Course-Adaptive Content Recommender
for Course Authoring

Hung Chau, Jordan Barria-Pineda, and Peter Brusilovsky

School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA
{hkc6, jab464,peterb}@pitt.edu

Abstract. Developing online courses is a complex and time-consuming
process that involves organizing a course into a sequence of topics and
allocating the appropriate learning content within each topic. This task
is especially difficult in complex domains like programming, due to the
incremental nature of programming knowledge, where new topics exten-
sively build upon domain concepts that were introduced in earlier lessons.
In this paper, we propose a course-adaptive content-based recommender
system that assists course authors and instructors in selecting the most
relevant learning material for each course topic. The recommender sys-
tem adapts to the deep prerequisite structure of the course as envisioned
by a specific instructor, while unobtrusively deducing that structure from
problem-solving examples that the instructor uses to present course con-
cepts. We assessed the quality of recommendations and examined several
aspects of the recommendation process by using three datasets collected
from two different courses. While the presented recommender system was
built for the domain of introductory programming, our course-adaptive
recommendation approach could be used in a variety of other domains.

Keywords: Learning content recommendation; course model

1 Introduction

Over the past twenty years, most intelligent tutoring systems (ITSs) have fo-
cused their personalization efforts on helping students find an “optimal path”
through available learning content to achieve their learning goals. A range of
personalization technologies, known as course sequencing, adaptive navigation
support, and content recommendation, can account for the learning goals and
the current state of student knowledge and recommend the most appropriate
content (e.g., a problem, an example, an educational video, etc.). However, in
the context of real courses, there is not complete freedom in selecting the appro-
priate content for students. An instructor usually plans a course as a sequence of
topics to be learned. To stay in sync with the instructor and the class, students
are expected to work on course topics in the order that is determined by the
instructor’s plan. In this context, the personalized selection of learning content
should account for both a student’s prospects (i.e., current knowledge levels)
and the instructor’s prospects (the preferred order of topics and learning goals).

Unfortunately, the current generation of I'TSs rarely support adaptation to a
teacher’s preferences. In most of these systems, a sequence of topics is predefined
and learning content items are statically assigned to these topics. While this
approach works well for instructors who are happy to follow the sequence of
topics that is defined by the ITS, the instructors who prefer a different topic
structure will find such a system unacceptable, since it doesn’t support their
approach to teaching the course. These considerations are especially important
when learning programming, where almost every instructor and every textbook
introduces a unique course organization [1,2].

Nowadays, a variety of learning content items could be accessed from differ-
ent learning content repositories and portals [3, 4], while the majority of learning
management systems offer authoring tools to structure a course into a set of top-
ics and to add learning content to each topic. However, our work with instructors
revealed that limited assistance provided by the current course authoring tool is
not sufficient. While defining a sequence of topics is an easy task, selecting the
most relevant content for each topic from a large collection of advanced learning
content items is a real challenge. The instructors need to carefully review a large
number of problems and examples in order to select those that best fit their
learning goals for the topic. This is a time-consuming and error-prone process
[5,6]. While a number of recommender systems have been developed to assist
instructors in finding relevant content in online repositories [7], these systems
attempt to adapt to the overall goals and interests of their users and are not
able to consider the complex prerequisite-based structures of modern courses.

This paper presents Content Wizard, a content recommender system that has
been specifically created to assist instructors with the course authoring process
by recommending learning activities that are most appropriate to each of the
course topics in the context of their preferred model of the course. The system
leverages two valuable resources provided by instructors: the order of course
topics and problem-solving examples, which instructors (or textbook authors)
present to students to demonstrate course concepts.

This paper is organized as follows: Section 2 presents a brief review of re-
lated work, while Section 3 discusses the place of content recommendation in
a course-authoring context and presents the interface of Content Wizard. The
internal organization of the system and its recommending approach is described
in Section 4. Section 5 presents an evaluation of Content Wizard’s performance
against a more traditional baseline, and Section 6 examines the performance of
the approach on a deeper level. Finally, Section 7 presents a discussion of results
and possible avenues for future work.

