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ABSTRACT

A sizable body of research on instructional practices supports the

use of worked examples for acquiring cognitive skills in domains

such as mathematics and physics. Although examples are also

important in the domain of programming, existing research on

programming examples is limited. Program examples are used by

instructors to achieve two important goals: to explain program be-

havior and to demonstrate program construction patterns. Program

behavior examples are used to demonstrate the semantics of vari-

ous program constructs (i.e., what is happening inside a program

or an algorithm when it is executed). Program construction exam-

ples illustrate how to construct a program that achieves a specific

purpose. While both functions of program examples are important

for learning, most of the example-focused research in computer

science education focused on technologies for augmenting program

behavior examples such as program visualization, tracing tables,

etc. In contrast, advanced technologies for presenting program

construction examples were rarely explored. This work introduces

interactive Program Construction Examples (PCEX) to begin a sys-

tematic exploration of worked-out program construction examples

in the domain of computer science education. A classroom evalua-

tion and analysis of the survey data demonstrated that the usage

of PCEX examples is associated with better student’s learning and

performance.
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1 INTRODUCTION

Program code examples play a crucial role in learning how to pro-

gram. Instructors use examples extensively to demonstrate the

semantics of the programming language being taught, to intro-

duce problem-solving approaches, and to highlight fundamental

coding patterns. Programming textbooks also devote attention to

examples with a large proportion of textbook space consumed by

program examples and associated comments. Moreover, the code

of all presented examples is typically provided in accompanying

materials to encourage students to explore, run, and modify the

examples. In contrast, the work on e-learning tools for computer

science education uses code examples quite unevenly. While there

is an active stream of work focused on code behavior examples (usu-

ally presented as dynamic code animations), there are very few

e-learning tools focused on program construction examples, i.e., a

step-by-step demonstration on how to solve a specific program-

ming problem. These examples are typically presented online in a

passive learning form - as a static code or, rarely, as a screencast.

In this aspect, computer science education significantly lags be-

hind other areas such as mathematics and physics where learning

technologies for presenting problem-solving examples have been

extensively studied [1]. This paper attempts to bridge this gap. We

introduce PCEX, an online learning tool focused on introducing

program construction examples to students. PCEX presents exam-

ples in an interactive, engaging form in order to increase students’

motivation to work with examples and improve their learning. We

also report the results of a semester-long exploratory evaluation of

PCEX in an introductory programming class as well as the survey

that was carried out to understand the perception of the students

about the tool. Our results demonstrated interesting data about
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the relationships between the use of PCEX examples and student’s

learning.

2 RELATED WORK

2.1 Worked Examples in Programming

To make the message of this paper clearer, we classify program

examples that have been used in teaching and learning program-

ming into two groups according to their primary instructional goal:

program behavior examples and program construction examples.

Program behavior examples are used to demonstrate the semantics

(i.e., behavior) of various program constructs (i.e., what is happen-

ing inside a program or an algorithm when it is executed). Program

construction examples attempt to communicate important program-

ming patterns and practices by demonstrating how a program that

achieves various meaningful purposes (e.g., summing an array) is

constructed. This distinction might not be clearcut for examples

with no augmentation since the same example code be used for

both purposes. However, the attempts to augment examples with

learning technologies to increase their instructional value (i.e., add

code animation or explanations) usually focus on one of these goals.

Program behavior examples have been extensively studied.While

in textbooks and tutorials program behavior is still explained by

using textual comments attached to program code, a more advanced

method for this purpose - program visualization that visually illus-

trates the runtime behavior of computer programs - is becoming

increasingly more popular. Over the past three decades, a number of

specialized educational tools for observing and exploring program

execution in a visual form have been built and assessed [26]. The

decades of research in this area have demonstrated that animated

examples have the highest impact when students are interactively

engaged in the work with examples rather than watching the an-

imations passively. Several variants for engaging students have

been explored such as making animations more interactive (al-

lowing students to explore forwards and backwards or to enter

their own data), introducing challenges (asking students to predict

the next step), and asking students to construct the animations

themselves [21, 26, 27].

