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ABSTRACT

A sizable body of research on instructional practices supports the
use of worked examples for acquiring cognitive skills in domains
such as mathematics and physics. Although examples are also
important in the domain of programming, existing research on
programming examples is limited. Program examples are used by
instructors to achieve two important goals: to explain program be-
havior and to demonstrate program construction patterns. Program
behavior examples are used to demonstrate the semantics of vari-
ous program constructs (i.e., what is happening inside a program
or an algorithm when it is executed). Program construction exam-
ples illustrate how to construct a program that achieves a specific
purpose. While both functions of program examples are important
for learning, most of the example-focused research in computer
science education focused on technologies for augmenting program
behavior examples such as program visualization, tracing tables,
etc. In contrast, advanced technologies for presenting program
construction examples were rarely explored. This work introduces
interactive Program Construction Examples (PCEX) to begin a sys-
tematic exploration of worked-out program construction examples
in the domain of computer science education. A classroom evalua-
tion and analysis of the survey data demonstrated that the usage
of PCEX examples is associated with better student’s learning and
performance.
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1 INTRODUCTION

Program code examples play a crucial role in learning how to pro-
gram. Instructors use examples extensively to demonstrate the
semantics of the programming language being taught, to intro-
duce problem-solving approaches, and to highlight fundamental
coding patterns. Programming textbooks also devote attention to
examples with a large proportion of textbook space consumed by
program examples and associated comments. Moreover, the code
of all presented examples is typically provided in accompanying
materials to encourage students to explore, run, and modify the
examples. In contrast, the work on e-learning tools for computer
science education uses code examples quite unevenly. While there
is an active stream of work focused on code behavior examples (usu-
ally presented as dynamic code animations), there are very few
e-learning tools focused on program construction examples, i.e., a
step-by-step demonstration on how to solve a specific program-
ming problem. These examples are typically presented online in a
passive learning form - as a static code or, rarely, as a screencast.
In this aspect, computer science education significantly lags be-
hind other areas such as mathematics and physics where learning
technologies for presenting problem-solving examples have been
extensively studied [1]. This paper attempts to bridge this gap. We
introduce PCEX, an online learning tool focused on introducing
program construction examples to students. PCEX presents exam-
ples in an interactive, engaging form in order to increase students’
motivation to work with examples and improve their learning. We
also report the results of a semester-long exploratory evaluation of
PCEX in an introductory programming class as well as the survey
that was carried out to understand the perception of the students
about the tool. Our results demonstrated interesting data about
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the relationships between the use of PCEX examples and student’s
learning.

2 RELATED WORK

2.1 Worked Examples in Programming

To make the message of this paper clearer, we classify program
examples that have been used in teaching and learning program-
ming into two groups according to their primary instructional goal:
program behavior examples and program construction examples.
Program behavior examples are used to demonstrate the semantics
(i.e., behavior) of various program constructs (i.e., what is happen-
ing inside a program or an algorithm when it is executed). Program
construction examples attempt to communicate important program-
ming patterns and practices by demonstrating how a program that
achieves various meaningful purposes (e.g., summing an array) is
constructed. This distinction might not be clearcut for examples
with no augmentation since the same example code be used for
both purposes. However, the attempts to augment examples with
learning technologies to increase their instructional value (i.e., add
code animation or explanations) usually focus on one of these goals.

Program behavior examples have been extensively studied. While
in textbooks and tutorials program behavior is still explained by
using textual comments attached to program code, a more advanced
method for this purpose - program visualization that visually illus-
trates the runtime behavior of computer programs - is becoming
increasingly more popular. Over the past three decades, a number of
specialized educational tools for observing and exploring program
execution in a visual form have been built and assessed [26]. The
decades of research in this area have demonstrated that animated
examples have the highest impact when students are interactively
engaged in the work with examples rather than watching the an-
imations passively. Several variants for engaging students have
been explored such as making animations more interactive (al-
lowing students to explore forwards and backwards or to enter
their own data), introducing challenges (asking students to predict
the next step), and asking students to construct the animations
themselves [21, 26, 27].

In contrast to interactive and engaging program behavior ex-
amples, program code examples are typically presented online as
text with comments [20] or as video fragments with instructor
narration over slides or a code editor window [25]. Such passive
presentation does not allow for exploration and engagement. In our
work on PCEX, we attempted to use the research findings in the
area of program behavior examples to produce interactive program
construction examples that better engage students and improve
their learning.

