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1.1 Contributions

This paper makes the following contributions:

• It introducesMesh, a novelmemory allocator that acts
as a plug-in replacement for malloc. Mesh combines
remapping of virtual to physical pages (meshing) with
randomized allocation and search algorithms to enable
safe and effective compaction without relocation for
C/C++ (ğ2, ğ3, ğ4).
• It presents theoretical results that guaranteeMesh’s
efficiency and effectiveness with high probability (ğ5).
• It evaluates Mesh’s performance empirically, demon-
stratingMesh’s ability to reduce space consumption
while generally imposing low runtime overhead (ğ6).

2 Overview

This section provides a high-level overview of how Mesh

works and gives some intuition as to how its algorithms
and implementation ensure its efficiency and effectiveness,
before diving into detailed description of Mesh’s algorithms
(ğ3), implementation (ğ4), and its theoretical analysis (ğ5).

2.1 Remapping Virtual Pages

Mesh enables compactionwithout relocating object addresses;
it depends only on hardware-level virtual memory support,
which is standard on most computing platforms like x86 and
ARM64. Mesh works by finding pairs of pages and merging
them together physically but not virtually: this merging lets
it relinquish physical pages to the OS.
Meshing is only possible when no objects on the pages

occupy the same offsets. A key observation is that as frag-
mentation increases (that is, as there are more free objects),
the likelihood of successfully finding pairs of pages thatmesh
also increases.
Figure 1 schematically illustrates the meshing process.

Mesh manages memory at the granularity of spans, which
are runs of contiguous 4K pages (for purposes of illustration,
the figure shows single-page spans). Each span only contains
same-sized objects. The figure shows two spans of memory
with low utilization (each is under 40% occupied) and whose
allocations are at non-overlapping offsets.

Meshing consolidates allocations from each span onto one
physical span. Each object in the resulting meshed span re-
sides at the same offset as it did in its original span; that is,
its virtual addresses are preserved, making meshing invisible
to the application. Meshing then updates the virtual-to-
physical mapping (the page tables) for the process so that
both virtual spans point to the same physical span. The
second physical span is returned to the OS. When average
occupancy is low, meshing can consolidate many pages, of-
fering the potential for considerable space savings.

2.2 Random Allocation

A key threat to meshing is that pages could contain objects at
the same offset, preventing them from being meshed. In the
worst case, all spans would have only one allocated object,
each at the same offset, making them non-meshable. Mesh

employs randomized allocation to make this worst-case be-
havior exceedingly unlikely. It allocates objects uniformly
at random across all available offsets in a span. As a result,
the probability that all objects will occupy the same offset is
(1/b)n−1, where b is the number of objects in a span, and n
is the number of spans.
In practice, the resulting probability of being unable to

mesh many pages is vanishingly small. For example, when
meshing 64 spans with one 16-byte object allocated on each
(so that the number of objects b in a 4K span is 256), the
likelihood of being unable to mesh any of these spans is
10−152. To put this into perspective, there are estimated to
be roughly 1082 particles in the universe.
We use randomness to guide the design of Mesh’s algo-

rithms (ğ3) and implementation (ğ4); this randomization lets
us prove robust guarantees of its performance (ğ5), showing
thatMesh breaks the Robson bounds with high probability.

2.3 Finding Spans to Mesh

Given a set of spans, our goal is to mesh them in a way that
frees as many physical pages as possible. We can think of
this task as that of partitioning the spans into subsets such
that the spans in each subset mesh. An optimal partition
would minimize the number of such subsets.

Unfortunately, as we show, optimal meshing is not feasible
(ğ5). Instead, the algorithms in Section 3 present practical
methods for finding high-quality meshes under real-world
time constraints. We show that solving a simplified version
of the problem (ğ3) is sufficient to achieve reasonable meshes
with high probability (ğ5).

3 Algorithms

Mesh comprises three main algorithmic components: allo-
cation (ğ3.1), deallocation (ğ3.2), and finding spans to mesh
(ğ3.3). Unless otherwise noted and without loss of generality,
all algorithms described here are per size class (within spans,
all objects are same size).

3.1 Allocation

Allocation in Mesh consists of two steps: (1) finding a span
to allocate from, and (2) randomly allocating an object from
that span. Mesh always allocates from a thread-local shuffle
vector ś a randomized version of a freelist (described in detail
in ğ4.2). The shuffle vector contains offsets corresponding
to the slots of a single span. We call that span the attached
span for a given thread.
If the shuffle vector is empty,Mesh relinquishes the cur-

rent thread’s attached span (if one exists) to the global heap
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(which holds all unattached spans), and asks it to select a
new span. If there are no partially full spans, the global heap
returns a new, empty span. Otherwise, it selects a partially
full span for reuse. To maximize utilization, the global heap
groups spans into bins organized by decreasing occupancy
(e.g., 75-99% full in one bin, 50-74% in the next). The global
heap scans for the first non-empty bin (by decreasing occu-
pancy), and randomly selects a span from that bin.
Once a span has been selected, the allocator adds the

offsets corresponding to the free slots in that span to the
thread-local shuffle vector (in a random order). Mesh pops
the first entry off the shuffle vector and returns it.

3.2 Deallocation

Deallocation behaves differently depending on whether the
free is local (the address belongs to the current thread’s
attached span), remote (the object belongs to another thread’s
attached span), or if it belongs to the global heap.
For local frees, Mesh adds the object’s offset onto the

span’s shuffle vector in a random position and returns. For
remote frees, Mesh atomically resets the bit in the corre-
sponding index in a bitmap associated with each span. Fi-
nally, for an object belonging to the global heap,Meshmarks
the object as free, updates the span’s occupancy bin; this
action may additionally trigger meshing.

3.3 Meshing

When meshing, Mesh randomly chooses pairs of spans and
attempts to mesh each pair. The meshing algorithm, which
we call SplitMesher (Figure 2), is designed both for practical
effectiveness and for its theoretical guarantees. The parame-
ter t , which determines the maximum number of times each
span is probed (line 3), enables space-time trade-offs. The
parameter t can be increased to improve mesh quality and
therefore reduce space, or decreased to improve runtime, at
the cost of sacrificed meshing opportunities. We empirically
found that t = 64 balances runtime and meshing effective-
ness, and use this value in our implementation.