2 Related Work

The problem of authoring support in an ITS context has been extensively ex-
plored. Murray [5] defines seven categories of ITS authoring tools and generally
classifies them into two broad groups: pedagogy-oriented systems or performance-
oriented systems. Performance-oriented systems focus on providing a rich ed-

ucational environment, in which students can gain problem-solving expertise,
procedural skills, concepts, and facts by practicing and receiving feedback and
guidance from tutors. Authoring tools in this group include simulation-based
learning, domain expert systems, and some special purpose systems. The promi-
nent examples in this category are ASPIRE and cognitive tutor authoring tools
(CTATs). ASPIRE [8] allows non-computer scientists to develop new constraint-
based tutors with main support for generating a domain model and producing
a fully functional system. Cognitive tutor authoring tools (CTATSs) [9] allow
authors to develop two types of tutors: cognitive tutors and example tracing
tutors. The CTAT authoring process requires authors to give a definition of
a task domain (such as the fraction addition problem), along with appropriate
problems. Pedagogy-oriented systems focus on organizing instructional units and
tutoring strategies. They support instructors in managing curriculum sequenc-
ing and planning, designing teaching strategies and tactics, composing multiple
knowledge types (e.g., topics and concepts), and authoring adaptive hyperme-
dia. Two examples in this category are InterBook and SitPed. InterBook [10]
provides support for authoring adaptive electronic textbooks. It helps authors
to create the book’s structure and associate every section to domain concepts.
SitPed [11] is a pedagogy-oriented authoring system that supports instructors in
creating simple, hierarchical task models, authoring assessment knowledge, and
creating tutor feedback and guidance.

Authoring tools in the pedagogy-oriented group frequently focus on support-
ing authors by defining the domain model as a set of knowledge components
(concepts or rules), building a course structure, and associating course units and
learning content with domain concepts [10,12-14]. While our work follows the
same approach, we minimize authors’ load by deriving the intended course struc-
ture from easily available data, rather than requiring the authors to manually
provide their intended course structure. The most recent systems in this group
also offer learning content recommendation for course authors [7]; yet in most
cases, content recommendation is based on instructor interests or on specific
goals, and less than a handful of projects [15] focused on using the whole course
structure for content recommendation. Our work attempts to advance this re-
search direction by exploring a more powerful yet unobtrusive recommendation
approach and by offering a more extensive evaluation than earlier efforts.

3 Content Recommendation for Course Authoring

The content recommendation approach presented in this paper was developed
for a typical course authoring context. The essence of this scenario is that the
author designs the course structure as a sequence of topics. To support learning
for each topic, a set of items of multiple content types is associated with each
topic. This course structuring approach is supported by every major learning
management system (where a topic usually corresponds to a course lecture), as
well as by most textbooks (where a topic usually corresponds to a chapter).

To facilitate this course-authoring approach and to make it easier for instruc-
tors to reuse large volumes of “smart” learning content for computer science ed-
ucation [16], we developed a drag-and-drop course authoring tool (Fig. 1). The
tool allows course authors to define a sequence of topics (shown on the left),
select their preferred types of learning activities (the authors could use over 15
types in three domains), and add the desired content to each topic. To add con-
tent to a topic, the author selects one topic and one type of learning content (in
Fig. 1, the topic Variables and the Problems content type is selected). Following
that, the authoring system shows a list of all activities of the selected type that
could be added to the topic through a drag-and-drop interface. The key problem
here, as we discovered when working with an early version of the tool, is that
this interface doesn’t really help the authors to select precisely the right kind
of content for each topic. This task is quite difficult: each selected item should
cover the learning concepts that the instructor wants to introduce in the selected
topic, but at the same time, it should not use concepts that students have not
learned yet. The sheer amount of content to consider (e.g., 289 interactive ex-
amples and 223 programming problems) makes this task practically impossible
without additional support.

