
Accelerating Synchronization in Graph Analytics using
Moving Compute to Data Model on Tilera TILE-Gx72

Halit Dogan∗, Masab Ahmad∗, José A. Joao†, Omer Khan∗

†Arm Research, Austin, TX, USA
∗University of Connecticut, Storrs, CT, USA

Abstract—The shared memory cache coherence paradigm is
prevalent in modern multicores. However, as the number of cores
increases, synchronization between threads limits performance
scaling. Hardware-based core-to-core explicit messaging has been
incorporated as an auxiliary communication capability to the
shared memory cache coherence paradigm in the Tilera TILE-
Gx72 multicore. We propose to utilize the auxiliary explicit
messaging capability to build a moving computation to data model
that accelerates synchronization using fine-grain serialization of
critical code regions at dedicated cores. The proposed commu-
nication model exploits data locality and improves performance
over both spin-lock and atomic instruction based synchronization
methods for a set of parallelized graph analytic benchmarks
executing on real world graphs. Experimental results show an
average 34% better performance over spin-locks, and 15% over
atomic instructions at 64 cores setup on TILE-Gx72.

I. INTRODUCTION

Large-scale multicores are now pervasive, and the shared
memory paradigm with hardware cache coherence is still the
dominant inter-thread communication model. Even though
distributed hardware cache coherence protocols are efficient for
seamless data sharing between threads, the synchronization on
shared data through coherence still remains a significant chal-
lenge for large multicores. Expensive overhead of coherency
traffic leads to costly data sharing with increasing number of
threads and cores that participate in synchronization.

Architectural improvements and novel communication mod-
els have been proposed to overcome the synchronization
bottleneck. One of the most effective among many proposed
solutions is to incorporate in-hardware explicit messaging
into a shared memory machine [1], [2], [3], [4], [5], [6], [7],
[8]. Commercial Tilera [9] architecture incorporates hardware-
based explicit messaging support as an auxiliary core–to–
core communication mechanism to the directory-based cache
coherence protocol. It uses User Dynamic Networks (UDN)
to enable movement of data from one core’s register file
to another core’s register file without interfering with the
cache coherence traffic and protocol. TSHMEM [10] explores
barrier synchronization in the Tile-Gx36 and TILEPro64
machines using the UDNs. However, it does not explore
synchronization model tradeoffs that involve fine–grain and
coarse–grain synchronization for real application domains, such
as graph analytics. Hence, the messaging network is not fully
explored in terms of mitigating the synchronization bottleneck.

The moving compute to data model (MC2D) is a promising
approach to accelerate synchronization in a shared memory
machine that incorporates hardware explicit messages [8].
Building on previous simulation-based efforts, this paper
implements the MC2D model to accelerate both fine and coarse-
grain synchronization of shared data in the Tilera’s 72–core

TILE-Gx72 machine [11]. The MC2D model is compared to
the traditional shared memory based lock and barrier implemen-
tations for synchronization. The spin-lock and atomic models
are implemented using Tilera’s support for hardware cache
coherence based atomic instructions. Refactoring applications
to use fine–grain critical sections enables additional concurrency
compared to the coarse-grain synchronization. However, it adds
extra lock acquisition overhead even when no other thread
accesses the same shared data. Furthermore, it gets worse
in the presence of contention due to instruction retries and
cache line ping–pong between cores. Tilera also offers atomic
instructions to mitigate overheads of the spin–locks when they
are applicable in an algorithm’s implementation. However, as
atomic instructions do not completely eliminate cache line
ping–pong, they also get costly as the core count increases.
Additionally, only few simple operations are implemented with
atomic semantics in an architecture, which limits their potential
to implement arbitrary critical sections.

The MC2D model addresses the challenges of the tradi-
tional shared memory synchronization, and implements critical
sections efficiently in a generalized way. It eliminates the
need for atomic instructions, or locks to protect critical code
sections. Rather, it offloads critical sections to a dedicated core
(service core) via low latency explicit messages. The service
core performs the requested critical section work atomically
without interruption, thereby efficiently serializing shared work
and preventing cache line ping–pong. Furthermore, serialization
at a service core is alleviated by assigning multiple service
cores. For the best performance, the right number of service
cores is determined using a heuristic that trades off concurrency
in algorithm’s work (worker cores) with concurrency in the
shared work (service cores).

The MC2D model is realized in the TILE-Gx72 machine for
the graph analytics application domain since graph algorithms
vary significantly in terms of their synchronization requirements.
To the best of our knowledge, this is the first work that
implements the MC2D model in a real multicore machine for
graph problems. A characterization using various real world
input graphs is conducted to identify key characteristics, such
as contention on shared data and load balancing of threads
to determine how MC2D compares to the traditional shared
memory synchronization models. A novel shared work driven
heuristic is proposed to determine the right number of worker
and service cores for the MC2D model. Moreover, a core
count scaling study is performed to highlight the superiority
of the MC2D model as the impact of on-chip network latency
dominates performance scaling in the traditional spin-lock and
atomic synchronization models. Evaluation using six graph

496

2018 IEEE 36th International Conference on Computer Design

2576-6996/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCD.2018.00080

benchmarks and four real world brain, transportation, and
social network graphs shows a performance improvement of
34% over spin-lock, and 15% over the atomic instruction based
thread synchronization model.