SplitMesher proceeds by iterating through Sl and check-
ing whether it can mesh each span with another span chosen
from Sr (line 6). If so, it removes these spans from their
respective lists and meshes them (lines 7ś9). SplitMesher

repeats until it has checked t ∗ |Sl | pairs of spans; ğ4.5 de-
scribes the implementation of SplitMesher in detail.

4 Implementation

We implement Mesh as a drop-in replacement memory allo-
cator that implements meshing for single or multi-threaded
applications written in C/C++. Its current implementation
work for 64-bit Linux andMac OS X binaries. Mesh can be ex-
plicitly linked against by passing -lmesh to the linker at com-
pile time, or loaded dynamically by setting the LD_PRELOAD

SplitMesher(S, t)

1 n = length(S)
2 Sl , Sr = S[1 : n/2], S[n/2 + 1 : n]
3 for (i = 0, i < t, i + +)

4 len = |Sl |
5 for (j = 0, j < len, j + +)
6 if Meshable (Sl (j), Sr (j + i % len))
7 Sl ← Sl \ Sl (j)

8 Sr ← Sr \ Sr (j + i % len)
9 mesh(Sl (j), Sr (j + i % len))

Figure 2.Meshing random pairs of spans. SplitMesher

splits the randomly ordered span list S into halves, then
probes pairs between halves for meshes. Each span is probed
up to t times.

(Linux) or DYLD_INSERT_LIBRARIES (Mac OS X) environ-
ment variables to point to theMesh library. When loaded,
Mesh interposes on standard libc functions to replace all
memory allocation functions.

Mesh combines traditional allocation strategieswithmesh-
ing to minimize heap usage. Like most modern memory
allocators [2, 3, 14, 16, 27],Mesh is a segregated-fit allocator.
Mesh employs fine-grained size classes to reduce internal
fragmentation due to rounding up to the nearest size class.
Mesh uses the same size classes as those used by jemalloc for
objects 1024 bytes and smaller [14], and power-of-two size
classes for objects between 1024 and 16K. Allocations are
fulfilled from the smallest size class they fit in (e.g., objects
of size 33ś48 bytes are served from the 48-byte size class);
objects larger than 16K are individually fulfilled from the
global arena. Small objects are allocated out of spans (ğ2),
which are multiples of the page size and contain between 8
and 256 objects of a fixed size. Having at least eight objects
per span helps amortize the cost of reserving memory from
the global manager for the current thread’s allocator.
Objects of 4KB and larger are always page-aligned and

span at least one entire page. Mesh does not consider these
objects for meshing; instead, the pages are directly freed to
the OS.
Mesh’s heap organization consists of four main compo-

nents. MiniHeaps track occupancy and other metadata for
spans (ğ4.1). Shuffle vectors enable efficient, random allo-
cation out of a MiniHeap (ğ4.2). Thread local heaps satisfy
small-object allocation requests without the need for locks
or atomic operations in the common case (ğ4.3). Finally,
the global heap (ğ4.4) manages runtime state shared by all
threads, large object allocation, and coordinates meshing
operations (ğ4.5).

4.1 MiniHeaps

MiniHeaps manage allocated physical spans of memory and
are either attached or detached. An attached MiniHeap is
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owned by a specific thread-local heap, while a detachedMini-
Heap is only referenced through the global heap. New small
objects are only allocated out of attached MiniHeaps.
Each MiniHeap contains metadata that comprises span

length, object size, allocation bitmap, and the start addresses
of any virtual spans meshed to a unique physical span. The
number of objects that can be allocated from a MiniHeap
bitmap is objectCount = spanSize / objSize. The allocation
bitmap is initialized to objectCount zero bits.

When a MiniHeap is attached to a thread-local shuffle vec-

tor (ğ4.2), each offset that is unset in the MiniHeap’s bitmap
is added to the shuffle vector, with that bit now atomically
set to one in the bitmap. This approach is designed to allow
multiple threads to free objects which keeping most memory
allocation operations local in the common case.
When an object is freed and the free is non-local (ğ3.2),

the bit is reset. When a new MiniHeap is allocated, there
is only one virtual span that points to the physical memory
it manages. After meshing, there may be multiple virtual
spans pointing to the MiniHeap’s physical memory.

4.2 Shuffle Vectors

Shuffle vectors are a novel data structure that lets Mesh

perform randomized allocation out of a MiniHeap efficiently
and with low space overhead.

Previous memory allocators that have employed random-
ization (for security or reliability) perform randomized al-
location by random probing into bitmaps [3, 27]. In these
allocators, a memory allocation request chooses a random
number in the range [0, objectCount − 1]. If the associated
bit is zero in the bitmap, the allocator sets it to one and re-
turns the address of the corresponding offset. If the offset is
already one, meaning that the object is in use, a new random
number is chosen and the process repeated. Random probing
allocates objects inO(1) expected time but requires overprovi-
sioning memory by a constant factor (e.g., 2× more memory
must be allocated than needed). This overprovisioning is at
odds with our goal of reducing space overhead.
Shuffle vectors solve this problem, combining low space

overhead with worst-caseO(1) running time for malloc and
free. Each comprises a fixed-size array consisting of all the
offsets from a span that are not already allocated, and an
allocation index representing the head. Each vector is ini-
tially randomized with the Knuth-Fischer-Yates shuffle [22],
and its allocation index is set to 0. Allocation proceeds by
selecting the next available number in the vector, łbump-
ing” the allocation index and returning the corresponding
address. Deallocation works by placing the freed object at
the front of the vector and performing one iteration of the
shuffle algorithm; this operation preserves randomization
of the vector. Figure 3 illustrates this process, while Fig-
ure 4 has pseudocode listings for initialization, allocation,
and deallocation.

0 2 7 1 5 463

(a) A shuffle vector for a span of size 8, where no objects

have yet been allocated.

0 2 7 1 5 46

(b) The shuffle vector after the first object has been allo-

cated.

0 2 7 5 463 1

(c) On free, the object’s offset is pushed onto the front of

the vector, the allocation index is updated, and the offset

is swapped with a randomly chosen offset.

0 2 7 5 46 31

(d) Finally, after the swap, new allocations proceed in a

bump-pointer like fashion.

Figure 3. Shuffle vectors compactly enable fast random
allocation. Indices (one byte each) are maintained in random
order; allocation is popping, and deallocation is pushing plus
a random swap (ğ4.2).