The goal of Content Wizard is to provide the necessary support to make
content selection both feasible and efficient. As the right side of Fig. 1 shows,
Content Wizard ranks all content items of the selected type by its match to the
selected topic in the course context. It also assigns “star” relevance ratings to
all content items and puts a warning sign to items that, while superficially a
good match, might include concepts that have not yet been introduced at this
point in the course. The most important aspects of support offered by Content
Wizard are: (1) this support is based on Content Wizard’s understanding of
the fine-grained course structure and prerequisite relationships on the level of
domain concepts; (2) the instructor is not expected to define the fine-grained
course structure, as required by some earlier approaches [12,13]; instead, the
course’s structure is automatically derived from the order of course topics and
the set of code examples that instructor shows at the target lecture (or provides
in a book chapter). The next section explains this approach in detail.

4 Course-Adaptive Content Recommender System

4.1 The Course Model

The content recommendation that is provided by Content Wizard is based on
a deeper-level course structure modeling. While the instructor may perceive the
course as a sequence of topics, the deeper model assumes that the goal of each
topic is to introduce a set of fine-grained domain concepts (knowledge compo-
nents). The course model is defined as a sequence of concept sets that are covered
throughout the course (see Figure 2). The concepts associated with a specific
course unit are the concepts that instructor aims to introduce at that unit. For
example, Unit 2 is the first unit of the course where the concepts Array Variable
and Array Data Type appear, among others. The concepts introduced in earlier

Units Code input Resources

Choose File Variables01.java
[esiablee 1 package edu.pitt.is17.lec0Z;

. . Selected Activities
‘publ 1 Variables@l
Primitive_Data_Types ublic class Variables@l {
public static void main(String[] args] n FhkkKk Preview
int myNumber; // declaration Using Double
Constants myNumber = 3; // initialization

Fkkkk Preview

3
4
5]
6
7
8
9 int n = 1; // declaration and init printin Test
Arithmetic_Operations 10
1 double realNumber = @.5; // real r

2 okkkk Preview

Strings 15| c— A Testnun

Add code example

Boolean_Expressions A\ Boolean Operations (Not equal)
Code examples

Fkkkok Preview

dkkkok Preview

Dedisions Variables1.java x Simple Variable Test
Switch Variables2.java %
- . ok xdk
A\ Using double and Math class Preview
G [P o 5 | B save activities
Get recommended activities! =

Fig. 1: Course-authoring tool with Content Wizard recommendations

units become prerequisite concepts for later units. For example, Print, Int Data
Type, and other Unit 1 concepts are expected to be learned before students start
Unit 2, and are considered prerequisites for Unit 2 and all following units. This
deeper level concept-based course modeling is popular among ITS and Adaptive
Hypermedia authoring systems [10,12,13] where it is assumed that course or
system authors will create this model manually. The difficulty of manual mod-
eling is a known bottleneck of the fine-grain course structuring approach, which
prevents this approach from being more broadly used. However, Content Wizard
is able to automatically derive this model by using worked examples that are
provided by the course authors.

Int Data String Class
Type Data Type Definition

Array Array Array
Variable Element Data Type

Object Interface Override Final Class
Variable Definition ToString Specifier

Fig. 2: Knowledge structure of a course

4.2 Worked Code Examples

Worked examples, in the form of complete programs or code fragments, are
extensively used in teaching programming concepts. In each lecture, an instruc-
tor usually presents several worked examples that illustrate newly introduced
concepts. Similarly, each programming textbook extensively uses examples and
frequently offers access to the code of these examples through a CD included
with the textbook or a Web site. The assumption behind the Content Wizard’s
automatic course structuring is that a set of examples presented for each unit
offers the best way to understand the concepts that the instructors want to in-
troduce in this unit. To build a deep course model that follows the instructor’s
preferences, Content Wizard asks the course author to submit the plain code of
each example that is used in the unit (see the middle column in Fig. 1).

Using the code examples provided for each unit, Content Wizard automat-
ically creates course knowledge structure, as shown in Fig. 2. First, it extracts
all programming concepts that are associated with each code example using a
Java concept parser [17], that returns a set of fine-grained concepts from Java
ontology. Second, for each unit, it forms a set of covered concepts that merges
concepts from all of the unit’s examples. Finally, it sequentially processes the
units to define the unit’s content as concepts that are first introduced in this
unit; i.e., all concepts extracted from Unit 1 examples become Unit 1 concepts;
all new concepts extracted from Unit 2 examples (i.e., those that have not been
introduced in Unit 1) become Unit 2 concepts, and so on.

