
76

Declarative Resilience: A Holistic Soft-Error Resilient

Multicore Architecture that Trades off Program Accuracy

for Efficiency

HAMZA OMAR, QINGCHUAN SHI, MASAB AHMAD, HALIT DOGAN, and

OMER KHAN, University of Connecticut, USA

To protect multicores from soft-error perturbations, research has explored various resiliency schemes that
provide high soft-error coverage. However, these schemes incur high performance and energy overheads. We
observe that not all soft-error perturbations affect program correctness, and some soft-errors only affect pro-
gram accuracy, i.e., the program completes with certain acceptable deviations from error free outcome. Thus,
it is practical to improve processor efficiency by trading off resiliency overheads with program accuracy. This
article proposes the idea of declarative resilience that selectively applies strong resiliency schemes for code
regions that are crucial for program correctness (crucial code) and lightweight resiliency for code regions that
are susceptible to program accuracy deviations as a result of soft-errors (non-crucial code). At the application
level, crucial and non-crucial code is identified based on its impact on the program outcome. A cross-layer
architecture enables efficient resilience along with holistic soft-error coverage. Only program accuracy is
compromised in the worst-case scenario of a soft-error strike during non-crucial code execution. For a set of
machine-learning and graph analytic benchmarks, declarative resilience reduces performance overhead over
a state-of-the-art system that applies strong resiliency for all program code regions from ∼ 1.43× to ∼ 1.2×.

CCS Concepts: • Computer systems organization→ Multicore architectures; Resilience; Redundancy;

Additional Key Words and Phrases: Program accuracy, soft-errors, graph analytics, machine learning

ACM Reference format:

Hamza Omar, Qingchuan Shi, Masab Ahmad, Halit Dogan, and Omer Khan. 2018. Declarative Resilience: A
Holistic Soft-Error Resilient Multicore Architecture that Trades off Program Accuracy for Efficiency. ACM
Trans. Embed. Comput. Syst. 17, 4, Article 76 (July 2018), 27 pages.
https://doi.org/10.1145/3210559

1 INTRODUCTION

The ever-increasing miniaturization of semiconductors has led to important advancements in mo-
bile, cloud, and network computing. However, it has caused electronic devices to become less reli-
able and microprocessors more susceptible to transient faults induced by radiations. These inter-
mittent faults do not provoke permanent damage; however, they may result in incorrect execution

This research was partially supported by the National Science Foundation under Grant No. CCF-1550470.
Authors’ addresses: H. Omar, Q. Shi, M. Ahmad, H. Dogan, and O. Khan, 371 Fairfield Way, Unit 4157, Storrs, CT, 06269,
USA; emails: {hamza.omar, qingchuan.shi, masab.ahmad, halit.dogan, omer.khan}@uconn.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 1539-9087/2018/07-ART76 $15.00
https://doi.org/10.1145/3210559

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:2 H. Omar et al.

of programs by altering signal transfers or stored values. These transitory faults are also called soft
errors. As technology scales, researchers and industry pundits are projecting that soft-errors will
become increasingly important [14]. Today’s processors implement multicores, featuring diverse
set of compute cores and on-boardmemory sub-systems connected via networks-on-chip and com-
munication protocols. Such multicores are widely deployed in numerous environments for their
computational capabilities, from traditional applications such as data centers to emerging areas
including unmanned aerial vehicles (UAVs) [49] and self-driving cars [23]. These cyber-physical
systems require high resilience for safety-criticality [66, 68], yet high performance for their tim-
ing constraints. Applications running on such systems include graph analytics (e.g., path planning,
motion detection), computer vision, and artificial intelligence (e.g., machine learning) [28, 53, 54].
The challenge is to prevent such systems from failure due to soft-errors, while still meet real-time
processing constraints.
While extensive research has been done on protecting single core processors from soft-errors,

multicore systems introduce new challenges, especially when running parallel applications under
complex shared memory protocols. Multicores integrate compute pipelines, cache hierarchy, and
interconnection networks on a single die, which introduces additional challenges that lead to com-
plex logic interactions and makes high soft-error coverage guarantee a hard problem. Moreover,
shared memory complicates error detection and recovery mechanisms, since data races among
cores lead to false alarms and make it harder to replay the program in a deterministic manner.
The error detection-to-recovery latency suffers when many cores rollback and synchronize their
redundant execution. Although these rollbacks may happen rarely, with safety-critical systems’
tight real-time constrains, such recovery schemes may not be acceptable. This article’s objective is
to develop an efficient resilient multicore architecture with high soft-error coverage. The program
execution must produce programmer acceptable result under soft-error perturbations and meet
real-time constraints.
First, the existing soft-error resilience schemes are reviewed in the context of the above stated

objective. A Hardware Redundant Execution (HaRE) [57] scheme was developed earlier, which re-
lies on temporal redundancy for all program instructions. It relies on a local per-core re-execution
mechanism to to detected soft-errors.Moreover, it implements a resilient coherence protocol [2] for
on-chip communication. This avoids expensive global checkpoint and roll-backs, while enabling
holistic protection for the multicore system. It also ensures the feasibility of switching the re-
execution on/off at each core, since one core’s re-execution does not affect instruction execution
of another core. Holistic protection schemes for multicore (and GPU) systems have been devel-
oped using mechanisms, such as thread-level redundancy (TLR) [43, 69]. These schemes deliver
high coverage by performing cross checks in a duplicated thread. However, redundant compu-
tation sacrifices available parallelism, which leads to relatively large performance overheads. In
general, multi-threading schemes operate at coarse granularity and require complex checkpoint
and global roll-backs. Thus, they require long detection-to-recovery latency, which is not ideal
for systems with real-time constraints. To improve performance, the idea of selectively applying
resilience protection in a program has been explored. Research has focused on applying certain
n-Modular Redundancy (nMR) or symptom-based schemes selectively to a program [30, 45]. These
schemes apply protection based on code’s vulnerability, which makes the program less likely to
be affected. However, they do not bound soft-error’s impact. In similar context, the idea of low-
ering program accuracy for performance has been explored in approximate computing [12, 13,
37, 58, 60]. These works do not focus on the soft-error resilience perspective. Not all code in an
approximated program can tolerate errors, and still requires certain level of resilience protection.
Recently, Khudia et al. [22] explored the idea that selects instructions based on their program ac-
curacy impact. Like most of the selective resilience schemes, it only protects certain instructions

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:3

Table 1. Summary of Various Resilience Schemes

Performance Hardware Selectively Compiler Coverage

Overhead Overhead Trading-Off Multicore Aid Crashing Deadlock Livelock SDC

TLR [43] High High None Yes Not
Applicable

High High High High

HaRE [57] Mid Mid None Yes Not
Applicable

High High High High

dTune [45] Mid Mid Vulnerability Yes Not
Applicable

Mid Mid Mid Mid

RASTER [30] Mid Mid Vulnerability No Not
Applicable

Mid Mid Mid Mid

Khudia
et.al. [22]

Low None Accuracy No Yes Low Low Low High

Declarative Low Mid Accuracy Yes Possible High High High High

Resilience

“High/Mid/Low” in fault type refers to the capability of protecting system from such faults.

and leaves others unprotected, and focuses on Silent Data Corruption (SDC). Moreover, it is not
specifically designed for multicores. The proposed declarative resilience architecture for shared
memory multicores applies different resilience schemes to different code regions based on their
criticality. Hardware Redundant Execution (HaRE) scheme is used for the crucial code regions that
affect program correctness. Lightweight schemes are used for the non-crucial code regions, where
compromising program accuracy is acceptable in case of soft-errors. It reduces performance over-
head of resiliency by eliminating unnecessary redundant executions for non-crucial code regions.
Various state-of-the-art resiliency schemes are summarized in Table 1 and contrasted to the

proposed declarative resilience scheme in terms of performance, hardware overhead, selective re-
siliency, and coverage tradeoffs. The terms “High/Mid/Low” are used in Table 1 categorize the
capability of protecting systems from soft-errors. “High” means that in most cases the error can
be prevented or detected/recovered. “Mid” implies the scheme is only effective in some cases, and
the fault effects are still commonly visible. Lastly, “Low” shows that it is unlikely the system can
be protected under such faults. Note that for all discussed resilience schemes, exceptions are man-
aged by the operating system. It is evident from Table 1 that the proposed declarative resilience
architecture provides high coverage, as well as adjusts the program accuracy to achieve better
performance with minimal hardware overheads.

1.1 Organization

The article is organized as follows. Section 2 discusses the proposed declarative resilience archi-
tecture and the design flow necessary to integrate various resiliency mechanisms. Moreover, it
explains the process of classifying application code among crucial and non-crucial regions. Sec-
tion 3 explains the applications under consideration, and discusses potential non-crucial regions to
achieve performance and energy benefits. It also provides description on accuracy threshold selec-
tion. The methodology is reviewed in Section 4. Section 5 explains the accuracy, performance, and
energy results reported for all applications under the proposed architecture. Section 6 discusses
prior work in the field of resilience, and approximate computing. Last, the article is concluded in
Section 7.

2 DECLARATIVE RESILIENCE

The key idea of declarative resilience architecture is to protect different code regions with differ-
ent resilience schemes that trade-off program accuracy with efficiency. The novelty comes from

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:4 H. Omar et al.