II. SYNCHRONIZATION MODELS IN TILERA TILE-GX72

Tilera TILE-Gx72 processor utilizes a tiled multicore ar-
chitecture approach. It contains 72 tiles, and the tiles are
connected using an intelligent 2-D mesh network, called iMesh
Interconnect. Each tile consists of a 64-bit VLIW core, 32
KB private level-1 data and instruction caches, and a 256 KB
shared level-2 (L2) cache. Each VLIW core implements three
separate pipelines. The first pipeline performs all arithmetic
and logical, multiply and fused-multiply, and bit manipulation
instructions. The second pipeline also executes all arithmetic
and logical operations, as well as special purpose register
reads and writes, and conditional branch instructions. The
third pipeline is utilized for memory instructions, including the
atomic memory operations. A directory is integrated into the
L2 cache slices to support a directory–based cache coherence
protocol. Tilera architecture also offers various configurations
for data placement and caching schemes. By default, a cache
line is homed at an L2 cache using a hardware hashing scheme,
and also replicated in the L2 slice of the requesting core.
Experiments with and without replicating cache lines in the
local L2 slice of the requesting core vary performance by
an average of 1% for the investigated workloads. Hence, the
default L2 homing scheme is utilized in this paper. In addition,
network routers are included in each tile to communicate with
other tiles, I/Os and the on-chip memory controllers. A special
network called User Dynamic Network (UDN) is used to enable
tile–to–tile explicit messaging. Each tile contains four UDN
queues for explicit messaging. These queues are implemented
as small FIFO queues. Each queue is mapped to a special
purpose register, which is used to send and receive data between
execution units without any involvement of the cache coherence
protocol and traffic. For example:

move udn0, r0 is a send operation in which data in r0 is
moved to the special purpose register, udn0. Then, it is injected
into the network, where it traverses to the destination tile.

move r0, udn0 is a receive operation in which the sent data
is received and placed in the queue 0, and since the queues
are mapped to special UDN registers, the data is read from the
corresponding register (udn0 in this case) when it arrives in the
specified queue. If the message does not make it to the queue
when the “move” instruction is executed, this operation stalls the
corresponding pipeline. In addition to “move” instruction, any
ALU operation can send/receive data using the UDN network,
registers and the queues.

The TILE-Gx72 provides Tilera Multicore Components
(TMC) library [12] to initialize and make use of the UDNs.
Hence, the low level instructions are not used for explicit
communication. For this paper, the library calls provided by
TMC library for tile–to–tile messaging are utilized. To be able
to make use of the UDN networks, the threads are pinned to
the cores based on their thread IDs in an ascending order. In
the TILE-Gx72, the threads are spatially distributed among
available cores.

A. Shared Memory Based Synchronization

Tilera offers various atomic memory instructions for efficient
thread synchronization on shared data. Tilera documentation
does not provide implementation details of the atomic op-
erations. Hence, it is not known if an atomic operation is
implemented by locking a cache line in the private cache
(near atomic), or as remote atomic operation at the home L2
cache for the cache line (far atomic). In either case, as an
atomic memory operation utilizes the same pipeline as the
load and store instructions, the other two VLIW pipelines can
continue execution in parallel. Some of the atomic operations
are as follows: cmpexch, fetchadd, fetchaddgez, exch, to name
a few. Compare–and–exchange (cmpexch) is utilized to build
the widely applicable spin-lock based synchronization model
that protects an arbitrary critical code section. When applicable,
the atomic instructions can be directly utilized to implement
synchronization, which helps mitigate spin-lock’s instruction
retries and cache line ping–pong. However, as the core count
increases, the atomic instructions also suffer from the cost of
expensive data sharing between threads, as well as the on-chip
network. Moreover, they are limited to specific operations and
data sizes, thus limiting their applicability to a wide range
of critical section implementations. In this paper, the atomic
model implements lock–free data structures if the algorithm is
suitable to employ the available set of instructions. Fortunately,
all six evaluated graph benchmarks are supported with the
atomic model in addition to the spin-lock model.

Tilera Multicore Components (TMC) library provides two
types of spin-based synchronization. The first one is based
on the kernel scheduler, while the other version deploys
synchronization by utilizing the atomic instructions. As atomic
instruction based synchronization does not interact with kernel
scheduler, it is generally more efficient and thus utilized in this
paper. Instead of yielding a core when the mutex is not available,
spin–based primitive continues to perform tests until the mutex
variable is available. As an optimization to reduce expensive
retries, it utilizes an exponential backoff mechanism in which
the thread stops trying to acquire the lock variable, and waits for
some time to try again. If it fails, it increases the backoff cycles
exponentially. The library also offers queue based locking. In
this case, the threads are put into a waiting list until the mutex
is available. When the mutex is available, the next thread is
notified to acquire the lock. Experiments are conducted with
both lock mechanisms, and it is observed that for the evaluated
benchmarks there is no significant performance difference
between the two implementations. Hence, the spin-lock with
exponential backoff is adopted in this paper.

Similar to the atomic instruction model, the spin-based
synchronization is also effective when the shared data is not
contended. When there is no contention, concurrency is not
limited by serialization on the shared data. On the other hand,
with contended shared data, the serialization overheads increase
due to the instruction retries and the lock variable ping-ponging.
This leads to degraded performance scaling for the spin based
synchronization.

B. Explicit Messaging Based Communication

The TILE-Gx72’s explicit messaging using the UDN sup-
ports both blocking and non–blocking communication.

497

<< Spin Lock Implementation >>

tmc_spin_mutex_lock(lock);
new_value = barrier + 1;

tmc_spin_mutex_unlock(lock);

If new_value == num_of_cores:
passed = True;

Else:

While passed != True { }

<< Atomic Implementation >>

new_value = arhc_fetch_add(&barrier, 1);

(a) Shared memory barrier.

<< MC2D Barrier Implementation >>

If (ServiceCore)

For each core:

tmc_udn0_receive();

For each core:

tmc_udn_send_1(core, continue);
Else:

tmc_udn_send_1(ServiceCore, UDN0, barrier);

tmc_udn0_receive();

(b) MC2D barrier.

