
FOCUS: RELEASE ENGINEERING

0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E MARCH/APRIL 2015 | IEEE SOFTWARE 97

FOCUS: RELEASE ENGINEERING

Vroom: Faster
Build Processes
for Java
Jonathan Bell, Columbia University

Eric Melski and Mohan Dattatreya, Electric Cloud

Gail E. Kaiser, Columbia University

// To speed up testing, researchers combined two

complementary approaches. Unit test virtualization

isolates in-memory dependencies among test cases.

Virtualized unit test virtualization isolates external

dependencies such as files and network ports

while long-running tests execute in parallel. //

SLOW SOFTWARE BUILD CYCLES

substantially hinder continuous in-

tegration during development. They

can be an even more significant nui-

sance for continuous delivery and

other release processes. As a com-

plex software system evolves and its

compilation and packaging process

becomes more complicated, building

changes from a process that develop-

ers perform frequently on their desk-

top machines after every small code

edit, to one performed nightly on a

dedicated build machine, to one that

can’t even be performed in its entirety

overnight. We aim to significantly re-

duce build time, with a sufficiently

general solution applicable to both

full (“clean”) and incremental builds.

We decided to reduce building

time by reducing testing time. To

do this, we developed a system that

combines two approaches. The first

approach, unit test virtualization,

isolates in-memory dependencies

among test cases, which otherwise

are isolated inefficiently by restart-

ing the Java Virtual Machine (JVM)

before every test. We call our imple-

mentation of this approach VMVM

(Virtual Machine in the Virtual Ma-

chine, pronounced “vroom vroom”).

The second approach, virtualized

unit test virtualization, isolates ex-

ternal dependencies such as files and

network ports while long-running

tests execute in parallel. We call our

implementation of this approach

VMVMVM (Virtual Machine in

a Virtual Machine on a Virtual

 Machine—“vroom vroom vroom”).

The Dominance of
Testing Time
We’ve found that the testing phase

for real-world Java-based build pro-

cesses often dominates compilation,

packaging, and other traditional

contributors to the build time. So,

we focus on reducing the clock time

needed to run test suites. Some of

our industry partners report that

they’ve been forced to remove test-

ing from their regular build process

as a stopgap solution. For instance,

one partner reported that its Java-

based build process took about eight

hours—long enough to be problem-

atic even for nightly build cycles.

To obtain concrete data on this

problem, we measured the compila-

tion, test, and other build phases for

20 popular open-source Java proj-

ects. We found the situation could be

even worse than in our partner’s an-

ecdote: the testing phase took more

than four times as long, on average,

as the rest of the build (see Figure 1).

Unacceptably long test cycles

aren’t new. Previous research tried to

reduce the time to run test suites.1 It

focused on

• selecting the smallest subset of

relevant tests deemed most likely

98 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

to fi nd the faults for a given

change set or

• reordering tests to execute those

more likely to fail sooner.

The former approach can fi nd only

the defects affected by that change

set. The latter approach might fi nd

defects sooner but only reduces the

total time needed if testing halts af-

ter a time-out.

Furthermore, the approach that

reduces the number of tests in a suite

isn’t sound—there’s always a risk

that some tests are deemed irrelevant

when they aren’t. (In the general case,

it’s undecidable whether one test

suite is equivalent to another.) So, we

seek to reduce testing time while still

executing the entire test suite, with

no loss of fault-fi nding ability.

Isolation Ineffi ciency
We studied the testing process that

many Java projects employ, using the

popular JUnit framework. JUnit can

be used for integration and full sys-

tem end-to-end tests as well as unit

testing. We observed a common yet

ineffi cient practice: each test executed

in a fresh process—that is, in its own

Java Virtual Machine (JVM).

An important implicit assump-

tion in testing is that the result of

test T shouldn’t depend on the ex-

ecution of some previous test T
p
.

This assumption of independent test

cases, a part of the controlled regres-

sion testing assumption (applicable

to other kinds of testing besides re-

gression), is diffi cult to achieve ef-

fi ciently.2 Ideally, it’s enforced with

pretest setup methods and post-test

tear-down methods.