Fig. 1. Hardware resilience mechanism (HaRE) protects each compute core using redundant execution and

un-core using a resilient cache coherence protocol.

two factors: the way code regions are identified and the resilience schemes to ensure no side-
effects due to soft-errors. Based on the notion of trading off resilience overheads with program
accuracy, crucial and non-crucial code is defined as follows. Crucial code affects program correct-
ness, which means the program should be able to complete without crashing, deadlocking, and
so on, due to soft-errors, while its outcome is explicable. Non-crucial code only affects program
accuracy, which refers to how much the result is off compared to error-free scenario. In the pro-
posed architecture, we use Hardware Redundant Execution scheme [57] (HaRE) for crucial code
and lightweight Software-Hardware Resiliency schemes (SHR) for non-crucial code.
Recent research [14, 17, 22] has pointed out that SDC can prove to be the most harmful effect

of soft-error, since SDCs do not produce obvious failures. This limits the user to know whether
the results are correct or not. As shown in Table 1, the proposed architecture also targets high
coverage for SDC in addition to program crashing, deadlock, and live-lock type of errors. More-
over, this article considers soft-errors that impact the program control flow or data flow. The OS
(operating system) code is not emulated, and exceptions (including ones triggered by soft-errors)
must be handled explicitly by the OS. In the remaining sections, we introduce the hardware re-
silience mechanism (HaRE) for protecting crucial code, then we explain how to select non-crucial
code regions based on soft-error’s effects at instruction level and the resilience protection needed
to ensure program correctness. Next, we go over the design flow to classify code regions as crucial
versus non-crucial and discuss systematic assist and certain optimizations. An application illus-
tration using a machine-learning workload is presented at the end.

2.1 Architectural Support for Redundant Execution

For crucial code regions, a state-of-the-art hardware re-execution based resilience mechanism
(HaRE) is proposed that guarantees high soft-error coverage [57]. In HaRE (as shown in Figure 1),
each core re-executes its own atomic instruction sequences, and rollbacks to a safe state when soft-
errors are detected. For deterministic and deadlock-free re-execution, HaRE guarantees atomicity
for instruction sequences: modified data is not committed or transferred until control and data
flow is checked using hardware signature registers. It has two main phases: execution and redun-

dant execution (re-execution). At the beginning of the execution phase, all necessary states such as
register file and program counter contents are duplicated to ensure a safe state checkpoint. Re-
execution is triggered when the data needs to be consumed, such as when another core sends a
coherence request (e.g., invalidation of a cache line). Private cache misses also trigger re-execution
to optimize performance, since an in-order core would likely be idle for tens of cycles while wait-
ing for the reply. Upon the triggers (overall there are seven trigger events in HaRE), the instruction
sequence is re-executed and checked to ensure that all the data leaving the core is correct. Soft-
error perturbations can be found by comparing a set of control and data-flow signature registers

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:5

Fig. 2. Soft-errors’ effects to program control and data flows.

captured during both execution and re-execution phases. In case of a mismatch, another re-
execution is used to recover. A resilient cache coherence protocol [2] is used to enable protec-
tion for the on-chip communication hardware. Overall, HaRE can exploit core level locality for
re-execution and can trigger it on long latency stalls to hide the overhead. Since HaRE is imple-
mented at the hardware level, the execution and re-execution phases are transparent to the pro-
grammer. As HaRE re-executes all instructions, its performance can be improved by only applying
re-execution to certain code regions. HaRE is suitable for turning re-execution on or off at instruc-
tion level, because it is applied locally to each core. However, since each transition has a latency
cost, the challenge is to develop a programmer-assisted mechanism to identify “code regions” that
have limited effects on program outcome under soft-error perturbations and efficiently pass it to
the hardware.

2.2 Guidelines of Non-Crucial Instructions

In the proposed declarative resilience architecture, all instructions are assumed crucial until proven
otherwise. To identify the non-crucial code regions, let us first analyze the soft-error effects at in-
struction level. The control flow includes branches, loops, jumps, and function calls, as shown in
Figure 2. A soft-error can affect the control flow instruction in two ways: wrong target/return ad-
dress, or wrong branch condition. Wrong target/return address can result in accessing arbitrary
data and cause unpredictable effects, as shown in Figure 2(➀). Moreover, soft errors can impact
the program counter (PC), which can lead to some other instruction being executed. Thus, con-
trol flow instructions and the calculations of their target/return addresses are always crucial. For
example, when HaRE is enabled around the “for” statement at program level, calculations of its
target/return addresses are automatically protected. Moreover, a conditional control flow instruc-
tion may incorrectly calculate its branch condition under soft-errors. Loop statements, such as
“for” and “while,” as well as the updates to their loop counter variables, are always protected for
the applications evaluated in this article. Wrong branch conditions could potentially affect pro-
gram correctness. However, these conditions could be tolerated if the effects reside only in the
non-crucial region and impact program accuracy. Consider an example where a soft-error strike is
subjected to a branch condition in the non-crucial code. If the branch decides among two different
data flow instructions, then choosing either condition will only affect program accuracy.
In program data flow, as store instructions directly modify memory and make data visible to

the program, they are more important than other instructions. As shown in Figure 2(➁), a store

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:6 H. Omar et al.

instruction can modify data at an arbitrary memory location unexpectedly due to incorrect store
address. Also, a store instruction can leave data unchanged, whereas it was intended to be updated.
Thus, store address calculation including preceding instructions in case of indirect addressing are
considered crucial. Store instructions can also affect program outcome through data committed to
memory. To illuminate the commit process, data is divided into two categories: local and global, as
shown in Figure 2. Local data is only used within a certain code region. It is also temporal, because
it is not used after exiting the region, for example, variables defined or initialized within a loop
iteration or a function. Data that is consumed outside the region is considered global. Hence, local
data is considered non-crucial, and global data can be crucial. However, local data is accumulated
to global data through computations. Values accumulated to global data are considered crucial, as
shown in Figure 2(➂). Thus, computations of local data may also need to be protected for program
correctness.
Based on our insights about soft-error effects on program control and data flow, the ideal can-

didates for non-crucial instructions are compute instructions in-between control flow that only
execute on local data and have minimum impact on program outcome. One example would be
random number generation instructions in Monte Carlo method. However, in real applications in-
structions that meet all these conditions are rare. In addition, turning HaRE on and off introduces
overheads that must be amortized by lowering the frequency of switching between crucial and
non-crucial instructions. Next, a set of lightweight software and hardware resilience mechanisms
are introduced that enable the proposed architecture to compose non-crucial code regions.

2.3 Non-Crucial Code Regions

As mentioned earlier, the frequency of switching HaRE on/off has detrimental effects on perfor-
mance. Therefore, for declarative resilience to be beneficial, it is favorable to have a set of contigu-
ous non-crucial instructions to hide HaRE on/off switching overheads. Such continuous regions
can be obtained using loop-unrolling. It is a loop transformation technique that attempts to opti-
mize the execution speed of the program by reducing instructions that control the loop, such as
end of loop tests on each iteration. Applying loop-unrolling optimization can potentially result in
performance gains. However, it involves program loops to be re-written as a repeated sequence of
similar independent commands and statements. This allows the soft-error effects on the program
outcome to be restricted for certain code regions. For this purpose, a set of lightweight software
and hardware resilience (SHR) mechanisms are introduced on top of HaRE.
First, at the hardware level, SHR applies protection for store instructions. Based on the insight

that store addresses are always critical to the program, SHR performs hardware-level redundant
address calculations. These calculations incur additional overheads. Store operations proceed after
their address calculation is verified. Otherwise, they are re-executed. This is to ensure that store
instructions do not access the crucial region unexpectedly. Second, at the software level, the value
committed to global data is checked to ensure program correctness and accuracy. This bound
checking is critical, since non-crucial code can affect program response if the value committed to
memory is not checked. For example, consider a simple program P that increments the value of x
by 1 (x++) each time for 100 iterations. For P , the bound-checker would keep track of x such that
it never goes beyond 100 or is never less than 0—this could happen if the soft-error strike perturbs
x to some arbitrary value. If the program fails to pass the bound-checking process, then it is re-
executed. Otherwise, the program proceeds to the next step. It is practical to use a programmer
defined software-level bound checker to provide certain resilience protection.
It is worthwhile noting that the proposed scheme provides high SDC coverage by using bound

checkers. Since the silently corrupted data value is bounded, the program output would be re-
stricted to diverge from an acceptable result. We claim that the accuracy of the result (corrupted

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:7

or not) would always be less than the accuracy threshold, if the bound checker is satisfied. The
bounds are predefined—such as 100 in the aforementioned example—to make the worst case ac-
ceptable. Thus, SDC by itself should not cause unpredictable results.
With SHR, store instructions and local data computations with predictable outcome are able to

be included in non-crucial code regions. This makes it more feasible to cluster contiguous non-
crucial instructions into code regions. In summary, code regions are classified as non-crucial with
SHR if they do not contain control flow instructions, and meet one of the following:

• They do not access global data.
• The value committed to global data does not affect the program response.
• The value committed to global data can be bound checked.

In addition to the above rules, there are multiple scenarios that require careful analysis. Such
scenarios are outlined below:
(1) The opcode is perturbed. Soft-errors may perturb the opcode of an assembly instruction

causing a data flow instruction to become a control flow type. For example, a non-crucial compute,
load, or store instruction could be perturbed to a branch instruction. As control flow instructions
are not allowed to be part of non-crucial region, an exception would be triggered. For the same
reason, the PC of next instruction should always increment sequentially, otherwise an exception
should be triggered.
(2) The operand is perturbed (When no exception triggered). Since a load value is only used

for computation in a non-crucial code region, a perturbed load operand (address) only results in
wrong value for the subsequent instruction in the region. Thus, bit-flips in the operands (such as
in the decode or execution stage) of compute and load instructions only result in perturbed value
of temporal variables. These are checked using the bound checker, and dropped if found to be out
of bound. Meanwhile, soft-errors in the operands of store instructions result in accessing arbitrary
memory locations, thus the store address calculation is protected by SHR.
(3)When exceptions are triggered. In the article, we do not consider OS actions. All exceptions

are to be handled as done in the baseline system. Such as in the case of a perturbed load access to
out of bound address, the OS handles the triggered segmentation fault. Additional OS support is
needed to handle the exception when control-flow instructions are present in non-crucial regions.
The OS reports the error to the user. Upon receiving the error, more coarse grain resilience schemes
can be applied, such as the user can re-execute the entire program.
Based on the above criteria, a significant amount of code in the targeted machine-learning and

graph analytic programs can be considered non-crucial. Next, we describe the proposed design
flow to accomplish classification of code as crucial versus non-crucial.