Shuffle vectors impose far less space overhead than ran-
dom probing. First, with a maximum of 256 objects in a span,
each offset in the vector can be represented as an unsigned
character (a single byte). Second, because Mesh needs only
one shuffle vector per attached MiniHeap, the amount of
memory required for vectors is 256c , where c is the number
of size classes (24 in the current implementation): roughly
2.8K per thread. Finally, shuffle vectors are only ever ac-
cessed from a single thread, and so do not require locks or
atomic operations. While bitmaps must be operated on atom-
ically (frees may originate at any time from other threads),
shuffle vectors are only accessed from a single thread and
do not require synchronization or cache-line flushes.

4.3 Thread Local Heaps

All malloc and free requests from an application start at the
thread’s local heap. Thread local heaps have shuffle vectors
for each size class, a reference to the global heap, and their
own thread-local random number generator.
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Allocation requests are handled differently depending on
the size of the allocation. If an allocation request is larger
than 16K, it is forwarded to the global heap for fulfillment
(ğ4.4). Allocation requests 16K and smaller are small object
allocations and are handled directly by the shuffle vector
for the size class corresponding to the allocation request, as
in Figure 4a. If the shuffle vector is empty, it is refilled by
requesting an appropriately sized MiniHeap from the global
heap. This MiniHeap is a partially-full MiniHeap if one exists,
or represents a freshly-allocated span if no partially full ones
are available for reuse. Frees, as in Figure 4d, first check if
the object is from an attached MiniHeap. If so, it is handled
by the appropriate shuffle vector, otherwise it is passed to
the global heap to handle.

4.4 Global Heap

The global heap allocates MiniHeaps for thread-local heaps,
handles all large object allocations, performs non-local frees
for both small and large objects, and coordinates meshing.

4.4.1 The Meshable Arena

The global heap allocates meshable spans and large objects
from a single, global meshable arena. This arena contains
two sets of bins for same-length spans Ð one set is for de-
mand zero-ed spans (freshly mmapped), and the other for used
spans Ð and a mapping of page offsets from the start of the
arena to their owning MiniHeap pointers. Used pages are
not immediately returned to the OS as they are likely to
be needed again soon, and reclamation is relatively expen-
sive. Only after 64MB of used pages have accumulated, or
whenever meshing is invoked, Mesh returns pages to OS by
calling fallocate on the heap’s file descriptor (ğ4.5.1) with
the FALLOC_FL_PUNCH_HOLE flag.

4.4.2 MiniHeap Allocation

Allocating a MiniHeap of size k pages begins with requesting
k pages from the meshable arena. The global allocator then
allocates and initializes a new MiniHeap instance from an
internal allocator that Mesh uses for its own needs. This
MiniHeap is kept live so long as the number of allocated
objects remains non-zero, and singleton MiniHeaps are used
to account for large object allocations. Finally, the global al-
locator updates the mapping of offsets to MiniHeaps for each
of the k pages to point at the address of the new MiniHeap.

4.4.3 Large Objects

All large allocation requests (greater than 16K) are directly
handled by the global heap. Large allocation requests are
rounded up to the nearest multiple of the hardware page size
(4K on x86_64), and a MiniHeap for 1 object of that size is
requested, as detailed above. The start of the span tracked
by that MiniHeap is returned to the program as the result of
the malloc call.

void *MeshLocal::malloc(size_t sz) {

int szClass;

// forward to global heap if large

if (!getSizeClass(sz, &szClass))

return _global->malloc(sz);

auto shufVec = _shufVecs[szClass];

if (shufVec.isExhausted()) {

shufVec.detachMiniheap();

shufVec.attach(

_global->allocMiniheap(szClass));}

return shufVec.malloc();

}

void ShuffleVector::attach(MiniHeap *mh){

_mh = mh;

_off = maxCount();

for (auto i = 0; i < maxCount(); i++){

// true if atomically set (0 -> 1)

if (bitmap.tryToSet(i)) {

_list[_off--] = i;

} }

shuffle(_list[_off],

_list[maxCount()]);

}

void *ShuffleVector::malloc() {

const auto off = _list[_off++];

return _spanStart + off * _objSize;

}

void MeshLocal::free(void *ptr) {

// check if in attached MiniHeap

for (auto i=0; i<SizeClassCount; i++){

const auto curr = _shufVecs[i];

if (curr->contains(ptr)) {

curr->free(ptr);

return; } }

_global->free(ptr); // general case

}

void ShuffleVector::free(void *ptr) {

const auto freedOff = getOff(ptr);

_list[--_off] = freedOff;

// place newly freed address

// randomly in the shuffle vector

auto swapOff =

_rng.inRange(_off, maxCount() - 1);

swap(_list[_off], _list[swapOff]);

}

Figure 4. Pseudocode forMesh’s core allocation and deallo-
cation routines.

4.4.4 Non-local Frees

If free is called on a pointer that is not contained in an
attached MiniHeap for that thread, the free is handled by
the global heap. Non-local frees occur when the thread that
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frees the object is different from the thread that allocated
it, or if there have been sufficient allocations on the current
thread that the original MiniHeap was exhaused and a new
MiniHeap for that size class was attached.
Looking up the owning MiniHeap for a pointer is a con-

stant time operation. The pointer is checked to ensure it falls
within the arena, the arena start address is subtracted from
it, and the result is divided by the page size. The resulting
offset is then used to index into a table of MiniHeap point-
ers. If the result is zero, the pointer is invalid; otherwise, it
points to a live MiniHeap. This enables us to catch certain
application-level memory management errors, like non-local
double frees when a new object hasn’t been allocated at the
same address.
Once the owning MiniHeap has been found, that Mini-

Heap’s bitmap is updated atomically in a compare-and-set
loop. If a free occurs for an object where the owning Mini-
Heap is attached to a different thread, the free atomically
updates that MiniHeap’s bitmap, but does not update the
other thread’s corresponding shuffle vector.

4.5 Meshing

Mesh’s implementation of meshing is guided by theoretical
results (described in detail in Section 5) that enable it to
efficiently find a number of spans that can be meshed.
Meshing is rate limited by a configurable parameter, set-

table at program startup and during runtime by the applica-
tion through the semi-standard mallctl API. The default
rate meshes at most once every tenth of a second. If the last
meshing freed less than one MB of heap space, the timer is
not restarted until a subsequent allocation is freed through
the global heap. This approach ensures thatMesh does not
waste time searching for meshes when the application and
heap are in a steady state.