In contrast to interactive and engaging program behavior ex-

amples, program code examples are typically presented online as

text with comments [20] or as video fragments with instructor

narration over slides or a code editor window [25]. Such passive

presentation does not allow for exploration and engagement. In our

work on PCEX, we attempted to use the research findings in the

area of program behavior examples to produce interactive program

construction examples that better engage students and improve

their learning.

2.2 Program Construction Assessment Tools

Program construction assessment tools are currently the most pop-

ular e-learning technology to help students in acquiring program

construction knowledge. Early programming assessment tools re-

ceived uploads of entire student programs and evaluated them

against a set of instructor-defined tests [2]. A popular example

of these assignment-focused tools is Web-CAT [9]. More recent

tools have evolved into Web sites which pose program construction

problems to students and allow them to submit their code through

a Web form. Many of these tools ask students to write small pieces

of code, rather than entire programs, and offer łskeletonž code

as a starter [18]. Nick Parlante’s CodingBat is one of the earliest

examples of these tools [23]. This model has been adopted by sev-

eral tools, including CodeWrite [8]; CodeAssessor [29]; PCRS [30];

CloudCoder [15]; and CodeWorkout [3], which was developed from

the Web-CAT project.

2.3 Integrated Systems

While animated examples and program construction assessment

tools were originally designed as independent systems, platforms

that incorporate more than one type of these tools have become

increasingly popular in łinverted coursesž, MOOCs, ebooks [4, 5,

7, 10], and online practice systems [11, 14]. As a result, a number

of recent tools were designed to be easily re-usable in different

contexts. For example, the Online Python Tutor (OPT) [12], which

provides memory visualizations for a range of languages, has been

incorporated into ebooks [10], MOOCs and online courses [12]. Our

work follows this approach. PCEX examples were designed as re-

usable learning content. In our studies, the access to examples was

provided through an integrated practice system, which also offered

students programming problems served by a program construction

assessment tool.

3 PCEX: CHARACTERISTICS AND DESIGN

PCEX (Program Construction EXamples) is an interactive tool to

support mastering program construction skills through examples.

The innovative idea behind PCEX is to create łrich examplesž that

support free exploration and challenge the student. Figure 1 il-

lustrates a PCEX example. Each PCEX example includes a łgoalž

(Figure 1, A) and worked program steps (Figure 1, B). The goal

states what function the example program performs. The worked

steps begin with a subgoal label (Figure 1, C) and are represented

in the form of sequence of short fragments of code (no more than a

few lines of code) that illustrate how the program is constructed.

Labeling subgoals in worked examples is known to increase student

performance by leading students to group a set of steps and encour-

aging them to self-explain the reason for clustering those steps [6].

The example is enriched with instructional explanations that are

shown as question mark icons next to all or a subset of example

lines (Figure 1, D). Once a student clicks on a question mark, an

explanation is shown on the right side (Figure 1, E). The student

can request additional details for the selected line by clicking on

the łAdditional Detailsž button (Figure 1, G) or can navigate to the

previous or next line to read an explanation (Figure 1, F).

In addition to being explorable, PCEX examples challenge stu-

dents by engaging them into a problem-solving activity. When a

student clicks on the łChallenge mež button (Figure 1, H), an in-

teractive challenge activity is presented to the student as shown

in Figure 2. The goal of a challenge is to encourage students to ap-

ply the program construction knowledge presented in the original

example to self-assess whether their understanding is correct. In

essence, a challenge is a programming problem that is very similar

to the original example in both the goal to achieve and the code. A

challenge has a problem statement (Figure 2, I) and code. However,

the code has no explanation and is not complete ś one or more of
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Table 1: Summary statistics for usage of PCEX and coding

exercises by students who logged in to the system and at-

tempted at least one activity (N=62).

