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Storage Capacity as an Information-Theoretic

Vertex Cover and the Index Coding Rate
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Abstract— Motivated by applications in distributed storage,
the storage capacity of a graph was recently defined to be the
maximum amount of information that can be stored across the
vertices of a graph such that the information at any vertex can

be recovered from the information stored at the neighboring ver-
tices. Computing the storage capacity is a fundamental problem
in network coding and is related, or equivalent, to some well-
studied problems such as index coding with side information
and generalized guessing games. In this paper, we consider
storage capacity as a natural information-theoretic analogue of
the minimum vertex cover of a graph. Indeed, while it was known
that storage capacity is upper bounded by minimum vertex cover,
we show that by treating it as such we can get a 3/2 approxima-
tion for planar graphs, and a 4/3 approximation for triangle-free
planar graphs. Since the storage capacity is intimately related to
the index coding rate, we get a 2 approximation of index coding
rate for planar graphs and 3/2 approximation for triangle-free
planar graphs. Previously, only a trivial 4 approximation of the
index coding rate was known for planar graphs. We also show a
polynomial time approximation scheme for the index coding rate
when the alphabet size is constant. We then develop a general
method of “gadget covering” to upper bound the storage capacity
in terms of the average of a set of vertex covers. This method
is intuitive and leads to the exact characterization of storage
capacity for various families of graphs. As an illustrative example,
we use this approach to derive the exact storage capacity of
cycles-with-chords, a family of graphs related to outerplanar
graphs. Finally, we generalize the storage capacity notion to
include recovery from partial node failures in distributed storage.
We show tight upper and lower bounds on this partial recovery
capacity that scales nicely with the fraction of failures in a vertex.

Index Terms— Distributed storage, storage capacity, index
coding, vertex cover, graph theory, approximation algorithms,
planar graphs.

I. INTRODUCTION

T
HE Shannon capacity of a graph [1] is a well studied

parameter that quantifies the zero-error capacity of a

noisy communication channel. There are also several other
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notions of graph capacities or graph entropies that model

different communication/compression scenarios (for example,

see [2]). In this paper, we are interested in a recent definition

of graph capacity, called the storage capacity, that we consider

to be a natural information-theoretic analogue of the minimum

vertex cover of a graph.

Suppose, every vertex of a graph can store a symbol (from

any alphabet) with the criterion that the content of any vertex

can be uniquely recovered from the contents of its neighbor-

hood in the graph. Then the maximum amount of information

that can be stored in the graph is called the storage capacity

of that graph [3]. This formulation is mainly motivated by

applications in distributed storage, and generalizes the popular

definition of locally repairable codes [4]–[7]. In a distributed

storage system, each symbol (or coordinate) of a codeword

vector is stored at a different server or storage node. In the

case of a single server failure, it is desirable to be able to

recover the data of that server by accessing a small number of

other servers. Given the topology of the storage network as a

graph, it is quite natural to model the local repair problem as

a neighborhood repair problem as above.

Formally, suppose we are given an n-vertex undirected

graph G(V , E), where V = [n] ≡ {1, 2, . . . , n}. Also, given a

positive integer q ≥ 2, let H (X) be the Shannon entropy of the

random variable X in q-ary units (for example, when q = 2,

the entropy is in bits). Let {X i }i∈V , be random variables each

with a finite sample space Q of size q . For any I ⊆ [n], let

X I ≡ {X i : i ∈ I }. Consider the solution of the following

optimization problem:

max H (X1, . . . , Xn) (1)

such that

H (X i |X N(i)) = 0,

for all i ∈ V where N(i) = { j ∈ V : (i, j) ∈ E} is the set

of neighbors of vertex i . This is the storage capacity of the

graph G and we denote it by Capq(G). Note that, although we

hide the unit of entropy in the notation H (·), the unit should

be clear from context, and the storage capacity should depend

on it, as reflected in the subscript in the notation Capq(G).

The absolute storage capacity is defined to be,

Cap(G) ≡ sup
q≥2

Capq(G). (2)

Note that, H (X i |X N(i)) = 0 in the above definition implies

that there exist n deterministic functions fi : Q|N(i)| → Q
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such that fi (X N(i)) = X i , i = 1, 2, . . . , n. These functions

are called the recovery functions. Given the recovery functions

we can define a storage code {(x1, x2, . . . , xn) ∈ Qn : xi =

fi (xN(i))}. It follows that Capq(G) is the logarithm of the

maximum possible size of a storage code over all possible

sets of recovery functions.

In [3], it was observed that the storage capacity is upper

bounded by the size of the minimum vertex cover VC(G) of

the graph G.

Cap(G) ≤ | VC(G)|. (3)

The proof of this fact is quite simple. Since all the neighbors

of V \ VC belong to VC,

H (XV ) = H (XVC(G), XV \VC(G)) = H (XVC(G))

+ H (XV\VC(G)|XVC(G)) = H (XVC(G)) ≤ | VC(G)|.

Indeed, this proof shows that H (XV ) = H (XVC(G)). Because

of this, we think it is natural to view storage capacity as an

information theoretic analogue of vertex cover. It was also

shown in [3] that the storage capacity is at least equal to the

size MM(G) of the maximum matching of the graph G:

MM(G) ≤ Cap2(G) ≤ Cap(G). (4)

Since maximum matching and minimum vertex cover are two

quantities within a factor of two of each other and maximum

matching can be found in polynomial time, this fact gives

a 2-approximation of the storage capacity.1 Provable strict

improvement of the maximum matching scheme is unlikely

to be achieved by simple means, since that would imply

a better-than-2 approximation ratio for the minimum vertex

cover problem violating the unique games conjecture [8].

This motivates us to look for natural families of graphs

where minimum vertex cover has a better approximation. For

example, for bipartite graphs maximum matching is equal to

minimum vertex cover and hence storage capacity is exactly

equal to the minimum vertex cover. Another obvious class,

and our focus in Section IV, is the family of planar graphs

for which a PTAS (polynomial-time-approximation-scheme)

is known [9], [10]. Another motivation for studying storage

capacity on planar graphs is that they represent common

network topologies for distributed systems. For example,

see [11] to note how a surprising number of data networks

are actually planar. To minimize interference, it is natural for a

distributed storage system to be arranged as a planar network.

Moreover it is useful to have wireless networks, video-on-

demand networks etc. that are planar or almost planar.

Video-on-demand also motivates a related broadcast prob-

lem called index coding [12] for which planar topologies

are of interest, and outerplanar topologies have already been

studied [13]. It was shown in [3] that storage capacity is,

in a coding-theoretic sense, dual to index coding and is

equivalent to the guessing game problem of [14]. Let {X i }i∈V

be independent uniform random variables each with a finite

sample space of size q . The index coding rate for a graph

1Indeed, finding a maximal matching is sufficient for this purpose.

