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Abstract— Motivated by applications in distributed storage,
the storage capacity of a graph was recently defined to be the
maximum amount of information that can be stored across the
vertices of a graph such that the information at any vertex can
be recovered from the information stored at the neighboring ver-
tices. Computing the storage capacity is a fundamental problem
in network coding and is related, or equivalent, to some well-
studied problems such as index coding with side information
and generalized guessing games. In this paper, we consider
storage capacity as a natural information-theoretic analogue of
the minimum vertex cover of a graph. Indeed, while it was known
that storage capacity is upper bounded by minimum vertex cover,
we show that by treating it as such we can get a 3/2 approxima-
tion for planar graphs, and a 4/3 approximation for triangle-free
planar graphs. Since the storage capacity is intimately related to
the index coding rate, we get a 2 approximation of index coding
rate for planar graphs and 3/2 approximation for triangle-free
planar graphs. Previously, only a trivial 4 approximation of the
index coding rate was known for planar graphs. We also show a
polynomial time approximation scheme for the index coding rate
when the alphabet size is constant. We then develop a general
method of “gadget covering” to upper bound the storage capacity
in terms of the average of a set of vertex covers. This method
is intuitive and leads to the exact characterization of storage
capacity for various families of graphs. As an illustrative example,
we use this approach to derive the exact storage capacity of
cycles-with-chords, a family of graphs related to outerplanar
graphs. Finally, we generalize the storage capacity notion to
include recovery from partial node failures in distributed storage.
We show tight upper and lower bounds on this partial recovery
capacity that scales nicely with the fraction of failures in a vertex.

Index Terms— Distributed storage, storage capacity, index
coding, vertex cover, graph theory, approximation algorithms,
planar graphs.

I. INTRODUCTION

HE Shannon capacity of a graph [1] is a well studied
parameter that quantifies the zero-error capacity of a
noisy communication channel. There are also several other
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notions of graph capacities or graph entropies that model
different communication/compression scenarios (for example,
see [2]). In this paper, we are interested in a recent definition
of graph capacity, called the storage capacity, that we consider
to be a natural information-theoretic analogue of the minimum
vertex cover of a graph.

Suppose, every vertex of a graph can store a symbol (from
any alphabet) with the criterion that the content of any vertex
can be uniquely recovered from the contents of its neighbor-
hood in the graph. Then the maximum amount of information
that can be stored in the graph is called the storage capacity
of that graph [3]. This formulation is mainly motivated by
applications in distributed storage, and generalizes the popular
definition of locally repairable codes [4]-[7]. In a distributed
storage system, each symbol (or coordinate) of a codeword
vector is stored at a different server or storage node. In the
case of a single server failure, it is desirable to be able to
recover the data of that server by accessing a small number of
other servers. Given the topology of the storage network as a
graph, it is quite natural to model the local repair problem as
a neighborhood repair problem as above.

Formally, suppose we are given an n-vertex undirected
graph G(V, E), where V = [n] = {1,2, ..., n}. Also, given a
positive integer ¢ > 2, let H (X) be the Shannon entropy of the
random variable X in g-ary units (for example, when g = 2,
the entropy is in bits). Let {X;};ev, be random variables each
with a finite sample space Q of size ¢q. For any I C [n], let
X7 = {X; : i € I}. Consider the solution of the following
optimization problem:

max H(X1,..., Xn) (D)
such that
H(Xi{|Xn@) =0,

for all i € V where N(i) ={j € V: (i, j) € E} is the set
of neighbors of vertex i. This is the storage capacity of the
graph G and we denote it by Cap, (G). Note that, although we
hide the unit of entropy in the notation H (-), the unit should
be clear from context, and the storage capacity should depend
on it, as reflected in the subscript in the notation Cap, (G).
The absolute storage capacity is defined to be,

Cap(G) = sup Cap, (G). (2)

q=2
Note that, H(X;|Xn@)) = 0 in the above deﬁnition implies
that there exist n deterministic functions f; : Q/VOI — @
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such that f;(Xn@)) = Xi, i = 1,2,...,n. These functions
are called the recovery functions. Given the recovery functions
we can define a storage code {(x1,x2,...,x,) € Q" 1 x; =
fiCxn@y)}. It follows that Cap,(G) is the logarithm of the
maximum possible size of a storage code over all possible
sets of recovery functions.

In [3], it was observed that the storage capacity is upper
bounded by the size of the minimum vertex cover VC(G) of
the graph G.

Cap(G) = | VC(G)I. 3)

The proof of this fact is quite simple. Since all the neighbors
of V \ VC belong to VC,

H(Xv) = H(XvcG), Xv\vee)) = H(Xvee))
+ H(Xv\vc©6)|Xvee) = H(Xvee)) < I VC(G)|.

Indeed, this proof shows that H (Xy) = H (Xvc(c))- Because
of this, we think it is natural to view storage capacity as an
information theoretic analogue of vertex cover. It was also
shown in [3] that the storage capacity is at least equal to the
size MM(G) of the maximum matching of the graph G:

MM(G) = Cap,(G) =< Cap(G). “)

Since maximum matching and minimum vertex cover are two
quantities within a factor of two of each other and maximum
matching can be found in polynomial time, this fact gives
a 2-approximation of the storage capacity.! Provable strict
improvement of the maximum matching scheme is unlikely
to be achieved by simple means, since that would imply
a better-than-2 approximation ratio for the minimum vertex
cover problem violating the unique games conjecture [8].
This motivates us to look for natural families of graphs
where minimum vertex cover has a better approximation. For
example, for bipartite graphs maximum matching is equal to
minimum vertex cover and hence storage capacity is exactly
equal to the minimum vertex cover. Another obvious class,
and our focus in Section 1V, is the family of planar graphs
for which a PTAS (polynomial-time-approximation-scheme)
is known [9], [10]. Another motivation for studying storage
capacity on planar graphs is that they represent common
network topologies for distributed systems. For example,
see [11] to note how a surprising number of data networks
are actually planar. To minimize interference, it is natural for a
distributed storage system to be arranged as a planar network.
Moreover it is useful to have wireless networks, video-on-
demand networks etc. that are planar or almost planar.
Video-on-demand also motivates a related broadcast prob-
lem called index coding [12] for which planar topologies
are of interest, and outerplanar topologies have already been
studied [13]. It was shown in [3] that storage capacity is,
in a coding-theoretic sense, dual to index coding and is
equivalent to the guessing game problem of [14]. Let {X;}iev
be independent uniform random variables each with a finite
sample space of size g. The index coding rate for a graph

ndeed, finding a maximal matching is sufficient for this purpose.

5581

G(V, E) is defined to be the optimum value of the following
minimization problem:

min H(Y) ©)
where Y is a random variable with finite support such that
H(X;:|Y, Xn@) =0,

for all i € V. This is called the optimum index coding rate
for the graph G, and we denote it as Ind,(G). We can also
define,

Ind(G) = inf Ind, (G). (©)

The index coding problem is the hardest of all network
coding problems and has been the subject of much recent
attention, see, e.g., [15]. In particular it can be shown that any
network coding problem can be reduced to an index coding
problem [16]. It has been shown that (see [3]),

n —Ind, (G) < Cap,(G) < n —Indg(G) +log,(nlng). (7)
From this we claim,
Cap(G) = n — Ind(G). ()

To see this, define Cap?(G) = SUp,e7, Capqm(G) and
Ind(G) = inf,ez, Indgn(G). It is evident that (m +
r) Capyn+r(G) = mCapyn(G) + rCap, (G) and (m +
r)Indgm+r (G) < mlIndgm(G) + rlIndy(G) for any two
nonnegative integers m and r. Therefore, using Fekete’s
lemma, Cap@(G) = lim,,_ oo Cap,»(G) and Ind9(G) =
lim,;— o0 Indym (G). Now this gives, from (7),

n —Ind9(G) < Cap(G) < n — Ind9(G).  (9)

Taking supremum on both sides we have, Cap(G) =
n — Ind(G).