Median Mean Min Max

EXAMPLES

Example accesses 33 30.7 1 55

Example line clicks 41.5 72.4 0 517

Time on examples before line clicks (mins.) 29.5 49.3 0.4 273.8

Time on example lines (mins.) 26.2 47.0 0 302.3

Total time on examples (mins.) 60.3 96.4 0.4 576.1

CHALLENGES

Challenge attempts 80 86.2 0 336

Challenges solved 40 41.7 0 96

Distinct challenge attempts 38.5 38.4 0 76

Distinct challenges solved 37 38.1 0 76

Time on challenges (mins.) 59.4 80.5 0 342

PCEX ACTIVITIES

PCEX activities completed 27 27.8 0 55

Total time on PCEX activities (mins.) 115.9 176.9 0.4 918.1

CODING EXERCISES

Coding exercise attempts 71 105.5 0 382

Coding exercises solved 12.5 19.3 0 73

Distinct coding exercise attempts 14 19.2 0 46

Distinct coding exercises solved 11 17.2 0 46

Time on coding exercises (mins.) 128.8 212.5 0 868.2

on PCEX challenges was highly correlated with challenge attempts

(ρ = 0.92), challenges solved (ρ = 0.99), distinct challenge attempts

(ρ = 1), and time on challenges (ρ = 0.83). Similarly, the number

of distinct successful attempts on coding exercises was highly cor-

related with coding exercise attempts (ρ = 0.88), coding exercises

solved (ρ = 0.99), distinct coding exercise attempts (ρ = 0.99),

and time on coding exercises (ρ = 0.9). PCEX activities were also

highly correlated to the total time on PCEX activities (ρ = 0.74).

We also found a moderate correlation between example accesses

and example line clicks (ρ = 0.44) and a strong correlation between

example line clicks and time on example lines (ρ = 0.87).

After examining the correlations between these variables, we de-

cided to use only three independent variables that were not highly

correlated: example line clicks, representing the amount of interac-

tion with examples; PCEX activities completed, representing the

total work done with PCEX activities; and distinct coding exercises

solved, representing the amount of work done on coding exercises.

6 RESULTS

We started by investigating the correlation between usage of PCEX

activities and student’s learning. This overall usage analysis is

then complemented with a more detailed analysis that describes

the relationship between usage of PCEX and student’s learning

over time and identifies which usage behaviors resulted in better

learning.

6.1 Relationship between usage of PCEX and
student’s learning

We evaluated the correlation between usage of PCEX activities and

student’s learning, using several measures of process success and

outcomes: (1) learning gain, which is defined as the ratio of the

actual gain (post-test score minus pretest score) to the maximum

possible gain (maximum achievable post-test score minus pretest

score); (2) number of challenges that the student solved; (3) number

of coding exercises that the student solved; (4) midterm grade; and

(5) final exam grade.

6.1.1 Correlation between usage of PCEX and learning gain.

Learning gain was calculated for the 64 students who had taken

both pre-test and post-test, answering all of the questions in the test.

The learning gain followed a normal distribution and ranged from

0.07 to 1.0 with a mean of 0.58. The number of example line clicks

were not correlated with learning gain; however, PCEX activities

completed had a significant positive correlation with learning gain

(ρ = 0.30,p = .02). In addition, coding exercises were found to have

a strong positive correlation with learning gain (ρ = 0.62,p < .001).

6.1.2 Correlation between usage of PCEX and performance in

coding exercises. We looked into the relationship between usage of

PCEX activities and distinct successful attempts on coding exercises

and found that working with PCEX activities was positively corre-

lated with student coding performance: the number of example line

clicks (ρ = 0.31,p = .01) was correlated with distinct successful

attempts on coding exercises, as was the number of PCEX activities

completed (ρ = 0.71,p < .001).