Fig. 1: Barrier implementation using spin–lock, atomic fetch–and–add, and MC2D models in TILE-Gx72

Blocking communication is realized using a send operation
followed by a receive operation at the sender core. The receiver
core pairs the sender’s operations with receive and send,
respectively. The pipeline of the sender core is blocked until it
receives an explicit reply from the destination core. Blocking
communication is useful to enforce strong data consistency,
or when the sender requires an explicit reply back from the
destination before proceeding. An implementation must take
into account the limited UDN queue capacity (118 words per
tile), otherwise a blocking communication may result in an
application level deadlock [13]. This paper utilizes blocking
communication to implement barrier synchronization between
cores. At most 71 cores send a one-word message to a single
core in the barrier implementation, which has sufficient capacity
to hold 71 words of data in its UDN queue.
Non-blocking communication is realized using a send opera-
tion at the sender core paired with a receive operation at the
destination. The core that executes the send operation is allowed
to continue execution without blocking the pipeline. This allows
the sender core to utilize all three VLIW pipelines after sending
a message, and thus overlap non-blocking communication
with other useful work. This paper utilizes non-blocking
communication to enable efficient execution of concurrent
critical section tasks. The usage of blocking and non-blocking
communication is discussed in detail in the following section.

C. Moving Compute to Data (MC2D) Model

In the MC2D model, instead of bringing data where the
computation resides, the shared data is pinned at certain cores
and the computation is moved to them using explicit messages.
The low latency of in-hardware explicit messaging in the TILE-
Gx72 allows the MC2D model to exploit locality on shared data
and accelerate synchronization. The need for atomic memory
instructions or spin-lock primitives is replaced with serialization
of critical section execution at a dedicated core, termed as
service core. When realizing the MC2D model, the disjoint
shared data operating on critical sections is distributed among
a set of service cores to further exploit concurrency. Note that
the shared data is pinned to a service core such that its updates
are performed atomically at that core without interruption. The
remaining cores, termed as worker cores perform the actual
algorithmic work, and send critical section invocation requests

to the service cores using the UDNs. Upon receiving a UDN
message, the service core executes the requested critical code
section. At the end of execution, a service core either waits for
another UDN request, or sends an explicit reply message to
the worker core to update it with the completion of its request.

Tilera’s TMC library exposes the UDN network to the
programmer via an API. Following subsections discuss the
implementation of coarse and fine–grain synchronization using
the MC2D model.

1) Coarse–grain Synchronization: Figure 1 illustrates the
implementation of barrier synchronization using various capa-
bilities of TILE-Gx72. As seen in the pseudocode in Figure 1a,
the spin–lock based barrier is implemented by locking and
incrementing the barrier variable, and spinning until all the
cores perform their shared data updates. When many/all
cores participate in synchronization, both lock and barrier
variables are contended, and ping-pong between cores results
in expensive thread synchronization. By removing the lock and
performing the increment with an atomic fetchadd instruction,
the barrier performance can be improved by mitigating cache
line ping–ponging. However, as the core count increases, the
contention on the shared barrier variable hurts performance
even when atomic fetchadd instruction is utilized.

The MC2D barrier removes the shared barrier variable as
shown in Figure 1b. It makes use of the blocking commu-
nication capability of the UDN network. When the barrier
synchronization is needed, one of the cores among worker cores
is assigned as the service core. All other cores send a barrier
message to the specified service core, then execute a receive
operation to wait for a reply from the service core. When
the service core receives messages from all the participating
cores, it broadcasts a proceed message to the participants.1

This eliminates the spinning and the barrier variable sharing,
leading to more efficient synchronization. One can also utilize
a separate core as service core to manage the barriers. However,
this paper employs one of the worker cores as the service core
to handle the barrier synchronization.

Three evaluated graph algorithms, PAGERANK, CONNECTED

COMPONENTS and COMMUNITY DETECTION involve only bar-

1If the core handling the barrier messages participates in barrier synchro-
nization, and receives other barrier messages before reaching the barrier, then
such messages wait in the UDN queue until the core itself reaches the barrier.

498

<< Spin Lock Implementation >>

Worker Thread Job

For each node v:

For each neighbor u:

tmc_spin_mutex_lock(u);

Critical Code Section
tmc_spin_mutex_unlock(u);

<< Atomic Implementation >>

fetchadd4, exhc4 etc.

<< MC2D Implementation >>

Worker Thread Job

coreid = get_service_core(u)

tmc_udn_send_x(coreid, UDN0,

data_1,...,data_x)

Service Thread Job

while !terminate do

data_1 = tmc_udn0_receive()
...

data_x = tmc_udn0_receive()

Critical Code Section

Fig. 2: Implementation of fine–grain synchronization using spin-lock, atomic, and MC2D models in TILE-Gx72

rier synchronization in their implementations. These algorithms
consist of multiple phases of graph traversal, and at the end of
each phase, threads are synchronized to make sure the updates
to shared data are visible to all the threads.

2) Fine–grain Synchronization: Figure 2 shows synchroniza-
tion of shared data for a primitive graph benchmark, where the
nodes are statically divided among threads, and each thread
visits the neighbors of its nodes and performs an atomic update
for each neighbor. The pseudocode on the upper-left shows the
spin–lock implementation, where the atomic update is done by
acquiring the corresponding lock for the node. If an atomic
instruction for the critical section is available, the locks are
removed and a single atomic instruction performs the critical
section (bottom left). For MC2D, the lock is removed and the
critical section work is moved to dedicated service cores by
using explicit messaging functions provided by TMC library
(pseudo code on the right in Figure 2). The worker cores send
critical section requests along with the necessary data indices
to the corresponding service cores. The desired service core
is obtained using a lookup function, get service core(), as
seen in the pseudocode. This function is used to distribute the
disjoint shared data among the service cores. The number of
data word(s) that needs to be sent is algorithm dependent. If
multiple words are sent, they are placed into the destination
queue in the order they are sent. Programmer must make sure
that send and receive ordering is maintained to keep correct
functionality, as seen in the pseudocode. A service core then
receives the required number of words, and executes the critical
section. Note that the work efficiency of the original algorithm

remains unchanged when porting to the MC2D model. Only

the critical section work is moved to a separate core. If there

is a test to filter out redundant lock acquisitions, the test stays

as is in all the versions.