Hence, exact computation of Ind(G) and Cap(G) is equiv-
alent although the approximation hardness could obviously
differ. Note that,

Ind(G) = a(G),

where a(G) is the independence number of G. Since, for
planar graphs a(G) > n/4, taking Y to be X[, already gives
a 4-approximation for the index coding rate for planar graphs
since H(Y) < n [17]. In this paper, we give a significantly
better approximation algorithm for index coding rate of planar
graphs. Not only that, due to the relation between index coding
rate and storage capacity, we can obtain an approximation
factor significantly better than 2 for storage capacity. Note
that, for general graphs even to approximate the optimal
index coding rate within a factor of n!~¢ seems to be a
challenge [18].

To go beyond the realm of planar graphs, and to obtain bet-
ter approximation ratios, we then develop several upper bound-
ing tools for storage capacities. In particular by using these
tools, we are able to exactly characterize storage capacities
of various families of graphs. Our approach revisits a linear
program proposed by Blasiak, Kleinberg, and Lubetzky [19]
that can be used to lower bound the optimum index coding
rate or upper bound the storage capacity. We transform the
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problem of bounding this LP into the problem of constructing
a family of vertex covers for the input graph. This in turn
allows us to upper bound the storage capacity of any graph
that admits a specific type of vertex partition. We then identify
various graphs for which this upper bound is tight.

Since, the storage capacity, or the vertex cover, act as
absolute upper bounds on the rate of information storage in the
graph, a natural question to ask is, if we store above the limit
of minimum vertex cover in the graph, will any of the repair
property be left? This is similar in philosophy to the rate-
distortion theory of data compression, where one compresses
beyond entropy limit and still can recover the data with some
distortion. This question gives rise to the notion of recovery
from partial failure, as defined below.

We define the partial repair capacity also keeping the
application of distributed storage in mind. This is a direct
generalization in the context of distributed storage application
to handle partial failure of vertices. In particular, suppose
we lose 0 < J < 1 proportion of the bits stored in a
vertex. We still want to recover these bits by accessing the
remaining (1 — J)-fraction of the bits in the vertex plus the
contents of the neighborhood. What is the maximum amount
of information that can be stored in the network with such
restriction? Intuitively, the storage capacity should increase.
We characterize the trade-off between J and this increase in
storage capacity from both sides (i.e., upper and lower bounds
on the capacity). A surprising fact that we observe is that, if we
want to recover from more than half of the bits being lost, then
there is no increase in storage capacity.

In summary, we made progress on the study of storage
capacity on three fronts:

o Planar graphs. We prove a 3 /2 approximation of absolute
storage capacity and 2 approximation for index coding
rate for planar graphs. We provide an approximation
guarantee that depends on the number of triangles in
the graph and, in the special case of triangle-free graphs,
we get a 4/3 approximation for storage capacity, and 3/2
approximation for index coding rate. In addition to this,
for a constant-size ¢ alphabet, we give a polynomial-time
approximation scheme (PTAS) or an (1 4 ¢€) approxima-
tion, € > 0, for Ind; (G) of planar graphs using the well-
known planar separator theorem [20].

o Tools for finding storage capacity upper bounds.
We develop an approach for bounding storage capacity in
terms of a small number of vertex covers. We first illus-
trate this approach by finding the exact storage capacity
of some simple graphs. We then use the approach to show
a bound on any graph that admits a specific type of vertex
partition. With this we prove exact bounds on a family
of Cartesian product graphs and a family closely related
to outerplanar graphs.

o Partial failure recovery. We show that if recovery from
neighbors is possible for up to J-proportion failure of
the bits stored in a server, then the capacity is upper
bounded by the optimum value of a linear program;
in particular this implies when ¢ > %, then the partial
recovery capacity is same as the storage capacity. For an
odd cycle, the upper bound on partial recovery capacity
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is given by 5 (1 + R2(9)), where R;(d) is the maximum
achievable rate of a binary error-correcting code with
relative minimum Hamming distance at least on. On the
other hand, we also obtain general lower bounds on the
partial recovery capacity of a graph. For an odd cycle,
our results imply that a partial failure recovery capacity
of 5(2 — ha(d)) is polynomial time achievable, where
h2(0) denotes the binary entropy function. Our bounds are
likely to be tight, since it is a widely believed conjecture
that Ry(0) = 1 — hy(d) (the Gilbert-Varshamov bound).
a) Organization.: The remainder of the paper is orga-
nized as follows. In Sections II and IIl we state and prove
some preliminary algorithmic results regarding the storage
capacity and index coding that will be useful in proving
subsequent results. In section IV, we prove our approximation
results for planar graphs that include a 3/2 approximation for
Cap(G), 2 approximation for Ind(G) and a PTAS for Ind, (G).
In Section V, we show a vertex partition approach to upper
bound the storage capacity. The results regarding recovery
from partial node failure are described in Section VI.

II. PRELIMINARIES

Let CP(G) denote the fractional clique packing of a graph
G(V, E) defined as follows: Let C be the set of all cliques
in G. For every C € C define a variable 0 < x¢ < 1. Then
CP(G) is the maximum value of

> xe(Cl—1)

ceC

(CP(G))

subject to the constraint that

Z xc <1

CeCueC

YuelV.

Note that CP(G) can be computed in polynomial time in
graphs, such as planar graphs, where all cliques have constant
size. Furthermore, CP(G) is at least the size of the maximum
fractional matching and they are obviously equal in triangle-
free graphs since the only cliques are edges.

The following preliminary lemma shows that Cap,(G) >
CP(G) for sufficiently large ¢. An equivalent result is known
in the context of index coding but we include a proof here
for completeness. The basic idea is that we can store k — 1
units of information on a clique of size k by assigning k — 1
independent uniform random variables to k — 1 of the vertices
and setting the final random variable to the sum (modulo gq)
of the first k — 1 random variables.

Lemma 1. Cap,(G) = CP(G) for sufficiently large q.

Proof. Let {xc}cec achieve CP(G). Let g be sufficiently
large power of 2 such that xc - log, g is integral for every
C. For each clique C = {uy,...,uic)} in the graph,

define a family of random variables XMCI,XMCZ,...,Xuclc|

where X 51 , X 52 s X f‘ ¢ are independent and uniform over
{0,1,...,9%¢ — 1} and
ICl-1
c C
Xio = Z X, mod g*¢.

i=1



MAZUMDAR et al.: STORAGE CAPACITY AS AN INFORMATION-THEORETIC VERTEX COVER AND THE INDEX CODING RATE

Note that each Xucl_ can be deduced from {Xucj} j=i and the
entropy of {XMC]_ }j=i is xc(|C|—1). Finally, let X,, be an encod-
ing of {XMC}CGC':%C as a symbol from a g-ary alphabet; the
fact that this is possible follows because > ~cc.,cc ¥c < 1.
Then the entropy of {X,},ev is CP(G) as required. O
Further Notations: Let G[S] denote the subgraph induced
by S € V. Let a(G) be the size of the largest independent
set and let VC(G) be the size of minimum vertex cover. Let
MM(G) be the size of the largest matching of the graph
and let FM(G) be the weight of the maximum fractional
matching, i.e., FM(G) is the maximum of »’,_ x. such that
DevcpXe <1forallv eV and0<x,<1,VecE.