G(V , E) is defined to be the optimum value of the following

minimization problem:

min H (Y ) (5)

where Y is a random variable with finite support such that

H (X i |Y, X N(i)) = 0,

for all i ∈ V . This is called the optimum index coding rate

for the graph G, and we denote it as Indq(G). We can also

define,

Ind(G) = inf
q≥2

Indq(G). (6)

The index coding problem is the hardest of all network

coding problems and has been the subject of much recent

attention, see, e.g., [15]. In particular it can be shown that any

network coding problem can be reduced to an index coding

problem [16]. It has been shown that (see [3]),

n − Indq(G) ≤ Capq (G) ≤ n − Indq (G) + logq(n ln q). (7)

From this we claim,

Cap(G) = n − Ind(G). (8)

To see this, define Cap(q)(G) ≡ supm∈Z+
Capqm (G) and

Ind(q)(G) ≡ infm∈Z+
Indqm (G). It is evident that (m +

r) Capqm+r (G) ≥ m Capqm (G) + r Capqr (G) and (m +

r) Indqm+r (G) ≤ m Indqm (G) + r Indqr (G) for any two

nonnegative integers m and r . Therefore, using Fekete’s

lemma, Cap(q)(G) = limm→∞ Capqm (G) and Ind(q)(G) =

limm→∞ Indqm (G). Now this gives, from (7),

n − Ind(q)(G) ≤ Cap(q)(G) ≤ n − Ind(q)(G). (9)

Taking supremum on both sides we have, Cap(G) =

n − Ind(G).

Hence, exact computation of Ind(G) and Cap(G) is equiv-

alent although the approximation hardness could obviously

differ. Note that,

Ind(G) ≥ α(G),

where α(G) is the independence number of G. Since, for

planar graphs α(G) ≥ n/4, taking Y to be X[n] already gives

a 4-approximation for the index coding rate for planar graphs

since H (Y ) ≤ n [17]. In this paper, we give a significantly

better approximation algorithm for index coding rate of planar

graphs. Not only that, due to the relation between index coding

rate and storage capacity, we can obtain an approximation

factor significantly better than 2 for storage capacity. Note

that, for general graphs even to approximate the optimal

index coding rate within a factor of n1−ε seems to be a

challenge [18].

To go beyond the realm of planar graphs, and to obtain bet-

ter approximation ratios, we then develop several upper bound-

ing tools for storage capacities. In particular by using these

tools, we are able to exactly characterize storage capacities

of various families of graphs. Our approach revisits a linear

program proposed by Blasiak, Kleinberg, and Lubetzky [19]

that can be used to lower bound the optimum index coding

rate or upper bound the storage capacity. We transform the
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problem of bounding this LP into the problem of constructing

a family of vertex covers for the input graph. This in turn

allows us to upper bound the storage capacity of any graph

that admits a specific type of vertex partition. We then identify

various graphs for which this upper bound is tight.

Since, the storage capacity, or the vertex cover, act as

absolute upper bounds on the rate of information storage in the

graph, a natural question to ask is, if we store above the limit

of minimum vertex cover in the graph, will any of the repair

property be left? This is similar in philosophy to the rate-

distortion theory of data compression, where one compresses

beyond entropy limit and still can recover the data with some

distortion. This question gives rise to the notion of recovery

from partial failure, as defined below.

We define the partial repair capacity also keeping the

application of distributed storage in mind. This is a direct

generalization in the context of distributed storage application

to handle partial failure of vertices. In particular, suppose

we lose 0 ≤ δ ≤ 1 proportion of the bits stored in a

vertex. We still want to recover these bits by accessing the

remaining (1 − δ)-fraction of the bits in the vertex plus the

contents of the neighborhood. What is the maximum amount

of information that can be stored in the network with such

restriction? Intuitively, the storage capacity should increase.

We characterize the trade-off between δ and this increase in

storage capacity from both sides (i.e., upper and lower bounds

on the capacity). A surprising fact that we observe is that, if we

want to recover from more than half of the bits being lost, then

there is no increase in storage capacity.

In summary, we made progress on the study of storage

capacity on three fronts:

• Planar graphs. We prove a 3/2 approximation of absolute

storage capacity and 2 approximation for index coding

rate for planar graphs. We provide an approximation

guarantee that depends on the number of triangles in

the graph and, in the special case of triangle-free graphs,

we get a 4/3 approximation for storage capacity, and 3/2

approximation for index coding rate. In addition to this,

for a constant-size q alphabet, we give a polynomial-time

approximation scheme (PTAS) or an (1 + ε) approxima-

tion, ε > 0, for Indq(G) of planar graphs using the well-

known planar separator theorem [20].

• Tools for finding storage capacity upper bounds.

We develop an approach for bounding storage capacity in

terms of a small number of vertex covers. We first illus-

trate this approach by finding the exact storage capacity

of some simple graphs. We then use the approach to show

a bound on any graph that admits a specific type of vertex

partition. With this we prove exact bounds on a family

of Cartesian product graphs and a family closely related

to outerplanar graphs.

• Partial failure recovery. We show that if recovery from

neighbors is possible for up to δ-proportion failure of

the bits stored in a server, then the capacity is upper

bounded by the optimum value of a linear program;

in particular this implies when δ ≥ 1
2

, then the partial

recovery capacity is same as the storage capacity. For an

odd cycle, the upper bound on partial recovery capacity

is given by n
2
(1 + R2(δ)), where R2(δ) is the maximum

achievable rate of a binary error-correcting code with

relative minimum Hamming distance at least δn. On the

other hand, we also obtain general lower bounds on the

partial recovery capacity of a graph. For an odd cycle,

our results imply that a partial failure recovery capacity

of n
2
(2 − h2(δ)) is polynomial time achievable, where

h2(δ) denotes the binary entropy function. Our bounds are

likely to be tight, since it is a widely believed conjecture

that R2(δ) = 1 − h2(δ) (the Gilbert-Varshamov bound).

a) Organization.: The remainder of the paper is orga-

nized as follows. In Sections II and III we state and prove

some preliminary algorithmic results regarding the storage

capacity and index coding that will be useful in proving

subsequent results. In section IV, we prove our approximation

results for planar graphs that include a 3/2 approximation for

Cap(G), 2 approximation for Ind(G) and a PTAS for Indq(G).

In Section V, we show a vertex partition approach to upper

bound the storage capacity. The results regarding recovery

from partial node failure are described in Section VI.

II. PRELIMINARIES

Let CP(G) denote the fractional clique packing of a graph

G(V , E) defined as follows: Let C be the set of all cliques

in G. For every C ∈ C define a variable 0 ≤ xC ≤ 1. Then

CP(G) is the maximum value of
∑

C∈C
xC(|C| − 1) (CP(G))

subject to the constraint that
∑

C∈C:u∈C

xC ≤ 1 ∀u ∈ V .

Note that CP(G) can be computed in polynomial time in

graphs, such as planar graphs, where all cliques have constant

size. Furthermore, CP(G) is at least the size of the maximum

fractional matching and they are obviously equal in triangle-

free graphs since the only cliques are edges.