The advantage of MC2D over traditional shared memory
synchronization comes from improved data locality. It elim-
inates both retries and ping–pong of shared data by getting
rid of the locks and pinning the shared data at service cores.
Due to the non–blocking nature of the explicit send instruction,
it also helps overlapping the communication stalls with other
computations, allowing each worker core to continue execution
after sending a request to the corresponding service core. In
a way the worker and service core tasks are pipelined using
non–blocking communication. While a worker core prepares to
send another message, the service core processes the previous
message(s). Hence, efficient task level parallelism is enabled.

The MC2D model can also be implemented using synchronous
messages in which a worker core waits until its request is
processed and an explicit reply message is received from the
service core. This approach may be useful when there is strict
consistency requirement in the algorithm’s synchronization.
However, it prevents hiding the communication latency, and
may lead to performance degradation when the benefits of data
locality cannot overcome the communication overheads. The
evaluated graph algorithms do not require strong consistency,
hence the MC2D model utilizes non–blocking communication
in this paper.

Three graph algorithms with fine-grain synchronization are
evaluated, i.e., SINGLE SOURCE SHORTEST PATH, TRIANGLE

COUNTING and BREADTH FIRST SEARCH. Their parallel
implementations use similar approach to the primitive algorithm
described in Figure 2. However, they are described below to
provide relevant details.
Triangle Counting (TC) divides nodes among threads, and
each thread keeps track of the number of connections per
node. As nodes may share the same neighbor, the counters
that track the connections are protected with spin–locks. TC

does not include any test to prevent redundant locking, which
infer a higher amount of contention on shared data. As the
critical section of TC is just an increment operation, it is
also implemented using the fetch–and–add atomic instruction
directly. Finally, for the MC2D model implementation, each
worker core sends the neighbor ID to the corresponding service
core, and moves forward with subsequent work. Consequently,
the service core performs the requested shared data update.
Breadth First Search (BFS) visits the nodes iteratively by
opening new pareto fronts in each iteration over the graph. Each
thread goes through its part of the graph, and the implemen-
tation contains a test to prevent redundant synchronizations.
It tries to guarantee that each node is visited only once in
the whole program execution. The visiting part is protected
with fine–grain locks to ensure that no other thread visits the
same node. BFS is also implemented using an atomic compare–
and–swap instruction to eliminate the lock overhead. For the
MC2D model, each worker core sends the neighbor ID, and
the corresponding service core asynchronously operates on it
upon receiving the request.
Single Source Shortest Path (SSSP) divides the nodes among
threads, and each node updates its distance to its connected
edge. The algorithm iterates over the graph until the distance
array converges. Each distance array relaxation is protected

499

with a fine–grain lock. A test is applied right before lock
acquisition to prevent unnecessary locking if the node is
already converged. The critical section of SSSP requires a
fetch, decrement, compare and update, which is not available
as a single atomic instruction in Tilera. Hence, the update part
of the critical section is implemented using a single atomic
swap instruction to emulate the atomic model, even though
this change alters the algorithm. On the other hand, the MC2D
model can be used to implement any arbitrary atomic operation.
Therefore, the relaxation work (critical section) is shipped to
the service core, where update to the requested shared data is
performed. Each worker core sends node, neighbor ID, and
the edge weight to the corresponding service core. The MC2D
version of SSSP also performs the test before asynchronously
sending each critical section request.

3) Determining Right Service Core Count: The MC2D
model exploits concurrency in shared work using more than
one service core. Unfortunately, this takes away concurrency
from the worker cores for all other algorithm work. If the
distribution of the worker and service cores is not done properly,
the parallel implementation can suffer performance loss due to
load imbalance between threads. Hence, it is important to find
the right number of cores for a near-optimal spatial allocation
of service and worker cores. This cannot be done statically
since the distribution of shared work is highly dependent on
the graph algorithm, as well as the input graph.

We propose to deploy a profiling based heuristic that utilizes
the percentage of shared work to determine the right ratio of
worker and service cores. In this approach, the shared memory
version of the workload is profiled to obtain the percentage time
spent in the critical section with respect to the total completion
time. As the MC2D model ships the work in the critical section
to dedicated cores, the time spent in the critical section is a
good indicator to determine the appropriate number of service
cores. It is anticipated to show linear correlation with the
service core count.

III. METHODOLOGY

The TILE-Gx72 multicore processor executes at 1GHz and
is equipped with 16GB of DDR3 main memory. It runs a linux
version that is modified for the Tilera architecture. A modified
version of GCC4.4.7 that supports Tilera specific features is
utilized for the compilation of the benchmarks. As discussed in
Section II, three thread synchronization models (Spin, Atomic,
and MC2D) are evaluated in this paper.

A. Performance Metrics

Up to 64 cores in the system are utilized for performance
evaluation. While running experiments, no other program inter-
feres with the active application. Following are the evaluation
metrics used in the paper.

• Completion Time: Completion time is measured by
running each benchmark to completion, and only the
parallel region is measured in each application. Memory
allocations, initialization of data, and thread spawning
overheads are not taken into account. Every run is repeated
ten times and the average number is reported.

• Load Imbalance: Load imbalance is determined by
calculating the variability in the instruction counts of

the cores. The number of instructions for each core is
determined using the hardware event counters in Tilera.
The variability across instruction counts of the cores is
calculated using the following formula:

Variability =
Max(Instructions)−Min(Instructions)

Max(Instructions)

• Shared Work: The percentage time spent in the critical
section is determined by measuring the time between lock–
acquire and lock–release in the Spin model. A specific
counter per thread keeps track of this time, and determines
the total time spent in the shared work for each thread.
Then, the average shared work across all cores is calculated
using the per thread data. Finally, the amount of work done
in the critical section compared to the total completion
time is determined as a percentage number, and reported
as the shared work. This metric is used to determine the
number of service cores for the MC2D model.

