FOCUS: RELEASE ENGINEERING

Vroom: Faster
Build Processes

for Java

Jonathan Bell, Columbia University

Eric Melski and Mohan Dattatreya, Electric Cloud

Gail E. Kaiser, Columbia University

To speed up testing, researchers combined two
complementary approaches. Unit test virtualization
isolates in-memory dependencies among test cases.
Virtualized unit test virtualization isolates external
dependencies such as files and network ports
while long-running tests execute in parallel.

SLOW SOFTWARE BUILD CYCLES
substantially hinder continuous in-
tegration during development. They
can be an even more significant nui-
sance for continuous delivery and
other release processes. As a com-
plex software system evolves and its
compilation and packaging process
becomes more complicated, building
changes from a process that develop-
ers perform frequently on their desk-
top machines after every small code
edit, to one performed nightly on a

0740-7459/15/$31.00 © 2015 IEEE

dedicated build machine, to one that
can’t even be performed in its entirety
overnight. We aim to significantly re-
duce build time, with a sufficiently
general solution applicable to both
full (“clean”) and incremental builds.

We decided to reduce building
time by reducing testing time. To
do this, we developed a system that
combines two approaches. The first
approach, wunit test virtualization,
isolates in-memory dependencies
among test cases, which otherwise

are isolated inefficiently by restart-
ing the Java Virtual Machine (JVM)
before every test. We call our imple-
mentation of this approach VMVM
(Virtual Machine in the Virtual Ma-
chine, pronounced “vroom vroom”).
The second approach, virtualized
unit test virtualization, isolates ex-
ternal dependencies such as files and
network ports while long-running
tests execute in parallel. We call our
implementation of this approach
VMVMVM (Virtual Machine in
a Virtual Machine on a Virtual
Machine—“vroom vroom vroom”).

We’ve found that the testing phase
for real-world Java-based build pro-
cesses often dominates compilation,
packaging,
contributors to the build time. So,

and other traditional

we focus on reducing the clock time
needed to run test suites. Some of
our industry partners report that
they’ve been forced to remove test-
ing from their regular build process
as a stopgap solution. For instance,
one partner reported that its Java-
based build process took about eight
hours—long enough to be problem-
atic even for nightly build cycles.

To obtain concrete data on this
problem, we measured the compila-
tion, test, and other build phases for
20 popular open-source Java proj-
ects. We found the situation could be
even worse than in our partner’s an-
ecdote: the testing phase took more
than four times as long, on average,
as the rest of the build (see Figure 1).

Unacceptably long test cycles
aren’t new. Previous research tried to
reduce the time to run test suites.! It
focused on

e selecting the smallest subset of
relevant tests deemed most likely

MARCH/APRIL 2015 | IEEE SOFTWARE 97

FOCUS: RELEASE ENGINEERING

Other 5% \

Compiling
17%

Testing
78%

FIGURE 1. How build time is spent.
By reducing testing time, we aim to
significantly reduce build time, with a
sufficiently general solution applicable to
both full and incremental builds.

to find the faults for a given
change set or

e reordering tests to execute those
more likely to fail sooner.

The former approach can find only
the defects affected by that change
set. The latter approach might find
defects sooner but only reduces the
total time needed if testing halts af-
ter a time-out.

Furthermore, the approach that
reduces the number of tests in a suite
isn’t sound—there’s always a risk
that some tests are deemed irrelevant
when they aren’t. (In the general case,
it’s undecidable whether one test
suite is equivalent to another.) So, we
seek to reduce testing time while still
executing the entire test suite, with
no loss of fault-finding ability.

We studied the testing process that
many Java projects employ, using the
popular JUnit framework. JUnit can
be used for integration and full sys-
tem end-to-end tests as well as unit
testing. We observed a common yet
inefficient practice: each test executed

in a fresh process—that is, in its own
Java Virtual Machine (JVM).