III. EXACT ALGORITHMS FOR STORAGE
CAPACITY AND INDEX CODING RATE

In this section, we describe some (super)exponential time
algorithms that compute Cap, (G) and Ind,(G) exactly for a
constant g. First, we review the approach involving a confusion
graph and then present another algorithm for storage capacity
that has faster running time on some graphs.

Let the vertices of the graph G be represented by 1,2..., n.
A confusion graph G(G) of G has ¢g” vertices. Each of the
different g-ary strings of length n represent the vertices. There
is an edge between two strings x and y if there exists some
i e{l,...,n},suchthatx; # y;,butx; = y; forall j € N(i),
neighbors of i in G. It is known that the index coding rate
Ind, (G) is equal to logarithm of the chromatic number of
G(G) and the storage capacity Cap,(G) is the logarithm of
the size of maximum independent set of G(G) [3], [21].
Thus, by employing the best currently known algorithms for
computing chromatic number [22] and maximum independent
set [23], we can compute Indy(G) and Cap,(G) in time
0(2.24619") and O(1.19967") respectively.

To compute storage capacity Cap, (G), we can take a
different approach. We can go over all the possibilities for
the n recovery functions fi, ..., f, corresponding to vertices
1,2,...,n, and for each of the possibilities construct the
corresponding storage codes. To be precise, let vertex i € [n]
have degree d(i). There are qqd(l) possibilities for the recovery
function f;. The total number of possibilities for n recovery
functions is then

n

d(i) na®
[Ta" <a™
i=1

where A is the maximum degree in G. For each possibility,
we go over the ¢" vectors and remove the ones that do not
agree with the recovery functions, which takes time O(m),
where m = % Zuev(G) d(v) is the number of edges in G, per
vector. The remainder of the vectors form the storage code that
agrees with the recovery functions. We find the combination
of recovery functions that give the largest storage code. The
total running time of this algorithm is at most O(mq”q"‘fA).
Since without loss of generality we can assume that the largest
storage code contains the all-zero vector, the running time
can slightly be improved to O(mq”‘fA). If A is small then
this approach is faster than building a confusion graph and
computing maximum independent set on it.
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To summarize, we have the following result that will be
used to design a PTAS for Ind, (G) for planar graphs.

Theorem 2. Computing Cap,(G) exactly takes time

0 (min {1.19964",m q"qA})

for a graph with n vertices, m edges, and maximum degree

A. Computing Ind, (G) exactly takes time 0(2.24619").

IV. APPROXIMATION ALGORITHMS FOR
PLANAR GRAPHS VIA VERTEX COVER

In this section, we present approximation results for the
storage capacity and optimal index coding rate of planar
graphs. Specifically we show that CP(G) can be used to
achieve a 3/2 approximation of the storage capacity and a
2 approximation of the optimal index coding rate.

In our storage capacity result we use ideas intro-
duced by Bar-Yehuda and Even [9] for the purpose of
5/3-approximating the vertex cover in planar graphs. Specif-
ically, they first considered a maximal set of vertex-disjoint
triangles, reasoned about the vertex cover amongst these
triangles, and then reasoned about the triangle-free induced
subgraph on the remaining vertices. We consider a similar
decomposition and reason about the integrality gap of vertex
cover in each component. We parameterize our result in
terms of the number of triangles; this will be essential in the
subsequent result on optimal index coding rate.

Theorem 3. Assume G is planar and let T be a set of 3t
vertices corresponding to maximal set of t vertex disjoint
triangles. Then,
Cap(G) _ 3t+k
— CP(G) ~ 2t+3k/4
where k is the size of the minimum vertex cover of G[V \ T1].

Hence CP(G) is a 3/2 approximation for Cap(G) and 4/3
approximation if G is triangle-free.

Proof. Let G’ = G[V \ T]. Partition the set of vertices V into
T UC U I where C is the minimum vertex cover of G’ and
I C V\T is therefore an independent set. Let Xy be the set
of variables that achieve storage capacity. Therefore,

Cap(G) = H(Xy) = H(X7) + H(Xc|XT)
+H(X|Xc,Xr) < H(X7)+ H(Xc|X1) <3t +k

since foreachv € I, H(X,|X¢, X7) = 0 since N(v) C CUT.

Consider the fractional clique packing in which each of
the ¢ vertex-disjoint triangles in 7' receive weight 1. Then,
CP(G) > 2t + CP(G’). Then it remains to show that
CP(G’) > 3k/4. Note that since G’ is triangle-free planar
graph, it is 3-colorable by Grotzsch’s theorem [24]. Further-
more, CP(G’) is the maximum fractional matching which,
by duality, is the minimum fractional vertex cover. Hence
it suffices to show that the size of the minimum fractional
vertex cover of a 3-colorable graph is at least 3/4 of the size
of the minimum (integral) vertex cover, i.e., 3k/4. This can
be shown as follows. Let x1, ..., x, be an optimal fractional
vertex cover, i.e., for all edges uo € G', x, + x, > .
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Since fractional vertex cover is 1/2-integral (i.e., there exists
an optimal solution where each variable is either integral or
1/2) [25], we may assume each x,, € {0, 1/2,1}. Let I, I, I3
be a partitioning of {u € [n] : x, = 1/2} corresponding to a
3-coloring where

Exuz

vel;

Exuz

vebh

3

vely

Then consider yi, ...
x, = 1. Then

D= D vt DL v

,Vp Where y, = 1 iff u € L U Iz or

ueln] uehUlz uelnlx,=1
<2/3:2- > x+ D, x <4/3-CP(G)
ux,=1/2 uxy,=1
and yp, ..., y, is a vertex cover because for every edge uv,

at least one endpoint one of {x,, x,} is 1 or at least one of u
and v is in I, U I3. O

We next use the result of the previous theorem, together
with the chromatic number of planar and triangle-free planar
graphs to achieve a 2 approximation for Ind(G).

Theorem 4. Assume G is planar and let T be a set of 3t
vertices corresponding to t vertex disjoint triangles. Then,

3n+43t n
+ fort < 75
_ 4n—12t 12
< LP((;) <l + for n r <
Ind(G) n 84 : 12="-=4
4— Wt fort>7%

Maximizing over t implies that n—CP(G) is a 2 approximation
for Ind(G) and a 3/2 approximation if G is triangle-free.

Proof. From Theorem 3, we know that CP(G) > 2r +
3/4VC(G’) where G’ = G[V \ T]. Therefore, we can bound
n — CP(G) as follows:

n—CP(G) <n— (2t +3/4VC(G"))
=n— (2t +3/4(n — 3t — a(G")))
= (n+1)/443/4a(G")

On the other hand,
Ind(G) = a(G) = a(G")

where a denotes the size of the maximum independent set of
the graph. Note that «(G) > n/4 since G is planar and thus
4-colorable [26], [27]. Since G’ has n — 3t vertices and is
triangle-free and planar and thus 3-colorable [24], n — 3¢ >
a(G") > (n — 3r)/3. By combining inequalities above we get

CP(G) (1+0)/4+3/40(G) (1+1)/4+3/4a(G)
TG) = mm( e (G
(n+t)/4+3/4a(G))
a(G)
o [ (n41)/443/4(n=31) (n+1)/4 (n+1)/4
< min ( n 3/ n=3t) (:730/3 + 3/4, "n/4 + 3/4)
= min (4 5. 3 4+ 10+ ).