However, for complex software

(for example, software that uses

black-box third-party APIs), ensur-

ing these methods’ correctness can

be particularly diffi cult. The testing

code might be buggy or incomplete,

just like the application code being

tested. Moreover, testers might miss

resetting the state of some part of the

system under test (and hence cause

an unexpected dependency between

one test and another). In this case,

the results can range from false posi-

tives (where tests incorrectly raise an

alarm when the code is correct) to,

what’s worse, false negatives (where

tests fail to raise an alarm despite er-

rors in the code).

So in practice, each test often ex-

ecutes in a separate process, which

ensures that the tests are isolated

(and don’t have hidden dependen-

cies), greatly simplifying writing the

pretest and post-test methods. This

isolation comes at a signifi cant cost.

We studied the overhead of executing

each test in its own process, relative

to the time needed to simply execute

each test in the same process, for the

20 Java projects we mentioned ear-

lier. We found it to be astonishingly

high: on average, 618 percent (and

up to 4,153 percent!).

Completely removing this iso-

lation from the testing process in

these applications would reduce ap-

plication build time a net 56 percent.

However, removing test isolation

can have disastrous consequences on

test suite correctness. In our study,

we found 70 test cases that passed

in isolation yet failed unexpectedly

without it. Even worse, there are re-

ports of test cases that erroneously

pass when not isolated (despite a

defect in the application under test)

and fail only under isolation.

VMVM and VMVMVM
To combat this overhead while

maintaining test case isolation, we

developed unit test virtualization,3

which automatically and effi ciently

isolates the side-effects of unit tests

and other tests. The system reini-

tializes only that part of memory

written by some previous test that

could be read by the next test (de-

termined by static and dynamic

analysis), rather than restarting the

entire process to reinitialize the en-

tire in-memory state. This provides

the same level of isolation that run-

ning each test class in its own JVM

would provide. (Multiple test meth-

ods in the same test class still can

have dependencies, which current

versions of JUnit allow.)

We implemented our approach for

Java in VMVM. As we show later,

when we applied VMVM to the test

suites of the 20 projects, it achieved

an impressive average net speedup of

the entire build time (compared to

running each in a separate process).

Because all tests executed, no loss of

fault-fi nding ability occurred.

VMVM works well for speeding

up test suites when the overhead of

restarting the JVM between tests

(usually a constant 1 to 2 seconds)

constitutes a signifi cant portion of

the testing time. However, in cases

with only a few test classes that are

Testing

78%

Compiling

17%

Other 5%

FIGURE 1. How build time is spent.

By reducing testing time, we aim to

signifi cantly reduce build time, with a

suffi ciently general solution applicable to

both full and incremental builds.

 MARCH/APRIL 2015 | IEEE SOFTWARE 99

very long (for example, 10 seconds

each), removing the overhead of re-

starting the JVM and adding the

overhead of our dynamic analysis

can slow down testing.

In those latter cases, we take a

complementary approach to reducing

clock time: we leverage modern multi-

core hardware to execute multiple test

cases in parallel. A simple approach

to parallelizing test cases (offered by

the most recent versions of Ant and

Maven) uses a controller thread to

distribute test cases in round-robin

manner to several workers execut-

ing in parallel on the same machine.

(This simply spawns extra processes

running in the same directory.) How-

ever, of our 20 projects, five had tests

fail erroneously with this paralleliza-

tion, with test cases racing for access

to shared resources (for example, files

or sockets). To safely execute multiple

tests simultaneously, each must have

its own virtual file system and net-

work interface.

So, we developed virtualized

unit test virtualization, which lever-

ages a distributed architecture. Each

worker process executes in a distinct

conventional VM (as in VMware

or VirtualBox), with its own vir-

tual file system and other system re-

sources. This architecture is effective

at simultaneously executing multiple

tests that use local files and network

resources (for example, binding to a

socket and connecting back to that

socket). However, it doesn’t address

test cases that interact with remote

servers and databases; such interac-

tions are usually avoided during test-

ing and didn’t occur in the test suites

we examined. As we mentioned be-

fore, we call our implementation for

Java VMVMVM.