We implement the SplitMesher algorithm from Section 3
in C++ to find meshes. Meshing proceeds one size class at a
time. Pairs of mesh candidates found by SplitMesher are
recorded in a list, and after SplitMesher returns candidate
pairs are meshed together en masse.

Meshing spans together is a two step process. First,Mesh

consolidates objects onto a single physical span. This con-
solidation is straightforward: Mesh copies objects from one
span into the free space of the other span, and updates Mini-
Heap metadata (like the allocation bitmap). Importantly, as
Mesh copies data at the physical span layer, even though
objects are moving in memory, no pointers or data internal
to moved objects or external references need to be updated.
Finally, Mesh updates the process’s virtual-to-physical map-
pings to point all meshed virtual spans at the consolidated
physical span.

Physical memory reclaimed frommeshing in one size class
is able to be used to satisfy future allocations in other size
classes.

4.5.1 Page Table Updates

Mesh updates the process’s page tables via calls to mmap.
We exploit the fact that mmap lets the same offset in a file
(corresponding to a physical span) be mapped to multiple
addresses. Mesh’s arena, rather than being an anonymous
mapping, as in traditional malloc implementations, is in-
stead a shared mapping backed by a temporary file. This
temporary file is obtained via the memfd_create system call
and only exists in memory or on swap.

4.5.2 Concurrent Meshing

Meshing takes place concurrently with the normal execu-
tion of other program threads with no stop-the-world phase
required. This is similar to how concurrent relocation is im-
plemented in low-latency garbage collector algorithms like
Pauseless and C4 [5, 34], as described below. Mesh main-
tains two invariants throughout the meshing process: reads
of objects being relocated are always correct and available to
concurrently executing threads, and objects are never writ-
ten to while being relocated between physical spans. The
first invariant is maintained through the atomic semantics
of mmap, the second through a write barrier.

Mesh’s write barrier is implementedwith page protections
and a segfault trap handler. Before relocating objects, Mesh

calls mprotect to mark the virtual page where objects are
being copied from as read-only. Concurrent reads succeed
as normal. If a concurrent thread tries to write to an object
being relocated, aMesh-controlled segfault signal handler
is invoked by a combination of the hardware and operating
system. This handler waits on a lock for the current meshing
operation to complete, the last step of which is remapping
the source virtual span as read/write. Once meshing is done
the handler checks if the address that triggered the segfault
was involved in a meshing operation; if so, the handler exits
and the instruction causing the write is re-executed by the
CPU as normal against the fully relocated object.

4.5.3 Concurrent Allocation

All thread-local allocation (on threads other than the one
running SplitMesher) can proceed concurrently and inde-
pendently with meshing, until and unless a thread needs a
fresh span to allocate from. Allocation only is performed
from spans owned by a thread, and only spans owned by the
global manager are considered for meshing; spans have a
single owner. The thread running SplitMesher holds the
global heap’s lock while meshing. This lock also synchro-
nizes transferring ownership of a span from the global heap
to a thread-local heap (or vice-versa). If another thread re-
quires a new span to fulfill an allocation request, the thread
waits until the global manager finishes meshing and releases
the lock.
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0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0

0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0

Figure 5.An examplemeshing graph.Nodes correspond
to the spans represented by the strings 01101000, 01010000,
00100110, and 00010000. Edges connect meshable strings
(corresponding to non-overlapping spans).

4.6 Huge Pages

Mesh’s heap is not designed to be used in conjunction with
transparent huge pages, where the page table size used by
the kernel and hardware is 2MB rather than 4KB and the
kernel runs a garbage collection-like daemon to coalesce
4KB pages into 2MB pages. Huge pages reduce TLB pres-
sure, but necessarily increase the granularity at which the
kernel manages physical memory on behalf of the process.
This coarse granularity is fundamentally at odds withMesh’s
focus on minimizing heap size. Additionally, the madvise
mechanism that Mesh and other allocators like jemalloc use
to return memory to the OS interacts poorly with transpar-
ent huge pages on Linux (causing 2MB pages to be split into
4KB pages), to the extent that major software vendors and
operators recommend disabling transparent huge pages al-
together [4, 6, 12, 25, 31]. Applications that need to back
datasets or data structures with huge pages can still directly
allocate (non-Mesh-managed) memory from Linux using one
of several interfaces [17].

5 Analysis

This section shows that the SplitMesher procedure de-
scribed in ğ3.3 comes with strong formal guarantees on
the quality of the meshing found along with bounds on
its runtime. In situations where significant meshing oppor-
tunities exist (that is, when compaction is most desirable),
SplitMesher finds with high probability an approximation
arbitrarily close to 1/2 of the best possible meshing inO (n/q)
time, where n is the number of spans and q is the global prob-
ability of two spans meshing.

To formally establish these bounds on quality and runtime,
we show that meshing can be interpreted as a graph problem,
analyze its complexity (ğ5.1), show that we can do nearly as
well by solving an easier graph problem instead (ğ5.2), and
prove that SplitMesher approximates this problem with
high probability (ğ5.3).

5.1 Formal Problem Definitions

SinceMesh segregates objects based on size, we can limit our
analysis to compaction within a single size class without loss
of generality. For our analysis, we represent spans as binary
strings of length b, the maximum number of objects that the
span can store. Each bit represents the allocation state of a
single object. We represent each span π with string s such
that s (i) = 1 if π has an object at offset i , and 0 otherwise.

Definition 5.1. We say two strings s1, s2 mesh iff
∑

i s1 (i) ·

s2 (i) = 0. More generally, a set of binary strings are said to

mesh if every pair of strings in this set mesh.

When we mesh k spans together, the objects scattered
across those k spans are moved to a single span while retain-
ing their offset from the start of the span. The remaining
k − 1 spans are no longer needed and are released to the
operating system. We say that we łrelease” k − 1 strings

when we mesh k strings together. Since our goal is to empty
as many physical spans as possible, we can characterize our
theoretical problem as follows:

Problem 1. Given a multi-set of n binary strings of length b,

find a meshing that releases the maximum number of strings.