2.2 Program Construction Assessment Tools

Program construction assessment tools are currently the most pop-
ular e-learning technology to help students in acquiring program
construction knowledge. Early programming assessment tools re-
ceived uploads of entire student programs and evaluated them
against a set of instructor-defined tests [2]. A popular example
of these assignment-focused tools is Web-CAT [9]. More recent
tools have evolved into Web sites which pose program construction
problems to students and allow them to submit their code through
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a Web form. Many of these tools ask students to write small pieces
of code, rather than entire programs, and offer “skeleton” code
as a starter [18]. Nick Parlante’s CodingBat is one of the earliest
examples of these tools [23]. This model has been adopted by sev-
eral tools, including CodeWrite [8]; CodeAssessor [29]; PCRS [30];
CloudCoder [15]; and CodeWorkout [3], which was developed from
the Web-CAT project.

2.3 Integrated Systems

While animated examples and program construction assessment
tools were originally designed as independent systems, platforms
that incorporate more than one type of these tools have become
increasingly popular in “inverted courses”, MOOCs, ebooks [4, 5,
7, 10], and online practice systems [11, 14]. As a result, a number
of recent tools were designed to be easily re-usable in different
contexts. For example, the Online Python Tutor (OPT) [12], which
provides memory visualizations for a range of languages, has been
incorporated into ebooks [10], MOOCs and online courses [12]. Our
work follows this approach. PCEX examples were designed as re-
usable learning content. In our studies, the access to examples was
provided through an integrated practice system, which also offered
students programming problems served by a program construction
assessment tool.

3 PCEX: CHARACTERISTICS AND DESIGN

PCEX (Program Construction EXamples) is an interactive tool to
support mastering program construction skills through examples.
The innovative idea behind PCEX is to create “rich examples” that
support free exploration and challenge the student. Figure 1 il-
lustrates a PCEX example. Each PCEX example includes a “goal”
(Figure 1, A) and worked program steps (Figure 1, B). The goal
states what function the example program performs. The worked
steps begin with a subgoal label (Figure 1, C) and are represented
in the form of sequence of short fragments of code (no more than a
few lines of code) that illustrate how the program is constructed.
Labeling subgoals in worked examples is known to increase student
performance by leading students to group a set of steps and encour-
aging them to self-explain the reason for clustering those steps [6].
The example is enriched with instructional explanations that are
shown as question mark icons next to all or a subset of example
lines (Figure 1, D). Once a student clicks on a question mark, an
explanation is shown on the right side (Figure 1, E). The student
can request additional details for the selected line by clicking on
the “Additional Details” button (Figure 1, G) or can navigate to the
previous or next line to read an explanation (Figure 1, F).

In addition to being explorable, PCEX examples challenge stu-
dents by engaging them into a problem-solving activity. When a
student clicks on the “Challenge me” button (Figure 1, H), an in-
teractive challenge activity is presented to the student as shown
in Figure 2. The goal of a challenge is to encourage students to ap-
ply the program construction knowledge presented in the original
example to self-assess whether their understanding is correct. In
essence, a challenge is a programming problem that is very similar
to the original example in both the goal to achieve and the code. A
challenge has a problem statement (Figure 2, I) and code. However,
the code has no explanation and is not complete — one or more of
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‘ Example: Finding the Smallest Divisor of a Positive Number

divisor of 4is 2.

@public class JSmallestDivisor {

2 ublic static void main(String[] args) {

36//Step 1: Define the variables that we need for this program
4 int num = 15; @

5

int divisor = 2; @

Construct a program that finds the smallest divisor (other than 1) of a positive number. For example, the smallest
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>

Challenge
Me!

Explanations w~ PREVIOUS ~ NEXT ~ / F

e need to increment the divisor repeatedly as
long as the divisor is not a factor of the number.
Therefore, we need to use a loop structure. Since
we don't know ahead of time how many times

6 //Step 2: Find the smallest d1v1sqr of the number the loop will be repeated, we need to use a while
7] while (num % divisor != 0) { @ loop. The condition in the while loop tests
whether the body of the loop should be repeated,
8 divisor += 1; @ so it should test whether the divisor is not a
9 } factor of the number.
10 System.out.println("The smallest divisor of " + num + " is " + divisor); @ . )
We could check whether the divisor is not a
11 } factor of the number by computing the remainder
12} of the division of the number by the divisor.