The following preliminary lemma shows that Capq(G) ≥
CP(G) for sufficiently large q . An equivalent result is known

in the context of index coding but we include a proof here

for completeness. The basic idea is that we can store k − 1

units of information on a clique of size k by assigning k − 1

independent uniform random variables to k − 1 of the vertices

and setting the final random variable to the sum (modulo q)

of the first k − 1 random variables.

Lemma 1. Capq(G) ≥ CP(G) for sufficiently large q.

Proof. Let {xC}C∈C achieve CP(G). Let q be sufficiently

large power of 2 such that xC · log2 q is integral for every

C . For each clique C = {u1, . . . , u|C |} in the graph,

define a family of random variables XC
u1

, XC
u2

, . . . , XC
u|C|

where XC
u1

, XC
u2

, . . . , XC
u|C|−1

are independent and uniform over

{0, 1, . . . , q xC − 1} and

XC
u|C|

=

|C |−1
∑

i=1

XC
ui

mod q xC .
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Note that each XC
ui

can be deduced from {XC
u j

} j ̸=i and the

entropy of {XC
u j

} j ̸=i is xC(|C|−1). Finally, let Xu be an encod-

ing of {XC
u }C∈C:u∈C as a symbol from a q-ary alphabet; the

fact that this is possible follows because
∑

C∈C:u∈C xC ≤ 1.

Then the entropy of {Xu}u∈V is CP(G) as required. !

Further Notations: Let G[S] denote the subgraph induced

by S ⊆ V . Let α(G) be the size of the largest independent

set and let VC(G) be the size of minimum vertex cover. Let

MM(G) be the size of the largest matching of the graph

and let FM(G) be the weight of the maximum fractional

matching, i.e., FM(G) is the maximum of
∑

e∈E xe such that
∑

e:v∈E xe ≤ 1 for all v ∈ V and 0 ≤ xe ≤ 1,∀e ∈ E .

III. EXACT ALGORITHMS FOR STORAGE

CAPACITY AND INDEX CODING RATE

In this section, we describe some (super)exponential time

algorithms that compute Capq(G) and Indq(G) exactly for a

constant q . First, we review the approach involving a confusion

graph and then present another algorithm for storage capacity

that has faster running time on some graphs.

Let the vertices of the graph G be represented by 1, 2 . . . , n.

A confusion graph G(G) of G has qn vertices. Each of the

different q-ary strings of length n represent the vertices. There

is an edge between two strings x and y if there exists some

i ∈ {1, . . . , n}, such that xi ̸= yi , but x j = y j for all j ∈ N(i),

neighbors of i in G. It is known that the index coding rate

Indq (G) is equal to logarithm of the chromatic number of

G(G) and the storage capacity Capq (G) is the logarithm of

the size of maximum independent set of G(G) [3], [21].

Thus, by employing the best currently known algorithms for

computing chromatic number [22] and maximum independent

set [23], we can compute Indq(G) and Capq(G) in time

O(2.2461qn
) and O(1.1996qn

) respectively.

To compute storage capacity Capq(G), we can take a

different approach. We can go over all the possibilities for

the n recovery functions f1, . . . , fn corresponding to vertices

1, 2, . . . , n, and for each of the possibilities construct the

corresponding storage codes. To be precise, let vertex i ∈ [n]

have degree d(i). There are qqd(i)
possibilities for the recovery

function fi . The total number of possibilities for n recovery

functions is then
n

∏

i=1

qqd(i) ≤ qnq$

where $ is the maximum degree in G. For each possibility,

we go over the qn vectors and remove the ones that do not

agree with the recovery functions, which takes time O(m),

where m = 1
2

∑

v∈V (G) d(v) is the number of edges in G, per

vector. The remainder of the vectors form the storage code that

agrees with the recovery functions. We find the combination

of recovery functions that give the largest storage code. The

total running time of this algorithm is at most O(mqnqnq$

).

Since without loss of generality we can assume that the largest

storage code contains the all-zero vector, the running time

can slightly be improved to O(mqnq$

). If $ is small then

this approach is faster than building a confusion graph and

computing maximum independent set on it.

To summarize, we have the following result that will be

used to design a PTAS for Indq(G) for planar graphs.

Theorem 2. Computing Capq (G) exactly takes time

O
(

min
{

1.1996qn

, m qnq$
})

for a graph with n vertices, m edges, and maximum degree

$. Computing Indq(G) exactly takes time O(2.2461qn
).

IV. APPROXIMATION ALGORITHMS FOR

PLANAR GRAPHS VIA VERTEX COVER

In this section, we present approximation results for the

storage capacity and optimal index coding rate of planar

graphs. Specifically we show that CP(G) can be used to

achieve a 3/2 approximation of the storage capacity and a

2 approximation of the optimal index coding rate.

In our storage capacity result we use ideas intro-

duced by Bar-Yehuda and Even [9] for the purpose of

5/3-approximating the vertex cover in planar graphs. Specif-

ically, they first considered a maximal set of vertex-disjoint

triangles, reasoned about the vertex cover amongst these

triangles, and then reasoned about the triangle-free induced

subgraph on the remaining vertices. We consider a similar

decomposition and reason about the integrality gap of vertex

cover in each component. We parameterize our result in

terms of the number of triangles; this will be essential in the

subsequent result on optimal index coding rate.

Theorem 3. Assume G is planar and let T be a set of 3t

vertices corresponding to maximal set of t vertex disjoint

triangles. Then,

1 ≤
Cap(G)

CP(G)
≤

3t + k

2t + 3k/4

where k is the size of the minimum vertex cover of G[V \ T ].

Hence CP(G) is a 3/2 approximation for Cap(G) and 4/3

approximation if G is triangle-free.

Proof. Let G′ = G[V \ T ]. Partition the set of vertices V into

T ∪ C ∪ I where C is the minimum vertex cover of G′ and

I ⊂ V \ T is therefore an independent set. Let XV be the set

of variables that achieve storage capacity. Therefore,

Cap(G) = H (XV ) = H (XT ) + H (XC |XT )

+ H (X I |XC , XT ) ≤ H (XT ) + H (XC |XT ) ≤ 3t + k

since for each v ∈ I , H (Xv |XC , XT ) = 0 since N(v) ⊂ C∪T .

Consider the fractional clique packing in which each of

the t vertex-disjoint triangles in T receive weight 1. Then,

CP(G) ≥ 2t + CP(G′). Then it remains to show that

CP(G′) ≥ 3k/4. Note that since G′ is triangle-free planar

graph, it is 3-colorable by Grötzsch’s theorem [24]. Further-

more, CP(G′) is the maximum fractional matching which,

by duality, is the minimum fractional vertex cover. Hence

it suffices to show that the size of the minimum fractional

vertex cover of a 3-colorable graph is at least 3/4 of the size

of the minimum (integral) vertex cover, i.e., 3k/4. This can

be shown as follows. Let x1, . . . , xn be an optimal fractional

vertex cover, i.e., for all edges uv ∈ G′, xu + xv ≥ 1.
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Since fractional vertex cover is 1/2-integral (i.e., there exists

an optimal solution where each variable is either integral or

1/2) [25], we may assume each xu ∈ {0, 1/2, 1}. Let I1, I2, I3

be a partitioning of {u ∈ [n] : xu = 1/2} corresponding to a

3-coloring where

∑

v∈I1

xv ≥
∑

v∈I2

xv ≥
∑

v∈I3

xv .