A Formulation via Graphs: We observe that an instance
of the meshing problem, a string multi-set S , can naturally
be expressed via a graphG(S)where there is a node for every
string in S and an edge between two nodes iff the relevant
strings can bemeshed. Figure 5 illustrates this representation
via an example.

If a set of strings are meshable, then there is an edge be-
tween every pair of the corresponding nodes: the set of
corresponding nodes is a clique. We can therefore decom-
pose the graph into k disjoint cliques iff we can free n − k
strings in the meshing problem. Unfortunately, the prob-
lem of decomposing a graph into the minimum number of
disjoint cliques (MinCliqeCover) is in general NP-hard.
Worse, it cannot even be approximated up to a factorm1−ϵ

unless P = NP [35].
While the meshing problem is reducible to MinCliqe-

Cover, we have not shown that the meshing problem is NP-
Hard. The meshing problem is indeed NP-hard for strings of
arbitrary length, but in practice string length is proportional
to span size, which is constant.

Theorem 5.2. The meshing problem for S , a multi-set of

strings of constant length, is in P .

Proof. We assume without loss of generality that S does not
contain the all-zero string s0; if it does, since s0 can bemeshed
with any other string and so can always be released, we can
solve the meshing problem for S \ s0 and then mesh each
instance of s0 arbitrarily.

Rather than reason aboutMinCliqeCover on a meshing
graph G, we consider the equivalent problem of coloring
the complement graph Ḡ in which there is an edge between
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every pair of two nodes whose strings do not mesh. The
nodes of Ḡ can be partitioned into at most 2b − 1 subsets
N1 . . .N2b−1 such that all nodes in each Ni represent the
same string si . The induced subgraph of Ni in Ḡ is a clique
since all its nodes have a 1 in the same position and so cannot
be pairwise meshed. Further, all nodes in Ni have the same
set of neighbors.
Since Ni is a clique, at most one node in Ni may be col-

ored with any color. Fix some coloring on Ḡ. Swapping the
colors of two nodes in Ni does not change the validity of the
coloring since these nodes have the same neighbor set. We
can therefore unambiguously represent a valid coloring of Ḡ
merely by indicating in which cliques each color appears.
With 2b cliques and a maximum of n colors, there are at

most (n + 1)c such colorings on the graph where c = 22
b

.
This follows because each color used can be associated with
a subset of {1, . . . , 2b } corresponding to which of the cliques
have node with this color; we call this subset a signature

and note there are c possible signatures. A coloring can be
therefore be associatedwith amulti-set of possible signatures
where each signature has multiplicity between 0 and n; there
are (n + 1)c such multi-sets. This is polynomial in n since b
is constant and hence c is also constant. So we can simply
check each coloring for validity (a coloring is valid iff no
color appears in two cliques whose string representations
mesh). The algorithm returns a valid coloringwith the lowest
number of colors from all valid colorings discovered. □

Note that the runtime of the above algorithm is at least ex-
ponential in the string length. While technically polynomial
for constant string length, the running time of the above
algorithm would obviously be prohibitive in practice and
so we never employ it in Mesh. Fortunately, as we show
next, we can exploit the randomness in the strings to design
a much faster algorithm.

5.2 Simplifying the Problem: From

MinCliqeCover toMatching

We leverage Mesh’s random allocation to simplify meshing;
this random allocation implies a distribution over the graphs
that exhibits useful structural properties. We first make the
following important observation:

Observation 1. Conditioned on the occupancies of the strings,

edges in the meshing graph are not three-wise independent.

To see that edges are not three-wise independent consider
three random strings s1, s2, s3 of length 4, each with exactly
2 ones. It is impossible for these strings to all mesh mutually
since if we know that s1 and s2 mesh, and that s2 and s3
mesh, we know for certain that s1 and s3 cannot mesh. More
generally, conditioning on s1 and s2 meshing and s1 and
s3 meshing decreases the probability that s1 and s3 mesh.
Below, we quantify this effect to argue that we canmesh near-
optimally by solving the much easierMatching problem on

the meshing graph (i.e., restricting our attention to finding
cliques of size 2) instead of MinCliqeCover. Another
consequence of the above observation is that we will not be
able to appeal to theoretical results on the standard model of
random graphs, Erdős-Renyi graphs, in which each possible
edge is present with some fixed probability and the edges are
fully independent. Instead we will need new algorithms and
proofs that only require independence of acyclic collections
of edges.

Triangles and Larger Cliques are Uncommon. Because
of the dependencies across the edges present in a meshing
graph, we can argue that triangles (and hence also larger
cliques) are relatively infrequent in the graph and certainly
less frequent than one would expect were all edges indepen-
dent. For example, consider three strings s1, s2, s3 ∈ {0, 1}

b

with occupancies r1, r2, and r3, respectively. The probability
they mesh is

(

b − r1

r2

)

/

(

b

r2

)

×

(

b − r1 − r2

r3

)

/

(

b

r3

)

.

This value is significantly less than would have been the
case if the events corresponding to pairs of strings being
meshable were independent. For instance, if b = 32, r1 =

r2 = r3 = 10, this probability is so low that even if there were
1000 strings, the expected number of triangles would be less
than 2. In contrast, had all meshes been independent, with
the same parameters, there would have been 167 triangles.

The above analysis suggests that we can focus on finding
only cliques of size 2, thereby solving Matching instead of
MinCliqeCover. The evaluation in Section 6 vindicates
this approach, and we show a strong accuracy guarantee for
Matching below.

5.3 Theoretical Guarantees

Since we need to perform meshing at runtime, it is essential
that our algorithm for finding strings to mesh be as effi-
cient as possible. It would be far too costly in both time and
memory overhead to actually construct the meshing graph
and run an existing matching algorithm on it. Instead, the
SplitMesher algorithm (shown in Figure 2) performs mesh-
ing without the need for explicitly constructing the meshing
graph.

For further efficiency, we need to constrain the value of the
parameter t , which controls Mesh’s space-time tradeoff. If t
were set as large as n, then SplitMesher could, in the worst
case, exhaustively search all pairs of spans between the left
and right sets: a total of n2/4 probes. In practice, we want to
choose a significantly smaller value for t so thatMesh can
always complete the meshing process quickly without the
need to search all possible pairs of strings.