4.3 Content Representation and Analysis

To identify a match between a unit and a learning activity, Content Wizard
considers a set of concepts associated with a candidate activity and the course
structure. Since all types of of learning activities available in the system (i.e.,
examples or problems) include code fragments, we use the Java concept parser
[17] to represent each activity as a “bag” of Java programming concepts (Fig-
ure 3a). This “bag of concepts” representation could be used by a number of
traditional recommendation algorithms. A match to a specific unit, however, de-

Activity a;

@ S
StringAddition
FloatDataType
. Past concept . Current concept . Future concept

(a) Bag-of-concepts representation (b) Three-concept-sets representation

Fig. 3: Demonstration of representing learning content as programming concepts.

pends on the position of the target unit within the course. When selecting an

activity, instructors usually consider the balance of practicing newly introduced
knowledge and reviewing learned knowledge, because students are most engaged
when the material to be learned is neither too difficult nor too easy. Wang et
al. [2] classify a learning activity in the progression as reinforcement (reviewing
learned concepts), recombination of previously learned concepts, or introduction
(introducing new concepts). Using the course model presented in Section 4.1,
Content Wizard classifies each concept that appears in an activity into one of
three categories (Figure 3b):

— Past concepts (P): Concepts that were covered in previous units. These con-
cepts are supposed to be known before starting the current unit.

— Current concepts (C): Concepts that are covered in the current unit (and thus
have not been covered in any previous units). We consider these concepts as
targets of the current unit, according to the instructor’s vision of the course.

— Future concepts (F): Concepts that have not been covered up to the current
unit. We assume that the instructor prefers to cover these concepts in future
units (or not to cover them at all). Most likely, these concepts are not yet
appropriate for students to learn in the context of the unit.

This representation reflects instructor preferences and enables our recommen-
dation approach, in which recommended activities focus on current concepts,
leverage learned concepts, and avoid future concepts.

4.4 The Recommendation Method

Content Wizard adaptively provides two valuable sources of information that
can help instructors find the most appropriate content for each unit: a ranked
list and warning flags. At every step of course creation, based on the current
course model and the code examples provided for the target unit, the system
will update the representations of all candidate learning activities during the
recommendation process.

For each learning activity, a;, consisting of three concept sets, P;, C; and Fj,
the Wizard calculates its ranking score by linearly combining the contribution
of the concept covered by the activity, according to the category to which each
concept belongs. Equation (1) shows how we compute each content ranking score:

scoreq, = o|P;| + B|C;| + | Fi] (1)

a, B, and vy are the parameters controlling the importance of the three cate-
gories. The values for these parameters might be different for different domains
and even for individual instructors, depending on how much they focus on cur-
rent and past concepts and how much they want to avoid future concepts. Indeed,
[2] shows the differences among the proportions of reinforcement, recombination,
and introduction of concepts of two Japanese textbooks and two online learning
tools (Duolingo and Language Zen). Given sufficient volume of data (content
selected by instructors for different courses) these parameters could be learned

from data; otherwise, they could be selected by using expert estimation. We
explored both of these approaches in our evaluation presented in Section 5.

In addition to the ranking, we believe it is important for instructors to be
aware of “not ready” learning activities that use concepts that do not appear
in the code examples up to the current unit, because they could confuse less
prepared students. We identify these activities as follows:

1, if |F;| >0

0, otherwise

warning,, = { (2)

Activities with warning value 1 are annotated using a warning icon (see the
3rd, 4th, and 6th rows in Figure 1). The instructor can then evaluate whether
an activity with potentially premature concepts should be assigned to the unit.

5 Evaluation

5.1 Datasets

To evaluate our proposed recommendation method, we collected three data sets
from two different universities. Each dataset encapsulated instructor preferences
in content selection (i.e., “ground truth”).