O
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A. Approximation Algorithms for Fixed Alphabet Size

In this section, we present improved polynomial time algo-
rithms for approximating the storage capacity and the index
coding rate on the assumption that the alphabet size ¢ of
the codes is a fixed constant. These are based on combining
the exact algorithm described in Section III with the planar
separator theorem [20].

Lemma 5. Let G’ be a graph formed by removing at most k
vertices from G. Then,
Cap, (G) — k < Cap,(G') < Cap,(G).

Proof. Consider an optimal storage code and fix the value of
the k vertices to their most common k-tuple of values. This
decreases the size of the code by at most a factor ¢X and
hence decreases the storage capacity by at most k. The fact
that Cap, (G") < Cap,(G) follows because any code for G’ is
also a code for G. 0

The following lemma shows that the removal of a relatively
small number of vertices in a planar graph is sufficient to
ensure that the remaining components are small. The proof

is essentially the same as that used to establish Theorem 3
in [20].

Lemma 6. There exists no < en vertices Vo in a planar
graph whose removal yields a graph with at most r = O (€*n)
components G1, Ga, ..., G, where each G; has n; = 0(1/62)
vertices and there are no edges between G; and G j. Further-
more, Vo, G1, G2, ... can by found in polynomial time.

Proof. The planar separator theorem [20] states that in any
planar graph there exists a set of at most cy/n vertices (for
some large constant ¢) such that the removal of these vertices
disconnects the graph into components of size at most 2n/3.
Furthermore, these vertices can be found in polynomial time.
Consider applying this recursively on all components until they
each have size less than a.c?/€? for a sufficiently large constant
a > 1. Then, the total number of vertices removed is at most

<evn——+c/Q2/3n—rm

Vol <

(2/3) (2/3)2
T e
3 I’l(2/3)3n ...... C 20!6‘ aCZ/Ez

< €n

because, during the course of the recursion, the planar sep-
arator theorem is applied to at most n/((2/3)'n) graphs of
size between (2/3)'n and (2/3)~'n and each such application
involves the removal of at most ¢+/(2/3)!~!n vertices. 0

Theorem 7. There exists polynomial time algorithms to
approximate Ind,(G) up to a multiplicative factor of 1+ €
and approximate Cap,, (G) up additive error en.

Proof.  The result for Cap, (G) follows by applying the
decomposition in Lemma 6 to G and then solving the problem
optimally on G1, G, .. . using the algorithm in Section III. Let
G'=G;UGU.... By Lemma 5,

Cap, (G) — ng < Cap,(G') = Cap,(G1) + Cap,(G2) + . ..
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and hence finding the optimal solution for each Cap, (G))
yields an additive ng < en approximation as required.

The result for Ind,(G) is similar. By using the results in
Section III, we can find the optimal index coding solution of
each G;. Combining these with the naive solution for the ng
vertices in Vj yields a solution with rate no+ > ;.| Ind, (G;).
We can relate Ind, (G) to this as follows: -

no+ Y Indy(Gy)

i>1
no + Z (ni — Cap,(Gi) +log, (n; Ing))
i>1

no +n — ng — Cap, (G) + r log, (max n; Inq)
1

IA

IA

A

no +1Ind, (G') +rlog, (malxni Ing)
>

< Ind¢(G) + 2n9 + rlog, (malxni Ing)
i>

2no + r log, (max;>1 n; In
_ Indq(G) (1 + 0 gq( lzl 1 Q))

Ind, (G)
= Ind, (G) (1 + 8¢+ O log, (¢ 1nq)))

where the last line follows since Ind,(G) > n/4, ng < en,
r = O(e’n), n; = O(e~?). Reparamaterizing by € < €/c for
some sufficiently large constant gives the required result. [J

V. UPPER BOUNDS ON STORAGE CAPACITY
VIA MULTIPLE VERTEX COVERS

In this section, we start by considering a linear program
proposed by Blasiak et al. [19] that can be used to lower bound
the optimum index coding rate or upper bound the storage
capacity.> Unfortunately there are Q(2") constraints but by
carefully selecting a subset of constraints we can prove upper
bounds on the storage capacity for a specific graph without
solving the LP.

Our main goal in this section is to relate this linear program
to finding a suitable family of vertex covers of the graph.
In doing so, we propose a combinatorial “gadget” based
approach to constructing good upper bounds that we think
makes the process of proving strong upper bounds more
intuitive. This allows us to prove a more general theorem that
gives an upper bound on the storage capacity for a relatively
large family of graphs. As an application of this theorem we
show that a class of graphs closely related to the family of
outerplanar graphs and another family of cartesian product
graphs have capacity exactly n/2.

A. Upper Bound via the “Information Theoretic” LP

We first rewrite the index coding LP proposed by
Blasiak et al. [19] for the purposes of upper-bounding storage
capacity. We define a variable zg for every § € V that will
correspond to an upper bound for H (Xs). Let cI(S) = SU{v :
N() € S} denote the closure of the set S consisting of

2Blasiak ef al. only consider index coding but it is straightforward to adapt
the LP in a natural way for storage capacity; see below.
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vertices in S and vertices with all neighbors in S.

maximize Zzy (Information theoretic LP)

st. zg=0
zr —zs < |T\cl(S)] VSCT
zs +zr = zsnr +zsur VS, T
The second constraint corresponds to
H(X7) — H(Xs) = H(X7|Xs) = H(X7|Xc1(5))
< H(X71\e1(s)) = 1T \ ()]

whereas the last constraint follows from the sub-modularity
of entropy. Hence, the optimal solution to the above LP is
an upper bound on Cap(G). We henceforth refer to the above
linear program as the information theoretic LP.

B. Upper Bound via Gadgets

k-cover by gadgets is a technique for proving upper bounds
on the storage capacity of a graph. The core idea is to construct
a set of k vertex covers for the graph via the construction of
various gadgets which we now define.

A gadget g = (S1, $2, c1, ¢2) consists of two special sets of
vertices S1 and S» and two colors ¢1 and ¢;. Sets S and S are
created in the following way: take two sets of vertices A and B,
take their closures cl(A) and cl(B), then S; = cl(A) U cl(B)
and Sy = cl(A) Ncl(B). Call S; the outside of the gadget and
$> its inside, as it is always the case that S; 2 S>. We note
that by taking A = {v} and B = ) we obtain a gadget with the
outside {v} and empty inside (assuming v has no neighbors
of degree one); call such gadget frivial. Define the weight of
a gadget to be w(g) = |A| + |B|. As for the two colors of
the gadget, they are picked from a fixed set of k colors; ¢ is
assigned to all vertices in S; and ¢ is assigned to all vertices
in S>. Note, that a vertex can be assigned multiple colors in
that manner. The objective is to find a set of gadgets, such that
for any color ¢, vertices with ¢ assigned to them form a vertex
cover. If that condition is met for all k£ colors, we show that
the total weight of the gadgets used provides an upper bound
on k Cap(G).

We can formulate the k-cover by gadgets (for fixed k) as
the following integer linear program: Let xg g be a variable
where vertex set S is a part of gadget g. Note that there are two
variables per gadget, corresponding to its outside and inside
sets. xg s = 1 if g participates in the cover by gadgets and
0 otherwise. We use c¢g(S) = ¢ to denote that the color of
vertex set S in gadget g is c.