Lemma 5.3. Let t = k/q where k > 1 is some user defined

parameter and q is the global probability of two spans meshing.
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SplitMesher finds a matching of size at leastn(1−e−2k )/4 be-
tween the left and right span sets with probability approaching

1 as n ≥ 2k/q grows.

Proof. Let Sl = {v1,v2, . . .vn/2} and Sr = {u1,u2, . . .un/2}.
Let t = k/q where k > 1 is some arbitrary constant. For
ui ∈ Sl and i ≤ j ≤ j + t , we say (ui ,vj ) is a good match if all
the following properties hold: (1) there is an edge betweenui
andvj , (2) there are no edges betweenui andvj′ for i ≤ j ′ < j ,
and (3) there are no edges between ui′ and vj for i < i ′ ≤ j.
We observe that SplitMesher finds any good match, al-

though it may also find additional matches. It therefore
suffices to consider only the number of good matches. The
probability (ui ,vj ) is a good match is q(1−q)2(j−i) by appeal-
ing to the fact that the collection of edges under consideration
is acyclic. Hence, Pr(ui has a good match) is

r := q

k/q−1
∑

i=0

(1 − q)2i = q
1 − (1 − q)2k/q

1 − (1 − q)2
>

1 − e−2k

2
.

To analyze the number of good matches, define Xi = 1
iff ui has a good match. Then,

∑

i Xi is the number of good
matches. By linearity of expectation, the expected number
of good matches is rn/2. We decompose

∑

i Xi into

Z0 + Z1 + . . . + Zt−1 where Z j =

∑

i≡j mod t

Xi .

Since eachZ j is a sum ofn/(2t) independent variables, by the
Chernoff bound, P

(

Z j < (1 − ϵ)E[Z j ]
)

≤ exp
(

−ϵ2rn/(4t)
)

.
By the union bound,

P (X < (1 − ϵ) rn/2) ≤ t exp
(

−ϵ2rn/(4t)
)

and this becomes arbitrarily small as n grows. □

In the worst case, the algorithm checks nk/2q pairs. For
our implementation of Mesh, we use a static value of t = 64;
this value enables the guarantees of Lemma 5.1 in cases
where significant meshing is possible. As Section 6 shows,
this value for t results in effective memory compaction with
modest performance overhead.

5.4 Summary of Analytical Results

We show the problem of meshing is reducible to a graph
problem,MinCliqeCover. While solving this problem is
infeasible, we show that probabilistically, we can do nearly
as well by finding the maximum Matching, a much eas-
ier graph problem. We analyze our meshing algorithm as
an approximation to the maximum matching on a random
meshing graph, and argue that it succeeds with high probabil-
ity. As a corollary of these results, Mesh breaks the Robson
bounds with high probability.

6 Evaluation

Our evaluation answers the following questions: DoesMesh

reduce overall memory usage with reasonable performance

overhead? (§6.2) Does randomization provide empirical ben-
efits beyond its analytical guarantees? (§6.3)

6.1 Experimental Setup

We perform all experiments on aMacBook Pro with 16 GiB of
RAM and an Intel i7-5600U, running Linux 4.18 and Ubuntu
Bionic. We use glibc 2.26 and jemalloc 3.6.0 for SPEC2006,
Redis 4.0.2, and Ruby 2.5.1. Two builds of Firefox 57.0.4 were
compiled as release builds, one with its internal allocator dis-
abled to allow the use of alternate allocators via LD_PRELOAD.
SPEC was compiled with clang version 4.0 at the -O2 opti-
mization level, andMeshwas compiled with gcc 8 at the -O3
optimization level and with link-time optimization (-flto).
We primarily compare Mesh results to the default allocator
for each test (jemalloc for Firefox and Redis, glibc for SPEC
and Ruby). Where appropriate, we also include results from
tcmalloc (gperftools 2.5) and Hoard (git commit a0e46aa1);
when omitted, it is because their performance is virtually
identical to jemalloc and glibc.
Measuring memory usage: To accurately measure the

memory usage of an application over time, we developed a
Linux-based utility, mstat1, that runs a program in a new
memory control group [26]. mstat polls the resident-set size
(RSS) and kernel memory usage statistics for all processes in
the control group at a constant frequency. This enables us to
account for the memory required for larger page tables (due
to meshing) in our evaluation. We have verified that mstat
does not perturb performance results.

6.2 Memory Savings and Performance Overhead

We evaluate Mesh’s impact on memory consumption and
runtime across the Firefox web browser, the Redis data struc-
ture store, and the SPECint2006 benchmark suite.

6.2.1 Firefox

Firefox is an especially challenging application for memory
reduction since it has been the subject of a five year effort
to reduce its memory footprint [33]. To evaluate Mesh’s
impact on Firefox’s memory consumption under realistic
conditions, we measure Firefox’s RSS while running the
Speedometer 2.0 benchmark. Speedometer was constructed
by engineers working on the Google Chrome and Apple Sa-
fari web browsers to simulate the patterns in use on websites
today, stressing a number of browser subsystems like DOM
APIs, layout, CSS resolution and the JavaScript engine. In
Firefox, most of these subsystems are multi-threaded, even
for a single page [13]. The benchmark comprises a number of
small łtodo” apps written in a number of different languages
and styles, with a final score computed as the geometric
mean of the time taken by the executed tests.

We test Firefox in single-process mode (disabling content
sandboxing, which spawns multiple processes) under the

1mstat is open source, and available at https://github.com/bpowers/mstat
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Figure 6. Firefox:Mesh decreases mean heap size by 16%
over the course of the Speedometer 2.0 benchmark compared
with the version of jemalloc bundled with Firefox, with less
than a 1% change in the reported Speedometer score (ğ6.2.1).

mstat tool to record memory usage over time. Our test
opens a tab, loads the Speedometer page from a local server,
waits 2 seconds, and then automatically executes the test.
We record the reported score at the end of the benchmark
run and calculate average memory usage recorded by mstat.
We tested both a standard release build of Firefox, along
with a release build that did not bundle Mozilla’s fork of
jemalloc (hereafter referred to as mozjemalloc) and instead
directly called malloc-related functions, withMesh included
via LD_PRELOAD. We report the average resident set size
over the course of the benchmark and a 15 second cooldown
period afterward, collecting three runs per allocator.