Dataset 1: The data was collected from a Java class taught at the University
of Pittsburgh in Fall 2016 (referred as IS17F16). The instructors followed a
lecture-based format and created a course structure for IS17F16 that consists of
18 units (each unit includes two types of learning content, annotated ezamples
and parameterized problems). No content recommendation functionality was used
for content selection. As input, we collected code examples presented by the
instructors in the course slides. All annotated examples in the content pool were
used for ranking. As the ground truth, we used annotated examples that were
selected by the instructors for each unit.

Dataset 2: The second dataset uses the same inputs as the first dataset for
running the recommendation process. All items in the problem pool are ranked
for recommendation (as shown in Figure 1), and the ground truth is the problems
selected by the instructors for each unit of IS17F16.

Dataset 3: This dataset was extracted from the CS1 online programming
course ! taught at University of Helsinki, Finland. We mapped the course struc-
ture into ten coherent topics. Each topic has several code examples for students
to learn new concepts (which we used as input) and several coding exercises to
practice (which we used as the ground truth). Note that in this dataset, only
coding exercises that were actually used in the course were ranked in the recom-
mendation process, while in datasets 1 and 2, all items in the content pool were
ranked for the course, including those that were not selected by the instructor.

! http://mooc.fi/courses/2013/programming-part—1/material.html

5.2 Performance Comparison

To assess the performance of our approach in a fair way, we estimate the values
of the parameters in Equation (1) based on a preliminary analysis (we can’t
learn it from the same data that we use to evaluate the approach). We collected
code examples of several topics from a Java programming textbook and ran the
algorithm using Equation 1 while adjusting the parameter values in order to get
the best recommendation results (by taking the book’s contents as ground truth).
The estimated values of «, 3, and v are set to 0.2, 1, and -1.5, respectively.
As a baseline ranking approach, we use a popular content-based approach that
ranks candidate items by cosine similarity between concept vectors that represent
units and content items [15]. We refer to this approach as tf*idf, since we use a
TF*IDF approach to assign weights for individual concepts in the concept vector.
To measure ranking performance, we use three classical metrics: precision, recall,
and F1 score (at top 3, top 5, top 10, and top 15).

Table 1: Performance comparison of Content Wizard vs. the baseline

Precision@top (%) Recall@top (%) Fl@top (%)

3 5 10 15 3 5 10 15 3 5 10 15

Wizard |62.74|50.59(34.7 |25.09|51.26(63.36|77.51|80.44(56.42|56.26|47.94|38.26
tf*idf 21.57 [18.82 [15.29 [15.68 [21.57 |18.84 (29.14 [42.33 |15.57 [18.84 [20.06 (22.89
‘Wizard|47.05(37.64(32.94|26.66(34.23(41.91|66.32(76.86|39.63|39.66(44.01|39.59
tf*idf 21.57 [17.65 [14.11 (14.11 [17.63 |23.05 [33.33 |43.08 [19.40 |20.00 |19.83 |21.27
Wizard|96.3 |88.89(75.76|64.44(41.45(52.79|73.32|83.90(|57.96|66.24(74.42|72.89
tf*idf 81.48 [73.33 [66.67 |57.04 [37.24 |44.97 (64.34 |73.18 |51.12 [55.75 [65.48 (64.10

Dataset|Method

As shown in Table 1, Content Wizard outperforms the #f*idf method for
all datasets. In all cases, Content Wizard archives a good recall performance
of about 80% when presenting the top 15 results out of a pool of more than
200 learning items (i.e., 80% of all relevant items are included among the top 15
results). The table also shows interesting differences between the F1 performance
of both approaches on datasets 1-2 and on dataset 3. First, on the dataset 1 and
2, the performance of the Wizard is 2-3 times better than the baseline while in
the dataset 3 the difference is smaller. Second, the precision of both approaches
is considerably higher for dataset 3. We believe that both differences stem from
the nature of the datasets. The ranking tasks for the dataset 3 was much easier
than for datasets 1-2. First, for dataset 3, recommender approaches had to rank
only the actual items used in the course (and no “spares”). It was essentially a
matter of matching each item to the best unit. The number of units to match
was also much smaller (10 vs. 18). Recommendation for datasets 1-2 required
ranking or all content items in the repository out of which only a part was used
in the course. Some of these items might be a poor match to the course, but
some were not used by the instructors when creating the course simply because
they wanted to select some relevant content for each unit, but not all relevant
content. As shown by the data, a simple content-based algorithm might work
reasonably well in simple cases, but in a more challenging (and realistic) context,
Content Wizard offered a remarkable advantage.