2.4 Design Flow and Systematic Assist

Figure 3 shows the design flow of the proposed declarative resilience architecture. Prior work [56]
has been extended in various aspects to formulate a rigorous and efficient resilience framework.
In the design of the proposed architecture, only the step for potential crucial and non-crucial
identification of code regions is programmer dependent. All other steps are implemented with
systematic assistance and need no programmer intervention.

2.4.1 Configuration Identification & Tuning. A structured and rigorous region classification
process is introduced to identify and mark regions as crucial/non-crucial. The programmer is re-
quired to first identify the non-crucial instructions based on the classification guidelines (cf. Sec-
tion 2.2). As mentioned earlier, it is beneficial to have contiguous compute instruction sequences
within each non-crucial region. With SHR in mind, schemes such as software level bound checking

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:8 H. Omar et al.

Fig. 3. Declarative resilience design flow.

and loop-unrolling are used to compose non-crucial instructions into code regions. These regions
do not need to be all-correct at this point, and the programmer can identify as many regions as
possible. Accuracy analysis is later performed to verify the accuracy loss of identified non-crucial
code regions. It helps the programmer in selecting the proper combination of regions under certain
constraints, such as soft-error rate and accuracy loss threshold. This combination is a subset of all
the non-crucial regions, which is referred to as configuration in this article. With a proper configu-
ration, the transformed program can be deployed on the proposed cross-layer architecture. In the
current setup, programmer’s effort is mainly spent in instruction classification. The steps involving
loop-unrolling and system-level bound checking have been automated via systematic assist.

2.4.2 Fault Injection. After identifying crucial/non-crucial regions, these configurations are
subjected to fault injection for evaluating and analyzing accuracy. Priors works [18, 24, 33] show
that numerous novel methods have been devised to inject faults, which can be implemented in
both hardware and software. The contrast between hardware and software methods lies mainly
in the fault injection points they can access, the cost, and the level of perturbation. This article
focuses on program-level fault injection, and thereby software-level fault injection mechanism is
used to analyze program accuracy.
Soft errors can impact the data being processed with a noise phenomenon anytime, anywhere in

the application. Due to the unpredictable and uncontrollable nature of soft-errors, random errors
are introduced in non-crucial code regions (details in Section 4) via software-level fault injection.
It is done in such a way that a random program variable prone to soft-errors (non-crucial region)
is exposed to random values in the range determined by its data type. For example, consider a
variable var of integer type in the non-crucial region. If var is subjected to fault injection, then
any random value from the range of−2147483646 to+2147483647 (minimum andmaximum values
for an integer) would be committed to var .
In the fault injection analysis, a single error is injected in the non-crucial region of the program

code. We apply both realistic and aggressive error rates to build up the confidence. The accuracy is

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:9

defined based on application dependent metrics (Section 3). The notion of the fault injection is that
after applying the protection schemes, the resilience architecture ensures that store address and
control flow instructions are always protected (using SHR or HaRE). The remaining vulnerable
code includes data flow instructions, and the out of bound value is never committed. The accuracy
loss of each region is obtained by applying fault injection to it. Multiple simulations (10 000 times
in this article) are performed for each configuration of non-crucial regions to obtain the average
program accuracy.

2.4.3 Heuristic Accuracy Analysis. Based on the programmer’s decision, multiple combinations
of crucial/non-crucial regions can be identified. The accuracy analysis requires an exhaustive
search out of all these various combinations to find a near-optimal solution. However, to cover all
the possible configurations, it needs to run 2I setups (where I is the number of potential non-crucial
regions), with each one simulated multiple times. For example, in the following sections we pro-
vide discussion over CNN-ALEXNET that contains I = 9 potential non-crucial regions. Analyzing
CNN-ALEXNET requires running numerous setups (29 = 512) to find a near-optimal combination.
This involves great computational effort when I is large like in the case of CNN-ALEXNET.

With the availability of multiple combinations, it is critical to reduce to a single near-optimal
configuration that not only satisfies the accuracy threshold but also provides near-optimal perfor-
mance. A heuristic has been devised that assists in converging to a single configuration out of all
available crucial/non-crucial region combinations.
The goal of the heuristic is to maximize the number of non-crucial regions, such that the ac-

curacy threshold constraint is also satisfied. Therefore, all regions are assumed non-crucial at the
beginning of the analysis. Following this approach speeds up this process with fewer simulations
to provide a near optimal configuration. If the program accuracy loss exceeds a programmer de-
fined threshold, then a new configuration with one less non-crucial region is selected. The region
with maximum accuracy loss in the previous configuration is considered as crucial. In case of
multiple regions having similar accuracy loss, the one with minimum execution time is selected.
This process is repeated until a crucial and non-crucial code region classification is achieved that
satisfies the programmer’s accuracy threshold.
To better explain this process, consider an example where an algorithm A has three regions

R1,R2, and R3, with x ,y, z denoting individual accuracy losses, respectively, such that x < y < z.
Initially, all three regions would be considered non-crucial to form a combination C1. Suppose
the output accuracy of C1 is greater than the threshold. In this case, R3 being the most sensitive
region—R3 has the highest accuracy loss (z)—would be dropped out of the configuration. A new
combination C2 would be formed, which contains R1 and R2 as non-crucial regions and R3 as a
crucial region. If the accuracy loss for the combination C2 satisfies the accuracy threshold, then
C2 would be considered as the near-optimal configuration. Otherwise, R2 would be dropped and a
new combination would be formed. The process of analyzing the accuracy and reducing to a single
configuration is a part of systematic assist, i.e., automated.

2.4.4 Resilience Switching. As shown in Figure 3, after selecting the proper configuration, the
appropriate pragmas are placed in the program to switch between crucial and non-crucial. These
are passed as HaRE on/off pragmas to the hardware. The hardware-software interface for declar-
ative resilience is implemented using a special function instrumented in the programs. As men-
tioned earlier, bound checkers are important for inspecting the values to be committed to the
memory. Bound checkers are nothing but control flow instructions to direct the program execution
based on comparison results. Control flow instructions are required to be a part of crucial regions.
Therefore, HaRE is turned “on” before the bound checker for protection against the soft-errors.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:10 H. Omar et al.

The final resilient program is executed on the proposed cross-layer architecture, with hardware
level support implemented in a multicore simulator.

ALGORITHM 1: CNN Convolutional Layer Pseudo Code

1: ConvolutionLayer(input, conv_out, tid, threads){
2: for each tid do

3: for each neuron do

4: \∗ The following 3 level loop is Unrolled ∗\
5: for (number of kernels k , kernel height, h, kernel width,w) do
6: \∗ Assign temp_k/h/w ∗\
7: HaRE Off

8: conv_out += do_conv (input , temp_k/h/w)

9: \∗ Update temp variables ∗\
10: conv_out += do_conv (input , temp_k/h/w)

11: \∗ Update temp variables ∗\
12: :
13: HaRE On

14: \∗ Update k,h,w ∗\

15: \∗ Bound_Checker not needed ∗\

16: }

2.5 Application Illustration

In this section, Convolutional Neural Network (CNN) is shown as an example to illustrate how to
transform the program code in the proposed architecture. The application shown is handwritten
digits recognition (MNIST) [40]. It mainly consists of four types of layers: input, convolution, fully
connected, and an output layer.
The algorithm is inspired by animal visual cortex. It is widely used in image and video recog-

nition. In CNN, individual neuron responds to a restricted region of visual space. The fields of
different neurons partially overlap. The response of an individual neuron can be approximated by
a convolution operation, which is also the major work in CNN. Because of its functionality, it is in-
tuitive to consider the computation in convolution layer as non-crucial (as shown in Algorithm 1).
Temporal variables are used in the iteration, to ensure that only temporal variables are updated
in non-crucial regions. The loop is unrolled to get longer non-crucial instruction sequence. The
computations (do_conv) are “inline” to avoid function call, since there should be no control-flow
instructions in non-crucial regions. Note that compiler added spill code for a non-crucial region
is local (temporal), and hence does not impact program correctness. Bound checkers need to be
added in the iteration after HaRE is turned on, if necessary. In this case, no checker is needed
(as shown in Algorithm 1 line 15), because the out of range value will be filtered out in the fully
connected layer.
Similar flow is applied to the fully connected layer, as shown in Algorithm 2. Each neuron in the

fully connected layer constitutes complete set of connections to all the ones in the previous layer.
It does the computation based on the input from the previous layer and calculates a sigmoid for
each neuron using respective weight values. The computations done are considered non-crucial.
The variable temp_O is bounded from −10 to 90, since it gives an acceptable sigmoid range (0.00001
to 0.99999).
As described above, non-crucial code regions should only contain compute instructions, load

instructions, and store instructions that access temporal variables. For example, the non-crucial

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:11

code region in the convolution layer of CNN-MNIST (shown in Algorithm 1) only contains fol-
lowing x86 instructions: movl, addl, cltq, salq, addq, movq, subl, movslq, leaq,

movsd, mulsd, addsd.

ALGORITHM 2: CNN Fully Connected Layer Pseudo Code

1: FullyConnectedLayer(input, fully_out, tid, threads) {
2: for each tid do

3: for each neuron do

4: \∗ The following loop is Unrolled ∗\
5: for each input i do
6: HaRE Off

7: temp_O+=(input (temp_i) ∗weiдht (temp_i))
8: temp_i = 1
9: temp_O+=(input (temp_i) ∗weiдht (temp_i))
10: :
11: temp_i = 2, 3,
12: temp_O+=(input (temp_i) ∗weiдht (temp_i))
13: HaRE On

14: \∗ Update i ∗\
15: Bound_Checker (temp_O)

16: f ully_out = Siдmoid (temp_O)

17: }

3 NON-CRUCIAL REGIONS OF TARGET APPLICATIONS

Machine-learning and graph analytic applications are ubiquitously used in many domains where
systems could be exposed to soft-errors, such as high altitude or temperature environments. Due
to their unique structure and computational behaviors, research has been done on relaxing their
accuracy for performance benefits. Likewise, these applications have potential to provide per-
formance improvements using the proposed architecture with resilience–accuracy trade-off. We
evaluate six machine-learning and nine graph analytic applications in this article.