The result is an integrated two-

tier system that reduces the build

time for Java projects by reducing

testing time in two ways. First,

VMVM reduces the time between

short test cases that’s taken to isolate

the test cases. Second, VMVMVM

reduces the total time for long test

cases by letting them run in parallel

(and using VMVM internally so that

the same JVM can be used for the

sequence of test jobs run in the same

worker VM).

The Problem Scope
To empirically ground our efforts

to reduce build time, we asked three

main questions:

• Does testing take a significant

portion of build time?

• Do developers isolate their test

cases?

• If they do, is this isolation suffi-

cient to let tests run in parallel?

To answer these questions, we

downloaded the 1,200 largest free

and open-source Java projects from

the indexing website Ohloh (now

Open Hub; www.openhub.net).

From those, we selected the proj-

ects that executed JUnit tests during

their Ant- or Maven-based builds.

We tried to build all the 591 proj-

ects that use JUnit but found that

only about 50 worked out of the

box without significant configura-

tion (for example, worked by run-

ning a single command such as ant test

or mvn test). From those, we selected

the 20 projects we’ve been talking

about. This was a manageable set

of projects that ensured a diversity

of widely used, recognizable proj-

ects (for example, the Apache Tom-

cat JavaServer Pages server) and

smaller projects (for example, JTor,

an alpha-quality Tor implementation

with a very small contributor base).

Measuring Testing Time

To answer the first question, we ex-

ecuted the entire build process for

each application (using its Ant or

Maven build script), recorded the

time each build step took, and ag-

gregated the time for all the testing

(junit) steps and all the compilation

(javac) steps. We executed this pro-

cess 10 times, averaging the results.

Table 1 shows the results, which

roughly matched our expectations

based on our anecdotal industry

evidence. For this study, we ensured

that all tests were isolated in their

own process; those projects that al-

ready performed this isolation are

bold in Table 1. Testing took on av-

erage 78 percent of the build time.

Isolating Test Cases

To answer the second question, we

statically analyzed the test scripts

for the 591 projects to determine

the percentage of them that executed

each test case (“test class” in JUnit

terminology) in its own process. Of

those projects with the most test

cases (over 1,000 test cases; 47 to-

tal), 81 percent executed each test in

its own process. Overall, 41 percent

of all the projects executed each test

in its own process.

We leverage modern multicore hardware

to execute multiple test cases in parallel.

100 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

Test isolation is necessary for

many complex software systems.

Otherwise, the testers would need

to write additional test cases for the

pretest setup and post-test tear-down

methods, to test the tests. Kıvanç

Muşlu and his colleagues pointed

out a perfect example of what can

happen when tests aren’t isolated.4

They found that a fault that took

four years to resolve (Apache Com-

mons CLI-26, 186 and 187) could

have been detected immediately

(even before users reported it) if the

project’s test cases had been isolated.

The problem was that several test

cases checked the Apache library’s

behavior under varying configura-

tions, and their setup stored these

configurations in a static field. How-

ever, other tests assumed that the

system under test would be clean,

in a default configuration. But some

of the configuration-modifying tests

T
A

B
L
E

 1 The build speedup for 20 popular open source Java projects.*

Project

No. of

classes

Test LOC ×

1,000

Build time spent

testing (%)

Build speedup (%)