An important implicit assump-
tion in testing is that the result of
test T shouldn’t depend on the ex-
ecution of some previous test T,
This assumption of independent test
cases, a part of the controlled regres-
sion testing assumption (applicable
to other kinds of testing besides re-
gression), is difficult to achieve ef-
ficiently.? Ideally, it’s enforced with
pretest setup methods and post-test
tear-down methods.

However, for complex software
(for example, software that uses
black-box third-party APIs), ensur-
ing these methods’ correctness can
be particularly difficult. The testing
code might be buggy or incomplete,
just like the application code being
tested. Moreover, testers might miss
resetting the state of some part of the
system under test (and hence cause
an unexpected dependency between
one test and another). In this case,
the results can range from false posi-
tives (where tests incorrectly raise an
alarm when the code is correct) to,
what’s worse, false negatives (where
tests fail to raise an alarm despite er-
rors in the code).

So in practice, each test often ex-
ecutes in a separate process, which
ensures that the tests are isolated
(and don’t have hidden dependen-
cies), greatly simplifying writing the
pretest and post-test methods. This
isolation comes at a significant cost.
We studied the overhead of executing
each test in its own process, relative
to the time needed to simply execute
each test in the same process, for the
20 Java projects we mentioned ear-
lier. We found it to be astonishingly
high: on average, 618 percent (and
up to 4,153 percent!).

Completely removing this iso-
lation from the testing process in

these applications would reduce ap-
plication build time a net 56 percent.
However, removing test isolation
can have disastrous consequences on
test suite correctness. In our study,
we found 70 test cases that passed
in isolation yet failed unexpectedly
without it. Even worse, there are re-
ports of test cases that erroneously
pass when not isolated (despite a
defect in the application under test)
and fail only under isolation.

this overhead while
maintaining test case isolation, we
developed unit test virtualization,?
which automatically and efficiently

To combat

isolates the side-effects of unit tests
and other tests. The system reini-
tializes only that part of memory
written by some previous test that
could be read by the next test (de-
termined by static and dynamic
analysis), rather than restarting the
entire process to reinitialize the en-
tire in-memory state. This provides
the same level of isolation that run-
ning each test class in its own JVM
would provide. (Multiple test meth-
ods in the same test class still can
have dependencies, which current
versions of JUnit allow.)

We implemented our approach for
Java in VMVM. As we show later,
when we applied VMVM to the test
suites of the 20 projects, it achieved
an impressive average net speedup of
the entire build time (compared to
running each in a separate process).
Because all tests executed, no loss of
fault-finding ability occurred.

VMVM works well for speeding
up test suites when the overhead of
restarting the JVM between tests
(usually a constant 1 to 2 seconds)
constitutes a significant portion of
the testing time. However, in cases
with only a few test classes that are

98 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

very long (for example, 10 seconds
each), removing the overhead of re-
starting the JVM and adding the
overhead of our dynamic analysis
can slow down testing.

In those latter cases, we take a
complementary approach to reducing
clock time: we leverage modern multi-
core hardware to execute multiple test
cases in parallel. A simple approach
to parallelizing test cases (offered by
the most recent versions of Ant and
Maven) uses a controller thread to
distribute test cases in round-robin
manner to several workers execut-
ing in parallel on the same machine.
(This simply spawns extra processes
running in the same directory.) How-
ever, of our 20 projects, five had tests
fail erroneously with this paralleliza-
tion, with test cases racing for access
to shared resources (for example, files
or sockets). To safely execute multiple
tests simultaneously, each must have
its own virtual file system and net-
work interface.

So, we developed virtualized
unit test virtualization, which lever-
ages a distributed architecture. Each
worker process executes in a distinct
conventional VM (as in VMware
or VirtualBox), with its own vir-
tual file system and other system re-
sources. This architecture is effective
at simultaneously executing multiple
tests that use local files and network
resources (for example, binding to a
socket and connecting back to that
socket). However, it doesn’t address
test cases that interact with remote
servers and databases; such interac-
tions are usually avoided during test-
ing and didn’t occur in the test suites
we examined. As we mentioned be-
fore, we call our implementation for
Java VMVMVM.