3.1 Machine Learning

Machine-learning algorithms work on massive data and perform perception computations. These
workloads are used in numerous applications, such as image recognition, video analysis, and nat-
ural language processing. Such applications have the potential to be deployed in safety-critical
systems where they face resilience challenges [58]. On the contrary, due to their inherent heuristic
nature, individual floating-point calculations in machine-learning applications hardly impact pro-
gram outcome. In this article, we evaluate fourmulti-threaded versions of themost commonly used
convolutional neural networks: AlexNet (ALEXNET) [25], VGG [62], handwritten digits recogni-
tion (MNIST) [40], and recognition of German traffic signs (GTSRB) [54]. They all mainly con-
sist of four types of layers: input, convolutional, fully connected, and output layers. The rate of
“correct classification/the number of tests” is defined as the accuracy of an application. For exam-
ple, when applying 100 handwritten digits through CNN-MNIST, if 95 are classified correctly its
accuracy is defined as 95%. The accuracy loss is normalized to the program accuracy in soft-error
free condition. The benchmark setups are shown in Table 3.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:12 H. Omar et al.

For the neural networks discussed in this article, most part of their execution time is spent in
convolution and fully connected layers. The computations within these layers are considered non-
crucial. In K-Nearest Neighbors (KNN), objects are classified using several known examples. Class
of the new object is determined by a majority vote over its neighbors. The computation of the
distances between the new object and the known object is also considered non-crucial. This is
because each example has minimum impact to the program. Moreover, the distance calculation of
one neighbor is independent of the other neighbor, and thereby perturbations due to soft-errors
do not propagate.
Theoretically, the input layer of these benchmarks can also be considered non-crucial. In the case

of image recognition applications (such as CNN-MNIST), few perturbed pixel values can hardly
affect the program outcome. Moreover, it is highly possible that they will be masked in convo-
lution computations. However, in our benchmark setup, input layers load files using I/O system
calls, which are not in the context of this article. Thus, input layers are always considered crucial.
Alternatively, output layer is highly sensitive to errors/faults, since it is responsible for predicting
the output classes. Therefore, it is preferable to consider output layer as crucial.

3.2 Graph Analytics

Graph analytic benchmarks traverse the vertices in the input graph and compute based on the
connectivity and weights on the connected edges. They may consist of multiple phases, which
may serve different functionalities including synchronization of threads. Most of these computa-
tions within each phase can be identified as non-crucial. Due to their parallel strategy, the bench-
marks may iterate over the input graph multiple times. Thus, certain iterations can also be consid-
ered non-crucial. In this article, we evaluate nine multi-threaded graph analytic benchmarks from
CRONO suite [1]. Like machine-learning applications, all the graph analytic workloads are shown
in Table 3. The accuracy metrics are defined based on individual benchmark’s outcome.
Here, we use Triangle Counting (TRI-CNT) as an example. It measures vertex connections,

which is used in applications such as web connectivity. This benchmark consists of three phases.
The first phase adds side counts from each edge to a global data structure for each vertex. The
second phase reduces these added counts. It involves more computations, specifically divisions
to get triangles per vertex. These triangles are accumulated per vertex into a total triangle count
in each thread. Bound checkers are used to ensure the total triangle count are less than the total
edge count. The final phase gets the total number of triangles and is sequential involving only the
master thread to sum up the total number of triangles. All the computations done within these
phases can be considered non-crucial.
The non-crucial regions of all the graph analytic benchmarks other than Single Source Short-

est Path (SSSP) are classified in an equivalent manner as Triangle Counting. SSSP goes through
the input graph multiple times and updates the result matrix when smaller distance values are
found. If all the iterations are considered non-crucial, then the accuracy loss of SSSP turns out
to be more than 99%. The reason for such a high accuracy loss is because of the propagation of
the perturbed values. An experiment was performed to observe the effects of protecting last 20%
iterations against protecting none. We observed a lower accuracy loss as compared to the naive
approach and concluded that wrong values due to soft-errors are highly likely to be masked in
later iterations. Thus, we define the first 80% iterations as non-crucial. It is to be noted that, in
the real case, the programmer would define how many iterations need to be crucial based on the
accuracy analysis.
For most of the graph analytic benchmarks, accuracy is defined as the percentage difference

of the result value (by comparing the perturbed and the golden outputs) of each vertex, such as
PageRank, SSSP, and so on. For searching algorithm benchmarks DFS and BFS, the accuracy is

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:13

defined as the percentage of correctly checked vertices. For Triangle Counting, it is defined as
the percentage difference in the number of counted triangles for the perturbed output and the
error-free output.

3.3 Accuracy Threshold Selection

The heuristic accuracy analysis requires the programmer/user to provide an accuracy threshold
to mark regions as crucial or non-crucial. The higher the accuracy threshold, the higher would
be the room for letting accuracy drop. Accuracy threshold selection depends on various aspects,
such as the type of system and application. An accuracy threshold selected for a safety/life critical
system would be comparatively lower as compared to the case where a system must guarantee
response within specified time constraint. Similarly, accuracy threshold can vary depending on
the sensitivity of applications and the environment where they are deployed. In the context of
machine-learning applications, the accuracy threshold could be decided based on various param-
eters, such as frames per second (fps). Consider an example of advanced driver-assistance systems
(ADAS). Convolutional neural networks (CNNs) are deployed in such sensor-to-decision systems to
process images and predict prospective actions. A stream of images is provided to the CNN with
a certain fps rate to predict the next action. Usually, the fps rates range from 30 to 60 frames per
second [6]. The higher the fps rate, the more accurate and reliable decision would be made by the
system. Depending on conditions around the vehicle, the fps value could be allowed to change.
A high fps rate would be required in case of heavy traffic, and lower fps rates would be accept-
able if the traffic is smooth and light. For the latter case, lowering the fps rate and losing some
frames—say, 5% of the total 60 image frames, i.e., ∼3 images—from the image stream would not
impact the final decision significantly. Therefore, in this case an accuracy threshold of 5% would
be acceptable.
Graph applications are tolerant to random errors, as long as the nodes with higher connectivity

are not affected [9]. In the recent work [42], it has been shown that even at aggressive error rates
graph algorithms show highly accurate results. Therefore, there is a negligible probability that a
single injected error would affect nodes with high connectivity and would surely not impact the
final response significantly. In terms of graph analytic workloads, accuracy threshold selection
depends on graph inputs provided to the workload due to input dependence. For sparse graph
input there is room for selecting a higher accuracy threshold. However, dense graph inputs require
relatively lower accuracy threshold constraints due to higher number of connections per vertex.

4 METHODOLOGY

4.1 Performance/Energy Analysis Setup

We use the Graphite multicore simulator [36] to model the proposed cross-layer resilient architec-
ture. The default architecture parameters are summarized in Table 2. We model all hardware re-
siliency mechanisms proposed in Reference [57]. The hardware-software interface is implemented
using a special function instrumented in the application, which passes the HaRE on/off pragma
to the simulator. With the in-order single-issue core setup, we assume a five-stage pipeline. The
HaRE “on” switch needs three cycles to create a safe state and start capturing signatures. For HaRE
“off” switch, the pipeline needs to be flushed with an additional one cycle delay to re-execute and
check the previous instruction sequence. Redundant store address calculation (SHR) incurs one
cycle delay, since it needs to stall the compute pipeline. The completion time is broken into fol-
lowing categories:

(1) Instructions: Time spent retiring instructions.
(2) L1-I Fetch Stalls: Stall time due to instruction cache misses.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:14 H. Omar et al.

Table 2. Architectural Parameters

Architectural Parameter Value

Core(s) 64—In-Order

Memory Subsystem
L1-I/D Private Caches 32KB, 4-way Set Assoc.,

(per Core) 1 cycle latency
L2 Shared Cache 256KB, 8-way Set Assoc.,

(per Core) 8 cycle latency, Inclusive
Coherence Protocol Directory, Invalidation-based, MESI

DRAM Memory Interface 8 controllers,
5GBps/controller,
100ns latency

Electrical 2D Mesh with XY Routing
Hop Latency 2 cycles (1-router, 1-link) + link contention
Flit Width 64 bits

(3) Compute Stalls: Stall time due to waiting for functional unit (ALU, FPU, Multiplier, etc.)
results.

(4) Memory Stalls: Stall time due to load/store queue capacity limits, fences and waiting for
load completion.

(5) Branch Speculation: Stall time due to mispredicted branch instructions.
(6) Synchronization: Stall time due to waiting on locks, barriers, and condition variables.
(7) Resilience: Stall time due to hardware level resilience schemes.

We evaluate dynamic energy in this article. For energy evaluations of on-chip electrical network
routers and links, we use the DSENT [65] tool. Energy estimates for the L1-I, L1-D, and L2 (with
integrated directory) caches are obtained using McPAT [29]. The evaluation is performed at the
11nm technology node to account for future technology trends.