1
minimize X ng, s-w(g)/2 (k-cover by gadgets)
g,5

S.t. Z Xg s+ Z Xg 50> 1,Y(u,v) € E, Ve
g,Sues, g',S'wes’,
cg(8)=c g (Sh=c
Xg,5 = Xg ¢ Vg with outside S and inside S’

The first condition states that the union of sets of a certain
color is a vertex cover and the second one states that both the
inside and outside of g participate (or do not participate) in
the gadget cover.
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Theorem 8. Any feasible integral solution to the above
k-cover by gadgets integer LP is an upper bound on Cap(G).

Proof. We prove this by considering the information theoretic
LP above and showing how to bound zy by the gadget weights.
First, note which constraints correspond to the steps of creating
a gadget:

take set A
take set B

za < |A]
zp < |B|
Zel(a) — 24 < 0 find closure of A
find closure of B
find S; = cl(A) Ucl(B)
and S> = cl(A) Ncl(B)

ZeB) — 28 <0
z8; + 28, =< Zcl(A) + Zel(B)

If we sum all the constraints, we obtain zs, +zs, < |A|+|B].
Recall that |A| + |B| is the weight of the gadget. Let H
be a cover by gadgets. Then by summing all corresponding

constraints, we get

>

g=(81,82,c1,c0)eH

25, +25, < D w(g)

geH

Group the sets participating in gadgets in H into color classes

C1,Cy,...,Cr. Let Uy = |J S be the set of all vertices of
SEC,'
color ¢;. The corresponding constraints are then

w = D e <0 Vie{l2,.. k)
SEC,'

Zeuyy —zu; <0 Vie{l,2,...,k}

i

Note that zy = z¢;) since U; is a vertex cover. By summing
these 2k constraints and the one obtained from building
gadgets, we get kzy < > .y w(g). O

1) Examples: We next illustrate the use of the k-cover via
gadgets approach with a couple of examples. First, we use a
2-cover by gadgets to re-prove a result of Blasiak er al. [18]
that established that the storage capacity of a cycle on n
vertices is n/2. The point of this first example is to illustrate
simplicity of the new approach. Then we give an example
of an outerplanar graph for which we establish a tight bound
of 14/3. In addition to serving as another example of the new
approach, we think this example is particularly interesting as
it demonstrates that it is sometimes necessary to consider a
k-cover via gadgets where k > 2 in order to establish a tight
result. Note that any upper bound via a k-cover via gadgets
is a multiple of 1/k and hence k = 1 or k = 2 would be
insufficient to prove a tight bound of 14/3.

a) Odd cycles: We prove that the storage capacity of an
odd cycle of length n is n/2; see Figure 1(a) for an example
where n = 9. FM(C,)) = n/2, thus Cap(C,) > n/2. For the
upper bound we create a gadget by taking A = {v1, 03}, B =
{v2,v4} and obtaining outside set S; = {v1,v2, 03,04} and
inside set So = {v2, v3}. On the rest of the vertices we place
trivial gadgets. Color S; and trivial gadgets on vg, 0g, . .., 0y—1
green, color S, and trivial gadgets on vs, v7, ..., 0, red. Green
and red sets are then vertex covers and the total weight of all
gadgets is n. Thus, Cap(Cy) < n/2.
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Fig. 1. Two examples of k-cover upper bounds. See text for details.
(a) An odd cycle. (b) An outerplanar graph.

b) An outerplanar graph: We prove that the storage
capacity of the graph in Figure 1(b) is 14/3. This capacity is
achieved by the fractional clique cover. Create gadget g from
Ay = {v1,03} and By = {v2, 04} and another gadget g» from
Ay = {vs, 07} and By = {vg, vg}. Place one trivial gadget on
each of the vertices vz, v4, vs, 07 and 2 trivial gadgets on vg.
The sets are colored as follows:

o Red: vs5, 07,09 and the inside of gadget g;

o Blue: v, v4, v9 and the inside of gadget g»

o Green: the outside sets of both g1 and g»
Note that vertices of every color class form a vertex cover and
the total weight of gadgets is 14.

C. n/2 Upper Bound via Vertex Partition

The next theorem uses a 2-cover by gadgets to prove
that a certain family of graphs have capacity at most n/2.
Subsequently, we will use this theorem to exactly characterize
the capacity of various graph families of interest.

Theorem 9. Suppose that the vertices of a graph G can be
partitioned into sets X and Y such that:
1) G[X] and G[Y] are both bipartite.
2) Sx is an independent set in G[X] and Sy is an inde-
pendent set in G[Y]
where Sy C X consists of all vertices in X with a neighbor

inY and Sy C Y consists of all vertices in Y with a neighbor
in X. Then Cap(G) < n/2.

Proof. We prove this theorem by showing that G has a 2-cover
by gadgets of total weight n. Let (A, B) be a bipartition of the
vertices of G[X]. Create the sets of gadget gx from A and B.
Note that the vertices in X that are in the outside set of the
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(a)

(b)

Fig. 2. Example of storage capacity proof for a cartesian product graph G
formed from a 5-cycle and a length 3 path. See text for details. (a) Graph G.
Shaded vertices are X = Sy. (b) Graph G[Y]. Shaded vertices are Sy.

gadget but not in the inside set, are exactly the vertices in Sy.
This follows because for v € X, v € cl(A) Ncl(B) iff all of
v’s neighbors are in X. Similarly, create gy. Color the inside
of gx and the outside of gy red. Color the outside of gy
and the inside of gy blue. Observe that both color classes
are vertex covers and the total weight of the 2 gadgets is
| X|+ Y| =n. (|

1) Cartesian Product of a Cycle and a Bipartite Graph:
We now illustrate an application of Theorem 9. The Cartesian
product of graphs G; = (V1, E;) and G, = (Va, E3) is
denoted by G1JG»> and defined as follows:

o The vertex set is the Cartesian set product Vi x V>

o (u,u’)(v,v") is an edge iff ¥ = v and u'v’ € E; or

u' =v and uv € E;

We next use Theorem 9 to show that any Cartesian Prod-
uct of a cycle and a bipartite graph has storage capacity
exactly n/2. An example of such a graph is given in Fig. 2
where the bipartite graph considered is just a length 3 path.

Theorem 10. Let Ci be a cycle with k > 3, B a bipartite
graph, and G = CyOB. Then Cap(G) = n/2, where n is the
number of vertices in G.

Proof. 1If k is even, G 1is a bipartite graph with MM(G) =
VC(G) = n/2 and hence Cap(G) = n/2. Assume for the rest
of the proof that k is odd.

To show that Cap(G) > n/2, consider the fractional
matching where we assign weight 1/2 to all edges of the
form (u, a)(v, a), i.e., edges that come from the cycle. Hence
Cap(G) > n/2.