We also ran multiple regression analyses to examine whether

the PCEX activities and example line clicks could significantly

predict the number of distinct coding exercises solved, controlling

for prior knowledge, as measured by the pre-test. We fitted two

multiple regressions, one with example lines clicked and pre-test

score as factors and one with PCEX activities completed and the

pre-test as factors. Both were significant independent predictors

of distinct coding exercises solved even after controlling for the

pre-test: each additional example line click and each PCEX activity

a student completed resulted in a 0.05 (SE = 0.02,p = .03) and 0.62

(SE = 0.07,p < .001) increase in the number of distinct coding

exercises solved, respectively.

6.1.3 Correlation between usage of PCEX and course performance.

We also looked into the relationship between total usage of PCEX

activities and the student’s midterm or final grade, while controlling

for the prior knowledge (i.e., pre-test score). Only the number of

distinct coding exercises a student solved was a significant predictor

of the midterm and final grade. Each successful attempt on coding

exercises was associated with a 0.43 (SE = 0.12,p < .001) increase

in the midterm and a 0.45 (SE = 0.13,p < .01) increase in the final

grade.

6.2 Correlation between usage of PCEX and
student’s learning over time

6.2.1 Correlation analysis during the first and second half of

the course . Research studying worked examples has consistently

shown that the positive effect of worked examples is stronger in

early stages of skill acquisition, when students typically have little

or no domain knowledge, while gradually declining in later stages

of skill acquisition as the learner develops more expertise [16, 28].

To investigate whether this relationship exists in our data, we split

the data into halves, resulting in data from 55 students in the first
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half and 44 students in the second half of the course. We fitted

regression models to predict the number of distinct coding exercises

that student solved in each half using the PCEX activities completed

and example line clicks. We also fitted regressions to predict the

number of distinct challenges that student solved using the example

line clicks. In all these regressions, we controlled for differences in

pre-test scores.

We plotted the estimated coefficients obtained from the regres-

sion analysis in Figure 3. Figure 3(a) shows the estimated coefficients

for the PCEX activities completed. In both the first and second half

of the course, PCEX activities completed was significant predic-

tor of the distinct coding exercise solved. More specifically, in the

first half, each PCEX activity completed was associated with a 0.7

(SE = 0.1,p < .001) increase in the number of distinct coding

exercise solved. In the second half, each PCEX activity completed

was associated with only a 0.4 (SE = 0.1,p < .001) increase in the

number of distinct coding exercises solved (i.e., approximately half

the early correlation).

The estimated coefficient for example line clicks was smaller

than the coefficient for the PCEX activities completed (Figure 3(b)).

It was significant only in the first half of the course and only for

predicting the number of distinct challenges that a student solved.

In the first half, each example line that was clicked increased the

distinct correct attempts on challenges by 0.1 (SE = 0.03,p = .01).

This coefficient was no longer statistically significant in the second

half of the course, which suggests that individual line explanations

accessible through line clicks are most important in the first half of

the course when students are still in the early stages of learning.

As students gain more knowledge in the domain, the knowledge

added by each individual explanation becomes less essential.

6.2.2 Correlation analysis of the regular and exam preparation

usage. To further investigate how regularity of practice with the

system influenced the learning results, we split the total practice

of the students into regular practice during the semester and exam

preparation practice (i.e., one week before the exam). Using spectral

clustering, we grouped students based on the percentage of example

lines clicked, the percentage of PCEX activities completed, and

percentage of coding exercise solved2. We found three clusters that

differed by the activity profile. The amount of practice within each

cluster is shown in Figure 4(a) for regular practice and in Figure

4(b) for exam preparation practice.

Students in Cluster 1 had the highest amount of regular practice:

On average, they completed 70% of the PCEX activities, solved 70%

of the coding exercises and clicked on 10% of the example lines.

Meanwhile, on average, the students in Cluster 2 clicked the same

percentage of lines as students in Cluster 1 but completed 2.3 times

fewer PCEX activities and solved 3.5 times fewer coding exercises.