VMVM† VMVMVM‡

Apache Commons Codec 46 17.99 91 83 85

Apache Commons Validator 21 17.46 93 31 34

Apache Ivy 119 305.99 95 70 86

Apache Nutch 27 100.91 92 13 16

Apache River 22 365.72 74 41 43

Apache Tomcat 292 5,692.45 99 28 68

betterFORM 127 1,114.14 98 73 90

Bristlecone Performance Test Tools 4 16.52 94 –2 12

btrace 3 14.15 49 23 –20

Closure Compiler 223 467.57 93 63 75

Commons IO 84 29.16 96 52 85

FreeRapid Downloader 7 257.70 43 43 41

gedcom4j 57 18.22 98 57 75

JAXX 6 91.13 48 45 34

Jetty—Java HTTP Servlet Server 6 621.53 64 18 16

JTor 7 15.07 61 64 63

mkgmap 43 58.54 88 59 68

Openfire 12 250.79 32 32 31

Trove for Java 12 45.31 56 60 59

Universal Password Manager 10 5.62 97 95 70

Average 56 475.30 78 47 52

* Bold indicates that, in the default configuration, the build isolated each test by executing it in its own process and ran all the test processes sequentially in the same OS on the same machine (no virtual machines).

Otherwise, the default configuration didn’t isolate tests but ran them all in the same process.

† Virtual Machine in the Virtual Machine

‡ Virtual Machine in a Virtual Machine on a Virtual Machine

 MARCH/APRIL 2015 | IEEE SOFTWARE 101

happened to be earlier in the test

suite and didn’t restore the static field

when finishing. So, the later tests in

the test suite that should have caught

the defect passed (because the de-

fect occurred in only the default

configuration), and the defect went

undetected.

In Sai Zhang and his colleagues’

sample of popular open-source Java

software, 96 tests displayed similar

dependencies.5 Of those dependen-

cies, 61 percent arose from side ef-

fects from accesses to static fields.

Isolation and Parallelism

Our final motivating study ad-

dressed the need to enforce further

isolation than process separation

provides, when tests run in parallel.

Although executing each test in its

own process eliminates in-memory

dependencies between test cases,

other persistent state could cause

dependencies among tests. For ex-

ample, when multiple tests read and

write from the same file on disk, the

test run’s results might depend on

their execution order. Even if each

test properly cleans up after itself

(for example, deleting the file), these

tests still can’t execute concurrently

on the same machine because they

would compete for simultaneous ac-

cess to the same file.

We executed the test suites for

each of the 20 Java projects several

more times. We isolated each test

case in a separate process but ran

up to eight tests from each test suite

concurrently on the same machine

(using the parallelization option

available in the most recent versions

of Ant and Maven). As we men-

tioned before, five projects (Apache

Ivy, Apache Nutch, Apache Tomcat,

mkgmap, and Jetty) had tests fail

erroneously when executed concur-

rently. Moreover, even more failures

might have occurred; we didn’t ex-

plore all possible scheduling combi-

nations in which tests might execute

concurrently.

Examining these five projects’

source code, we found two sources

of dependencies: files and network

ports. For example, some tests cre-

ated temporary directories, wrote

files to them, and deleted the di-

rectories when the test ended. This

caused conflicts when two test cases

executed simultaneously. Both tests

used the same temporary directory;

the test that finished first deleted the

directory, causing the second test to

unexpectedly fail.

We also saw several cases of con-

flicting bindings to network ports.

In these cases, part of the test setup

started a mock server listening to

some predefined port and then con-

nected the code under test to that

port. The first test to bind to the port

succeeded; subsequent tests that ex-

ecuted while that first test was run-

ning unexpectedly failed, unable to

bind to the port. None of the ob-

served dependencies occurred when

the test suites executed serially; all

the tests correctly cleaned up the en-

vironment state at their conclusion.

None of these projects had conflicts

on resources external to the machine

(for example, remote servers).

Reducing Testing Time
Our key insight is that we can pro-

vide the same level of test case iso-

lation as process separation without

paying the high overhead cost of re-

starting the JVM for each test case.

The typical reason engineers ask the

build process to restart the JVM be-

fore every test case is to eliminate

in-memory dependencies between

test cases. Our insight relies on the

observation that these dependencies

are easy to track and manage within

a single JVM (without restarting)

with much lower overhead and thus

shorter testing time. Then, we found

that we can speed up testing further

by parallelizing—running multiple

tests simultaneously—if we can also

remove system-level dependencies.