To show that Cap(G) < n/2 we proceed as follows. Con-
sider the subgraph G; induced by vertices (u;, v1), (ui, v2),
(ui,v3), etc., which is isomorphic to B. Fix a bipartition
(R, Q) of B and split the vertices of each G; into R; and Q;
according to that bipartition. We now show that X = Ry U Q>
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and Y = V \ X satisfy the conditions of Theorem 9. G[X] has
no edges and therefore is bipartite. G[Y] is bipartite because
it consists of Px_300B which is bipartite (where Px_3 is a
path of length k — 3 obtained by deleting edges uxuy, u; uz,
and up uz from the cycle), edges between R; and Rj, and
edges between Q> and Q3 which do not complete any cycles.
Sx = X is an independent set. Sy = Ry U Q1 U Ry U Q3 is
also an independent set. O

2) Cycles With Chords That Are Not Too Close Together:
We next apply Theorem 9 to prove that a family of graphs
related to outerplanar graphs also has storage capacity n/2.
Recall that any (connected) outerplanar graph without cut
vertices is a cycle with non-overlapping chords. The family
of graphs we consider is more general in the sense that we
permit the chords to overlap but more restrictive in the sense
that we require the endpoints of these chords to be at least a
distance 4 apart on the cycle. A natural open question is to
characterize Cap(G) for all outerplanar graphs. All that was
previously known is that if we assume each X; is a linear
combination of {X j}jen(;, then Cap(G) equals integral clique
packing [13].

Theorem 11. Let G be a cycle with a number of chords such
that endpoints of chords are at least distance 4 apart on the
cycle. Then Cap(G) = n/2.

Proof. To show that Cap(G) > n/2, consider the fractional
matching where we place weight 1/2 on every edge of the
cycle. To show that Cap(G) < n/2 we proceed as follows.
Label the vertices that are endpoints of chords ¢, c2, ..., ck
in the order they appear on the cycle. For every path between
¢; and c;j41 (and between ¢ and cp) pick the middle vertex
of the path to be included in X. If the path is of odd length,
pick either of the 2 middle vertices. We now show that X and
Y = V\ X satisfy the conditions of Theorem 9. X = Sy is an
independent set. G[Y] is a forest and Sy is an independent
set due to the assumption on the distance between chord
endpoints. 0

VI. RECOVERY FROM PARTIAL NODE FAILURE

In this section, we extend the notion of storage capacity to
cover for partial failures. This is a new generalization, that,
as far as we understand, does not have a counterpart in index
coding. As before, suppose we have a graph G(V = [n], E) on
n vertices. We assume here that vertex i € [n] stores X; € IFZ’,
a g-ary random vector of length m. We want the following
repair criterion to be satisfied: if up to any 4,0 < J < 1,
proportion of the m coordinates of X;,i € [n] are erased,
they can be recovered by using the remaining content of the
vertex i and X y(;), the contents in the neighbors of the vertex.

We call the normalized asymptotic maximum total amount
of information (in terms of g-ary unit)

H(X1,X2,...,Xn)

lim s
m— 00 m

that can be stored in the graph G, to be the partial recovery
capacity of G. This is denoted by Cap, (G, 9).

We have the following simple facts. Recall, Cap?(G) =
sup,,cz, Capyn (G).
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(a)

(b)

Fig. 3. Example of a storage capacity proof for cycles with chords. See
text for details. (a) Graph G. Shaded vertices are X = Sy. (b) Graph G[Y].
Shaded vertices are Sy.

Proposition 12. For a graph G, Capq(G,O) = n and
Cap, (G, 1) = Cap'?(G).

Proof. The first statement is quite evident. For the second,
note that,

Cap, (G, 1) = mli_)moo Cap,n (G) = sup Cap,» (G)
m

= Cap'”(G),

where we could use the lim and the sup interchange-
ably because of Fekete’s lemma, as discussed in the
introduction. O

In the remaining parts of this section, we will provide tight
upper and lower bound on the quantity Cap, (G, 9).

A. Impossibility Bound

Note that, the partial recovery capacity can be defined in
terms of an entropy maximization problem, generalizing the
storage capacity.

Theorem 13. Let H (X) be the entropy of X measured in q-ary
units. Suppose, X; € IF;”, i € [n]. For a graph G([n], E),
Cap, (G, 9) is upper bounded by the solution of the following
optimization problem.

H(X19'-'9XI’L)

max lim ————
m—00 m

(10)
such that,

H(X; | XnG)) < log, Ag(m, om + 1),
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where Ay(m,d) is the maximum possible size of a q-ary
m-length error-correcting code with minimum distance d.

Proof. Let X; € Fgl, i € [n] be the random variables that can
be stored in the vertices of G satisfying the repair condition.
Suppose we are given the values of X ;). In this situation let
M C IF;” be the set of possible values of X; (P(X; =a) > 0,
Ya € M). Let X,.l, Xl.2 be any two different elements of M.
We claim that, the Hamming distance between X l.l, Xl.2 is at

least om + 1, or
d(X!, X} = om+1.

Suppose this is not true. Then there exist X ,.1, X ,2 € M such
that d(Xl.l, Xl.z) <om. Let J C{l,...,m} be the coordinates
where X! and X? differ. Therefore, |J| < dm. Suppose X!
was stored in vertex i and the coordinates in J are erased.
Now, there will not be any way to uniquely identify X;: it can
be either of X il or X 12 Hence the repair condition will not be
satisfied which is a contradiction.

Therefore, M C IF;” is a set of vectors such that any two
elements of M is Hamming distance at least om + 1 apart.
Hence M is an error-correcting code with minimum distance
om+ 1. And therefore, |M| < A,(m, d). This implies, H (X; |
XnG)) <log, Ag(m, om + 1), which proves the theorem. L

Let us define

R,®) = lim log, Aq(m, om + 1),
m— 00 m

assuming the limit exists.

Corollary 14. We must have, for any graph G, Cap,(G, 9) =
Cap D (G) for 6 > 1 — é. In particular, Cap,(G,9d) =
Cap®(G) for § > 1.

The proof of this fact follows since R, (6) = 0 for J > 1 —é
(Plotkin bound, see [28, p. 127]).

Generalizing the technique of upper bounding the storage
capacity via an information theoretic linear program, we can
obtain an upper bound on Cap, (G, ). We define a variable
zs for every S € V and let bo(S, T) = (cI(S) \ S)NT denote
the boundary of the set S consisting of vertices in 7 with all
neighbors in S. Our main upper bound is the following.

Theorem 15. Consider the LP below.
maximize zy (Information theoretic LP for partial failure)
st. zg=0
21 =25 <IT\ S| = (1 = Ry(9) - bo(S, T)| VS ST
zs +zr = zsnr +zsur VS, T
The optimal solution to the above LP is an upper bound on
Cap, (G, 9).

Proof. The proof follows the same reasoning as the proof
of the bound via information theoretic LP of Sec. V-A.
Indeed, the variable zg for every S € V denote the entropy
of S, H(Xs). The last constraint on the LP above follows from
sub-modularity. To establish the second constraint, first note
that |7\ cl(S)| = |T \ S| — | bo(S, T)|. Now we have to show
that for any S C T,