PREVIOUS ADDITIONAL DETAILS G

Figure 1: A worked example in the PCEX activity. The example includes the goal (A), interactive worked code (B), the subgoal
label presented as a comment (C), the link to instructional explanations (question mark symbols) (D), explanations (E), a
navigation link to the explanation for the previous/next line (F), additional details for the highlighted line (G), and a challenge

navigation link (H).

the code lines are missing. The student’s goal is to complete the
code by dragging and dropping lines from the set of options (Figure
2,])) to each of the missing fields. This drag-and-drop interaction
approach is similar to Parsons problems (puzzles) [24]. The student
can check whether the challenge is solved correctly by clicking on
the “Check" button (Figure 2, K). The feedback is presented to the
student by highlighting correctly (in green) and incorrectly (in red)
placed lines. The student can also request a hint or more detailed
feedback (Figure 2, L). If the student cannot solve the challenge
with three attempts, she can request the solution.

At any moment, the student can navigate to the core explained
example (Figure 2, M). Also, if an example has several challenges,
the student may navigate between them. The student can navigate
to the next challenge only when the current challenge is solved or
the solution is seen after the third incorrect attempt (Figure 2, N).

In this work, we use the term PCEX activity to refer to the PCEX
worked example and its associated challenges. Each PCEX activity
was created by annotating the example and challenge code with a
set of predefined tags. The annotated code was parsed to generate a
corresponding JSON file for each of the PCEX activities. The JSON
file was used by a single-page JavaScript application to support
interactive work with examples and challenges as shown in Figures
1 and 2. The current version of the PCEX supports any executable
code in Java or Python. Note that the program code for a challenge

requires to produce an output as PCEX employs an output-based
evaluation of the student answer.

4 CLASSROOM EVALUATION STUDY

We conducted a classroom study to evaluate the relationship be-
tween using PCEX examples and students’ learning of programming
concepts. The subjects were students enrolled in an undergraduate
Introductory Java Programming course in Fall 2017. The course
had two sections with a shared syllabus and lecture materials. The
students who took the course were not required to have any prior
programming background.

The study followed a pre/post-test experimental design to exam-
ine the relationship between using PCEX examples and student’s
learning. In the beginning of the semester, students completed a
pre-test consisting of six questions that evaluated knowledge of
a subset of programming constructs covered in the course. The
questions were designed to cover both easy and complex concepts
in programming. The first three questions asked the student to com-
plete code by filling in blank line(s) or writing small code snippets.
The remaining three questions asked the student to determine the
correct order of provided lines of code to achieve a certain purpose.
The lines were shuffled and included distractors. A post-test iso-
morphic to the pre-test was administered at the end of the semester.
Maximum possible score on the pre/post-test was 29: 14 points for
the first three questions and 15 points for the last three questions.
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Challenge: Finding the Largest Divisor of a Positive Number

Construct a program that finds the largest divisor of a positive number, excluding the number itself. For example, the largest divisor of 24 is 12.

G Drag a tile to each missing field to construct this program.

Incorrect. Try Again!
1 public class JLargestDivisor { Your program output is different than the
2 public static void main(String[] args) { expected output
3 //step 1: Define the variables that we need for this program

int num = 15;

5 int divisor = num-1;
6 //step 2: Find the largest divisor of the number
while ( num % divisor != 0 ) {
8 divisor += 1;
9 }
10 System.out.println("The largest divisor of " + num + " is " + divisor);

11 }
12}

Figure 2: A challenge in the PCEX activity that follows the worked example in Figure 1. The challenge includes the goal (I),
has one or more missing lines, and asks the student to drag and drop a line from the given options (J) to each missing line to
construct the program. A student can request feedback by pressing the “Check” button (K). The feedback message is shown in
part (L). The student can go back to the example by pressing the “Back” button (M). If there are more challenges available, the
student can go to the next challenge by pressing the “Challenge Me” button (N). This button is shown only when the current

challenge is solved or the student checks the solution after the third incorrect attempt.