Isolating Object Graphs

The JVM provides a managed mem-

ory environment in which code can’t

construct pointers to arbitrary mem-

ory locations. Instead, the memory

M accessible to some executing func-

tion F is constrained to only that

memory reachable from F’s object

graph, plus any static fields. The ob-

ject graph encompasses the tradi-

tional object-oriented view of mem-

ory: F can receive several pointers to

objects as parameters, those objects

can in turn have pointers to other

objects, and so on.

It’s easy to imagine how to isolate

this object graph between test ex-

ecutions. Assume that the test run-

ner (which is instantiating each test)

constructs new arguments to pass

to each test case and doesn’t pass a

reference to any of the same objects

to multiple tests, as would normally

We found two sources of dependencies:

files and network ports.

102 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

be the case. Then (at their creation)

no two tests’ object graphs will have

overlapping nodes. Because the test

runner is standardized to the test-

ing framework, ensuring that tests at

this level are isolated is easy.

Isolating static Fields

In contrast, Java static fi elds are like

global variables: they’re directly

referenced by their fi eld name and

class name (no additional pointers

needed). So, we must isolate them.

Our approach to isolating static

fi elds is simple and emulates ex-

actly what happens when the JVM

restarts. Between each pair of test

cases, we reexecute the initializer for

every static fi eld, effectively eliminat-

ing static fi elds as a source of depen-

dencies between tests. VMVM opti-

mizes this basic approach to further

reduce the overhead of isolating test

cases. It reinitializes only the mu-

table static fi elds of classes used dur-

ing prior test executions when they’re

needed and always ignores fi elds that

are immutable (guaranteed to be

unchanged).

VMVM performs offl ine static

analysis and bytecode instrumenta-

tion before test execution. This anal-

ysis and instrumentation occurs each

time the application code or tests

change. In this phase, VMVM deter-

mines which classes contain no mu-

table static fi elds and thus won’t ever

need reinitialization.

VMVM then emulates exactly

the process JVM uses internally for

initializing a class. It inserts guards

(in the bytecode) around every ac-

cess to the class to check whether

the class must be reinitialized and, if

so, to reinitialize it. It inserts these

guards before every instruction that

might create a new instance of a

class (the new bytecode instruction),

access a class’s static method (the

 INVOKESTATIC bytecode instruction), or

access a class’s static fi eld (the GETSTATIC

and PUTSTATIC instructions). VMVM

also intercepts calls to Java’s refl ec-

tion library that would dynamically

perform the same operations, add-

ing guards on the fl y. In addition,

it modifi es each class initializer to

insert instructions to log its execu-

tion. This lets VMVM effi ciently de-

termine exactly which classes were

used by previous test cases and thus

will need to be reinitialized in the

next test case that references them.

VMVM performs all these instru-

mentations on only the application

bytecode (not code in the Java core

library set). To reinitialize static fi elds

belonging to classes in the Java core

libraries, we wrote a tool that scans

the Java API to identify public-facing

methods that set static fi elds. We then

verifi ed each result by hand (this

process would have to be repeated

only for new versions of Java). We

found 48 classes with methods that

set the value of some static fi eld in the

Java API. For each of these meth-

ods, VMVM provides copy-on-write

functionality, logging each internal

fi eld’s value before changing it and

then restoring that value when re-

initializing. To provide this support,

VMVM prefaces each such method

call with a wrapper to record the

value in a log and then scans the log

at reinitialization (between each pair

of test cases) to restore the value.