4.2 Accuracy Analysis Setup

Based on the guidelines for classifying non-crucial regions, a programmer can form multiple com-
binations of crucial/non-crucial regions—each combination is referred to as a configuration. Each
configuration contains non-crucial code regions, which consist of contiguous compute instruc-
tions, load instructions, and store instructions that access temporal variables. The heuristic accu-
racy analysis (cf. Section 2.4) returns a near optimal configuration out of multiple combinations
that not only satisfies the accuracy threshold but also provides better performance. Keeping in
mind the effects of soft-error strikes in non-crucial regions, we believe injecting error(s) to the
variable(s) before committing to global is sufficient. Considering soft-errors as bit-flips, which can
happen anywhere in the non-crucial region and have unpredictable effects to the variables about
to commit, wemimic them using random values. The injected random value ranges are determined
based on the data types of the variables (cf. Section 2.4.2). For example, if the data type is double,
random values ranging from 1.7E +/− 308 are injected. Using such ametric of injecting faults based
on a range allows us to cater for nearly all the possible bit-flip scenarios. In this article, the results
are shown for the single error injection analysis. The impact of applying aggressive error rates on
the accuracy of each benchmark is also discussed.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:15

4.2.1 Soft Error Rates (SERs). In reality, the occurrence of soft-errors is rare [21], therefore,
the primary focus of this article is on a single soft-error strike happening during the program’s
execution. However, in extreme cases such as harsh environmental conditions in the terrestrial
environment, the occurrence of soft-errors could be high [19]. To explore the accuracy tradeoff
and evaluate soft-error effects in such extreme cases, aggressive error rates are also applied. The
error rate is applied as the probability of single iteration being perturbed. For example, suppose
there are total 1000 loop iterations in the non-crucial region. When the error rate of 1% is applied,
on average there would be 10 iterations (1% of total iterations) with random values injected in
them via software level fault injection. In case there are both crucial and non-crucial instructions
in the iterations, errors are injected with a probabilistic distribution based on the execution time
of the non-crucial instructions. Building on to the aforementioned example, suppose within each
iteration of the non-crucial loop nearly 70% of the total time is spent in executing non-crucial
instructions. In such a case, on average 7 iterations (70% of 1% of total iterations)would be subjected
to fault injection.

4.3 Hardware Overhead & Code Footprint

The data checker (SHR) is implemented in the application using regular instructions, so it adds to
the instruction footprint but incurs no additional hardware overhead. For performance purposes,
we unroll the program loops to create contiguous non-crucial regions that introduces code size
overheads. This highly depends on individual program and compiler setup. For the benchmarks
evaluated in this article, code footprint is not a major concern. Therefore, it is not quantitatively
analyzed in this article.
The proposed scheme introduces similar hardware overhead as suggested by HaRE [57], in-

cluding the speculative store buffer (SSB), duplicated register files, and the hardware signatures.
It uses existing HaRE hardware to perform redundant store address checking. Overall, the storage
overhead is ∼5K bits per core.

4.4 Benchmark & System Setups

The benchmark setups are shown in Table 3. We evaluate nine graph analytic benchmarks from
CRONO suite [1], with different graph inputs to evaluate input dependency. California road net-
work [27] is used as a sparse input and mouse brain graph [31] as a dense input. For MNIST
machine-learning benchmarks (CNN, MLP, KNN) handwritten digit dataset [26] is used. While
CNN-GTSRB uses German traffic sign [63] as an input. ImageNet [11] is provided as an input to
CNN-ALEXNET and CNN-VGG.
The following system setups are used for evaluation.

(1) BASELINE is the original program without any resilience schemes.
(2) HaRE redundantly executes all program instructions.
(3) DR is the proposed cross-layer architecture based on declarative resilience architecture,

which selectively applies HaRE and SHR for crucial and non-crucial code regions, respec-
tively.

5 EVALUATION

5.1 Non-Crucial Region Selection

The selection of code regions as non-crucial is considered based on the heuristic described in Sec-
tion 2.4. Consider the example of CNN-ALEXNET to illustrate this selection process. As shown
in Table 4, all convolution (C1–C5), and fully connected (F1–F3) layers in CNN-ALEXNET have
relatively low accuracy loss. When single error is injected in these layers, the maximum accuracy

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:16 H. Omar et al.

Table 3. Benchmark Setup

Application Setups

Machine Learning
CNN-VGG 16 convolutional,

(Imagenet [11]) 3 fully connected layers
CNN-ALEXNET 5 convolutional,
(Imagenet [11]) 3 fully connected layers
CNN-GTSRB 2 convolutional,
(GTSRB [63]) 2 fully connected layers
CNN-MNIST 1 convolutional,
(MNIST [26]) 1 fully connected layer

MLP-MNIST([26]) 2 intermediate layers
KNN-MNIST([26]) 5 nearest neighbors

Graph Analytic
SSSP, D-Star, BFS California Road Network

PageRank, TRI-CNT, (Sparse Graph Input),
DFS, CON-COMP, Mouse Brain Retina 3

COMM, BTW-CENT (Dense Graph Input)

Table 4. Program Accuracy of CNN-ALEXNET When Single

Error is Injected in the Each Region (Over 10,000 Runs)

Benchmark Layers/Regions Accuracy Loss (%)

C1 0.3
C2 0.4
C3 1.9
C4 0.4

CNN-ALEXNET C5 0.3
F1 0.8
F2 1.0
F3 1.3

Output 13.1

C, convolutional layer; F, fully connected layer; Output, output layer.

loss of 1.9% is observed. In contrast, the output layer observes a loss of more than 10%. The pro-
grammer sets an accuracy threshold for the selection heuristic to mark certain code regions as
crucial. We set the accuracy loss threshold at 2% (for both machine-learning and graph analytic
workloads), which classifies the output layer as crucial and all convolution and fully connected
layers as non-crucial.
To explore the accuracy trade-off of selected non-crucial regions, aggressive error rateswere also

considered. However, we show the results for single error injection in our performance analysis.
Overall, DR is able to select configurations with reasonable amount of non-crucial code, resulting
in low accuracy loss even with high error rates. The accuracy loss in different benchmarks highly
depends on the code structure and the functionality. For code regionswith similar functionality in a
benchmark, the more execution time the code region has, the more accuracy loss it may contribute.
This behavior is observed in the convolution layers of CNN. However, this pretext would not hold
if the code regions have different functionalities, such as the output layer in all machine-learning

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:17

Table 5. Selected Configurations of Machine-learning Benchmarks

When Single Error Is Injected in the Program (Over 10,000 Runs)

Selected Non-Crucial Non-Crucial
Applications Regions Time (%) Accuracy (%)

CNN-ALEXNET C: 1–5 + F: 1–3 91 99
CNN-VGG C: 1–16 + F: 1–3 92.5 98.8
CNN-GTSRB C: 1, 2 + F: 1, 2 88 99.1
CNN-MNIST C + F 87 99.3
MLP-MNIST I: 1, 2 75 99.91
KNN-MNIST Distance 94 99.9

C, convolutional layer; F, fully connected layer; I, intermediate layer.

Table 6. Selected Configurations of Graph Benchmarks When Single Error

is Injected in the Program (Over 10,000 runs)

Selected Non-Crucial Non-Crucial Time
Regions Time (%) Accuracy(%)

Applications (Heuristic Analysis) Sparse Dense Sparse Dense

SSSP 80% Iterations 58 64 98.2 98.91
D-STAR Distance 72 91 99.7 99.45
PageRank Ranking 74.3 78 99.9 99.3
TRI_CNT AddEdges, 89 86 99.4 99.05

Redu, GetTri
BFS Vertex Check 21.4 27.8 99.97 99.7
DFS Vertex Check 77 81 99.9 99.6

COMM Mod, Recons, Reduce 88 89 99.76 99.29
CON-COMP Denoting 58 74 98.87 98.38
BTW-CENT Distance, Centr 84 86 99.86 99.34

The Non-crucial region names represent their functionalities as in CRONO [1].

benchmarks. It does not have much execution time, yet it incurs relatively higher accuracy loss.
This is because errors in the output layer could directly affect the final program outcome.
Tables 5 and 6 show the percentage time spent in non-crucial code and the percentage accuracy

loss of the selected configurations at a single injected error per program execution. All machine-
learning benchmarks consider their output layers as crucial. The second column in Table 5 rep-
resents which layers of the benchmark were considered as non-crucial. For example, “C: 1–5 + F:
1–3” for CNN-ALEXNET depicts that all convolution layers from 1 to 5 were selected along with
all the fully connected layers from 1 to 3. Moreover, the selected non-crucial code regions account
for >75% of the execution time, while the accuracy loss is observed at less than 1% (satisfying the
threshold).
For the graph benchmarks, when different input graphs are applied the observed accuracy loss is

relatively stable, while the time spent in the selected non-crucial code regions vary significantly.
For example, for the path finding heuristic D-STAR, edges are involved in the distance calcula-
tion. A sparse graph has less edges per vertex, while a dense graph has much higher edge con-
nectivity. Therefore, the work done in non-crucial region for a dense graph is much larger for a
dense graph as compared to a sparse graph. However, the accuracy loss of the selected non-crucial
code region remains under 1% for both input graphs. Similar behavior is observed for other graph

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:18 H. Omar et al.

Fig. 4. Completion times of workloads with selected configurations using proposed cross-layer architecture.

benchmarks, where the worst-case accuracy loss is observed at 1.8% among all graph benchmarks.
The time spent in non-crucial code regions is directly proportional to the expected performance
gains from executing the graph benchmarks under the proposed DR architecture. We evaluate this
performance behavior in the next section.