All students were provided with a link and an individual account
to access a practice system that included 55 PCEX activities, as
described in Section 3, and 46 coding exercises served by the PCRS
tool [30]. The learning content was organized into 14 topics. All
PCEX activities started with a worked example and were followed
by 1-3 challenges (the median was 1). In total, PCEX activities
included 55 interactive examples with 628 line explanations and 76
challenges. Although the use of the practice system was voluntary,
students were encouraged to use the system by offering extra credit
for those who completed at least 3 PCEX activities (i.e., viewed the
examples and solved all the associated challenges for the example
they viewed) and solved 7 coding problems. All the practice con-
tent in the system were accessed through Mastery Grids [19]. To
engage students to work with the content, Mastery Grids provides
visual personal progress tracking (known as Open Student Model-
ing (OSM)), as well as social comparison visualizations (known as
Open Social Student Modeling (OSSM)). Only the OSM features of
the interface were enabled for this study.

5 COLLECTED DATA

Data from students in all sections were combined. 71 students took
the final exam. 64 took both the pre-test and post-test and logged
in to the system, and 62 attempted at least one activity (i.e., loaded
a PCEX activity or attempted a coding exercise). Table 1 shows the
summary statistics for all usage variables, after removing outliers!.

!We excluded the line clicks of one student who clicked on 400 (64%) example lines
and also the time on examples for another student who spent over 500 minutes on

We measured the usage of activities by counting the number of
examples accessed, example line clicked, challenges and coding ex-
ercises solved, and PCEX activities completed (that is, all challenges
associated with the examples were solved). We also tracked the time
spent on each of the challenges and activities. For the examples,
we distinguished between the time a student spent inspecting the
examples before clicking any of the lines and the time the student
spent reading the explanation while clicking through example lines.
The total time spent on examples is the sum of these two. The total
time spent on PCEX activities includes the total time the student
spent on worked examples and associated challenges.

On average, students accessed 31 (56%) worked examples, clicked
on 72 (11%) example lines, solved 38 (50%) distinct challenges and
17 (37%) distinct coding exercises, and completed 28 (51%) PCEX
activities. The average time that students spent inspecting the ex-
amples before clicking any of the lines with explanations (49 mins.)
was about the same as the average time that students spent access-
ing explanations (47 mins.). The average time spent on challenges
(80 mins.) was about 2.7 times less than the average time students
spent on coding exercises (213 mins.). Overall, the average total
time that students spent on PCEX activities (examples and chal-
lenges) was 177 mins., which is comparable to the time spent on
coding exercises.

Many of these fine-grained measures were highly correlated
with one another and should not be considered as independent
measures. In particular, the number of distinct successful attempts

examples. It should be noted that using all student data showed the same pattern of
results for all analyses.
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Table 1: Summary statistics for usage of PCEX and coding
exercises by students who logged in to the system and at-
tempted at least one activity (N=62).

Median Mean Min Max

EXAMPLES

Example accesses 33 30.7 1 55
Example line clicks 41.5 72.4 0 517
Time on examples before line clicks (mins.) 29.5 49.3 04 2738
Time on example lines (mins.) 26.2 47.0 0 302.3
Total time on examples (mins.) 60.3 96.4 04 576.1
CHALLENGES

Challenge attempts 80 86.2 0 336
Challenges solved 40 41.7 0 96
Distinct challenge attempts 38.5 38.4 0 76
Distinct challenges solved 37 38.1 0 76
Time on challenges (mins.) 59.4 80.5 0 342
PCEX ACTIVITIES

PCEX activities completed 27 27.8 0 55
Total time on PCEX activities (mins.) 115.9 176.9 04 9181
CODING EXERCISES

Coding exercise attempts 71 105.5 0 382
Coding exercises solved 12,5 19.3 0 73
Distinct coding exercise attempts 14 19.2 0 46
Distinct coding exercises solved 11 17.2 0 46
Time on coding exercises (mins.) 128.8 212.5 0 868.2

on PCEX challenges was highly correlated with challenge attempts
(p = 0.92), challenges solved (p = 0.99), distinct challenge attempts
(p = 1), and time on challenges (p = 0.83). Similarly, the number
of distinct successful attempts on coding exercises was highly cor-
related with coding exercise attempts (p = 0.88), coding exercises
solved (p = 0.99), distinct coding exercise attempts (p = 0.99),
and time on coding exercises (p = 0.9). PCEX activities were also
highly correlated to the total time on PCEX activities (p = 0.74).
We also found a moderate correlation between example accesses
and example line clicks (p = 0.44) and a strong correlation between
example line clicks and time on example lines (p = 0.87).