The students in Cluster 3 had the least amount of regular practice of

all the clusters. On average, they clicked on 10% of the example lines,

completed only 20% of the PCEX activities, and solved only 10% of

the coding exercises. As seen in Figure 4(b), Cluster 2 was the only

cluster that practiced with the system during the exam preparation

week. Students in Cluster 2 had the same amount of practice during

the exam preparation week as throughout the semester.

2We made sure that the variables used for clustering were not highly correlated (ρ
was below 0.8 between each pair of variables).
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Figure 3: Regression estimates for (a) PCEX activities com-

pleted and (b) example line clicks on distinct problems that

student solved during the first and second half of the course.

Error bars show standard errors. In (b), the solid line rep-

resent the estimated coefficients for predicting the distinct

challenges solved while the dashed line represents the es-

timated coefficients for predicting the distinct coding exer-

cises solved.

Table 2 summarizes the learning results across different clus-

ters. The learning results were analyzed using a one-way analy-

sis of variance (ANOVA), followed by Tukey’s post hoc compar-

isons. Overall, the correlation was significant for learning gain

F (2, 60) = 5.2,p < .01 and midterm score F (2, 60) = 4.9,p = .01 but

not on pre-test scores, ruling out the impact of initial differences

between groups. Learning gain was significantly higher in Cluster

1, which included students with high regular practice (completing

about 70% of the PCEX activities and coding exercises) compared

to both Cluster 2 (moderate constant practice, p = .01) and Cluster

3 (low regular practice, p = .02). The regular practice in Custer 1

(high regular practice) is also associated with significantly higher

midterm scores than Cluster 3 (low regular practice, p = .01), but

only marginally higher than Cluster 2 (moderate constant prac-

tice, p = .08). These observations further suggest that students

who worked with PCEX activities and coding exercises regularly

obtained better learning results.
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Figure 4: Percentage of practice for different clusters when system usage is split into (a) regular and (b) exam preparation.

Usage is expressed as mean and standard error for the mean (error bars).

Table 2: Summary of learning results for clusters obtained

after splitting practice into regular and exam preparation.

Values are expressed as mean and standard error for the

mean (in parentheses). The pretest score ranges from 0 to 29,

learning gain ranges from 0 to 1, and midterm/exam score

ranges from 0 to 100.

Cluster Pre-test Learning gain Exam score Midterm score

1 (N=18) 4.8 (1.5) 0.7 (0.05) 91.9 (2.2) 94.1 (1.3)

2 (N=19) 5.0 (1.4) 0.5 (0.06) 81.0 (4.6) 83.5 (3.6)

3 (N=25) 4.5 (1.0) 0.5 (0.05) 81.0 (3.9) 80.0 (3.6)

7 SURVEY ANALYSIS

We conducted a survey at the end of the semester to collect students’

opinion of the PCEX activities. The survey consisted of two parts.

In the first part, students responded about the amount of system

use: Yes-more than 10 times, Yes-between 5 and 10 times, Yes-less than

5 times, and No. Those who chose one of the last two options were

asked to provide their opinion on 6 follow-up items that focused on

why the system was not used. Two of the items referred to bad sys-

tem experience, two emphasized no help needed, and two addressed

other reasons, in particular poor introduction of the system and lack

of time to use the system.

The second part of the survey aimed to evaluate the PCEX ac-

tivities, focusing on only students who used the system. Following

the suggestion in [17] that identified key constructs required to

evaluate a learning objective, we included three constructs: learn-

ing, quality, and engagement. Each construct had four items, two

negatively and two positively worded. For the learning construct,

items referred to student perception of howmuch they learned from

using the PCEX activity. For the quality construct, items referred

to the quality of the PCEX activity. Finally, for the engagement

construct, items examined the level of student involvement in the

PCEX activity. Note that in the survey, we referred to PCEX activi-

ties as examples-challenges because the practice system grouped

PCEX activities under this name. Across all survey items, students

were asked to respond using a 5-point Likert scale ranging from

Strongly Disagree (1) to Strongly Agree (5).