Then consider y1, . . . , yn where yu = 1 iff u ∈ I2 ∪ I3 or

xu = 1. Then

∑

u∈[n]

yu ≤
∑

u∈I2∪I3

yu +
∑

u∈[n]:xu=1

yu

≤ 2/3 · 2 ·
∑

u:xu=1/2

xu +
∑

u:xu=1

xu ≤ 4/3 · CP(G′)

and y1, . . . , yn is a vertex cover because for every edge uv,

at least one endpoint one of {xu, xv} is 1 or at least one of u

and v is in I2 ∪ I3. !

We next use the result of the previous theorem, together

with the chromatic number of planar and triangle-free planar

graphs to achieve a 2 approximation for Ind(G).

Theorem 4. Assume G is planar and let T be a set of 3t

vertices corresponding to t vertex disjoint triangles. Then,

1 ≤
n − CP(G)

Ind(G)
≤

⎧

⎪

⎨

⎪

⎩

3n+3t
4n−12t

+ 3
4

for t ≤ n
12

t
n

+ 7
4

for n
12

≤ t ≤ n
4

4 − 8t
n

for t ≥ n
4

.

Maximizing over t implies that n−CP(G) is a 2 approximation

for Ind(G) and a 3/2 approximation if G is triangle-free.

Proof. From Theorem 3, we know that CP(G) ≥ 2t +

3/4 VC(G′) where G′ = G[V \ T ]. Therefore, we can bound

n − CP(G) as follows:

n − CP(G) ≤ n − (2t + 3/4 VC(G′))

= n − (2t + 3/4(n − 3t − α(G′)))

= (n + t)/4 + 3/4 α(G′)

On the other hand,

Ind(G) ≥ α(G) ≥ α(G′)

where α denotes the size of the maximum independent set of

the graph. Note that α(G) ≥ n/4 since G is planar and thus

4-colorable [26], [27]. Since G′ has n − 3t vertices and is

triangle-free and planar and thus 3-colorable [24], n − 3t ≥
α(G′) ≥ (n − 3t)/3. By combining inequalities above we get

n−CP(G)
Ind(G) ≤ min

(

(n+t)/4+3/4α(G ′)
α(G) ,

(n+t)/4+3/4α(G ′)
α(G ′) ,

(n+t)/4+3/4α(G)
α(G)

)

≤ min
(

(n+t)/4+3/4(n−3t)
n/4

,
(n+t)/4
(n−3t)/3

+ 3/4,
(n+t)/4

n/4
+ 3/4

)

= min
(

4 − 8t
n
, 3n+3t

4n−3t
+ 3

4
, t

n
+ 7

4

)

.

!

A. Approximation Algorithms for Fixed Alphabet Size

In this section, we present improved polynomial time algo-

rithms for approximating the storage capacity and the index

coding rate on the assumption that the alphabet size q of

the codes is a fixed constant. These are based on combining

the exact algorithm described in Section III with the planar

separator theorem [20].

Lemma 5. Let G′ be a graph formed by removing at most k

vertices from G. Then,

Capq(G) − k ≤ Capq(G′) ≤ Capq(G).

Proof. Consider an optimal storage code and fix the value of

the k vertices to their most common k-tuple of values. This

decreases the size of the code by at most a factor qk and

hence decreases the storage capacity by at most k. The fact

that Capq(G′) ≤ Capq(G) follows because any code for G′ is

also a code for G. !

The following lemma shows that the removal of a relatively

small number of vertices in a planar graph is sufficient to

ensure that the remaining components are small. The proof

is essentially the same as that used to establish Theorem 3

in [20].

Lemma 6. There exists n0 ≤ εn vertices V0 in a planar

graph whose removal yields a graph with at most r = O(ε2n)

components G1, G2, . . . , Gr where each Gi has ni = O(1/ε2)

vertices and there are no edges between Gi and G j . Further-

more, V0, G1, G2, . . . can by found in polynomial time.

Proof. The planar separator theorem [20] states that in any

planar graph there exists a set of at most c
√

n vertices (for

some large constant c) such that the removal of these vertices

disconnects the graph into components of size at most 2n/3.

Furthermore, these vertices can be found in polynomial time.

Consider applying this recursively on all components until they

each have size less than αc2/ε2 for a sufficiently large constant

α > 1. Then, the total number of vertices removed is at most

|V0| ≤ c
√

n
n

(2/3)n
+ c

√

(2/3)n
n

(2/3)2n

+ c

√

(2

3

)2
n

n

(2/3)3n
+ . . . . . . + c

√

3

2
αc2/ε2

n

αc2/ε2

≤ εn

because, during the course of the recursion, the planar sep-

arator theorem is applied to at most n/((2/3)i n) graphs of

size between (2/3)i n and (2/3)i−1n and each such application

involves the removal of at most c
√

(2/3)i−1n vertices. !

Theorem 7. There exists polynomial time algorithms to

approximate Indq(G) up to a multiplicative factor of 1 + ε

and approximate Capq(G) up additive error εn.

Proof. The result for Capq(G) follows by applying the

decomposition in Lemma 6 to G and then solving the problem

optimally on G1, G2, . . . using the algorithm in Section III. Let

G′ = G1 ∪ G2 ∪ . . .. By Lemma 5,

Capq(G) − n0 ≤ Capq(G′) = Capq(G1) + Capq(G2) + . . .
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and hence finding the optimal solution for each Capq(Gi )

yields an additive n0 ≤ εn approximation as required.

The result for Indq (G) is similar. By using the results in

Section III, we can find the optimal index coding solution of

each Gi . Combining these with the naive solution for the n0

vertices in V0 yields a solution with rate n0 +
∑

i≥1 Indq(Gi ).

We can relate Indq(G) to this as follows:

n0 +
∑

i≥1

Indq(Gi )

≤ n0 +
∑

i≥1

(

ni − Capq (Gi ) + logq (ni ln q)
)

≤ n0 + n − n0 − Capq(G′) + r logq(max
i

ni ln q)

≤ n0 + Indq(G′) + r logq(max
i≥1

ni ln q)

≤ Indq(G) + 2n0 + r logq (max
i≥1

ni ln q)

= Indq(G)

(

1 +
2n0 + r logq(maxi≥1 ni ln q)

Indq (G)

)

= Indq(G)
(

1 + 8ε + O(ε2 logq(ε−2 ln q))
)

where the last line follows since Indq(G) ≥ n/4, n0 ≤ εn,

r = O(ε2n), ni = O(ε−2). Reparamaterizing by ε ← ε/c for

some sufficiently large constant gives the required result. !