After examining the correlations between these variables, we de-
cided to use only three independent variables that were not highly
correlated: example line clicks, representing the amount of interac-
tion with examples; PCEX activities completed, representing the
total work done with PCEX activities; and distinct coding exercises
solved, representing the amount of work done on coding exercises.

6 RESULTS

We started by investigating the correlation between usage of PCEX
activities and student’s learning. This overall usage analysis is
then complemented with a more detailed analysis that describes
the relationship between usage of PCEX and student’s learning
over time and identifies which usage behaviors resulted in better
learning.

6.1 Relationship between usage of PCEX and
student’s learning

We evaluated the correlation between usage of PCEX activities and
student’s learning, using several measures of process success and
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outcomes: (1) learning gain, which is defined as the ratio of the
actual gain (post-test score minus pretest score) to the maximum
possible gain (maximum achievable post-test score minus pretest
score); (2) number of challenges that the student solved; (3) number
of coding exercises that the student solved; (4) midterm grade; and
(5) final exam grade.

6.1.1 Correlation between usage of PCEX and learning gain.
Learning gain was calculated for the 64 students who had taken
both pre-test and post-test, answering all of the questions in the test.
The learning gain followed a normal distribution and ranged from
0.07 to 1.0 with a mean of 0.58. The number of example line clicks
were not correlated with learning gain; however, PCEX activities
completed had a significant positive correlation with learning gain
(p = 0.30,p = .02). In addition, coding exercises were found to have
a strong positive correlation with learning gain (p = 0.62,p < .001).

6.1.2  Correlation between usage of PCEX and performance in
coding exercises. We looked into the relationship between usage of
PCEX activities and distinct successful attempts on coding exercises
and found that working with PCEX activities was positively corre-
lated with student coding performance: the number of example line
clicks (p = 0.31,p = .01) was correlated with distinct successful
attempts on coding exercises, as was the number of PCEX activities
completed (p = 0.71,p < .001).

We also ran multiple regression analyses to examine whether
the PCEX activities and example line clicks could significantly
predict the number of distinct coding exercises solved, controlling
for prior knowledge, as measured by the pre-test. We fitted two
multiple regressions, one with example lines clicked and pre-test
score as factors and one with PCEX activities completed and the
pre-test as factors. Both were significant independent predictors
of distinct coding exercises solved even after controlling for the
pre-test: each additional example line click and each PCEX activity
a student completed resulted in a 0.05 (SE = 0.02,p = .03) and 0.62
(SE = 0.07,p < .001) increase in the number of distinct coding
exercises solved, respectively.

6.1.3  Correlation between usage of PCEX and course performance.
We also looked into the relationship between total usage of PCEX
activities and the student’s midterm or final grade, while controlling
for the prior knowledge (i.e., pre-test score). Only the number of
distinct coding exercises a student solved was a significant predictor
of the midterm and final grade. Each successful attempt on coding
exercises was associated with a 0.43 (SE = 0.12,p < .001) increase
in the midterm and a 0.45 (SE = 0.13,p < .01) increase in the final
grade.

6.2 Correlation between usage of PCEX and
student’s learning over time

6.2.1 Correlation analysis during the first and second half of
the course . Research studying worked examples has consistently
shown that the positive effect of worked examples is stronger in
early stages of skill acquisition, when students typically have little
or no domain knowledge, while gradually declining in later stages
of skill acquisition as the learner develops more expertise [16, 28].
To investigate whether this relationship exists in our data, we split
the data into halves, resulting in data from 55 students in the first
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half and 44 students in the second half of the course. We fitted
regression models to predict the number of distinct coding exercises
that student solved in each half using the PCEX activities completed
and example line clicks. We also fitted regressions to predict the
number of distinct challenges that student solved using the example
line clicks. In all these regressions, we controlled for differences in
pre-test scores.

We plotted the estimated coefficients obtained from the regres-
sion analysis in Figure 3. Figure 3(a) shows the estimated coefficients
for the PCEX activities completed. In both the first and second half
of the course, PCEX activities completed was significant predic-
tor of the distinct coding exercise solved. More specifically, in the
first half, each PCEX activity completed was associated with a 0.7
(SE = 0.1,p < .001) increase in the number of distinct coding
exercise solved. In the second half, each PCEX activity completed
was associated with only a 0.4 (SE = 0.1,p < .001) increase in the
number of distinct coding exercises solved (i.e., approximately half
the early correlation).