In the first step of the survey analysis, we assessed the reliability

of the survey items under each construct using Cronbach’s α . We

dropped two items from the engagement construct because item-

construct correlations were lower than the recommended value,

0.30. Additionally, we checked whether the internal consistency

could improve if any of the items within a construct were deleted.

All items in the learning and engagement construct had acceptable

internal consistency with the other items within that construct. The

α was 0.8 for the learning construct and 0.6 for the engagement

construct. After we discarded two items from the quality construct,

the α improved from 0.7 to 0.9. No further item was discarded

from the survey. At the end, all three constructs appeared to be

sufficiently reliable to assess the value of PCEX activities, with α

values exceeding the suggested minimum acceptable α coefficient

of 0.50 [22].

Out of the 65 students who provided consent to use their data,

43% used the system more than 10 times, 37% used the system

between 5 and 10 times, 14% used the system less than 5 times,

and 6% did not use the system at all. The first plot in Figure 5

shows distribution of students answers to the 6 survey items that

referred to the reasons for low/zero usage of the practice system.

Overall, students mostly agreed that they did not use the system

due to lack of time, preferring other resources and materials, and

not feeling the need for additional help. Students disagreed with

items that suggested other reasons for low/zero of the practice

system, including the items that referred to bad system experience.

Distribution of students answers relating to the value of PCEX

activities is shown in the second plot in Figure 5. The mean learning

rating was 3.8 (SD = 0.8) which indicates that students perceived
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PCEX activities to be helpful for learning. Notably, more than 70%

of the students agreed with the items under the learning construct

(items 1-2, 4-5 in the y-axis). The mean quality rating was 3.7 (SD =

1), indicating that the students were also positive toward the quality

of explanations and code in the PCEX activities (item 3 and item 6

in the y-axis). The mean engagement rating was 3.2 (SD = .9), very

close to the neutral part of the scale. While approximately 40% of

the students agreed that they tried hard to understand the examples

and challenges and did not skim-read them, a sizable fraction of the

class disagreed with these statements (last two items in the y-axis).

8 CONCLUSION AND FUTUREWORK

This paper introduced PCEX, an interactive tool to support learning

from program construction examples. PCEXmade each program ex-

ample explorable and engaging: students can explore each example

interactively and check their understanding by solving challenges

that are similar to that example. To promote learning, the examples

in PCEX are enriched by worked steps with subgoal labels and

explanations. To assess the relationship between using this new

educational technology and student’s learning, the paper also re-

ported results from an exploratory semester-long classroom study.

In this study, students enrolled in a Java Programming class were en-

couraged to use a non-mandatory practice system, which included

PCEX activities as well as automatically-assessed coding exercises.

When analyzing the collected data, we observed that completing

PCEX activities had a significant correlation with learning gain.

Those students who completed more PCEX activities learned more

than those who completed fewer (or no) PCEX activities. We also

found that work with PCEX activities had a positive correlation

with student’s performance in coding exercises even when prior

knowledge (as measured by the pre-test) was controlled.

Another interesting observation was that the correlation of work

with PCEX activities and student’s learning was stronger in the first

half of the course than the second half. This finding is consistent

with past studies that showed that the worked example effect is

stronger in the early stages of learning and declines as a student’s

knowledge grows [16, 28].

We also found that regular practice with PCEX activities is as-

sociated with better learning outcomes. Students who used PCEX

activities regularly during the course and, on average, completed

70% of the PCEX activities and coding exercises, achieved higher

learning gain and midterm score than students in the group that

used the PCEX activities and coding exercises less regularly but

worked more during the exam preparation time.

Finally, the survey results suggest that students found the PCEX

activities to be of high quality and helpful for learning programming.

At the same time, students’ self-reported level of engagement with

PCEX activities was lower than other aspects of their feedback.