V. UPPER BOUNDS ON STORAGE CAPACITY

VIA MULTIPLE VERTEX COVERS

In this section, we start by considering a linear program

proposed by Blasiak et al. [19] that can be used to lower bound

the optimum index coding rate or upper bound the storage

capacity.2 Unfortunately there are %(2n) constraints but by

carefully selecting a subset of constraints we can prove upper

bounds on the storage capacity for a specific graph without

solving the LP.

Our main goal in this section is to relate this linear program

to finding a suitable family of vertex covers of the graph.

In doing so, we propose a combinatorial “gadget” based

approach to constructing good upper bounds that we think

makes the process of proving strong upper bounds more

intuitive. This allows us to prove a more general theorem that

gives an upper bound on the storage capacity for a relatively

large family of graphs. As an application of this theorem we

show that a class of graphs closely related to the family of

outerplanar graphs and another family of cartesian product

graphs have capacity exactly n/2.

A. Upper Bound via the “Information Theoretic” LP

We first rewrite the index coding LP proposed by

Blasiak et al. [19] for the purposes of upper-bounding storage

capacity. We define a variable zS for every S ⊆ V that will

correspond to an upper bound for H (X S). Let cl(S) = S∪{v :

N(v) ⊆ S} denote the closure of the set S consisting of

2Blasiak et al. only consider index coding but it is straightforward to adapt
the LP in a natural way for storage capacity; see below.

vertices in S and vertices with all neighbors in S.

maximize zV (Information theoretic LP)

s.t. z∅ = 0

zT − zS ≤ |T \ cl(S)| ∀S ⊆ T

zS + zT ≥ zS∩T + zS∪T ∀S, T

The second constraint corresponds to

H (XT ) − H (X S) = H (XT |X S) = H (XT |Xcl(S))

≤ H (XT\cl(S)) ≤ |T \ cl(S)|

whereas the last constraint follows from the sub-modularity

of entropy. Hence, the optimal solution to the above LP is

an upper bound on Cap(G). We henceforth refer to the above

linear program as the information theoretic LP.

B. Upper Bound via Gadgets

k-cover by gadgets is a technique for proving upper bounds

on the storage capacity of a graph. The core idea is to construct

a set of k vertex covers for the graph via the construction of

various gadgets which we now define.

A gadget g = (S1, S2, c1, c2) consists of two special sets of

vertices S1 and S2 and two colors c1 and c2. Sets S1 and S2 are

created in the following way: take two sets of vertices A and B ,

take their closures cl(A) and cl(B), then S1 = cl(A) ∪ cl(B)

and S2 = cl(A) ∩ cl(B). Call S1 the outside of the gadget and

S2 its inside, as it is always the case that S1 ⊇ S2. We note

that by taking A = {v} and B = ∅ we obtain a gadget with the

outside {v} and empty inside (assuming v has no neighbors

of degree one); call such gadget trivial. Define the weight of

a gadget to be w(g) = |A| + |B|. As for the two colors of

the gadget, they are picked from a fixed set of k colors; c1 is

assigned to all vertices in S1 and c2 is assigned to all vertices

in S2. Note, that a vertex can be assigned multiple colors in

that manner. The objective is to find a set of gadgets, such that

for any color c, vertices with c assigned to them form a vertex

cover. If that condition is met for all k colors, we show that

the total weight of the gadgets used provides an upper bound

on k Cap(G).

We can formulate the k-cover by gadgets (for fixed k) as

the following integer linear program: Let xg,S be a variable

where vertex set S is a part of gadget g. Note that there are two

variables per gadget, corresponding to its outside and inside

sets. xg,S = 1 if g participates in the cover by gadgets and

0 otherwise. We use cg(S) = c to denote that the color of

vertex set S in gadget g is c.

minimize
1

k

∑

g,S

xg,S · w(g)/2 (k-cover by gadgets)

s.t.
∑

g,S:u∈S,
cg(S)=c

xg,S +
∑

g′,S ′:v∈S ′,
cg′ (S ′)=c

xg′,S ′ ≥ 1,∀(u, v) ∈ E,∀c

xg,S = xg,S ′ ∀g with outside S and inside S′

The first condition states that the union of sets of a certain

color is a vertex cover and the second one states that both the

inside and outside of g participate (or do not participate) in

the gadget cover.
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Theorem 8. Any feasible integral solution to the above

k-cover by gadgets integer LP is an upper bound on Cap(G).

Proof. We prove this by considering the information theoretic

LP above and showing how to bound zV by the gadget weights.

First, note which constraints correspond to the steps of creating

a gadget:

z A ≤ |A| take set A

zB ≤ |B| take set B

zcl(A) − z A ≤ 0 find closure of A

zcl(B) − zB ≤ 0 find closure of B

zS1 + zS2 ≤ zcl(A) + zcl(B) find S1 = cl(A) ∪ cl(B)

and S2 = cl(A) ∩ cl(B)

If we sum all the constraints, we obtain zS1 + zS2 ≤ |A|+ |B|.

Recall that |A| + |B| is the weight of the gadget. Let H

be a cover by gadgets. Then by summing all corresponding

constraints, we get

∑

g=(S1,S2,c1,c2)∈H

zS1 + zS2 ≤
∑

g∈H

w(g)

Group the sets participating in gadgets in H into color classes

C1, C2, . . . , Ck . Let Ui =
⋃

S∈Ci

S be the set of all vertices of

color ci . The corresponding constraints are then

zUi −
∑

S∈Ci

zS ≤ 0 ∀i ∈ {1, 2, . . . , k}

zcl(Ui ) − zUi ≤ 0 ∀i ∈ {1, 2, . . . , k}

Note that zV = zcl(Ui ) since Ui is a vertex cover. By summing

these 2k constraints and the one obtained from building

gadgets, we get kzV ≤
∑

g∈H w(g). !

1) Examples: We next illustrate the use of the k-cover via

gadgets approach with a couple of examples. First, we use a

2-cover by gadgets to re-prove a result of Blasiak et al. [18]

that established that the storage capacity of a cycle on n

vertices is n/2. The point of this first example is to illustrate

simplicity of the new approach. Then we give an example

of an outerplanar graph for which we establish a tight bound

of 14/3. In addition to serving as another example of the new

approach, we think this example is particularly interesting as

it demonstrates that it is sometimes necessary to consider a

k-cover via gadgets where k > 2 in order to establish a tight

result. Note that any upper bound via a k-cover via gadgets

is a multiple of 1/k and hence k = 1 or k = 2 would be

insufficient to prove a tight bound of 14/3.

a) Odd cycles: We prove that the storage capacity of an

odd cycle of length n is n/2; see Figure 1(a) for an example

where n = 9. FM(Cn) = n/2, thus Cap(Cn) ≥ n/2. For the

upper bound we create a gadget by taking A = {v1, v3}, B =

{v2, v4} and obtaining outside set S1 = {v1, v2, v3, v4} and

inside set S2 = {v2, v3}. On the rest of the vertices we place

trivial gadgets. Color S1 and trivial gadgets on v6, v8, . . . , vn−1

green, color S2 and trivial gadgets on v5, v7, . . . , vn red. Green

and red sets are then vertex covers and the total weight of all

gadgets is n. Thus, Cap(Cn) ≤ n/2.