Running Tests in Parallel

As we mentioned before, our

VMVMVM prototype lets us ex-

ecute test cases in parallel without

interference by employing a conven-

tional VM to ensure that each si-

multaneously executing test has its

own fi le system and virtual network

interface (see Figure 2). VMVMVM

still relies on a test’s manually writ-

ten pretest and post-test methods to

clean up system resources between

test classes, so that no two tests are

dependent as a result of some shared

fi le. In our study of the 20 projects,

we found no test classes that were

dependent (when executed sequen-

tially) because of shared system re-

sources. Other researchers have

confi rmed that such dependencies

are uncommon.5

Virtual machine

Virtual machine

Single JVM with VMVM

JUnit job
worker

JUnit job
worker

Single JVM with VMVM

Test
class

Batch
of

tests

Batch
of

tests

Batch
of

tests

Test
class

Test
class

Test
class

Test
class

Test
class

Test
class

Test
class

Host running the build

Master controller

Ant or

Maven test

runner

JUnit

job

distributor

FIGURE 2. The high-level architecture of VMVMVM (Virtual Machine in a Virtual

Machine on a Virtual Machine). Our system integrates directly with test execution

initiated by Ant or Maven, or via JUnit directly. Each test class execution is intercepted

and sent to a master controller that delegates test cases to workers.

 MARCH/APRIL 2015 | IEEE SOFTWARE 103

To run N tests in parallel, we cre-

ate N VMs, with a single daemon

running in each one. Each daemon

listens for requests from our master

controller process, executes the tests

submitted by the controller, and re-

turns the results. The controller col-

lects the results, reorders them to

appear as if they executed serially,

and returns them to the original in-

voker of the test suite as if they had

executed sequentially on the same

machine. The daemons use VMVM

to provide in-memory isolation be-

tween test cases, so they don’t start a

new JVM for each test case.

For easy integration, we pro-

vide a drop-in replacement for the

Ant JUnit task, the Maven JUnit

target, and a custom JUnit run-

ner. Engineers need only change

their build configuration to use our

 JUnit target (which accepts the ex-

act same arguments as the normal

target); test cases are automatically

parallelized.

For instance, when using our Ant

task, VMVMVM will automatically

start a local socket server, spin up

worker processes, distribute the test

requests, and return the results (in

serial order) to the Ant task. Existing

test listeners and custom test runners

continue to work normally.

Evaluation
We evaluated how our approaches

reduced the 20 projects’ build time.

For each application, we first ran the

entire test suite with each test case

isolated in its own process (the base-

line configuration). Then, we ran the

suite with all tests executing in the

same process, but using VMVM to

provide isolation. Finally, we ran

the suite distributed across three

workers, each one running all its

tests in the same process, again with

VMVM providing the isolation. We

performed this entire process 10

times, averaging the results.

We performed this study on our

commodity server running Ubuntu

12.04.1 LTS (Long Term Support)

and Java 1.7.025 with a four-core

2.66-GHz Xeon processor and 32

Gbytes of RAM. Each worker ran

in its own VMWare Workstation 10

VM, running Ubuntu 12.04.1 LTS

and allocated 2 Gbytes of RAM and

two cores.

Table 1 shows the results. All

speedups are relative to the length of

a build that isolated each test by exe-

cuting it in its own process and then

ran all the test processes sequentially

in the same OS on the same machine

(no VMs). If this was a project’s de-

fault configuration, the table shows

it in bold; otherwise, the default con-

figuration didn’t isolate tests but ran

them all in the same process.

The average speedups provided

by both solutions (VMVM alone

and VMVMVM parallelized in mul-

tiple VMs) were comparable. Build

time decreased by 47 percent when

we used VMVM to isolate test cases

and by 52 percent when we added

VMVMVM.

We were interested most in the

cases in which one approach sig-

nificantly eclipsed the other. For ex-

ample, for Apache Tomcat, VMVM

sped up the overall build by only 28

percent, whereas VMVMVM sped it

up by 68 percent. For btrace, VMVM

sped up the overall build by 23 per-

cent, whereas VMVMVM—with

VMVM included—slowed it down

by 20 percent. Tomcat had almost

300 test classes, with a fairly even

distribution of test lengths, so paral-

lelization was quite effective. On the

other hand, btrace had only three

test classes, taking 1,410 ms, 36 ms,

and 23 ms, respectively.

For btrace, parallelization pro-

vided no significant benefit because

a single test class dominated the

testing time. The communication

overhead of distributing the tests to

the workers showed through, caus-

ing VMVMVM to provide a slow-

down compared to VMVM alone.