TABLE I: Input graphs and their respective statistics.

Inputs Nodes Edges Degree

Mouse Brain [14] 562 0.57M 1027

CA Road Network [15] 1.9M 5.5M 2.8

Facebook [16] 2.9M 41.9M 14.3

LiveJournal [16] 4.8M 85.7M 17.6

B. Benchmarks and Inputs

Six graph benchmarks from the CRONO [17] suite are
adopted for this work, namely SSSP, TC, BFS, PAGERANK, CC,
and COMM. These benchmarks are ported to the TILE-Gx72
using the Spin, Atomic and MC2D synchronization models.
For all models, pthreads library is used to spawn threads, and
each thread is pinned to a physical core based on the thread ID.
For evaluation, four real world graphs are chosen to explore
input diversity, as summarized in Table I.

In order to build intuition for the performance advantages
of the MC2D model over the Spin and Atomic models,
two microbenchmarks are evaluated. In the first one, barrier
synchronization is evaluated under load balanced versus
imbalanced execution of threads. The pseudo code for the
barrier microbenchmark is shown in Figure 3a. The barrier is
executed 10000 times, and average barrier time is calculated at
the end. Before each barrier measurement, all the threads are
synchronized with another barrier. Two sets of measurements
are conducted. In the first one, the threads arrive at the barrier
at the same time, hence it is contended. The DummyWork()

function seen in the pseudo code is removed for this experiment.
For the second experiment, each thread performs some dummy
work before entering the barrier synchronization. In the
dummy work, each thread executes a random number of
instructions to observe different arrival times. All three barrier
implementations discussed in Section II-C1 are evaluated. The
number of threads is varied from 2 to 64. The MC2D model
utilizes Core 0 as the service core. Therefore, the barrier
variables for the Spin and Atomic models are also mapped
to Core 0’s L2 slice to minimize network variability across
synchronization models.

500

<< Barrier Benchmarking >>

// Get a random iteration

// count for DummyWork

random = rand ();

For 0 to Iteration:

// Synchronize Threads

// before measurement

barrier_wait ();

DummyWork (random);

start = get_cycles();

barrier_wait ();

stop = get_cycles ();

time += stop-start;

CalculateAverage (time);

(a) Barrier benchmarking.

<< Barrier Benchmarking >>

barrier_wait ();

start = get_cycles();

For 0 to NumReductions:

reduction (data, val);

stop = get_cycles ();

time += stop-start;

barrier_wait ();

CalculateMax (time);

<< Reduction Atomic >>

arch_fetch_add(&data, val);

<< Reduction MC2D >>

If Core 0:
data += val;

For 0 to NumCores-1:

data += tmc_udn0_receive ();

Else:
tmc_udn_send_1 (Core0, UDN0, val);

<< Reduction Spin-Lock >>

tmc_spin_mutex_lock(&lock);

data+=val;

tmc_spin_mutex_unlock(&lock)

(b) Reduction benchmarking.

Fig. 3: Pseudo code for two microbenchmarks.

Fig. 4: Speedup of barrier microbenchmark for the MC2D

model over the Atomic model at different core counts.

The second evaluated microbenchmark is a reduction in
which multiple threads perform a summation function over
a shared data. The pseudo code is shown in Figure 3b. All
the participating threads are first synchronized with a barrier,
and then start performing the reduction routine. This leads
to contended synchronization between threads. Moreover, the
number of reductions per thread are varied from 1 to 1000, at
power of 10 increments. The multiple per-thread reductions
further increase contention on the shared data. The reduction
is implemented with a global lock for Spin, and a fetch–and–
add atomic instruction for the Atomic model. In the MC2D
model, all cores send their local data to the service core 0,
which serially performs the summation. Similar to the barrier
microbenchmark, the shared data is mapped to Core 0’s L2
slice for the Spin and Atomic models. The number of threads
are varied from 2 to 64 for evaluation.

IV. MICROBENCHMARK EVALUATION

Figure 4 shows the speedup of the barrier microbenchmark
for the MC2D model over the Atomic model at different core
counts. These experiments are also conducted for the Spin
model, however the Spin barrier performs consistently worse
than the Atomic barrier due to its lock acquisition overheads.
Hence, the results for the Spin model are not shown in the

figure. When the barrier is contended, i.e., threads reach the
synchronization point at similar times, the performance of
the atomic instruction based barrier degrades drastically as
the number of participating cores increases. At 64 cores, the
MC2D barrier performs ∼ 6× faster than the Atomic model
implementation. Although the fetch–and–add atomic instruction
to update the barrier variable improves performance, the Atomic
model still relies on spinning until all cores perform their shared
data updates. This leads to ping-ponging of the barrier variable
between participating cores, which gets worse as the distance
and contention on the network-on-chip increases. On the other
hand, the MC2D model based barrier utilizes a local variable
at Core 0, and eliminates the bouncing between cores. Hence,
it provides superior performance under contention.

The barrier performance is also measured when it is not
contended. In this case, each thread performs different amount
of work before arriving at its barrier update. Hence, the Atomic
model is able to hide much of the cache line ping-pong
latencies, and improves performance significantly compared to
the contended barrier. However, the MC2D model barrier still
outperforms the Atomic model barrier for the un-contended
case. Under the Atomic model, the participating threads utilize
the backoff mechanism in their waiting loop for the atomic
updates to the barrier variable, and thus incur some cache
line ping-pongs. On the contrary, the MC2D model does not
require a backoff mechanism. The participating cores block
their execution while the service core 0 explicitly manages the
barrier variable updates, and finally sends a reply to inform
the worker cores to continue their execution.