This indicates a need for follow-up interviews to uncover possible

reasons for lower engagement and discuss options to improve the

engagement side of PCEX.

Bringing together two sources of information (logs and survey),

we can also observe that both approaches to augment traditional

examples, line-level explanations and challenges, were valuable

for the students. As shown in Section 6.1, every explored line ex-

planation and every attempted challenge can be associated with

The system was not introduced properly in class
(M=1.8, SD=.7)

I preferred to use other resources and material
to learn Java (M=3.5, SD=.8)

I didn't think the system can help me to better
master Java (M=2.2, SD=1.1)

I was doing well in class without the system and
did not need any extra help (M=3.5, SD=1.3)

The user interface was too confusing to use
(M=2.2, SD=.8)

I did not have enough time to use the system
(M=3.4, SD=1.3)

100 50 0 50 100
Percentage

Working with the examples−challenges helped me
learn Java (M=4, SD=.9)

The explanations in the examples−challenges
helped me to better understand the Java

programming concepts (M=3.6, SD=1)

Exploring similar examples−challenges helped me
learn Java (M=3.9, SD=.8)

The examples−challenges helped me in solving Java
exercises in this class (M=3.7, SD=1.2)

The explanations in the examples−challenges were
not hard to understand (M=3.7, SD=1.1)

The code in examples−challenges were not too
complicated to understand (M=3.7, SD=1)

I tried hard to understand the
examples−challenges (M=3.3, SD=1)

I did not skim−read the examples−challenges
(M=3.1, SD=1)

100 50 0 50 100
Percentage

Strongly Disagree Disagree Neither Agree nor Disagree Agree Strongly Agree

Figure 5: The distribution of answers for the survey items.

The percentage of respondents who agree/disagree with

each item are shown to the right/left of the zero line. The

percentage of respondents who neither agree nor disagree

are split down the middle and are shown in a neutral color.

The items in the y-axis are ordered based on the percentage

of agreements, with the uppermost/lowermost item having

the most/least agreement.

an improvement in student’s performance. Students’ feedback on

survey items that separately assessed the educational value of expla-

nations and challenges was also positive in both cases. At the same

time, the data hints that among these two types of augmentation,

the challenges are more valuable educationally and more appealing

to the students. As Section 6.1 shows, the positive correlation of

one explored line was more than 10 times lower (0.05 vs 0.62) than

the positive correlation of one challenge (which typically expected

students to move 2 ś 4 lines of code). Students’ feedback about



PCEX: Interactive Program Construction Examples for Learning Programming Koli Calling ’18, November 22–25, 2018, Koli, Finland

the value of explanations was also slightly less positive than their

feedback about challenges (3.6 vs 3.9). The same trend can also be

observed in the usage statistics reported in Section 5: the students

completed 51% of the PCEX activities, but explored only 11% of the

example lines.

An important goal of this study was to evaluate long-term impact

of our technology in the target context. While the format of a

semester-long study in a real college course was the best match to

our goal, it also made it challenging, practically and ethically, to

form a control group with only partial access to the system (i.e.,

no examples or no challenges). As a result, our study has at least

two important limitations. First, our results might be subject to a

self-selection bias. Since the amount of PCEX usage was determined

by the students themselves, we cannot determine whether PCEX

helped students with getting a better grade, or if, instead, students

with a better grade were more motivated to succeed and, as a result,

allocated more time to work with the non-mandatory practice

system. Second, our design combined explorability and challenges

in a single condition, making it impossible to assess the impact of

each of these features.

In future work, we plan to conduct a randomized controlled

study with students practicing programming with/without PCEX

as well as with/without explorability and challenges. We expect to

confirm that the combined effect of explorability and challenges

would improve learning from examples and hope to assess their

comparative impact more reliably. We also plan to assess the impact

of PCEX examples on student learning in other domains, such as

Python programming. Finally, we plan to develop an authoring tool

to make PCEX available to broader community.
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