In the other applications in which

VMVMVM didn’t perform as well

as VMVM, the overall number of

test classes was nearly the same as

the number of workers (three), and

one or two of the tests dominated

the others in execution time. In

such cases, parallelizing test classes

wasn’t effective; using only VMVM

increased speedup.

O
ur study shows that in

projects with a diverse

range of test classes, VM-

VMVM greatly reduced the time

to run a complete build. On popu-

lar open source software, such as

Apache Tomcat, this reduction was

huge. We’ve released a stand-alone

version of VMVM under an MIT

license via GitHub (https://github

.com/Programming-Systems-Lab

/vmvm). We’re working with our

In projects with a diverse range

of test classes, VMVMVM greatly reduced

the time to run a complete build.

104 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

industrial partners to release a full

version of VMVMVM. We hope our

efforts to reduce Java build times

can help relieve release engineers

from long-running builds.

Acknowledgments
Jonathan Bell and Gail Kaiser are mem-
bers of Columbia University’s Program-
ming Systems Laboratory, which is funded
partly by US National Science Foundation
awards CCF-1302269, CCF-1161079, and
CNS-0905246 and US National Institutes
of Health grant U54 CA121852.

References
 1. S. Yoo and M. Harman, “Regression

Testing Minimization, Selection and Pri-
oritization: A Survey,” Software Testing,
Verifi cation and Reliability, vol. 22, no. 2,
2012, pp. 67–120.

 2. G. Rothermel and M.J. Harrold, “Analyz-
ing Regression Test Selection Techniques,”
IEEE Trans. Software Eng., vol. 22, no. 8,
1996, pp. 529–441.

 3. J. Bell and G. Kaiser, “Unit Test Virtu-
alization with VMVM,” Proc. 36th Int’l
Conf. Software Eng. (ICSE 14), 2014, pp.
550–561.

 4. K. Muşlu, B. Soran, and J. Wuttke, “Find-
ing Bugs by Isolating Unit Tests,” Proc.
19th ACM SIGSOFT Symp. and 13th
European Conf. Foundations of Software
Eng. (ESEC/FSE 11), 2011, pp. 496–499.

 5. S. Zhang et al., “Empirically Revisiting
the Test Independence Assumption,” Proc.
2014 Int’l Symp. Software Testing and
Analysis (ISSTA 14), 2014, pp. 384–396.

JONATHAN BELL is a PhD student in software engineering

at Columbia University. His research interests include software

testing, program analysis, and fault reproduction. Bell received

an M Phil in computer science from Columbia University. He’s

a member of the IEEE Computer Society. Contact him at jbell@

cs.columbia.edu.

ERIC MELSKI is the chief architect at Electric Cloud and

has been developing build optimization software there for

more than 12 years. His research interests include distributed

systems, high-performance computing, parallel programming,

and kernel development. Melski received a BS in computer

science from the University of Wisconsin. Contact him at eric@

electric-cloud.com.

MOHAN DATTATREYA is the senior director of engineering at

Electric Cloud. His research interests include software-defi ned

networks, application acceleration, and distributed-systems

performance engineering. Dattatreya received an MS in com-

puter science from Stanford University. Contact him at mohan@

electric-cloud.com.

GAIL E. KAISER is a professor of computer science at Colum-

bia University. Her research interests include software reliability

and robustness, information management, social software

engineering, and software development environments and

tools. Kaiser received a PhD in computer science from Carnegie

Mellon University. She was a founding associate editor of ACM

Transactions on Software Engineering and Methodology and

has been an editorial board member of IEEE Internet Comput-

ing. She’s a senior member of IEEE. Contact her at kaiser@

cs.columbia.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns

are also available for free at

http://ComputingNow.computer.org.

IEEE Internet Computing reports emerging tools,

technologies, and applications implemented through the

Internet to support a worldwide computing environment.

For submission information and author guidelines,

please visit www.computer.org/internet/author.htm

Engineering and Applying the Internet