The result is an integrated two-
tier system that reduces the build
time for Java projects by reducing

testing time in two ways. First,
VMVM reduces the time between
short test cases that’s taken to isolate
the test cases. Second, VMVMVM
reduces the total time for long test
cases by letting them run in parallel
(and using VM VM internally so that
the same JVM can be used for the
sequence of test jobs run in the same
worker VM).

of widely used, recognizable proj-
ects (for example, the Apache Tom-
cat JavaServer Pages server) and
smaller projects (for example, JTor,
an alpha-quality Tor implementation
with a very small contributor base).

Measuring Testing Time
To answer the first question, we ex-
ecuted the entire build process for

We leverage modern multicore hardware
to execute multiple test cases in parallel.

To empirically ground our efforts
to reduce build time, we asked three
main questions:

* Does testing take a significant
portion of build time?

* Do developers isolate their test
cases?

e If they do, is this isolation suffi-
cient to let tests run in parallel?

To answer these questions, we
downloaded the 1,200 largest free
and open-source Java projects from
the indexing website Ohloh (now
Open Hub; www.openhub.net).
From those, we selected the proj-
ects that executed JUnit tests during
their Ant- or Maven-based builds.
We tried to build all the 591 proj-
ects that use JUnit but found that
only about 50 worked out of the
box without significant configura-
tion (for example, worked by run-
ning a single command such as ant test
or mvn fest). From those, we selected
the 20 projects we’ve been talking
about. This was a manageable set
of projects that ensured a diversity

each application (using its Ant or
Maven build script), recorded the
time each build step took, and ag-
gregated the time for all the testing
(junit) steps and all the compilation
(javac) steps. We executed this pro-
cess 10 times, averaging the results.
Table 1 shows the results, which
roughly matched our expectations
based on our anecdotal industry
evidence. For this study, we ensured
that all tests were isolated in their
own process; those projects that al-
ready performed this isolation are
bold in Table 1. Testing took on av-
erage 78 percent of the build time.

Isolating Test Cases

To answer the second question, we
statically analyzed the test scripts
for the 591 projects to determine
the percentage of them that executed
each test case (“test class” in JUnit
terminology) in its own process. Of
those projects with the most test
cases (over 1,000 test cases; 47 to-
tal), 81 percent executed each test in
its own process. Overall, 41 percent
of all the projects executed each test
in its own process.

MARCH/APRIL 2015 | IEEE SOFTWARE 99

FOCUS: RELEASE ENGINEERING

Project

TABLE 1

Apache Commons Codec

Apache Commons Validator
Apache lvy

Apache Nutch

Apache River

Apache Tomcat

betterFORM

Bristlecone Performance Test Tools
btrace

Closure Compiler

Commons 10

FreeRapid Downloader

gedcom4j

JAXX

Jetty—Java HTTP Servlet Server
JTor

mkgmap

Openfire

Trove for Java

Universal Password Manager

Average

The build speedup for 20 popular open source Java projects.*

Build speedup (%)

No. of Test LOC x Build time spent
classes 1,000 testing (%) VMVM® VMVMVM#*

46 17.99 91 83 85
21 17.46 93 31 34
119 305.99 95 70 86
27 100.91 92 13 16
22 365.72 74 41 43
292 5,692.45 99 28 68
127 1,114.14 98 73 90
4 16.52 94 —2 12

3 1415 49 23 -20
223 467.57 g8 63 75
84 29.16 96 52 85
7 257.70 43 43 M
57 18.22 98 57 75
6 91.13 48 45 34

6 621.53 64 18 16

7 15.07 61 64 63
43 58.54 88 59 68
12 250.79 32 32 31
12 45.31 56 60 59
10 5.62 97 95 70
56 475.30 78 47 52

* Bold indicates that, in the default configuration, the build isolated each test by executing it in its own process and ran all the test processes sequentially in the same 0S on the same machine (no virtual machines).
Otherwise, the default configuration didn’t isolate tests but ran them all in the same process.