The estimated coefficient for example line clicks was smaller
than the coefficient for the PCEX activities completed (Figure 3(b)).
It was significant only in the first half of the course and only for
predicting the number of distinct challenges that a student solved.
In the first half, each example line that was clicked increased the
distinct correct attempts on challenges by 0.1 (SE = 0.03,p = .01).
This coefficient was no longer statistically significant in the second
half of the course, which suggests that individual line explanations
accessible through line clicks are most important in the first half of
the course when students are still in the early stages of learning.
As students gain more knowledge in the domain, the knowledge
added by each individual explanation becomes less essential.

6.2.2 Correlation analysis of the regular and exam preparation
usage. To further investigate how regularity of practice with the
system influenced the learning results, we split the total practice
of the students into regular practice during the semester and exam
preparation practice (i.e., one week before the exam). Using spectral
clustering, we grouped students based on the percentage of example
lines clicked, the percentage of PCEX activities completed, and
percentage of coding exercise solved?. We found three clusters that
differed by the activity profile. The amount of practice within each
cluster is shown in Figure 4(a) for regular practice and in Figure
4(b) for exam preparation practice.

Students in Cluster 1 had the highest amount of regular practice:
On average, they completed 70% of the PCEX activities, solved 70%
of the coding exercises and clicked on 10% of the example lines.
Meanwhile, on average, the students in Cluster 2 clicked the same
percentage of lines as students in Cluster 1 but completed 2.3 times
fewer PCEX activities and solved 3.5 times fewer coding exercises.
The students in Cluster 3 had the least amount of regular practice of
all the clusters. On average, they clicked on 10% of the example lines,
completed only 20% of the PCEX activities, and solved only 10% of
the coding exercises. As seen in Figure 4(b), Cluster 2 was the only
cluster that practiced with the system during the exam preparation
week. Students in Cluster 2 had the same amount of practice during
the exam preparation week as throughout the semester.

%We made sure that the variables used for clustering were not highly correlated (p
was below 0.8 between each pair of variables).
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Figure 3: Regression estimates for (a) PCEX activities com-
pleted and (b) example line clicks on distinct problems that
student solved during the first and second half of the course.
Error bars show standard errors. In (b), the solid line rep-
resent the estimated coefficients for predicting the distinct
challenges solved while the dashed line represents the es-
timated coefficients for predicting the distinct coding exer-
cises solved.

Table 2 summarizes the learning results across different clus-
ters. The learning results were analyzed using a one-way analy-
sis of variance (ANOVA), followed by Tukey’s post hoc compar-
isons. Overall, the correlation was significant for learning gain
F(2,60) = 5.2,p < .01 and midterm score F(2,60) = 4.9, p = .01 but
not on pre-test scores, ruling out the impact of initial differences
between groups. Learning gain was significantly higher in Cluster
1, which included students with high regular practice (completing
about 70% of the PCEX activities and coding exercises) compared
to both Cluster 2 (moderate constant practice, p = .01) and Cluster
3 (low regular practice, p = .02). The regular practice in Custer 1
(high regular practice) is also associated with significantly higher
midterm scores than Cluster 3 (low regular practice, p = .01), but
only marginally higher than Cluster 2 (moderate constant prac-
tice, p = .08). These observations further suggest that students
who worked with PCEX activities and coding exercises regularly
obtained better learning results.
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Figure 4: Percentage of practice for different clusters when system usage is split into (a) regular and (b) exam preparation.
Usage is expressed as mean and standard error for the mean (error bars).

Table 2: Summary of learning results for clusters obtained
after splitting practice into regular and exam preparation.
Values are expressed as mean and standard error for the
mean (in parentheses). The pretest score ranges from 0 to 29,
learning gain ranges from 0 to 1, and midterm/exam score
ranges from 0 to 100.

