve better performance. However, the active cluster still uses the
same resources defined during the initialization of the framework,
i.e., 32 L2 slices, and 2 memory controllers. The switching overhead
includes (1) the overheads for switching from resilience to non-resil-
ience mode, and (2) the overheads for performing the bound check
comparisons. Compared to DMRþ Isol, selective resilience shows a

Fig. 3. Impact of resource sharing on deterministic execution of concurrent applica-
tions with/without isolation.

Fig. 4. Normalized completion times for all workloads with DMR � Isol and SEL
� Isol. Results are normalized to the baseline utilizing hash-for-home i.e., B-HFH.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018 233



performance improvement of 20 percent for SELð25percentÞ config-
uration that executes the first 25 percent of application iterations in
resilience mode, and the remaining in non-resilience mode. Overall,
the proposed resilience schemes improve performance over
“DMR-Isol” by (1) creating isolated clusters of cores for redundant
execution of application instances, and (2) exploit the performance–
resilience tradeoffs using selective resilience.

6 CONCLUSION AND FUTURE WORK

This paper introduces a novel multicore framework that lever-
ages isolation at the granularity of clusters of cores to provide
deterministic execution of multiple concurrent applications,
along with efficient resiliency and security guarantees. The pre-
liminary evaluation shows that deterministic performance can
be guaranteed even when the cluster sizing is dynamically var-
ied to load balance application performance. Moreover, dual-
modular redundancy is shown to work more efficiently under
isolation of shared resources as compared to traditional setup
where shared resources are allowed to interfere among the
redundantly executing application instances.

In future, we plan to study the scalability of static and dynamic
clustering schemes for futuristic multicores with higher core
counts. Furthermore, we plan to characterize the benefits from
removing the hardware interference channels among concurrently
executing applications using micro-benchmarks and a wide range
of application domains. We will also explore the various perfor-
mance–resilience and performance–security tradeoffs. For resiliency,
we plan to conduct studies to evaluate the impact of selective resil-
ience scheme on the error-coverage and output accuracy of the
deployed applications. In terms of security, we plan to further
study various side-channel exploits introduced by dynamic clus-
tering, and conduct a security analysis by performing various
attacks to show the security of the proposed framework. We plan
to quantify information leakage for the target applications, and
employ various architectural mechanisms for mitigation purposes,
leading to no or managed information leakage between concur-
rently executing applications.

ACKNOWLEDGMENTS

This research was partially supported by the National Science
Foundation under Grants No. CCF-1550470 and CNS-1718481.

REFERENCES

[1] V. Roberge, M. Tarbouchi, and G. Labonte, “Comparison of parallel genetic
algorithm and particle swarm optimization for real-time uav path
planning,” IEEE Trans. Ind. Inform., vol. 9, no. 1, pp. 132–141, Feb. 2013.

[2] T. Ungerer, F. Cazorla, P. Sainrat, M. Houston, F. Kluge, S. Metzlaff, and
J. Mische, “Merasa: Multicore execution of hard real-time applications sup-
porting analyzability,” IEEE Micro, vol. 30, no. 5, pp. 66–75, Sep./Oct. 2010.

[3] O. Kotaba, J. Nowotsch, M. Paulitschy, S. M. Petters, and H. Theiling,
“Multicore in real-time systems—temporal isolation challenges due to
shared resources,” in Proc. Conf. Des., Automat. Test Eur., DATE, Workshop
Industry-Driven Approaches Cost-effective Certification of Safety-Critical, Mixed-
Criticality Syst. (WICERT), 2013.

[4] D. Elkaduwe, P. Derrin, and K. Elphinstone, “Kernel design for isolation
and assurance of physical memory,” in Proc. 1st Workshop Isolation Integr.
Embedded Syst., 2008, pp. 35–40. [Online]. Available: http://doi.acm.org/
10.1145/1435458.1435465

[5] C. Chen, M. Hasan, and S. Mohan, “Securing real-time internet-of-things,”
CoRR, vol. abs/1705.08489, 2017. [Online]. Available: http://arxiv.org/
abs/1705.08489

[6] M. Wolf and D. Serpanos, “Safety and security of cyber-physical and inter-
net of things systems [point of view],” Proc. IEEE, vol. 105, no. 6, pp. 983–
984, Jun. 2017.

[7] J. Son and J. Alves-Foss, “Covert timing channel analysis of rate monotonic
real-time scheduling algorithm in mls systems,” in Proc. IEEE Inf. Assurance
Workshop, Jun. 2006, pp. 361–368.

[8] P. Subramanyan, R. Sinha, I. Lebedev, S. Devadas, and S. A. Seshia, “A for-
mal foundation for secure remote execution of enclaves,” in Proc. Conf.
Comput. Commun. Secur., 2017. [Online]. Available: http://doi.acm.org/
10.1145/3133956.3134098

[9] S. K. Haider, H. Omar, I. Lebedev, S. Devadas, andM. van Dijk, “Leveraging
hardware isolation for process level access control & authentication,” in
Proc. 22nd ACM Symp. Access Control Models Technol., 2017, pp. 133–141.
[Online]. Available: http://doi.acm.org/10.1145/3078861.3078882

[10] H. Omar, Q. Shi, M. Ahmad, H. Dogan, and O. Khan, “Declarative resil-
ience: A holistic soft-error resilient multicore architecture that trades off
program accuracy for efficiency,” ACM Trans. Embedded Comput. Syst.,
2018, Art. no. 76. [Online]. Available: http://doi.acm.org/10.1145/3210559

[11] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic soft
error reliability on the cheap,” ACM SIGPLAN Norices, vol. 45, pp. 385–396,
2010. [Online]. Available: http://doi.acm.org/10.1145/1735971.1736063

[12] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron,
“Real-world design and evaluation of compiler-managed gpu redundant
multithreading,” in Proc. 41st Annu. Int. Symp. Comput. Architecuture,
Jun. 2014, pp. 73–84.

[13] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-aware
cluster management,” in Proc. 19th Int. Conf. Architectural Support Program.
Lang. Operating Syst., 2014, pp. 127–144. [Online]. Available: http://doi.
acm.org/10.1145/2541940.2541941

[14] Z. C. Papazachos and H. D. Karatza, “Gang scheduling in multi-core
clusters implementing migrations,” Future Generation Comput. Syst., vol. 27,
pp. 1153–1165, 2011. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167739X11000276

[15] D. S. Khudia and S. Mahlke, “Harnessing soft computations for low-budget
fault tolerance,” in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2014, pp. 319–330.

[16] Q. Shi, H. Omar, and O. Khan, “Exploiting the tradeoff between program
accuracy and soft-error resiliency overhead for machine learning work-
loads,” CoRR, vol. abs/1707.02589, 2017. [Online]. Available: http://arxiv.
org/abs/1707.02589

[17] Q. Shi, H. Hoffmann, and O. Khan, “A cross-layer multicore architecture
to tradeoff program accuracy and resilience overheads,” IEEE Comput.
Archit. Lett., vol. 14, no. 2, pp. 85–89, Jul. 2015.

[18] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” Proc. IEEE Int. Symp.
Workload Characterization, 2013, pp. 185–195.

[19] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmark suite for
multithreaded graph algorithms executing on futuristic multicores,” in
Proc. IEEE Int. Symp. Workload Characterization, 2015, pp. 44–55.

[20] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset
collection,” Jun. 2014, http://snap.stanford.edu/data

234 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 2, JULY-DECEMBER 2018