5.2 Performance/Energy

Under normal conditions, the probability of soft-error strike is very low (less than 1 per day for
the current technology node [59]). To reveal the soft-error effects on program execution, a single
error per program execution is used. The accuracy threshold is set to 98% to select the proper
configurations. The completion time of selected configurations of each application is plotted in
Figure 4.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:19

The BASELINE completion time for most benchmarks is dominated by memory stall and/or
synchronization. This is due to benchmarks’ inherent characteristics: numerous memory accesses
to shared data, and heavy contentions on locks or barriers. For graph analytic workloads, such
as SSSP and BFS, results show higher synchronization delay when using the dense graph input.
This is because of higher number of shared edges, which causes more lock contention. For bench-
marks like PageRank and DFS, more time is spent in synchronization for the sparse graph input.
This is because they use coarse-grain locks over the vertices (not the edges).
HaRE performs reasonably well for most benchmarks, because it performs local redundant ex-

ecution and exploit core-level locality. Moreover, it hides re-execution latency behind cache miss
stalls. Memory stalls of HaRE are increased over BASELINE, because memory operations trigger
re-executions (such as invalidating a cache line). Messages need to wait until the re-execution
completes. The synchronization of HaRE also increases over BASELINE due to the re-execution
time of instructions within locks or barriers.
When applying DR, all machine-learning applications show remarkable performance improve-

ment over HaRE. DR reduces the completion time of CNN significantly compared to HaRE (from
1.83× to 1.15× for ALEXNET). This is because HaRE is not able to hide resilience overheads, mean-
while a major amount of computations are identified as non-crucial in DR. For benchmarks with
high resilience overhead in HaRE, DR is always able to reduce it. Note that the time spent in non-
crucial regions (shown in Tables 6 and 5) is not directly proportional to the performance gain in the
proposed architecture across benchmarks. This is mainly due to the following reasons. (1) The non-
crucial time reported in Tables 6 and 5 refers to the execution time of the whole layer/phase, which
includes locks and checkers. Thus, the execution time of actual non-crucial instructions could be
much smaller. (2) For benchmarks having highly contended fine-grain locks, such as SSSP and
BFS, their resilience overhead is hidden behind synchronization delay. Although DR reduces the
re-execution within locks, they may not overcome the delay added due to software level checker,
and on/off switching of HaRE. (3) For benchmarks with coarse-grain locks, such as DFS, DR is
able to reduce the synchronization delay (sparse input) because of the preferable longer instruc-
tion sequence within locks. In the case of COMM, DR causes workload imbalance between threads
and slightly increases the synchronization delay of barriers. We observe that SSSP and BFS do not
provide much performance benefit. This is mainly due to the fact that most of the computations
are done within the locks, which is why we observe high synchronization in the reported results.
The computations done within the locks can be considered non-crucial. However, synchronization
instructions such as barriers and locks need to be protected. This limits us from unrolling the non-
crucial instructions and thus, we do not observe much benefits from the proposed architecture.
In case of CON-COMP, we do not observe performance gains over HaRE because of the struc-
ture of the algorithm. This algorithm contains many indirect accesses of formA[A[i]], which need
to be considered as crucial. Protection of such instructions leaves very few non-crucial instruc-
tions, which cannot be unrolled for performance benefits. Overall, the proposed DR architecture
shows significant performance improvement over HaRE. It reduces the performance overhead of
resiliency from ∼1.43× to ∼1.2× on average.
As shown in Figure 5, in general the dynamic energy results follow the same trend as per-

formance results. The energy overhead mainly comes from the additional computation, memory
access, and network traffic, generated by redundant execution. Although HaRE re-executes all in-
structions, its energy overhead is much less than 2X (∼1.56× on average). The energy improvement
is due to per-core re-execution exploiting core-level locality. Additionally, the costly cache misses
are not duplicated. DR reduces energy overhead significantly (∼1.32× on average) due to the fact
that fewer instructions are re-executed.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:20 H. Omar et al.

Fig. 5. Normalized energy numbers of selected configurations using proposed cross-layer architecture.

5.3 Configuration Selection

Soft-error rates change due to different conditions in real world environmental conditions. In ad-
dition, the acceptable accuracy loss is determined from case to case. We introduce heuristic accu-
racy analysis (Section 2.4) in this context to help the programmer select the proper configurations.
Figure 6 shows the performance improvements over HaRE of selected configurations, at different
accuracy thresholds with different error rates. Some benchmarks, such as D-STAR, have relatively
low accuracy loss (<=1% for D-STAR) in the original configurations, which can meet the lowest
accuracy threshold (3%). Their configurations are not changed when applied with different error
rates and accuracy thresholds. Hence, their performance numbers remain constant in this analysis,
and are not shown in the figure.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:21

Fig. 6. Performance improvements over HaRE at 10%, 5%, and 3% accuracy thresholds with various error

rates. Significant improvement numbers are observed at higher accuracy thresholds.

As shown in Figure 6, three different accuracy thresholds are applied, from top to bottom, 10%,
5%, and 3% accordingly. In general, a higher accuracy threshold and lower error rate results in
configurations with more non-crucial code regions. For example, when using an accuracy thresh-
old of 10%, AlexNet is able to get the best performance at 0.1% or lower error rates. According to
Table 5, all of its convolution and fully connected layers are considered as non-crucial at this point,
which contribute 91% of the program’s execution time. Thus, the proposed cross-layer architec-
ture provides exceptional performance improvement over HaRE (37%). As the error rate increases,
the same configuration cannot satisfy the 10% accuracy threshold. It gets to 31% at an error rate
of 0.5%, which was 37% earlier (error rate of 0.1%). Using the proposed heuristic accuracy analysis
(Section 2.4), we are able to get the accuracy loss back by making the fifth convolution layer and

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:22 H. Omar et al.

the third fully connected layer crucial. However, this results in less non-crucial code (76% of ex-
ecution time), thus has less performance improvement (26%). In extreme cases, the performance
improvement can reduce to 0%, which points to the fact that all code regions would have to be
considered as crucial, and effectively employ only HaRE for protection.

6 RELATEDWORK

6.1 Resilience Scheme for Multicore

Symptom-based mechanisms [52, 70] have low coverage, since they rely on coarse-grain detec-
tors, such as fatal-traps, hangs, panics, and so on. However, they incur low area, power, and per-
formance overheads. Software solutions such as instruction duplication [14, 41, 46], and invari-
ant checking [3, 34, 44] improve coverage, but these solutions incur higher overheads. To deliver
holistic coverage, several proposals utilize temporal and spatial redundant execution. PROFiT [47]
introduces software control in fault tolerance and allows users to fine-tune the tradeoff between
performance and reliability. Redundant multithreading [38, 43, 50, 69] uses the processor’s multi-
threading (within same or different cores) contexts to run two copies of the same thread, where
the trailing thread verifies the results of the leading thread. This approach is generalized as
n-modular redundancy [4, 61], where n copies of the same thread are executed and verified in
parallel. These techniques incur significant performance and energy overheads, because multi-
threaded applications are unable to exploit the hardware’s thread-level parallelism. To improve
performance, researchers have explored selective resilience within applications [30, 45]. These
schemes obtain efficiency by providing high resiliency for high vulnerability code; however, they
tradeoff performance with soft-error coverage. Similarly, selective SWIFT-R [48] uses the concept
of selective hardening to design reduced overhead and flexible mitigation techniques by trading off
reliability (coverage) and resilience overheads. Relax [10] introduces a framework to detect soft-
error at hardware level and recover them at software level. However, since it allows the potentially
faulty states to be committed, its coverage is compromised. The proposed paper is focusedmore to-
ward trading off resilience overheadswith program accuracywhile keeping the soft-error coverage
unaffected. Prior work [8] applies selective redundancy to register duplication in software-based
techniques and analyzes its efficiency for microprocessors. However, the proposed declarative re-
silience framework not only focuses on registers but applies re-execution at a per-core granularity
and implements resilience cache coherence protocol.
Prior work [56] also focuses on applying the strategy of selective resilience. However, this article

extends the work presented in Reference [56] in terms of various aspects. A simple and structured
crucial/non-crucial code region classification has been presented. Moreover, a rigorous accuracy
analysis has been proposed that uses program level fault injection to determine the impact of
soft-errors on the classified regions. Last, in the prior work [56], only four different PARSEC [5]
applications were targeted via selective resilience. This article focuses more on instrumenting
ubiquitously used real-time machine-learning and graph analytic applications with the declara-
tive resilience framework.

6.2 Approximate Computing

Research has explored approximate programming [12, 13, 37, 60], which relaxes program
accuracy when possible. Esmaeilzadeh et al. [12] focus on developing a language to generate
code that executes on approximate hardware. Venkatagiri et al. introduce a framework [67]
that quantifies the quality impact of perturbations in all dynamic instructions in an execution
with a high accuracy. Moreover, it estimates the approximation capability of general programs
and applications. Alongside these techniques, approximate kernels [51], and approximate cache

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:23

architectures [32, 35] have been developed for performance benefits. The proposed architecture
is different from these works mainly in the following two aspects. First, our approach is not
limited to approximate hardware and is more general, i.e., find code regions of a program that
can be potentially “approximated” without significantly impacting program outcome. Unlike
approximate computing schemes, the proposed architecture does not actively relax accuracy.
Program accuracy may be compromised only when soft-errors perturb non-crucial code. Second,
soft-errors introduce new challenges, since code in the non-crucial regions can unexpectedly
affect other parts of the program and compromise program correctness thus, identifications
for approximate computing cannot be directly applied to declarative resilience. However, the
proposed architecture can benefit from profiling schemes of approximate computing, which can
assist programmers to identify potential crucial/non-crucial code regions.

6.3 Crucial/Non-Crucial Code Identification

Works have been done on selecting crucial/non-crucial code of a program using different criteria,
such as Rely [7], which is a programming language that enables developers to specify the reli-
ability requirements for program functions. They verify the program reliability with respect to
the specification of the underlying hardware system. Similarly, a program reliability optimization
algorithm is proposed in Reference [55] that selects code snippets for program level protection
considering their reliability-wise lower or higher impact on the program output. In terms of code
region selection, the proposed declarative resilience framework is mainly different from previ-
ous schemes in the following ways. (1) In declarative resilience, programmers are involved in
identifying the code regions, however, they cannot actively reduce reliability. If it is possible for
some code to have critical impact on program outcome, then it cannot be marked as non-crucial.
(2) Research (such as SoftBeam [16]) points out that different micro-architectures as well as differ-
ent instructions have different inherent soft error vulnerability. However, in declarative resilience,
we do not classify code according to its hardware level vulnerability. This is based on the insight
that vulnerability cannot be used directly to guide the code’s impact on the program. High vulner-
ability code may not have severe effects. However, soft errors in low vulnerability code may still
crash the program, although the possibility of the soft error happening is low.