Figure 5 shows the speedup of the MC2D model over the
Atomic model for the reduction microbenchmark. Similar to the
barrier experiment, the Spin results are not shown since they
are considerably worse than both Atomic and MC2D models.
As seen in the figure, when a single reduction is performed, the
Atomic model consistently provides better performance than
the MC2D model at all core counts. The atomic fetch-and-add
instruction seems to completely eschew cache line ping–pong
similar to the MC2D model. However, each core issues a single

501

Fig. 5: Speedup of MC2D over the Atomic model for various

number of per-thread reductions at different core counts.

atomic instruction, and exploits concurrency to achieve good
performance. The MC2D model, on the other hand incurs
additional instructions to send the reduction message from
each worker core to the service core 0, which receives each
message, and serially updates the shared variable. However, as
the number of per-thread reductions is increased, the MC2D
model is able to overlap the explicit messaging latency by
using the non-blocking send messages. Consequently, it yields
higher performance than the Atomic model, which waits for
the completion of each atomic update before executing the next
per-thread atomic update. It is illustrated in the figure that the
MC2D model consistently improves over the Atomic model
as both number of reductions and core counts are increased.
The next section discusses the evaluation of graph benchmarks
which provide ample opportunities for the MC2D model to
pipeline threads and hide the latency of synchronization.

V. EVALUATION OF GRAPH BENCHMARKS

A. Performance Scaling of Graph Benchmarks

A performance scaling study is conducted to illustrate that
the baseline spin–lock based shared memory implementations
scale to 64 cores on the TILE-Gx72 platform. Each benchmark
is executed by varying the core count from 1 to 64. The
average speedup for each core count is plotted relative to
the sequential execution of the benchmark. The sequential
implementation spawns a single thread of execution that
exploits all on-chip shared cache and memory controller
resources. Figure 6 shows the performance scaling results
for the six evaluated benchmarks. As seen, all benchmarks
improve performance up to 64 cores. The benchmarks with
coarse–grain communication (such as PAGERANK) scale better
than the ones with fine–grain communication (such as TC).
This is expected as contended shared data in several graph
benchmarks lead to the synchronization bottleneck. Overall, the
Spin model achieves 27× to 45× performance improvement
at 64 cores over sequential.

B. Performance of MC2D and Atomic over Spin

Figure 7 shows the normalized completion time results
of the Spin, Atomic and MC2D models at 64 cores setup.
Atomic and MC2D both follow the same trends over Spin.
There is almost no performance difference between all three
synchronization models for the benchmarks with coarse–grain
synchronization (PAGERANK, CC, and COM) . Even though

Fig. 6: Average per-benchmark performance scaling results

using the Spin model.

both MC2D and Atomic based barriers are more efficient
than Spin, these benchmarks do not show any significant
performance change since each core has a considerable amount
of work between barriers. The only exception is CC using the
relatively small mouse-brain graph, which does not incur much
computations between barrier synchronization of threads. In
this case, an efficient barrier with the MC2D model provides
better performance.

Unlike the workloads with coarse–grain synchronization,
the ones with fine–grain synchronization (SSSP, TC, and BFS)
show some variability across different benchmark–input com-
binations. Here, contention is an important metric to indicate
the cases where performance can be improved using better
synchronization primitives. As seen in Figure 7, while MC2D
reduces completion time for TC and SSSP, the completion time
does not significantly change for BFS. This is due to the fact that
SSSP and TC involve more contended locks than BFS. Figure 8
illustrates the contention of each workload with respect to
their performance over Spin. Contention is the average number
of lock–acquisitions per node in a graph, determined using
per-node counters in the critical section. As observed, when the
contention increases, the performance obtained from MC2D
and Atomic also escalates. Since BFS algorithm guarantees that
each lock variable is acquired only once in the whole program
execution, the locks are not contended, and the shared work
done by each thread is very small compared to the private
work. As a result, there is not much to improve with a more
efficient synchronization model.

On the other hand, the Spin implementation of TC requires
locking of each edge without any condition, as explained in
Section II-C2. Therefore, contention is higher as illustrated
in Figure 8. Consequently, the MC2D model significantly
improves performance for all input graphs. This performance
achievement mainly comes from removing the lock acquisition
overheads by pinning shared data at dedicated service cores,
and using low latency non–blocking explicit messages. TC is
an ideal showcase of MC2D as the shared data is neither read
nor written by any other core. It totally eliminates sharing of
the shared data with any other thread, and basically makes it
private data to the service cores. As a result, it provides an
average of 76% performance benefit over Spin.

SSSP is a benchmark where the number of lock acquisitions
per node (contention) is greater than BFS, but less than TC. It
has a test before getting into critical section to make sure no

502

Fig. 7: Completion time results under Spin, Atomic and MC2D models. All results are normalized to Spin.

Fig. 8: Contention vs. performance of MC2D and Atomic

models.

Fig. 9: Normalized performance of MC2D models with and

without reply messages against the Atomic model.

redundant lock acquisition is performed. However, due to its
iterative nature, each lock is acquired multiple times in the
program execution. Therefore, similar to TC, removing these
locks with MC2D, and shipping critical sections to service
cores with non–blocking messages help improve performance.
On average, MC2D yields 34% efficient program execution
compared to the Spin model.

C. Performance of MC2D over Atomic

In this section, the MC2D model is evaluated against Atomic,
which is a more efficient implementation of synchronization
as compared to Spin. Since benchmarks with coarse–grain
synchronization do not show much performance differences,
they are not discussed further. Benchmarks with fine–grain
synchronization are implemented using the atomic instructions
available in the TILE-Gx72, as explained in Section II-C2.

Figure 7 shows that on average the MC2D model accomplishes
15% better performance as compared to the Atomic model.