1 Virtual Machine in the Virtual Machine

£ Virtual Machine in a Virtual ine on a Virtual M:

Test isolation is necessary for
many complex software systems.
Otherwise, the testers would need
to write additional test cases for the
pretest setup and post-test tear-down
methods, to test the tests. Kivang
Muslu and his colleagues pointed
out a perfect example of what can

100

happen when tests aren’t isolated.*
They found that a fault that took
four years to resolve (Apache Com-
mons CLI-26, 186 and 187) could
been detected
(even before users reported it) if the

have immediately

project’s test cases had been isolated.
The problem was that several test

cases checked the Apache library’s
behavior under varying configura-
tions, and their setup stored these
configurations in a static field. How-
ever, other tests assumed that the
system under test would be clean,
in a default configuration. But some
of the configuration-modifying tests

IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @IEEESOFTWARE

happened to be earlier in the test
suite and didn’t restore the static field
when finishing. So, the later tests in
the test suite that should have caught
the defect passed (because the de-
fect occurred in only the default
configuration), and the defect went
undetected.

In Sai Zhang and his colleagues’
sample of popular open-source Java
software, 96 tests displayed similar
dependencies.’ Of those dependen-
cies, 61 percent arose from side ef-
fects from accesses to static fields.

Isolation and Parallelism
Our final study ad-
dressed the need to enforce further

motivating

isolation than process separation
provides, when tests run in parallel.
Although executing each test in its
own process eliminates in-memory
dependencies between test cases,
other persistent state could cause
dependencies among tests. For ex-
ample, when multiple tests read and
write from the same file on disk, the
test run’s results might depend on
their execution order. Even if each
test properly cleans up after itself
(for example, deleting the file), these
tests still can’t execute concurrently
on the same machine because they
would compete for simultaneous ac-
cess to the same file.

We executed the test suites for
each of the 20 Java projects several
more times. We isolated each test
case in a separate process but ran
up to eight tests from each test suite
concurrently on the same machine
(using the parallelization option
available in the most recent versions
of Ant and Maven). As we men-
tioned before, five projects (Apache
Ivy, Apache Nutch, Apache Tomcat,
mkgmap, and Jetty) had tests fail
erroneously when executed concur-
rently. Moreover, even more failures

might have occurred; we didn’t ex-
plore all possible scheduling combi-
nations in which tests might execute
concurrently.

Examining these five projects’
source code, we found two sources
of dependencies: files and network
ports. For example, some tests cre-
ated temporary directories, wrote
files to them, and deleted the di-
rectories when the test ended. This
caused conflicts when two test cases
executed simultaneously. Both tests
used the same temporary directory;
the test that finished first deleted the
directory, causing the second test to
unexpectedly fail.

We also saw several cases of con-
flicting bindings to network ports.
In these cases, part of the test setup
started a mock server listening to
some predefined port and then con-
nected the code under test to that
port. The first test to bind to the port
succeeded; subsequent tests that ex-
ecuted while that first test was run-
ning unexpectedly failed, unable to
bind to the port. None of the ob-
served dependencies occurred when

paying the high overhead cost of re-
starting the JVM for each test case.
The typical reason engineers ask the
build process to restart the JVM be-
fore every test case is to eliminate
in-memory dependencies between
test cases. Our insight relies on the
observation that these dependencies
are easy to track and manage within
a single JVM (without restarting)
with much lower overhead and thus
shorter testing time. Then, we found
that we can speed up testing further
by parallelizing—running multiple
tests simultaneously—if we can also
remove system-level dependencies.