6.4 Algorithm Level Accuracy Tradeoff

Prior work has been done on fast algorithms with lower accuracy [15, 20, 39]. These algorithm
level schemes have better performance; however, they do not provide protections to soft-errors.
Our framework can be applied on top of such schemes seamlessly for resilience purposes. Due to
their inherent accuracy relaxation, the proposed framework may bring less impact to the program
outcome. Algorithms such as D* [64] approximate path planning and provide better performance
than exact algorithms with relaxed accuracy. Such algorithms open up an opportunity to apply
declarative resilience if program accuracy can be relaxed actively.

7 CONCLUSION

This article proposes a novel declarative resilience architecture for graph analytic and machine-
learning applications. The key idea is to explore resilience overhead tradeoff with program
accuracy, while not compromising soft-error coverage and safe execution of the program. We
demonstrate a design flow to transform a program onto the architecture. It guarantees program
correctness and incurs an average ∼1.2× performance overhead over a system without resilience.
This is an average 16% performance improvement over state-of-the-art hardware resilience
scheme (HaRE) that protects the whole program. Furthermore, the proposed declarative resilience
architecture reduces energy overheads by ∼15% over HaRE.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:24 H. Omar et al.

REFERENCES

[1] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. 2015. CRONO: A benchmark suite for multithreaded graph algorithms
executing on futuristic multicores. In Proceedings of the IEEE International Symposium on Workload Characterization

(IISWC’15). 44–55. DOI:http://dx.doi.org/10.1109/IISWC.2015.11
[2] Konstantinos Aisopos and Li-Shiuan Peh. 2011. A systematic methodology to develop resilient cache coherence pro-

tocols. In Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’11). ACM,
New York, NY, 47–58. DOI:http://dx.doi.org/10.1145/2155620.2155627

[3] T. M. Austin. 1999. DIVA: A reliable substrate for deep submicron microarchitecture design. In Proceedings of the 32nd

Annual International Symposium on Microarchitecture (MICRO’99). 196–207. DOI:http://dx.doi.org/10.1109/MICRO.
1999.809458

[4] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and J. Smullen. 2005. NonStop reg; advanced
architecture. In Proceedings of the International Conference on Dependable Systems and Networks (DSN’05). 12–21.
DOI:http://dx.doi.org/10.1109/DSN.2005.70

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC benchmark suite: Characterization and architec-
tural implications. In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques

(PACT’08). 72–81.
[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D.

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to end learning
for self-driving cars. CoRR abs/1604.07316 (2016). Retrieved from http://arxiv.org/abs/1604.07316.

[7] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying quantitative reliability for programs that
execute on unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented

Programming Systems Languages and Applications (OOPSLA’13). ACM, New York, NY, 33–52. DOI:http://dx.doi.org/
10.1145/2509136.2509546

[8] E. Chielle, J. R. Azambuja, R. S. Barth, F. Almeida, and F. L. Kastensmidt. 2013. Evaluating selective redundancy in
data-flow software-based techniques. IEEE Trans. Nuclear Sci. 60, 4 (Aug. 2013), 2768–2775. DOI:http://dx.doi.org/10.
1109/TNS.2013.2266917

[9] Paolo Crucitti, Vito Latora, Massimo Marchiori, and Andrea Rapisarda. 2003. Efficiency of scale-free networks: Error
and attack tolerance. Physica A: Stat. Mech. Appl. 320 (2003), 622–642.

[10] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Relax: An architectural framework for soft-
ware recovery of hardware faults. In Proceedings of the 37th Annual International Symposium on Computer Architecture

(ISCA’10). ACM, New York, NY, 497–508. DOI:http://dx.doi.org/10.1145/1815961.1816026
[11] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09). 248–255. DOI:http://dx.
doi.org/10.1109/CVPR.2009.5206848

[12] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Architecture support for disciplined ap-
proximate programming. In Proceedings of the 17th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS’12). ACM, New York, NY, 301–312. DOI:http://dx.doi.org/10.1145/
2150976.2151008

[13] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural acceleration for general-purpose ap-
proximate programs. In Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’12). IEEE Computer Society, Washington, DC, 449–460. DOI:http://dx.doi.org/10.1109/MICRO.2012.48
[14] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. 2010. Shoestring: Probabilistic soft error reliability

on the cheap. SIGPLAN Not. 45, 3 (Mar. 2010), 385–396. DOI:http://dx.doi.org/10.1145/1735971.1736063
[15] Yangguang Fu, Mingyue Ding, and Chengping Zhou. 2012. Phase angle-encoded and quantum-behaved particle

swarm optimization applied to three-dimensional route planning for UAV. IEEE Trans. Syst., Man Cyberneti. Part

A: Syst. Hum. 42 (2012), 511–526.
[16] M. Gschwind, V. Salapura, C. Trammell, and S. A. McKee. 2011. SoftBeam: Precise tracking of transient faults and

vulnerability analysis at processor design time. In Proceedings of the IEEE 29th International Conference on Computer

Design (ICCD’11). 404–410. DOI:http://dx.doi.org/10.1109/ICCD.2011.6081430
[17] S. K. S. Hari, S. V. Adve, and H. Naeimi. 2012. Low-cost program-level detectors for reducing silent data corruptions. In

Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’12). 1–12. DOI:http://
dx.doi.org/10.1109/DSN.2012.6263960

[18] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. 1997. Fault injection techniques and tools. Computer 30, 4 (Apr. 1997),
75–82. DOI:http://dx.doi.org/10.1109/2.585157

[19] Texas Instruments. 2016. Texas instruments soft error FAQs. Retrieved from http://www.ti.com/support-quality/faqs/
soft-error-rate-faqs.html.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:25

[20] G. R. Jagadeesh, T. Srikanthan, and K. H. Quek. 2002. Heuristic techniques for accelerating hierarchical routing on
road networks. IEEE Trans. Intell. Transportat. Syst. 3, 4 (Dec. 2002), 301–309. DOI:http://dx.doi.org/10.1109/TITS.2002.
806806

[21] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar. 2001. Scaling trends of cosmic ray induced soft errors in
static latches beyond 0.18 /spl mu/. In Proceedings of the Symposium on VLSI Circuits. Digest of Technical Papers (IEEE

Cat. No. 01CH37185). 61–62. DOI:http://dx.doi.org/10.1109/VLSIC.2001.934195
[22] D. S. Khudia and S. Mahlke. 2014. Harnessing soft computations for low-budget fault tolerance. In Proceedings of

the 47th Annual IEEE/ACM International Symposium on Microarchitecture. 319–330. DOI:http://dx.doi.org/10.1109/
MICRO.2014.33

[23] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. 2013. Parallel scheduling for cyber-physical systems: Analysis and
case study on a self-driving car. In Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems

(ICCPS’13). 31–40.
[24] M. Kooli andG. Di Natale. 2014. A survey on simulation-based fault injection tools for complex systems. In Proceedings

of the 9th IEEE International Conference on Design Technology of Integrated Systems in Nanoscale Era (DTIS’14). 1–6.
DOI:http://dx.doi.org/10.1109/DTIS.2014.6850649

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1097–1105. Retrieved from http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Proc.
IEEE 86, 11 (Nov. 1998), 2278–2324. DOI:http://dx.doi.org/10.1109/5.726791

[27] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2008. Community structure in large
networks: Natural cluster sizes and the absence of large well-defined clusters. CoRR abs/0810.1355 (2008). Retrieved
from http://arxiv.org/abs/0810.1355.

[28] H. Li, D. Song, Y. Lu, and J. Liu. 2012. A two-view based multilayer feature graph for robot navigation. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA’12). 3580–3587. DOI:http://dx.doi.org/10.1109/
ICRA.2012.6224732

[29] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT:
An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings

of the Annual International Symposium on Microarchitecture (MICRO’09).
[30] T. Li, M. Shafique, J. A. Ambrose, S. Rehman, J. Henkel, and S. Parameswaran. 2013. RASTER: Runtime adaptive spa-

tial/temporal error resiliency for embedded processors. In Proceedings of the 50th ACM/EDAC/IEEE Design Automation

Conference (DAC’13). 1–7.
[31] J. W. Lichtman, H. Pfister, and N. Shavit. 2014. The big data challenges of connectomics. In Nature Neuroscience,

volume 17. Nature Publishing Group, 1448–1454. DOI:http://dx.doi.org/10.1038/nn.3837
[32] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn. 2011. Flikker: Saving DRAM refresh-

power through critical data partitioning. SIGPLAN Not. 46, 3 (Mar. 2011), 213–224. DOI:http://dx.doi.org/10.1145/
1961296.1950391

[33] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman. 2015. LLFI: An intermediate code-level fault injection tool
for hardware faults. In Proceedings of the IEEE International Conference on Software Quality, Reliability and Security.
11–16. DOI:http://dx.doi.org/10.1109/QRS.2015.13

[34] A. Meixner, M. E. Bauer, and D. J. Sorin. 2008. Argus: Low-cost, comprehensive error detection in simple cores. IEEE
Micro 28, 1 (Jan. 2008), 52–59. DOI:http://dx.doi.org/10.1109/MM.2008.3

[35] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger. 2015. Doppelganger: A cache for approximate computing.
In Proceedings of the 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’15). 50–61. DOI:
http://dx.doi.org/10.1145/2830772.2830790

[36] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and A. Agarwal. 2010. Graphite: A
distributed parallel simulator for multicores. In Proceedings of the 16th International Symposium on High-Performance

Computer Architecture (HPCS’10). 1–12. DOI:http://dx.doi.org/10.1109/HPCA.2010.5416635
[37] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. 2010. Quality of service profiling. In Proceedings of

the ACM/IEEE 32nd International Conference on Software Engineering, Vol. 1. 25–34. DOI:http://dx.doi.org/10.1145/
1806799.1806808

[38] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. 2002. Detailed design and evaluation of redundant multi-threading
alternatives. In Proceedings of the 29th Annual International Symposium on Computer Architecture. 99–110. DOI:http://
dx.doi.org/10.1109/ISCA.2002.1003566

[39] L. Murphy and P. Newman. 2011. Risky planning: Path planning over costmaps with a probabilistically bounded
speed-accuracy tradeoff. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’11).
3727–3732. DOI:http://dx.doi.org/10.1109/ICRA.2011.5980124

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

76:26 H. Omar et al.