Fig. 1. Two examples of k-cover upper bounds. See text for details.
(a) An odd cycle. (b) An outerplanar graph.

b) An outerplanar graph: We prove that the storage

capacity of the graph in Figure 1(b) is 14/3. This capacity is

achieved by the fractional clique cover. Create gadget g1 from

A1 = {v1, v3} and B1 = {v2, v4} and another gadget g2 from

A2 = {v5, v7} and B2 = {v6, v8}. Place one trivial gadget on

each of the vertices v2, v4, v5, v7 and 2 trivial gadgets on v9.

The sets are colored as follows:

• Red: v5, v7, v9 and the inside of gadget g1

• Blue: v2, v4, v9 and the inside of gadget g2

• Green: the outside sets of both g1 and g2

Note that vertices of every color class form a vertex cover and

the total weight of gadgets is 14.

C. n/2 Upper Bound via Vertex Partition

The next theorem uses a 2-cover by gadgets to prove

that a certain family of graphs have capacity at most n/2.

Subsequently, we will use this theorem to exactly characterize

the capacity of various graph families of interest.

Theorem 9. Suppose that the vertices of a graph G can be

partitioned into sets X and Y such that:

1) G[X] and G[Y ] are both bipartite.

2) SX is an independent set in G[X] and SY is an inde-

pendent set in G[Y ]

where SX ⊆ X consists of all vertices in X with a neighbor

in Y and SY ⊆ Y consists of all vertices in Y with a neighbor

in X. Then Cap(G) ≤ n/2.

Proof. We prove this theorem by showing that G has a 2-cover

by gadgets of total weight n. Let (A, B) be a bipartition of the

vertices of G[X]. Create the sets of gadget gX from A and B .

Note that the vertices in X that are in the outside set of the
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Fig. 2. Example of storage capacity proof for a cartesian product graph G

formed from a 5-cycle and a length 3 path. See text for details. (a) Graph G .
Shaded vertices are X = SX . (b) Graph G[Y ]. Shaded vertices are SY .

gadget but not in the inside set, are exactly the vertices in SX .

This follows because for v ∈ X , v ∈ cl(A) ∩ cl(B) iff all of

v’s neighbors are in X . Similarly, create gY . Color the inside

of gX and the outside of gY red. Color the outside of gX

and the inside of gY blue. Observe that both color classes

are vertex covers and the total weight of the 2 gadgets is

|X | + |Y | = n. !

1) Cartesian Product of a Cycle and a Bipartite Graph:

We now illustrate an application of Theorem 9. The Cartesian

product of graphs G1 = (V1, E1) and G2 = (V2, E2) is

denoted by G1!G2 and defined as follows:

• The vertex set is the Cartesian set product V1 × V2

• (u, u′)(v, v ′) is an edge iff u = v and u′v ′ ∈ E2 or

u′ = v ′ and uv ∈ E1

We next use Theorem 9 to show that any Cartesian Prod-

uct of a cycle and a bipartite graph has storage capacity

exactly n/2. An example of such a graph is given in Fig. 2

where the bipartite graph considered is just a length 3 path.

Theorem 10. Let Ck be a cycle with k > 3, B a bipartite

graph, and G = Ck!B. Then Cap(G) = n/2, where n is the

number of vertices in G.

Proof. If k is even, G is a bipartite graph with MM(G) =

VC(G) = n/2 and hence Cap(G) = n/2. Assume for the rest

of the proof that k is odd.

To show that Cap(G) ≥ n/2, consider the fractional

matching where we assign weight 1/2 to all edges of the

form (u, a)(v, a), i.e., edges that come from the cycle. Hence

Cap(G) ≥ n/2.

To show that Cap(G) ≤ n/2 we proceed as follows. Con-

sider the subgraph Gi induced by vertices (ui , v1), (ui , v2),

(ui , v3), etc., which is isomorphic to B . Fix a bipartition

(R, Q) of B and split the vertices of each Gi into Ri and Qi

according to that bipartition. We now show that X = R1 ∪ Q2

and Y = V \ X satisfy the conditions of Theorem 9. G[X] has

no edges and therefore is bipartite. G[Y ] is bipartite because

it consists of Pk−3!B which is bipartite (where Pk−3 is a

path of length k − 3 obtained by deleting edges uku1, u1 u2,

and u2 u3 from the cycle), edges between Rk and R1, and

edges between Q2 and Q3 which do not complete any cycles.

SX = X is an independent set. SY = Rk ∪ Q1 ∪ R2 ∪ Q3 is

also an independent set. !

2) Cycles With Chords That Are Not Too Close Together:

We next apply Theorem 9 to prove that a family of graphs

related to outerplanar graphs also has storage capacity n/2.

Recall that any (connected) outerplanar graph without cut

vertices is a cycle with non-overlapping chords. The family

of graphs we consider is more general in the sense that we

permit the chords to overlap but more restrictive in the sense

that we require the endpoints of these chords to be at least a

distance 4 apart on the cycle. A natural open question is to

characterize Cap(G) for all outerplanar graphs. All that was

previously known is that if we assume each X i is a linear

combination of {X j } j∈N(i), then Cap(G) equals integral clique

packing [13].

Theorem 11. Let G be a cycle with a number of chords such

that endpoints of chords are at least distance 4 apart on the

cycle. Then Cap(G) = n/2.

Proof. To show that Cap(G) ≥ n/2, consider the fractional

matching where we place weight 1/2 on every edge of the

cycle. To show that Cap(G) ≤ n/2 we proceed as follows.

Label the vertices that are endpoints of chords c1, c2, . . . , ck

in the order they appear on the cycle. For every path between

ci and ci+1 (and between ck and c1) pick the middle vertex

of the path to be included in X . If the path is of odd length,

pick either of the 2 middle vertices. We now show that X and

Y = V \ X satisfy the conditions of Theorem 9. X = SX is an

independent set. G[Y ] is a forest and SY is an independent

set due to the assumption on the distance between chord

endpoints. !

VI. RECOVERY FROM PARTIAL NODE FAILURE

In this section, we extend the notion of storage capacity to

cover for partial failures. This is a new generalization, that,

as far as we understand, does not have a counterpart in index

coding. As before, suppose we have a graph G(V = [n], E) on

n vertices. We assume here that vertex i ∈ [n] stores X i ∈ F
m
q ,

a q-ary random vector of length m. We want the following

repair criterion to be satisfied: if up to any δ, 0 ≤ δ ≤ 1,

proportion of the m coordinates of X i , i ∈ [n] are erased,

they can be recovered by using the remaining content of the

vertex i and X N(i) , the contents in the neighbors of the vertex.