Mesh reduces the memory consumption of Firefox by 16%
compared to Firefox’s bundled jemalloc allocator. Mesh re-
quires 530 MB (σ = 22.4 MB) to complete the benchmark,
while the Mozilla allocator needs 632 MB (σ = 25.3 MB).
Mesh spent a total of 135 ms meshing over the course of
the benchmark, with a maximum meshing latency of 7.5 ms
and average meshing latency of 0.2 ms. This result shows
that Mesh can effectively reduce memory overhead even
in widely used and heavily optimized applications. Mesh

achieves this savings with less than a 1% reduction in per-
formance (measured as the score reported by Speedometer).
Hoard and tcmalloc improved Speedometer performance rela-
tive to jemalloc by 5.4 and 6.0% respectively, while increasing
average heap size by 48.0% and 8.6%.

Figure 6 showsmemory usage over the course of a Speedome-
ter benchmark run underMesh and the default jemalloc al-
locator. While memory usage under both peaks to similar
levels, Mesh is able to keep heap size consistently lower.

6.2.2 Redis

Redis is a widely-used in-memory data structure server. Re-
dis 4.0 introduced a feature called łactive defragmentation” [29,
32]. Redis calculates a fragmentation ratio (RSS over sum
of active allocations) once a second. If this ratio is too
high, it triggers a round of active defragmentation. This
involves making a fresh copy of Redis’s internal data struc-
tures and freeing the old ones. Active defragmentation relies
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Figure 7. Redis: Mesh automatically achieves significant
memory savings (39%), obviating the need for its custom,
application-specific łdefragmentation” routine (ğ6.2.2).

on allocator-specific APIs in jemalloc both for gathering sta-
tistics and for its ability to perform allocations that bypass
thread-local caches, increasing the likelihood they will be
contiguous in memory.
We adapt a benchmark from the official Redis test suite

to measure how Mesh’s automatic compaction compares
with Redis’s active defragmentation, as well as against the
standard glibc allocator. This benchmark runs for a total of
7.5 seconds, regardless of allocator. It configures Redis to act
as an LRU cache with a maximum of 100 MB of objects (keys
and values). The test then allocates 700,000 random keys
and values, where the values have a length of 240 bytes. Fi-
nally, the test inserts 170,000 new keys with values of length
492. Our only change from the original Redis test is to in-
crease the value sizes in order to place all allocators on a
level playing field with respect to internal fragmentation;
the chosen values of 240 and 492 bytes ensure that tested
allocators use similar size classes for their allocations. We
testMeshwith Redis in two configurations: with meshing al-
ways on and with meshing disabled, both without any input
or coordination from the redis-server application.
Figure 7 shows memory usage over time for Redis under

Mesh, as well as under jemalloc with Redis’s łactivedefrag”
enabled, as measured by mstat (ğ6.1). The łactivedefrag”
configuration enables active defragmentation after all objects
have been added to the cache.

UsingMesh automatically and portably achieves the same
heap size reduction (39%) as Redis’s active defragmentation.
During most of the 7.5s of this test Redis is idle; Redis only
triggers active defragmentation during idle periods. With
Mesh, insertion takes 1.76s, while with Redis’s default of
jemalloc, insertion takes 1.72s. Redis under Hoard and tcmal-
loc has the same average heap size as Mesh with meshing
disabled (under 2% difference), and both allocators are simi-
larly within 2% of the insertion speed of jemalloc. Mesh’s
compaction is additionally significantly faster than Redis’s
active defragmentation. During execution withMesh, a total
of 0.23s are spent meshing (the longest pause is 22 ms), while
active defragmentation accounts for 1.49s (5.5× slower). This
high latency may explain why Redis disables łactivedefrag”
by default.
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6.2.3 SPEC Benchmarks

Most of the SPEC benchmarks are not particularly com-
pelling targets for Mesh because they have small overall
footprints and do not exercise the memory allocator. For
example, while the 401.bzip2 benchmark has one of the
higher heap size averages at 665 MB, the difference in both
runtime and average heap size between the fastest + slowest
allocators is under 1%.
Across the entire SPECint 2006 benchmark suite, Mesh

modestly decreases average memory consumption (geomean:
−2.4%) vs. glibc, while imposing minimal execution time
overhead (geomean: 0.7%).

However, for applications that are both allocation-intensive
(many calls to malloc and free) and which have large foot-
prints, Mesh is able to substantially reduce peak memory
consumption. The most allocator-sensitive benchmark is
400.perlbench, a Perl benchmark that performs a number
of e-mail related tasks including spam detection (SpamAs-
sassin). Peak RSS with glibc, jemalloc, and Hoard is 664 MB,
614 MB, and 732 MB respectively. Mesh reduces peak RSS to
564 MB (a 15% reduction relative to glibc) while increasing
runtime overhead by only 3.9%.

6.3 Empirical Value of Randomization

Randomization is key to Mesh’s analytic guarantees; we
evaluate whether it also can have an observable empirical
impact on its ability to reclaim space. To do this, we test three
configurations of Mesh: (1) meshing disabled, (2) meshing
enabled but randomization disabled, and (3)Mesh with both
meshing and randomization enabled (the default).
We tested these configurations with Firefox and Redis,

and found no significant differences when randomization
was disabled; we believe that this is due to the highly ir-
regular (effectively random) allocation patterns that these
applications exhibit. We hypothesized that a more regu-
lar allocation pattern would be more challenging for a non-
randomized baseline. To test this hypothesis, we wrote a
synthetic microbenchmark with a regular allocation pattern
in Ruby. Ruby is an interpreted programming language popu-
lar for implementingweb services, including GitHub, AirBnB,
and the original version of Twitter. Ruby makes heavy use
of object-oriented and functional programming paradigms,
making it allocation-intensive. Ruby is garbage collected,
and while the standard MRI Ruby implementation (written
in C) has a custom GC arena for small objects, large objects
(like strings) are allocated directly with malloc.

OurRubymicrobenchmark repeatedly performs a sequence
of string allocations and deallocations, simulating the effect
of accumulating results from an API and periodically filter-
ing some out. It allocates a number of strings of a fixed size,
then retaining references 25% of the strings while dropping
references to the rest. Each iteration the length of the strings
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Figure 8.Ruby benchmark:Mesh is able to decreasemean
heap size by 18% compared to Mesh with randomization
disabled and non-compacting allocators (§6.3).

is doubled. The test requires only a fixed 128 MB to hold the
string contents.
Figure 8 presents the results of running this application

with the three variants of Mesh and jemalloc; for this bench-
mark, jemalloc and glibc are essentially indistinguishable.
With meshing disabled,Mesh exhibits similar runtime and
heap size to jemalloc. With meshing enabled but random-
ization disabled, Mesh imposes a 4% runtime overhead and
yields only a modest 3% reduction in heap size.