As discussed earlier, the contention in BFS is negligibly
small, hence MC2D does not offer any additional performance.
Almost all of the performance benefits stem from TC and SSSP.
Both algorithms under MC2D show similar behavior against
Atomic, except TC executing with the California road network
graph, where Atomic slightly outperforms MC2D. The main
benefits come from overlapping the communication stalls with
other computation. The MC2D model utilizes asynchronous
messaging for the critical section requests. Each worker core
sends its request to the corresponding service core and con-
tinues to do other useful work, including subsequent requests
for the critical section executions. This implicitly pipelines
the critical section executions and reduces the overheads of
synchronization. To verify the performance advantage of the
non–blocking communication in the MC2D model, a study is
performed where each worker core waits for an explicit reply
message from the corresponding service core to ensure the
critical section work completed before proceeding. Figure 9
illustrates the performance comparison for the default MC2D
model without reply, and the MC2D model with reply. When
the MC2D model waits for the reply, the performance gets
worse than the Atomic model when contention is high in the
benchmark. This illustrates that the fine–grain synchronization
stalls benefit significantly when they are overlapped with other
useful work in the worker cores.

For both TC and SSSP, MC2D yields higher speedup over
Atomic with the mouse brain graph as compared to other graphs.
The mouse brain is a dense graph in which almost all nodes
are connected to each other, thus more sharing occurs between
cores, and MC2D exploits performance since it eliminates
sharing by pinning the shared data at service cores.

D. MC2D Model and Cache Coherence

Even though the MC2D model accelerates synchronization
on the shared data, it relies on the hardware cache coherence
protocol for efficient movement of cache lines between cores.
This is specifically important for parallel implementation of
work efficient algorithms. For example, SSSP contains a test
to ensure that redundant critical section executions are not
performed. To implement this test, a worker core reads some
shared data that is pinned on the service core. This data sharing
adds coherence traffic, however it prevents unnecessary work.

503

Fig. 10: Performance of SSSP under MC2D model with and

without test before sending critical section invocations.

Fig. 11: Correlation of service core count with shared work.

Figure 10 shows the implementation of SSSP with and without
the test under the MC2D model. As observed, the performance
of MC2D without the test decreases significantly since it
incurs overheads of redundant critical section invocations. The
savings from eliminating coherence traffic cannot compensate
for the overheads of redundant critical section invocations, and
hence the performance of MC2D without the test decreases
significantly as compared to the MC2D with test. Moreover,
as the size of the input graph increases, the performance
penalty of not using the test also goes up. This is observed for
LiveJournal and Facebook graphs that filter significant critical
section requests when the test is utilized.

E. Heuristic to Determine Service Core Count

As discussed in Section II-C3, tuning the number of worker
and service cores plays a significant role for the MC2D model to
deliver near-optimal performance. As MC2D ships the critical
section executions to the dedicated service cores, it is expected
that the time spent in the critical sections shows correlation with
the optimal number of service cores. Figure 11 shows strong
correlation between the profiled shared work (see Section III-A)
and the ideal service core count for each benchmark–input
combination. As seen, BFS has a very small amount of shared
work (less than 1%) for all four input graphs, which results
in only one service core allocation. On the other hand, TC

involves notable shared work (grater than 50%), which results
in a higher number of service cores (16 cores). SSSP’s shared
work varies depending on the input graph as the convergence
of the algorithm depends on the graph itself. Therefore, it
requires 1–4 service cores. The correlation between shared
work and service core count is captured with a simple linear
model as demonstrated in the figure. It serves as a heuristic to
determine the service core count for a given shared work. The

Fig. 12: Average performance scaling results of MC2D com-

pared to Spin and Atomic models.

Fig. 13: Average per-benchmark completion time of MC2D

over the Atomic model.

heuristic is employed to find the number of service cores for
all benchmark-input combinations, and the result is compared
to a service core count determined using an exhaustive search.
The performance difference between using the heuristic and
the ideal number of service cores is observed to be within 3%.

F. Implications of Cores Scaling

The MC2D model is expected to improve synchronization
bottleneck in the on-chip network as the core count increases.
Therefore, a core scaling study for all three synchronization
models is conducted to investigate the impact of the core
count on performance. All benchmark–input combinations
are executed to completion using 8, 16, 32, and 64 cores.
Figure 12 shows the average speedup of MC2D over the Spin
and Atomic models as the core count is increased. The speedup
of MC2D over both models gets higher with the increase in core
count. While MC2D outperforms Spin even at 8 cores, MC2D
underperforms Atomic when using less than 32 cores. Figure 13
shows the per-benchmark average normalized completion time
of MC2D over Atomic. The performance degradation mainly
stems from benchmarks with fine–grain synchronization. As
SSSP, TC, and BFS require service core(s) for critical section
work, it is hard to load balance the worker and service cores
as the total core count goes down. Figure 14 demonstrates
the load imbalance for both MC2D and Atomic models at
different core counts. The Atomic model observes less than
20% variability in instruction count, whereas the MC2D model
incurs a much higher variability. This stems mainly from the
fact that service cores execute much fewer instructions than
the worker cores, specially in SSSP and BFS. SSSP generally
requires one or two service cores, while BFS only needs a

504

Fig. 14: Load imbalance of Atomic and MC2D models at

various core counts; normalized to respective 8-core results.

single service core. However, these cores execute much fewer
instructions than the worker cores. Sparing a few cores out of
64 does not hurt performance, even if there is load imbalance
between worker and service cores. However, at lower total core
counts, this imbalance shows up as performance degradation.
Consequently, the performance declines as the core count goes
down for the benchmarks with fine–grain synchronization.

VI. RELATED WORK

Accelerating synchronization using explicit communication
is first studied in the context of chip multiprocessors by the
Alewife and ActiveMsg projects [1], [2]. Here, message passing
is integrated into multiprocessors with shared memory architec-
ture to help alleviate the cost of inter-processor communication.