We call the normalized asymptotic maximum total amount

of information (in terms of q-ary unit)

lim
m→∞

H (X1, X2, . . . , Xn)

m
,

that can be stored in the graph G, to be the partial recovery

capacity of G. This is denoted by Capq(G, δ).

We have the following simple facts. Recall, Cap(q)(G) ≡
supm∈Z+

Capqm (G).
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Fig. 3. Example of a storage capacity proof for cycles with chords. See
text for details. (a) Graph G . Shaded vertices are X = SX . (b) Graph G[Y ].
Shaded vertices are SY .

Proposition 12. For a graph G, Capq(G, 0) = n and

Capq(G, 1) = Cap(q)(G).

Proof. The first statement is quite evident. For the second,

note that,

Capq(G, 1) = lim
m→∞

Capqm (G) = sup
m

Capqm (G)

= Cap(q)(G),

where we could use the lim and the sup interchange-

ably because of Fekete’s lemma, as discussed in the

introduction. !

In the remaining parts of this section, we will provide tight

upper and lower bound on the quantity Capq(G, δ).

A. Impossibility Bound

Note that, the partial recovery capacity can be defined in

terms of an entropy maximization problem, generalizing the

storage capacity.

Theorem 13. Let H (X) be the entropy of X measured in q-ary

units. Suppose, X i ∈ F
m
q , i ∈ [n]. For a graph G([n], E),

Capq(G, δ) is upper bounded by the solution of the following

optimization problem.

max lim
m→∞

H (X1, . . . , Xn)

m
, (10)

such that,

H (X i | X N(i)) ≤ logq Aq(m, δm + 1),

where Aq(m, d) is the maximum possible size of a q-ary

m-length error-correcting code with minimum distance d.

Proof. Let X i ∈ F
m
q , i ∈ [n] be the random variables that can

be stored in the vertices of G satisfying the repair condition.

Suppose we are given the values of X N(i) . In this situation let

M ⊆ F
m
q be the set of possible values of X i (P(X i = a) > 0,

∀a ∈ M). Let X1
i , X2

i be any two different elements of M .

We claim that, the Hamming distance between X1
i , X2

i is at

least δm + 1, or

d(X1
i , X2

i ) ≥ δm + 1.

Suppose this is not true. Then there exist X1
i , X2

i ∈ M such

that d(X1
i , X2

i ) ≤ δm. Let J ⊂ {1, . . . , m} be the coordinates

where X1
i and X2

i differ. Therefore, |J | ≤ δm. Suppose X1
i

was stored in vertex i and the coordinates in J are erased.

Now, there will not be any way to uniquely identify X i : it can

be either of X1
i or X2

i . Hence the repair condition will not be

satisfied which is a contradiction.

Therefore, M ⊆ F
m
q is a set of vectors such that any two

elements of M is Hamming distance at least δm + 1 apart.

Hence M is an error-correcting code with minimum distance

δm +1. And therefore, |M| ≤ Aq(m, d). This implies, H (X i |

X N(i)) ≤ logq Aq(m, δm + 1), which proves the theorem. !

Let us define

Rq (δ) ≡ lim
m→∞

logq Aq(m, δm + 1)

m
,

assuming the limit exists.

Corollary 14. We must have, for any graph G, Capq(G, δ) =

Cap(q)(G) for δ ≥ 1 − 1
q

. In particular, Cap2(G, δ) =

Cap(2)(G) for δ ≥ 1
2
.

The proof of this fact follows since Rq (δ) = 0 for δ ≥ 1− 1
q

(Plotkin bound, see [28, p. 127]).

Generalizing the technique of upper bounding the storage

capacity via an information theoretic linear program, we can

obtain an upper bound on Capq(G, δ). We define a variable

zS for every S ⊆ V and let bo(S, T ) = (cl(S) \ S)∩ T denote

the boundary of the set S consisting of vertices in T with all

neighbors in S. Our main upper bound is the following.

Theorem 15. Consider the LP below.

maximize zV (Information theoretic LP for partial failure)

s.t. z∅ = 0

zT − zS ≤ |T \ S| − (1 − Rq (δ)) · | bo(S, T )| ∀S ⊆ T

zS + zT ≥ zS∩T + zS∪T ∀S, T

The optimal solution to the above LP is an upper bound on

Capq(G, δ).

Proof. The proof follows the same reasoning as the proof

of the bound via information theoretic LP of Sec. V-A.

Indeed, the variable zS for every S ⊆ V denote the entropy

of S, H (X S). The last constraint on the LP above follows from

sub-modularity. To establish the second constraint, first note

that |T \ cl(S)| = |T \ S| − | bo(S, T )|. Now we have to show

that for any S ⊆ T ,

H (XT ) − H (X S) ≤ |T \ cl(S)| + Rq(δ) · | bo(S, T )|.
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To see this, note that,

H (XT ) = H (X S, Xbo(S,T ), XT )

= H (X S) + H (Xbo(S,T )|X S)

+ H (XT |Xbo(S,T ), X S)

≤ H (X S) +
∑

i∈bo(S,T )

H (X i |X S) + |T \ cl(S)|

which means

H (XT ) − H (X S) ≤|T \ cl(S)| +
∑

i∈bo(S,T )

H (X i |X N(i))

≤|T \ cl(S)|

+ | bo(S, T )| lim
m→∞

1

m
logq Aq(m, δm+1)

=|T \ cl(S)| + | bo(S, T )| · Rq(δ),

where the last two lines follow from Thm. 13 and the definition

of Rq (δ). !

a) Odd Cycle Example.: Consider an odd cycle with

n vertices where n is odd. Below we show an example to

illustrate the above bound on partial recovery capacity.

Consider the following subset of constraints:

2 ≥ z{1,3} − z∅

2 ≥ z{2,4} − z∅

1 ≥ z{i} ∀i ∈ {5, 6, . . . , n}

Rq(δ) ≥ z{1,2,3} − z{1,3}

Rq(δ) ≥ z{2,3,4} − z{2,4}

z{1,2,3} + z{2,3,4} ≥ z{2,3} + z{1,2,3,4}

z{2,3} + z{5} + z{7} + · · · + z{n} ≥ z{2,3,5,7,...,n}

+
n − 3

2
z∅ (a)

z{1,2,3,4} + z{6} + z{8} + . . . z{n−1} ≥ z{1,2,3,4,6,8,...,n−1}

+
n − 5

2
z∅ (b)

(n −
n + 1

2
) − (1 − Rq(δ))

n − 1

2
≥ zV − z{2,3,5,7,...,n}

(n −
n + 3

2
) − (1 − Rq(δ))

n − 3

2
≥ zV − z{1,2,3,4,6,8,...,n−1}

Equations (a) and (b) above are repeated applications of the

inequality: zS + zT ≥ zS∪T + z∅ if S ∩ T = ∅. By summing

up those constraints we get

n + 2Rq(δ) + Rq(δ)(n − 2) ≥ 2zV − 2z∅

and thus

Capq(G, δ) ≤ zV ≤
n

2
(1 + Rq (δ)),

whenever G is an odd cycle.