Enabling randomization in Mesh increases the time over-
head to 10.7% compared to jemalloc, but the use of random-
ization lets it significantly reduce the mean heap size over
the execution time of the microbenchmark (a 19% reduction).
The additional runtime overhead is due to the additional
system calls and memory copies induced by the meshing
process. This result demonstrates that randomization is not
just useful for providing analytical guarantees but can also
be essential for meshing to be effective in practice.

6.4 Summary of Empirical Results

For a number of memory-intensive applications, including
aggressively space-optimized applications like Firefox,Mesh

can substantially reduce memory consumption (by 16% to
39%) while imposing a modest impact on runtime perfor-
mance (e.g., around 1% for Firefox and SPECint 2006). We
find thatMesh’s randomization can enable substantial space
reduction in the face of a regular allocation pattern.

7 Related Work

Hound: Hound is a memory leak detector for C/C++ applica-
tions that introduced meshing (a.k.a. łvirtual compaction”),
a mechanism that Mesh leverages [28]. Hound combines an
age-segregated heap with data sampling to precisely iden-
tify leaks. Because Hound cannot reclaim memory until
every object on a page is freed, it relies on a heuristic version
of meshing to prevent catastrophic memory consumption.
Hound is unsuitable as a replacement general-purpose allo-
cator; it lacks both Mesh’s theoretical guarantees and space
and runtime efficiency (Hound’s repository is missing files
and it does not build, precluding a direct empirical com-
parison here). The Hound paper reports a geometric mean
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slowdown of ≈ 30% for SPECint2006 (compared toMesh’s
0.7%), slowing one benchmark (xalancbmk) by almost 10×.
Hound also generally increases memory consumption, while
Mesh often substantially decreases it.

Compaction for C/C++: Previous work has described a va-
riety of manual and compiler-based approaches to support
compaction for C++. Detlefs shows that if developers use
annotations in the form of smart pointers, C++ code can
also be managed with a relocating garbage collector [10].
Edelson introduced GC support through a combination of
automatically generated smart pointer classes and compiler
transformations that support relocating GC [11]. Google’s
Chrome uses an application-specific compacting GC for C++
objects called Oilpan that depends on the presence of a sin-
gle event loop [1]. Developers must use a variety of smart
pointer classes instead of raw pointers to enable GC and
relocation. This effort took years. Unlike these approaches,
Mesh is fully general, works for unmodified C and C++ bina-
ries, and does not require programmer or compiler support;
its compaction approach is orthogonal to GC.
CouchDB and Redis implement ad hoc best-effort com-

paction, which they call łdefragmentation”. These work by
iterating through program data structures like hash tables,
copying each object’s contents into freshly-allocated blocks
(in the hope they will be contiguous), updating pointers,
and then freeing the old objects [29, 32]. This application-
specific approach is not only inefficient (because it may copy
objects that are already densely packed) and brittle (because
it relies on internal allocator behavior that may change in
new releases), but it may also be ineffective, since the alloca-
tor cannot ensure that these objects are actually contiguous
in memory. Unlike these approaches,Mesh performs com-
paction efficiently and its effectiveness is guaranteed.

Compacting garbage collection in managed languages:

Compacting garbage collection has long been a feature of
languages like LISP and Java [15, 18]. Contemporary run-
times like the Hotspot JVM [24], the .NET VM [23], and the
SpiderMonkey JavaScript VM [9] all implement compaction
as part of their garbage collection algorithms. Mesh brings
the benefits of compaction to C/C++; in principle, it could
also be used to automatically enable compaction for language
implementations that rely on non-compacting collectors.

Bounds on Partial Compaction: Cohen and Petrank prove
upper and lower bounds on defragmentation via partial com-
paction [7, 8]. In their setting, corresponding to managed en-
vironments, every object may be relocated to any free mem-
ory location; they ask what space savings can be achieved if
the memory manager is only allowed to relocate a bounded
number of objects. By contrast,Mesh is designed for unman-
aged languages where objects cannot be arbitrarily relocated.

PCM fault mitigation: Ipek et al. use a technique similar
to meshing to address the degradation of phase-change mem-
ory (PCM) over the lifetime of a device [20]. The authors
introduce dynamically replicated memory (DRM), which
uses pairs of PCM pages with non-overlapping bit failures
to act as a single page of (non-faulty) storage. When the
memory controller reports a page with new bit failures, the
OS attempts to pair it with a complementary page. A random
graph analysis is used to justify this greedy algorithm.
DRM operates in a qualitatively different domain than

Mesh. In DRM, the OS occasionally attempts to pair newly
faulty pages against a list of pages with static bit failures.
This process is incremental and local. In Mesh, the occu-
pancy of spans in the heap is more dynamic and much less
local. Mesh solves a full, non-incremental version of the
meshing problem each cycle. Additionally, in DRM, the ran-
dom graph describes an error model rather than a design
decision; additionally, the paper’s analysis is flawed. The
paper erroneously claims that the resulting graph is a sim-
ple random graph; in fact, its edges are not independent (as
we show in ğ5.2). This invalidates the claimed performance
guarantees, which depend on properties of simple random
graphs. In contrast, we prove the efficacy of our original
SplitMesher algorithm for Mesh using a careful random
graph analysis.

8 Conclusion

This paper introduces Mesh, a memory allocator that effi-
ciently performs compaction without relocation to save mem-
ory for unmanaged languages. We show analytically that
Mesh provably avoids catastrophic memory fragmentation
with high probability, and empirically show that Mesh can
substantially reduce memory fragmentation for memory-
intensive applications written in C/C++ with low runtime
overhead. In future work, we plan to explore integrating
Mesh into language runtimes that do not currently support
compaction, such as Go and Rust.

We have releasedMesh as an open source project; it can be
used with arbitrary C and C++ Linux and Mac OS X binaries
and can be downloaded at http://libmesh.org.
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