Isolating Object Graphs

The JVM provides a managed mem-
ory environment in which code can’t
construct pointers to arbitrary mem-
ory locations. Instead, the memory
M accessible to some executing func-
tion F is constrained to only that
memory reachable from F’s object
graph, plus any static fields. The ob-
ject graph encompasses the tradi-
tional object-oriented view of mem-
ory: F can receive several pointers to

We found two sources of dependencies:
files and network ports.

the test suites executed serially; all
the tests correctly cleaned up the en-
vironment state at their conclusion.
None of these projects had conflicts
on resources external to the machine
(for example, remote servers).

Our key insight is that we can pro-
vide the same level of test case iso-
lation as process separation without

MARCH/APRIL 2015 | IEEE SOFTWARE

objects as parameters, those objects
can in turn have pointers to other
objects, and so on.

It’s easy to imagine how to isolate
this object graph between test ex-
ecutions. Assume that the test run-
ner (which is instantiating each test)
constructs new arguments to pass
to each test case and doesn’t pass a
reference to any of the same objects
to multiple tests, as would normally

101

FOCUS: RELEASE ENGINEERING

Host running the build

Master controller
Test|| Tes
class C|aSS\

Ant or
Test | Testla pooven test
class||class

P4 runner

Test|| Tes
class||class

JUnit

distributor

Virtual machine
Single JVM with VMVM

JUnit job
worker

Virtual machine
Single JVM with VMVM

JUnit job
worker

job

FIGURE 2. The high-level architecture of VMVMVM (Virtual Machine in a Virtual
Machine on a Virtual Machine). Our system integrates directly with test execution

initiated by Ant or Maven, or via JUnit directly. Each test class execution is intercepted
and sent to a master controller that delegates test cases to workers.

be the case. Then (at their creation)
no two tests’ object graphs will have
overlapping nodes. Because the test
runner is standardized to the test-
ing framework, ensuring that tests at
this level are isolated is easy.

Isolating static Fields
In contrast, Java static fields are like
global wvariables: they’re directly
referenced by their field name and
class name (no additional pointers
needed). So, we must isolate them.

Our approach to isolating static
fields is simple and emulates ex-
actly what happens when the JVM
restarts. Between each pair of test
cases, we reexecute the initializer for
every static field, effectively eliminat-
ing stafic fields as a source of depen-
dencies between tests. VMVM opti-
mizes this basic approach to further
reduce the overhead of isolating test
cases. It reinitializes only the mu-
table static fields of classes used dur-
ing prior test executions when they’re
needed and always ignores fields that
are immutable (guaranteed to be
unchanged).

VMVM performs offline static

102

analysis and bytecode instrumenta-
tion before test execution. This anal-
ysis and instrumentation occurs each
time the application code or tests
change. In this phase, VM VM deter-
mines which classes contain no mu-
table static fields and thus won’t ever
need reinitialization.

VMVM then emulates exactly
the process JVM uses internally for
initializing a class. It inserts guards
(in the bytecode) around every ac-
cess to the class to check whether
the class must be reinitialized and, if
so, to reinitialize it. It inserts these
guards before every instruction that
might create a new instance of a
class (the new bytecode instruction),
access a class’s static method (the
INVOKESTATIC bytecode instruction), or
access a class’s static field (the GETSTATIC
and PUTSTATIC instructions). VM VM
also intercepts calls to Java’s reflec-
tion library that would dynamically
perform the same operations, add-
ing guards on the fly. In addition,
it modifies each class initializer to
insert instructions to log its execu-
tion. This lets VM VM efficiently de-
termine exactly which classes were

used by previous test cases and thus
will need to be reinitialized in the
next test case that references them.

VMVM performs all these instru-
mentations on only the application
bytecode (not code in the Java core
library set). To reinitialize static fields
belonging to classes in the Java core
libraries, we wrote a tool that scans
the Java API to identify public-facing
methods that set static fields. We then
verified each result by hand (this
process would have to be repeated
only for new versions of Java). We
found 48 classes with methods that
set the value of some sttic field in the
Java APIL. For each of these meth-
ods, VMVM provides copy-on-write
functionality, logging each internal
field’s value before changing it and
then restoring that value when re-
initializing. To provide this support,
VMVM prefaces each such method
call with a wrapper to record the
value in a log and then scans the log
at reinitialization (between each pair
of test cases) to restore the value.