[40] Michael A. Nielsen. 2015. Neural Networks and Deep Learning. Determination Press.
[41] N. Oh, S. Mitra, and E. J. McCluskey. 2002. ED4I: Error detection by diverse data and duplicated instructions. IEEE

Trans. Comput. 51, 2 (Feb. 2002), 180–199. DOI:http://dx.doi.org/10.1109/12.980007
[42] H. Omar, M. Ahmad, and O. Khan. 2017. GraphTuner: An input dependence aware loop perforation scheme for

efficient execution of approximated graph algorithms. In Proceedings of the IEEE International Conference on Computer

Design (ICCD’17). 201–208. DOI:http://dx.doi.org/10.1109/ICCD.2017.38
[43] M. W. Rashid and M. C. Huang. 2008. Supporting highly-decoupled thread-level redundancy for parallel programs. In

Proceedings of the IEEE 14th International Symposium onHigh Performance Computer Architecture. 393–404. DOI:http://
dx.doi.org/10.1109/HPCA.2008.4658655

[44] V. Reddy and E. Rotenberg. 2008. Coverage of amicroarchitecture-level fault check regimen in a superscalar processor.
In Proceedings of the IEEE International Conference on Dependable Systems and Networks With FTCS and DCC (DSN’08).
1–10. DOI:http://dx.doi.org/10.1109/DSN.2008.4630065

[45] S. Rehman, F. Kriebel, Duo Sun, M. Shafique, and J. Henkel. 2014. dTune: Leveraging reliable code generation
for adaptive dependability tuning under process variation and aging-induced effects. In Proceedings of the 51st

ACM/EDAC/IEEE Design Automation Conference (DAC’14). 1–6. DOI:http://dx.doi.org/10.1145/2593069.2593127
[46] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. 2005. SWIFT: Software implemented fault tolerance.

In Proceedings of the International Symposium on Code Generation and Optimization. 243–254. DOI:http://dx.doi.org/
10.1109/CGO.2005.34

[47] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I. August, and Shubhendu S. Mukherjee.
2005. Software-controlled fault tolerance. ACM Trans. Archit. Code Optim. 2, 4 (Dec. 2005), 366–396. DOI:http://dx.
doi.org/10.1145/1113841.1113843

[48] Felipe Restrepo-Calle, Antonio Martínez-Álvarez, Sergio Cuenca-Asensi, and Antonio Jimeno-Morenilla. 2013. Selec-
tive SWIFT-R. J. Electron. Test. 29, 6 (Dec. 2013), 825–838. DOI:http://dx.doi.org/10.1007/s10836-013-5416-6

[49] V. Roberge, M. Tarbouchi, and G. Labonte. 2013. Comparison of parallel genetic algorithm and particle swarm op-
timization for real-time UAV path planning. IEEE Trans. Industr. Informat. 9, 1 (Feb. 2013), 132–141. DOI:http://
dx.doi.org/10.1109/TII.2012.2198665

[50] E. Rotenberg. 1999. AR-SMT: A microarchitectural approach to fault tolerance in microprocessors. In Proceedings of

the 29th Annual International Symposium on Fault-Tolerant Computing. 84–91. DOI:http://dx.doi.org/10.1109/FTCS.
1999.781037

[51] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati, and Scott Mahlke. 2013. SAGE: Self-tuning
approximation for graphics engines. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Mi-

croarchitecture (MICRO’13). ACM, New York, NY, 13–24. DOI:http://dx.doi.org/10.1145/2540708.2540711
[52] Siva Kumar Sastry Hari, Man-Lap Li, Pradeep Ramachandran, Byn Choi, and Sarita V. Adve. 2009. mSWAT: Low-

cost hardware fault detection and diagnosis for multicore systems. In Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’09). ACM, New York, NY, 122–132. DOI:http://dx.doi.org/10.
1145/1669112.1669129

[53] I. Sato and H. Niihara. 2014. Beyond pedestrian detection: Deep neural networks level-up automotive safety. In Pro-

ceedings of the GPU Technology Conference.
[54] P. Sermanet and Y. LeCun. 2011. Traffic sign recognition with multi-scale convolutional networks. In Proceedings of

the International Joint Conference on Neural Networks (IJCNN’11). 2809–2813. DOI:http://dx.doi.org/10.1109/IJCNN.
2011.6033589

[55] Muhammad Shafique, Semeen Rehman, Pau Vilimelis Aceituno, and Jörg Henkel. 2013. Exploiting program-level
masking and error propagation for constrained reliability optimization. In Proceedings of the 50th Annual Design

Automation Conference (DAC’13). ACM, New York, NY, Article 17, 9 pages. DOI:http://dx.doi.org/10.1145/2463209.
2488755

[56] Q. Shi, H. Hoffmann, and O. Khan. 2015. A cross-layer multicore architecture to tradeoff program accuracy and
resilience overheads. IEEE Comput. Architect. Lett. 14, 2 (July 2015), 85–89. DOI:http://dx.doi.org/10.1109/LCA.2014.
2365204

[57] Q. Shi and O. Khan. 2013. Toward holistic soft-error-resilient shared-memory multicores. Computer 46, 10 (Oct. 2013),
56–64. DOI:http://dx.doi.org/10.1109/MC.2013.262

[58] Qingchuan Shi, Hamza Omar, and Omer Khan. 2017. Exploiting the tradeoff between program accuracy and soft-
error resiliency overhead for machine learning workloads. CoRR abs/1707.02589 (2017). Retrieved from http://arxiv.
org/abs/1707.02589.

[59] Premkishore Shivakumar, Michael Kistler, StephenW. Keckler, Doug Burger, Lorenzo Alvisi, Ibm Technical, Contacts
John Keaty, Rob Bell, and Ram Rajamony. 2002. Modeling the effect of technology trends on the soft error rate of
combinational logic. In Proceedings of International Conference on Dependable Systems and Networks. 389–398.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

Declarative Resilience: A Holistic Soft-Error Resilient Multicore Architecture 76:27

[60] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing performance vs.
accuracy trade-offs with loop perforation. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of Software Engineering (ESEC/FSE’11). ACM, New York, NY, 124–134. DOI:http://dx.doi.
org/10.1145/2025113.2025133

[61] T. J. Siegel, E. Pfeffer, and J. A. Magee. 2004. The IBM eServer Z990 microprocessor. IBM J. Res. Dev. 48, 3–4 (May
2004), 295–309. DOI:http://dx.doi.org/10.1147/rd.483.0295

[62] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
CoRR abs/1409.1556 (2014). Retrieved from http://arxiv.org/abs/1409.1556.

[63] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. 2011. The german traffic sign recognition benchmark: A multi-
class classification competition. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’11).
1453–1460. DOI:http://dx.doi.org/10.1109/IJCNN.2011.6033395

[64] Anthony Stentz. 1995. The focussed D* algorithm for real-time replanning. In Proceedings of the 14th International

Joint Conference on Artificial Intelligence (IJCAI’95). Morgan Kaufmann Publishers Inc., San Francisco, CA, 1652–1659.
[65] Chen Sun, Chia-Hsin Owen Chen, George Kurian, LanWei, JasonMiller, Anant Agarwal, Li-Shiuan Peh, and Vladimir

Stojanovic. 2012. DSENT—A tool connecting emerging photonics with electronics for opto-electronic networks-on-
chip modeling. In Proceedings of the International Symposium on Networks-on-Chip.

[66] A. Vega, C. C. Lin, K. Swaminathan, A. Buyuktosunoglu, S. Pankanti, and P. Bose. 2015. Resilient, UAV-embedded
real-time computing. In Proceedings of the 33rd IEEE International Conference on Computer Design (ICCD’15). 736–739.
DOI:http://dx.doi.org/10.1109/ICCD.2015.7357189

[67] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve. 2016. Approxilyzer: Towards a systematic framework for
instruction-level approximate computing and its application to hardware resiliency. In Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’16). 1–14. DOI:http://dx.doi.org/10.1109/MICRO.
2016.7783745

[68] R. Viguier, C. C. Lin, K. Swaminathan, A. Vega, A. Buyuktosunoglu, S. Pankanti, P. Bose, H. Akbarpour, F. Bunyak,
K. Palaniappan, and G. Seetharaman. 2015. Resilient mobile cognition: Algorithms, innovations, and architectures. In
Proceedings of the 33rd IEEE International Conference on Computer Design (ICCD’15). 728–731. DOI:http://dx.doi.org/
10.1109/ICCD.2015.7357187

[69] J. Wadden, A. Lyashevsky, S. Gurumurthi, V. Sridharan, and K. Skadron. 2014. Real-world design and evaluation of
compiler-managed GPU redundant multithreading. In Proceedings of the ACM/IEEE 41st International Symposium on

Computer Architecture (ISCA’14). 73–84. DOI:http://dx.doi.org/10.1109/ISCA.2014.6853227
[70] N. J. Wang and S. J. Patel. 2005. ReStore: Symptom based soft error detection in microprocessors. In Proceedings of the

International Conference on Dependable Systems and Networks (DSN’05). 30–39. DOI:http://dx.doi.org/10.1109/DSN.
2005.82

Received August 2017; revised January 2018; accepted April 2018

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 4, Article 76. Publication date: July 2018.