H(X7) — H(Xs) < [T\ cl(S)| + Ry (9) - |bo(S, T)].
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To see this, note that,
H(X7) = H(Xs, Xvo(s,7)> XT)
= H(Xs) + H(Xpo(s,1)| Xs)
+ H(X7|Xpo(s,7)> X5)
<HXs)+ . HXilXs)+ T \cl(S)]
i€bo(S,T)
which means
H(X7)— H(Xs) <IT\cI(®)|+ D HXilXnw)
i€bo(S,T)
=IT \ cl(9)]
1
+1bo(S, T)| lim —log, Ag(m,om+1)
m—o00 m
=T \ cl(S)| + [ bo(S, T)| - Ry(9),
where the last two lines follow from Thm. 13 and the definition
of R,(9). O
a) Odd Cycle Example.: Consider an odd cycle with
n vertices where n is odd. Below we show an example to
illustrate the above bound on partial recovery capacity.
Consider the following subset of constraints:
2>z013)— 2
2> z0.4) — 2y
1>zu Viels,6,...,n}
Ry(0) > z{1,2,3) — 2(1,3)
R, (0) = z(2.3,4) — 2(2.4)
Z{1,2,3} T 2{2,3.4} = 2{2,3} + 2{1,2,3,4}

z{2,3) F 25+ 27+ -+ 2y = 2{2,3.5,7,....n)

n—73
+ zg ()
7(1,2,3,4) T 2{6) +2{8) + - .- Z{n—1) = 2{1,2,3,4,6,8,....n—1}
n—
+ zg (b)
n+1 n—1
(n— > )—(—R, (5))T > 2V — 2(2,3,5,7,...n)
n+3 n—73
(n — > )— (1 =Ry (5))T > 2V — 2{1,2,3,4,6,8,..n—1}

Equations (a) and (b) above are repeated applications of the
inequality: zs + z7 > zsur + zg if SNT = ). By summing
up those constraints we get

n+2R,(0) + Ry(0)(n —2) = 2zy — 22y
and thus
Capy(G. ) = zv = 5(1+ Ry(0)),
whenever G is an odd cycle.
B. Achievability Bound
A naive achievability bound on Cap, (G, J) is given by,
Cap,(G,0) = n(1 —hq(9)), d=1/2,

where hg(x) = xlog,(q — 1) —xlog, x — (1 —x)log, (1 —x).
This amount of storage can be achieved by just using an
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error-correcting code of length m, distance dm + 1, and rate
1 — hy() in each of the vertices. Such codes exist, by the
Gilbert-Varshamov bound. Also,

Cap, (G, 9) = 0,

for0<o<1-1/q.

This simple bound can be improved by more carefully
designing a code. Our main result of this section is the
following.

Theorem 16. Given a graph G, let C be the set of all
cliques of G. The generalized clique packing number CPs(G)
is defined to be the optimum of the following linear program.
For 0 <xc <1,VC €,

max > xc(ICl = hy(9)), (CP5(G))
ceC
such that,
Z xc < 1.
CeCueC
Then,

Capq(Gs 5) > CP()(G), 5 = 1 - 1/q9
and,
Cap,(G,8) = CP(G), 6> 1—1/q.

Proof. First of all, notice that, Cap, (G, J) > Cap,(G, 1) =
Cap9(G) > CP(G) where the last inequality follow from
Lemma 1. Below therefore we only concentrate on the case
when 0 < 1 — é. We illustrate the proof of this theorem by
constructing a sequence of error-correcting codes that serves
our purpose.

First, we show that for any positive integer d and a large
enough positive integer m, there exists a linear error-correcting
code of length dm and dimension dm—mh, () that can correct
any om erasures between coordinates im + 1 and (i 4+ 1)m for
any i € {0,1,...,d — 1}.

Randomly and uniformly choose a g-ary parity check matrix
of size (dm — k) x dm (that is, each coordinate of the matrix
is chosen from {0, 1,...,¢ — 1} with uniform probability).
The probability that a vector of weight dm is a codeword
is ¢~@"=%)_ Now the probability that there exists such a
codeword that is an uncorrectable erasure pattern of the above

type is

m d
<d _1)om—dm=k) - —(dm—k—mhy(2))
< (5m)(q )"q _—Mq

0<1- l
q
Hence there exists such a code with dimension dm — mh,(J)
forany 0 <1 — L for large enough m.

Suppose, C € C be a clique of size d = |C| in G. Use the
linear error-correcting code of length dm constructed above
and store each block of m coordinates in one of the vertices
of the clique. If up to ¢ proportion of the content of any vertex
is erased, it can be recovered by accessing the other vertices.
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The total information stored in this clique is dm — mh,(0) =
m(|C| — hy(3)).

Now let us find a partition of the graph into a collection of
cliques {Cy, Ca, ..., C;}, such that each vertex belongs to at
most one clique from the collection. For each clique C;,i =
1,...,t,,use an error-correcting code of length |C;|-m to store
m(|C;| — hy(J)) g-ary information. In this way the maximum
amount of information that can be stored in the graph with
the partial recovery condition is,

max Zxc(ICI — hq(9)),

ceC

where xc € {0, 1} denotes whether the clique C is in the
collection, under the constraint that each vertex is in only
one clique, i.e., ZCeC:ueC xc < 1. This is an integer linear
program and Cap, (G, 9) is at least the optimum value of this
integer linear program for J < 1 — L
Now, following an argument similfar to Lemma 1, we show
that the integer linear program can be relaxed to a linear
program and an achievability scheme still exists. For this,
assume, {xc}cec achieve CPs(G). Let m be such that xc - m
is integral and large enough for every C. For each clique
C = {uy,...,uc|} in the graph, in each vertex u € C,
store mxc g-ary symbols, such that the |C| - mxc-length
vector in the clique C is a codeword of an error correcting
code of length |C| - mxc that can carry mxc(|C| — hy(d))
symbols of information, as noted above. Once we do this for
all cliques, the number of g-ary symbols stored in vertex u is
> cecuec Xcm < m. The total amount of information stored
in the graph is > .o mxc(IC| — hy(9)) = m CPs(G).
This proves the claim. (]
b) Odd Cycle Example.: Let us consider the example of
n-cycle again where n is an odd number. Since the size of a

fractional matching is 5, we have

1
Capy(G,) = 32— hy(®), =1 7

and Cap, (G, J) > 5 when ¢ > 1 — é. Compare this with the
impossibility bound that we have,

Cap, (G, 9) < g(l + R, (0)).

It is widely conjectured that the optimal rate of an error-
correcting code is given by

Ry (@) = 1 — hy (),

for small g, which is also known as the Gilbert-Varshamov
conjecture. If this conjecture is true, then our upper and lower
bounds match exactly. In particular, for large g (i.e., g — ©0),
we have hy(d) — ¢ and R;(6) — 1 — d. Hence, our bounds
match definitively in the regime of large g.

VII. CONCLUSIONS

Storage capacity is a natural problem of network coding
and intimately related to the index coding problem which
encapsulates the computational challenges of general network
coding. In this paper we have viewed storage capacity as a
natural information theoretic analog of vertex cover of graph.
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For some family of graphs, vertex cover is easier to approx-
imate, such as the planar graphs; we see that, the storage
capacity is also easier to estimate for these families. The
relation to index coding also leads to approximation guarantees
for index coding rate. We further illustrated an approach to
bound the storage capacity of graphs in terms of a small
number of vertex covers, which leads us to exactly quantify
the storage capacity of cycles with chords.

In the last part of this paper, we provided one possible
generalization of the storage capacity to partial recovery
capacity. It is important to note that there are several other
possible generalizations to this quantity that may be useful
in practice. For example, one might consider recovery from
failure of multiple vertices together from their combined
neighborhood (analogous to the cooperative repair problem in
distributed storage [29]). In yet another scenario of recovery
from multiple failures, a vertex failure may be recoverable
from its neighborhood as long as at most ¢ > 0 of its neighbors
have also failed. We leave these generalizations as interesting
future studies of storage capacity.

REFERENCES

[1] C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans.
Inf. Theory, vol. 2, no. 3, pp. 8-19, Sep. 1956.