Running Tests in Parallel

As we mentioned before, our
VMVMVM prototype lets us ex-
ecute test cases in parallel without
interference by employing a conven-
tional VM to ensure that each si-
multaneously executing test has its
own file system and virtual network
interface (see Figure 2). VMVMVM
still relies on a test’s manually writ-
ten pretest and post-test methods to
clean up system resources between
test classes, so that no two tests are
dependent as a result of some shared
file. In our study of the 20 projects,
we found no test classes that were
dependent (when executed sequen-
tially) because of shared system re-
sources. Other researchers have
confirmed that such dependencies
are uncommon.’

IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @IEEESOFTWARE

To run N tests in parallel, we cre-
ate N VMs, with a single daemon
running in each one. Each daemon
listens for requests from our master
controller process, executes the tests
submitted by the controller, and re-
turns the results. The controller col-
lects the results, reorders them to
appear as if they executed serially,
and returns them to the original in-
voker of the test suite as if they had
executed sequentially on the same
machine. The daemons use VMVM
to provide in-memory isolation be-
tween test cases, so they don’t start a
new JVM for each test case.

For easy integration, we pro-
vide a drop-in replacement for the
Ant JUnit task, the Maven JUnit
target, and a custom JUnit run-
ner. Engineers need only change
their build configuration to use our
JUnit target (which accepts the ex-
act same arguments as the normal
target); test cases are automatically
parallelized.

For instance, when using our Ant
task, VMVMVM will automatically
start a local socket server, spin up
worker processes, distribute the test
requests, and return the results (in
serial order) to the Ant task. Existing
test listeners and custom test runners
continue to work normally.

We evaluated how our approaches
reduced the 20 projects’ build time.
For each application, we first ran the
entire test suite with each test case
isolated in its own process (the base-
line configuration). Then, we ran the
suite with all tests executing in the
same process, but using VMVM to
provide isolation. Finally, we ran
the suite distributed across three
workers, each one running all its
tests in the same process, again with
VMVM providing the isolation. We

performed this entire process 10
times, averaging the results.

We performed this study on our
commodity server running Ubuntu
12.04.1 LTS (Long Term Support)
and Java 1.7.025 with a four-core
2.66-GHz Xeon processor and 32
Gbytes of RAM. Each worker ran
in its own VMWare Workstation 10
VM, running Ubuntu 12.04.1 LTS

VMVM included—slowed it down
by 20 percent. Tomcat had almost
300 test classes, with a fairly even
distribution of test lengths, so paral-
lelization was quite effective. On the
other hand, btrace had only three
test classes, taking 1,410 ms, 36 ms,
and 23 ms, respectively.

For btrace, parallelization pro-
vided no significant benefit because

In projects with a diverse range
of test classes, VMVMVM greatly reduced
the time to run a complete build.

and allocated 2 Gbytes of RAM and
two cores.

Table 1 shows the results. All
speedups are relative to the length of
a build that isolated each test by exe-
cuting it in its own process and then
ran all the test processes sequentially
in the same OS on the same machine
(no VMs). If this was a project’s de-
fault configuration, the table shows
it in bold; otherwise, the default con-
figuration didn’t isolate tests but ran
them all in the same process.

The average speedups provided
by both solutions (VMVM alone
and VMVMVM parallelized in mul-
tiple VMs) were comparable. Build
time decreased by 47 percent when
we used VMVM to isolate test cases
and by 52 percent when we added
VMVMVM.