More recently, in the context of single chip multicores, Active
Messages (AM) [7] proposes to utilize hardware message
passing on top of shared memory to mitigate the bottleneck
of serialization on shared data. It requires two contexts per
core in which one of them is utilized as interrupt based
message handler. Moreover, HAQu [5] and CAF [6] both
propose accelerated hardware queues to improve fine–grain
synchronization in shared memory multicore systems. While
HAQu adds new instructions to accelerate fast queuing in the
program’s address space, CAF introduces a new hardware
structure that is attached to the on-chip network. The idea of
using separate cores to handle critical section code is explored
in ACS [18]. ACS is similar to the MC2D model, however it
does not remove locks and only uses blocking explicit messages.
More recently, Dogan et al., [8] explores the MC2D model to
accelerate both fine and coarse-grain and synchronization by
exploiting data locality and the non–blocking aspect of explicit
messaging in the hardware. All the above mentioned works
explore the benefits from explicit messaging over traditional
shared memory synchronization using simulation models of
multicores, and do not explore graph analytics for real world
input graphs. This paper is the first to our knowledge to
explore the novel moving compute to data model on a real
multicore machine, Tilera TILE-Gx72, executing real graph
inputs from the brain, transportation and social networks.
The TSHMEM [10] work investigates barrier synchronization
using core–to–core messaging of Tilera machines using micro-
benchmarks. However, it does not explore synchronization
primitives for the novel moving compute to data model, nor
for real workloads, such as graph analytics.

VII. CONCLUSION

This paper evaluates a novel moving compute to data
(MC2D) model to accelerate synchronization in graph process-

ing on the commercial Tilera TILE-Gx72 multicore machine.
The MC2D model is compared against traditional shared
memory synchronization models based on atomic instructions.
The key idea is to accelerate synchronization on shared data
by shipping critical section executions to dedicated cores using
the machine’s auxiliary core–to–core messaging network. By
pinning shared data to dedicated cores, the MC2D model im-
proves data locality. In addition, it overlaps communication with
computation by utilizing non–blocking messages. Evaluation
shows that the MC2D model improves performance of graph
benchmarks executing on real world graphs by an average of
34% over Spin, and 15% over the Atomic model.

ACKNOWLEDGMENT

This work was supported in part by Semiconductor Research
Corporation (SRC). This research was also partially supported
by the National Science Foundation under Grant No. CNS-
1718481. The authors wish to thank Christopher Hughes of
Intel and Brian Kahne of NXP for their continued support and
feedback.

REFERENCES

[1] J. Kubiatowicz and A. Agarwal, “The Anatomy of a Message in the
Alewife Multiprocessor,” in International Conf. on Supercomputing, 1993.

[2] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,
“Active Messages: A Mechanism for Integrated Communication and
Computation,” in International Symp. on Computer Architecture, 1992.

[3] D. Sanchez, R. M. Yoo, and C. Kozyrakis, “Flexible Architectural Support
for Fine-grain Scheduling,” in Architectural Support for Programming
Languages and Operating Systems, 2010.

[4] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring it all to Software: Raw Machines,” in IEEE Computer, 1997.

[5] D. Tiwari, J. Tuck, S. Y, and S. Lee, “HAQu: Hardware-accelerated queue-
ing for fine-grained threading on a chip multiprocessor,” International
Symposium on High Performance Computer Architecture, 2011.

[6] Y. Wang, R. Wang, A. Herdrich, J. Tsai, and Y. Solihin, “CAF: Core
to Core Communication Acceleration Framework,” in International
Conference on Parallel Architectures and Compilation, 2016.

[7] R. C. Harting and W. J. Dally, “On-Chip Active Messages for Speed, Scal-
ability, and Efficiency,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 2, pp. 507–515, Feb 2015.

[8] H. Dogan, F. Hijaz, M. Ahmad, B. Kahne, P. Wilson, and O. Khan,
“Accelerating Graph and Machine Learning Workloads Using a Shared
Memory Multicore Architecture with Auxiliary Support for In-hardware
Explicit Messaging,” in IEEE International Parallel and Distributed
Processing Symposium, May 2017.

[9] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C. Miao, J. F. Brown III, and A. Agarwal, “On-Chip
Interconnection Architecture of the Tile Processor,” IEEE Micro, 2007.

[10] B. C. Lam, A. D. George, and H. Lam, “TSHMEM: Shared-Memory
Parallel Computing on Tilera Many-Core Processors,” in Int. Symp. on
Parallel Distributed Processing Workshops and Phd Forum, 2013.

[11] “TILE-Gx72 Processor ,” http://www.mellanox.com/related-docs/prod
multi core/PB TILE-Gx72.pdf, 2015-16.

[12] Tilera-Corp., “UG527-Application Libraries Reference Manual,” 2014.
[13] Tilera, “UG505-Programming The TILE-GX Processor,” 2014.
[14] R. A. Rossi and N. K. Ahmed, “The Network Data Repository with

Interactive Graph Analytics and Visualization,” in AAAI Conf. on Artificial
Intelligence, 2015. [Online]. Available: http://networkrepository.com

[15] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Community
Structure in Large Networks: Natural Cluster Sizes and the Absence of
Large Well-Defined Clusters,” Internet Mathematics, 2009.

[16] J. Leskovec and R. Sosivc, “SNAP: A General-Purpose Network Analysis
and Graph-Mining Library,” Trans. on Intelligent Sys. and Tech., 2016.

[17] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “CRONO: A Benchmark Suite
for Multithreaded Graph Algorithms Executing on Futuristic Multicores,”
in IEEE Int. Symp. on Workload Characterization, Oct 2015.

[18] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating
Critical Section Execution with Asymmetric Multi-core Architectures,”
in Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, 2009.

505