[2] N. Alon and A. Orlitsky, “Source coding and graph entropies,” IEEE
Trans. Inf. Theory, vol. 42, no. 5, pp. 1329-1339, Sep. 1996.

[3] A. Mazumdar, “Storage capacity of repairable networks,” IEEE Trans.
Inf. Theory, vol. 61, no. 11, pp. 5810-5821, Nov. 2015.

[4] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” [EEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925-6934, Nov. 2011.

[5] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5843-5855, Oct. 2014.

[6] V. R. Cadambe and A. Mazumdar, “Bounds on the size of locally
recoverable codes,” IEEE Trans. Inf. Theory, vol. 61, no. 11,
pp. 5787-5794, Nov. 2015.

[7] K. Shanmugam and A. G. Dimakis, “Bounding multiple unicasts through
index coding and locally repairable codes,” in Proc. IEEE Int. Symp. Inf.
Theory, Honolulu, HI, USA, Jun. /Jul. 2014, pp. 296-300.

[8] S. Khot and O. Regev, “Vertex cover might be hard to approximate to
within 2—e,” J. Comput. Syst. Sci., vol. 74, no. 3, pp. 335-349, 2008.

[9]1 R. Bar-Yehuda and S. Even, “On approximating a vertex cover for

planar graphs,” in Proc. 14th Annu. ACM Symp. Theory Comput.,

San Francisco, CA, USA, May 1982, pp. 303-309. [Online]. Available:

http://doi.acm.org/10.1145/800070.802205

B. S. Baker, “Approximation algorithms for NP-complete problems on

planar graphs,” J. ACM, vol. 41, no. 1, pp. 153-180, 1994.

R. Bowden, H. X. Nguyen, N. Falkner, S. Knight, and M. Roughan,

“Planarity of data networks,” in Proc. 23rd Int. Teletraffic Congr. (ITC),

Sep. 2011, pp. 254-261.

Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side

information,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1479-1494,

Mar. 2011.

Y. Berliner and M. Langberg, “Index coding with outerplanar side infor-

mation,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul./Aug. 2011,

pp- 806-810.

M. Gadouleau, A. Richard, and S. Riis, “Fixed points of Boolean

networks, guessing graphs, and coding theory,” SIAM J. Discrete Math.,

vol. 29, no. 4, pp. 2312-2335, 2015.

M. Langberg and A. Sprintson, “On the hardness of approximating

the network coding capacity,” IEEE Trans. Inf. Theory, vol. 57, no. 2,

pp- 1008-1014, Feb. 2011.

M. Effros, S. El Rouayheb, and M. Langberg, “An equivalence between

network coding and index coding,” IEEE Trans. Inf. Theory, vol. 61,

no. 5, pp. 2478-2487, May 2015.

F. Arbabjolfaei and Y.-H. Kim, “Approximate capacity of index coding

for some classes of graphs,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),

Barcelona, Spain, Jul. 2016, pp. 2154-2158.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]



MAZUMDAR et al.: STORAGE CAPACITY AS AN INFORMATION-THEORETIC VERTEX COVER AND THE INDEX CODING RATE

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. Blasiak, R. Kleinberg, and E. Lubetzky. (2010). “Index coding via lin-
ear programming.” [Online]. Available: https://arxiv.org/abs/1004.1379
A. Blasiak, R. Kleinberg, and E. Lubetzky, “Lexicographic products
and the power of non-linear network coding,” in Proc. IEEE 52nd Annu.
Symp. Found. Comput. Sci. (FOCS), Palm Springs, CA, USA, Oct. 2011,
pp. 609-618. doi: 10.1109/FOCS.2011.39.

R. J. Lipton and R. E. Tarjan, “Applications of a planar separator
theorem,” SIAM J. Comput., vol. 9, no. 3, pp. 615-627, 1980.

N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hassidim, “Broad-
casting with side information,” in Proc. 49th Annu. IEEE Symp. Found.
Comput. Sci. (FOCS), Washington, DC, USA: IEEE Computer Society,
Oct. 2008, pp. 823-832. doi: 10.1109/FOCS.2008.41.

A. Bjorklund, T. Husfeldt, and M. Koivisto, “Set partitioning via
inclusion-exclusion,” SIAM J. Comput., vol. 39, no. 2, pp. 546-563,
2009.

M. Xiao and H. Nagamochi, “Exact algorithms for maximum indepen-
dent set,” in Algorithms and Computation, L. Cai, S.-W. Cheng, and
T.-W. Lam, Eds. Berlin, Germany: Springer, 2013, pp. 328-338.

H. Grotzsch, “Zur theorie der diskreten Gebilde. VII. Ein dreifar-
bensatz fiir dreikreisfreie netze auf der kugel,” Wissenschaftliche
Zeitschrift, Martin-Luther-Universitit Halle-Wittenberg, Mathematisch-
naturwissenschaftliche Reihe, vol. 8, 1959, pp. 109-120.

D. S. Hochbaum, “Approximation algorithms for the set covering and
vertex cover problems,” SIAM J. Comput., vol. 11, no. 3, pp. 555-556,
1982.

K. Appel, W. Haken, and J. Koch, “Every planar map is four colorable.
Par II: Reducibility,” Illinois J. Math., vol. 21, no. 3, pp. 491-567, 1977.
[Online]. Available: http://projecteuclid.org/euclid.ijm/1256049012

A. Kenneth and W. Haken, “Every planar map is four colorable part
1. Discharging,” Iilinois J. Math., vol. 21, no. 3, pp. 429-490, 1977.
[Online]. Available: http://projecteuclid.org/euclid.ijm/125604901 1

R. Roth, Introduction to Coding Theory. Cambridge, U.K.: Cambridge
Univ. Press, 2006.

A. S. Rawat, A. Mazumdar, and S. Vishwanath, “Cooperative local repair
in distributed storage,” EURASIP J. Adv. Signal Process., vol. 2015,
p.- 107, Dec. 2015.

5591

Arya Mazumdar (S’05-M’13-SM’16) is an assistant professor in the
College of Information and Computer Sciences at the University of
Massachusetts Ambherst. Prior to this, he was an assistant professor at
University of Minnesota-Twin Cities (2013-2015), and a postdoctoral scholar
at Massachusetts Institute of Technology (2011-2012). Arya obtained the
Ph.D. degree from University of Maryland, College Park, in 2011.

Arya is a recipient of the NSF CAREER award (2015) and the IEEE
ISIT Jack K. Wolf Student Paper Award (2010). He is also a recipient
of the Distinguished Dissertation Fellowship Award, 2011, University of
Maryland. Arya’s research interests include coding theory, information theory
and machine learning.

Andrew McGregor is an associate professor in the College of Information
and Computer Sciences at the University of Massachusetts Amherst. Prior to
this, he was a postdoctoral scholar at the University of California, San Diego
and Microsoft Research, Silicon Valley. He obtained his Ph.D. degree from
the University of Pennsylvania in 2007.

Andrew is a recipient of the NSF CAREER award (2010) and the College
of Information and Computer Sciences Outstanding Teacher Award (2016).
His research interests include algorithms, communication complexity, and
information theory.

Sofya Vorotnikova is a Ph.D. candidate in the College of Information
and Computer Sciences at the University of Massachusetts Amherst. She
received her Bachelor’s degree (Computer Science and Mathematics, 2014)
and Master’s degree (Computer Science, 2017) from the same institution.
Sofya is the recipient of the Simons-Berkeley Research Fellowship (2018)
and an honorable mention on the NSF Graduate Research Fellowship (2015).