Cluster  Pre-test Learning gain Exam score Midterm score
1(N=18) 4.8(1.5) 0.7 (0.05) 91.9 (2.2) 94.1 (1.3)
2(N=19) 5.0(1.4) 0.5 (0.06) 81.0 (4.6) 83.5 (3.6)
3(N=25) 4.5 (1.0) 0.5 (0.05) 81.0 (3.9) 80.0 (3.6)

7 SURVEY ANALYSIS

We conducted a survey at the end of the semester to collect students’
opinion of the PCEX activities. The survey consisted of two parts.
In the first part, students responded about the amount of system
use: Yes-more than 10 times, Yes-between 5 and 10 times, Yes-less than
5 times, and No. Those who chose one of the last two options were
asked to provide their opinion on 6 follow-up items that focused on
why the system was not used. Two of the items referred to bad sys-
tem experience, two emphasized no help needed, and two addressed
other reasons, in particular poor introduction of the system and lack
of time to use the system.

The second part of the survey aimed to evaluate the PCEX ac-
tivities, focusing on only students who used the system. Following
the suggestion in [17] that identified key constructs required to
evaluate a learning objective, we included three constructs: learn-
ing, quality, and engagement. Each construct had four items, two
negatively and two positively worded. For the learning construct,
items referred to student perception of how much they learned from
using the PCEX activity. For the quality construct, items referred
to the quality of the PCEX activity. Finally, for the engagement
construct, items examined the level of student involvement in the

PCEX activity. Note that in the survey, we referred to PCEX activi-
ties as examples-challenges because the practice system grouped
PCEX activities under this name. Across all survey items, students
were asked to respond using a 5-point Likert scale ranging from
Strongly Disagree (1) to Strongly Agree (5).

In the first step of the survey analysis, we assessed the reliability
of the survey items under each construct using Cronbach’s a. We
dropped two items from the engagement construct because item-
construct correlations were lower than the recommended value,
0.30. Additionally, we checked whether the internal consistency
could improve if any of the items within a construct were deleted.
All items in the learning and engagement construct had acceptable
internal consistency with the other items within that construct. The
a was 0.8 for the learning construct and 0.6 for the engagement
construct. After we discarded two items from the quality construct,
the a improved from 0.7 to 0.9. No further item was discarded
from the survey. At the end, all three constructs appeared to be
sufficiently reliable to assess the value of PCEX activities, with a
values exceeding the suggested minimum acceptable « coefficient
of 0.50 [22].

Out of the 65 students who provided consent to use their data,
43% used the system more than 10 times, 37% used the system
between 5 and 10 times, 14% used the system less than 5 times,
and 6% did not use the system at all. The first plot in Figure 5
shows distribution of students answers to the 6 survey items that
referred to the reasons for low/zero usage of the practice system.
Overall, students mostly agreed that they did not use the system
due to lack of time, preferring other resources and materials, and
not feeling the need for additional help. Students disagreed with
items that suggested other reasons for low/zero of the practice
system, including the items that referred to bad system experience.

Distribution of students answers relating to the value of PCEX
activities is shown in the second plot in Figure 5. The mean learning
rating was 3.8 (SD = 0.8) which indicates that students perceived
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PCEX activities to be helpful for learning. Notably, more than 70%
of the students agreed with the items under the learning construct
(items 1-2, 4-5 in the y-axis). The mean quality rating was 3.7 (SD =
1), indicating that the students were also positive toward the quality
of explanations and code in the PCEX activities (item 3 and item 6
in the y-axis). The mean engagement rating was 3.2 (SD = .9), very
close to the neutral part of the scale. While approximately 40% of
the students agreed that they tried hard to understand the examples
and challenges and did not skim-read them, a sizable fraction of the
class disagreed with these statements (last two items in the y-axis).

8 CONCLUSION AND FUTURE WORK

This paper introduced PCEX, an interactive tool to support learning
from program construction examples. PCEX made each program ex-
ample explorable and engaging: students can explore each example
interactively and check their understanding by solving challenges
that are similar to that example. To promote learning, the examples
in PCEX are enriched by worked steps with subgoal labels and
explanations. To assess the relationship between using this new
educational technology and student’s learning, the paper also re-
ported results from an exploratory semester-long classroom study.
In this study, students enrolled in a Java Programming class were en-
couraged to use a non-mandatory practice system, which included
PCEX activities as well as automatically-assessed coding exercises.
When analyzing the collected data, we observed that completing
PCEX activities had a significant correlation with learning gain.
Those students who completed more PCEX activities learned more
than those who completed fewer (or no) PCEX activities. We also
found that work with PCEX activities had a positive correlation
with student’s performance in coding exercises even when prior
knowledge (as measured by the pre-test) was controlled.