We were interested most in the
cases in which one approach sig-
nificantly eclipsed the other. For ex-
ample, for Apache Tomcat, VMVM
sped up the overall build by only 28
percent, whereas VMVMVM sped it
up by 68 percent. For btrace, VMVM
sped up the overall build by 23 per-
cent, whereas VMVMVM—with

MARCH/APRIL 2015 | IEEE SOFTWARE

a single test class dominated the
testing time. The communication
overhead of distributing the tests to
the workers showed through, caus-
ing VMVMVM to provide a slow-
down compared to VMVM alone.
In the other applications in which
VMVMVM didn’t perform as well
as VMVM, the overall number of
test classes was nearly the same as
the number of workers (three), and
one or two of the tests dominated
the others in execution time. In
such cases, parallelizing test classes
wasn’t effective; using only VMVM
increased speedup.

ur study shows that in
projects
range of test classes, VM-
VMVM greatly reduced the time
to run a complete build. On popu-

with a diverse

lar open source software, such as
Apache Tomcat, this reduction was
huge. We’ve released a stand-alone
version of VMVM under an MIT
license via GitHub (https://github
.com/Programming-Systems-Lab
/vmvm). We’re working with our

103

FOCUS: RELEASE ENGINEERING

industrial partners to release a full
version of VMVMVM. We hope our
efforts to reduce Java build times
can help relieve release engineers
from long-running builds. @

Acknowledgments

Jonathan Bell and Gail Kaiser are mem-
bers of Columbia University’s Program-
ming Systems Laboratory, which is funded
partly by US National Science Foundation
awards CCF-1302269, CCF-1161079, and
CNS-0905246 and US National Institutes
of Health grant US4 CA121852.

References

1. S. Yoo and M. Harman, “Regression
Testing Minimization, Selection and Pri-
oritization: A Survey,” Software Testing,
Verification and Reliability, vol. 22, no. 2,
2012, pp. 67-120.

2. G. Rothermel and M.J. Harrold, “Analyz-
ing Regression Test Selection Techniques,”
IEEE Trans. Software Eng., vol. 22, no. 8,
1996, pp. 529-441.

3. J. Bell and G. Kaiser, “Unit Test Virtu-
alization with VMVM,” Proc. 36th Int’l
Conf. Software Eng. (ICSE 14), 2014, pp.
550-561.

4. K. Muslu, B. Soran, and J. Wuttke, “Find-
ing Bugs by Isolating Unit Tests,” Proc.
19th ACM SIGSOFT Symp. and 13th
European Conf. Foundations of Software
Eng. (ESEC/FSE 11), 2011, pp. 496—499.

5. S. Zhang et al., “Empirically Revisiting
the Test Independence Assumption,” Proc.
2014 Int’l Symp. Software Testing and
Analysis (ISSTA 14), 2014, pp. 384-39.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

JONATHAN BELL is a PhD student in software engineering
at Columbia University. His research interests include software
testing, program analysis, and fault reproduction. Bell received
an M Phil in computer science from Columbia University. He’s
a member of the IEEE Computer Society. Contact him at jbell@
c¢s.columbia.edu.

ERIC MELSKI is the chief architect at Electric Cloud and

has been developing build optimization software there for
more than 12 years. His research interests include distributed
systems, high-performance computing, parallel programming,
and kernel development. Melski received a BS in computer
science from the University of Wisconsin. Contact him at eric@
electric-cloud.com.

MOHAN DATTATREYA is the senior director of engineering at
Electric Cloud. His research interests include software-defined
networks, application acceleration, and distributed-systems
performance engineering. Dattatreya received an MS in com-
puter science from Stanford University. Contact him at mohan@
electric-cloud.com.

GAIL E. KAISER is a professor of computer science at Colum-
bia University. Her research interests include software reliability
and robustness, information management, social software
engineering, and software development environments and
tools. Kaiser received a PhD in computer science from Carnegie
Mellon University. She was a founding associate editor of ACM
Transactions on Software Engineering and Methodology and

has been an editorial board member of /EEE Internet Comput-
ing. She’s a senior member of IEEE. Contact her at kaiser@
c¢s.columbia.edu.

|| IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

For submission information and author guidelines,
please visit www.computer.orglinternet/author.htm

104 |IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE | @ EEESOFTWARE