B. Achievability Bound

A naive achievability bound on Capq(G, δ) is given by,

Capq(G, δ) ≥ n(1 − hq (δ)), δ ≤ 1/2,

where hq(x) ≡ x logq(q − 1)− x logq x − (1 − x) logq(1 − x).

This amount of storage can be achieved by just using an

error-correcting code of length m, distance δm + 1, and rate

1 − hq(δ) in each of the vertices. Such codes exist, by the

Gilbert-Varshamov bound. Also,

Capq(G, δ) ≥ 0,

for 0 ≤ δ ≤ 1 − 1/q .

This simple bound can be improved by more carefully

designing a code. Our main result of this section is the

following.

Theorem 16. Given a graph G, let C be the set of all

cliques of G. The generalized clique packing number CPδ(G)

is defined to be the optimum of the following linear program.

For 0 ≤ xC ≤ 1,∀C ∈ C,

max
∑

C∈C
xC(|C| − hq(δ)), (CPδ(G))

such that,
∑

C∈C:u∈C

xC ≤ 1.

Then,

Capq(G, δ) ≥ CPδ(G), δ ≤ 1 − 1/q,

and,

Capq(G, δ) ≥ CP(G), δ > 1 − 1/q.

Proof. First of all, notice that, Capq(G, δ) ≥ Capq(G, 1) =

Cap(q)(G) ≥ CP(G) where the last inequality follow from

Lemma 1. Below therefore we only concentrate on the case

when δ ≤ 1 − 1
q
. We illustrate the proof of this theorem by

constructing a sequence of error-correcting codes that serves

our purpose.

First, we show that for any positive integer d and a large

enough positive integer m, there exists a linear error-correcting

code of length dm and dimension dm−mhq(δ) that can correct

any δm erasures between coordinates im + 1 and (i + 1)m for

any i ∈ {0, 1, . . . , d − 1}.

Randomly and uniformly choose a q-ary parity check matrix

of size (dm − k) × dm (that is, each coordinate of the matrix

is chosen from {0, 1, . . . , q − 1} with uniform probability).

The probability that a vector of weight δm is a codeword

is q−(dm−k). Now the probability that there exists such a

codeword that is an uncorrectable erasure pattern of the above

type is

≤ d

(

m

δm

)

(q − 1)δmq−(dm−k) ≤
d

√
m

q−(dm−k−mhq (δ)),

δ ≤ 1 −
1

q
.

Hence there exists such a code with dimension dm − mhq(δ)

for any δ ≤ 1 − 1
q

for large enough m.

Suppose, C ∈ C be a clique of size d = |C| in G. Use the

linear error-correcting code of length dm constructed above

and store each block of m coordinates in one of the vertices

of the clique. If up to δ proportion of the content of any vertex

is erased, it can be recovered by accessing the other vertices.
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The total information stored in this clique is dm − mhq(δ) =

m(|C| − hq (δ)).

Now let us find a partition of the graph into a collection of

cliques {C1, C2, . . . , Ct }, such that each vertex belongs to at

most one clique from the collection. For each clique Ci , i =

1, . . . , t,, use an error-correcting code of length |Ci |·m to store

m(|Ci | − hq (δ)) q-ary information. In this way the maximum

amount of information that can be stored in the graph with

the partial recovery condition is,

max
∑

C∈C
xC(|C| − hq (δ)),

where xC ∈ {0, 1} denotes whether the clique C is in the

collection, under the constraint that each vertex is in only

one clique, i.e.,
∑

C∈C:u∈C xC ≤ 1. This is an integer linear

program and Capq(G, δ) is at least the optimum value of this

integer linear program for δ ≤ 1 − 1
q
.

Now, following an argument similar to Lemma 1, we show

that the integer linear program can be relaxed to a linear

program and an achievability scheme still exists. For this,

assume, {xC}C∈C achieve CPδ(G). Let m be such that xC · m

is integral and large enough for every C . For each clique

C = {u1, . . . , u|C |} in the graph, in each vertex u ∈ C ,

store mxC q-ary symbols, such that the |C| · mxC -length

vector in the clique C is a codeword of an error correcting

code of length |C| · mxC that can carry mxC(|C| − hq(δ))

symbols of information, as noted above. Once we do this for

all cliques, the number of q-ary symbols stored in vertex u is
∑

C∈C:u∈C xCm ≤ m. The total amount of information stored

in the graph is
∑

C∈C mxC(|C| − hq(δ)) = m CPδ(G).

This proves the claim. !

b) Odd Cycle Example.: Let us consider the example of

n-cycle again where n is an odd number. Since the size of a

fractional matching is n
2

, we have

Capq(G, δ) ≥
n

2
(2 − hq(δ)), δ ≤ 1 −

1

q
,

and Capq(G, δ) ≥ n
2

when δ > 1 − 1
q

. Compare this with the

impossibility bound that we have,

Capq(G, δ) ≤
n

2
(1 + Rq(δ)).

It is widely conjectured that the optimal rate of an error-

correcting code is given by

Rq(δ) = 1 − hq(δ),

for small q , which is also known as the Gilbert-Varshamov

conjecture. If this conjecture is true, then our upper and lower

bounds match exactly. In particular, for large q (i.e., q → ∞),

we have hq (δ) → δ and Rq(δ) → 1 − δ. Hence, our bounds

match definitively in the regime of large q .

VII. CONCLUSIONS

Storage capacity is a natural problem of network coding

and intimately related to the index coding problem which

encapsulates the computational challenges of general network

coding. In this paper we have viewed storage capacity as a

natural information theoretic analog of vertex cover of graph.

For some family of graphs, vertex cover is easier to approx-

imate, such as the planar graphs; we see that, the storage

capacity is also easier to estimate for these families. The

relation to index coding also leads to approximation guarantees

for index coding rate. We further illustrated an approach to

bound the storage capacity of graphs in terms of a small

number of vertex covers, which leads us to exactly quantify

the storage capacity of cycles with chords.

In the last part of this paper, we provided one possible

generalization of the storage capacity to partial recovery

capacity. It is important to note that there are several other

possible generalizations to this quantity that may be useful

in practice. For example, one might consider recovery from

failure of multiple vertices together from their combined

neighborhood (analogous to the cooperative repair problem in

distributed storage [29]). In yet another scenario of recovery

from multiple failures, a vertex failure may be recoverable

from its neighborhood as long as at most t ≥ 0 of its neighbors

have also failed. We leave these generalizations as interesting

future studies of storage capacity.
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