Another interesting observation was that the correlation of work
with PCEX activities and student’s learning was stronger in the first
half of the course than the second half. This finding is consistent
with past studies that showed that the worked example effect is
stronger in the early stages of learning and declines as a student’s
knowledge grows [16, 28].

We also found that regular practice with PCEX activities is as-
sociated with better learning outcomes. Students who used PCEX
activities regularly during the course and, on average, completed
70% of the PCEX activities and coding exercises, achieved higher
learning gain and midterm score than students in the group that
used the PCEX activities and coding exercises less regularly but
worked more during the exam preparation time.

Finally, the survey results suggest that students found the PCEX
activities to be of high quality and helpful for learning programming.
At the same time, students’ self-reported level of engagement with
PCEX activities was lower than other aspects of their feedback.
This indicates a need for follow-up interviews to uncover possible
reasons for lower engagement and discuss options to improve the
engagement side of PCEX.

Bringing together two sources of information (logs and survey),
we can also observe that both approaches to augment traditional
examples, line-level explanations and challenges, were valuable
for the students. As shown in Section 6.1, every explored line ex-
planation and every attempted challenge can be associated with
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| did not have enough time to use the system
(M=3.4, SD=1.3)

| preferred to use other resources and material
to learn Java (M=3.5, SD=.8)

| was doing well in class without the system and
did not need any extra help (M=3.5, SD=1.3)

| didn't think the system can help me to better
master Java (M=2.2, SD=1.1)

The user interface was too confusing to use
(M=2.2, SD=.8)

The system was not introduced properly in class
(M=1.8, SD=.7)

|
100

o
o

0
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T

Working with the examples—challenges helped me
learn Java (M=4, SD=.9)

The examples—challenges helped me in solving Java
exercises in this class (M=3.7, SD=1.2)

The explanations in the examples—challenges were
not hard to understand (M=3.7, SD=1.1)

Exploring similar examples—challenges helped me
learn Java (M=3.9, SD=.8)

The explanations in the examples-challenges
helped me to better understand the Java
programming concepts (M=3.6, SD=1)

The code in examples—challenges were not too
complicated to understand (M=3.7, SD=1)

| tried hard to understand the
examples—challenges (M=3.3, SD=1)

| did not skim-read the examples-challenges
(M=3.1, SD=1)
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Figure 5: The distribution of answers for the survey items.
The percentage of respondents who agree/disagree with
each item are shown to the right/left of the zero line. The
percentage of respondents who neither agree nor disagree
are split down the middle and are shown in a neutral color.
The items in the y-axis are ordered based on the percentage
of agreements, with the uppermost/lowermost item having
the most/least agreement.

an improvement in student’s performance. Students’ feedback on
survey items that separately assessed the educational value of expla-
nations and challenges was also positive in both cases. At the same
time, the data hints that among these two types of augmentation,
the challenges are more valuable educationally and more appealing
to the students. As Section 6.1 shows, the positive correlation of
one explored line was more than 10 times lower (0.05 vs 0.62) than
the positive correlation of one challenge (which typically expected
students to move 2 — 4 lines of code). Students’ feedback about
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the value of explanations was also slightly less positive than their
feedback about challenges (3.6 vs 3.9). The same trend can also be
observed in the usage statistics reported in Section 5: the students
completed 51% of the PCEX activities, but explored only 11% of the
example lines.

An important goal of this study was to evaluate long-term impact
of our technology in the target context. While the format of a
semester-long study in a real college course was the best match to
our goal, it also made it challenging, practically and ethically, to
form a control group with only partial access to the system (i.e.,
no examples or no challenges). As a result, our study has at least
two important limitations. First, our results might be subject to a
self-selection bias. Since the amount of PCEX usage was determined
by the students themselves, we cannot determine whether PCEX
helped students with getting a better grade, or if, instead, students
with a better grade were more motivated to succeed and, as a result,
allocated more time to work with the non-mandatory practice
system. Second, our design combined explorability and challenges
in a single condition, making it impossible to assess the impact of
each of these features.

In future work, we plan to conduct a randomized controlled
study with students practicing programming with/without PCEX
as well as with/without explorability and challenges. We expect to
confirm that the combined effect of explorability and challenges
would improve learning from examples and hope to assess their
comparative impact more reliably. We also plan to assess the impact
of PCEX examples on student learning in other domains, such as
Python programming. Finally, we plan to develop an authoring tool
to make PCEX available to broader community.
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