6 Deeper Analysis

6.1 Finding the Best Values for the Parameters

As presented in Section 5.2, the values of o, 3, and =y used in performance evalua-
tion were selected using a preliminary analysis. The performance of our systems
with estimated parameters was better than the baseline, but it might still be
improved by learning best parameters from the data. Since the precise balance
between past, current, and future concepts may depend on instructor’s prefer-
ences, the proper way to learn parameters for performance evaluation would be
to use another earlier-authored course from the same instructor (with sufficient
volumes of instructor-selected content). Since we have only one course for each
instructor, the parameters learned from this course could not be used to eval-
uate recommendation performance on the same course. However, we could still
post-assess the effectiveness of the estimated parameters and explore how the
quality of the recommendation depends on the value of the parameters.

To achieve this goal, we ran 100 iterations from 0 to 10 with an increment
of 0.1 for each of the parameters, for a total of 1,000,000 iterations. We found
that within this range, the best values of «, £, and v w.r.t F1@Q15 performances
are respectively 0.167, 1, and -3 for dataset 1; 0.2, 1, and -2.5 for dataset
2; and 0.125, 1 and -2.3 for dataset 3 (these values have been normalized by
dividing all parameters by the values of § to have 8 equal 1). Although these
best values vary slightly for each dataset, each set offers about the same small
performance increase in comparison with the estimated values. For example,
the F1@15 performance with the best data-derived values are 39.34, 41.18, and
74.31 for datasets 1, 2 and 3, respectively, as compared to 38.26, 39.59, and 72.89
F1@15 performance with manually estimated data.

Figure 4 shows how Content Wizard’s performance changes with changing
the parameters’ values. Since the results are similar across the three datasets,
we report only the results from dataset 2 (see Figure 4). To generate these
figures, we consecutively fixed one of the parameters to its best value and plotted
the change of performance for each reasonable combination of the remaining
parameters. The results show that when the value of « increases (leading to the
increased occurrence of past concepts in recommended content), the performance
of the system tends to decrease. On the other hand, a larger absolute value of
v (leading to stricter penalty for future concepts) usually results in a better
performance. However, no single parameter could lead to the best performance; it
is the combination of the contribution of all the concepts in the three categories.
The results hint that the instructors in the courses used for our analysis do not
pay a lot of attention to the past concepts and tend to avoid future concepts
when choosing content for students to learn at the current unit.

6.2 How Many Code Examples Do We Need?

One of the most important elements in our recommendation process is the code
examples provided by instructors. The examples are vital to understand what

B=1 y=-25
0.40 0 0.40 0 0.40
. 0.35 s 035 s 035
0.30 0.30
030
6 0.25 6 025 ¢
@ s s 025
4 0.20 & 0.20 4
0.20
0.15 015
2 010 2 0.10 2 0.15
o 0.05 o | Woos o 0.10
0 2 a 6 8 10 0 2 4 6 8 10
v B

Fig.4: F1Q15 of Content Wizard with different sets of «, 5, and 7 in dataset 2.

an instructor expects students to learn in a given unit. It could be expected
that the more examples are provided for each unit, the better items the Wizard
recommends. But how many of these code examples are sufficient to achieve
good quality results? In order to assess the impact of the number of provided
examples, we picked the topics that had at least 10 examples and compared the
performance of both approaches using from 1 to 10 examples (randomly selected
from all examples provided by the unit) as input. As shown in Figure 5a, the
performance of Content Wizard (measured by F1) consistently improves when
the number of examples increases. In contrast, the baseline TF*IDF approach
(Figure 5b) is not able to learn from an increasing number of examples. It could
be also observed that with the first four to five examples the increase of quality
reaches a plateau, which hints that four to five might be the optimal number of
examples to ask instructors to provide.

0.8

F1 score at top 15
F1 score at top 15

0.5

2 4 6 8 10 2 4 6 8 10
Number of examples Number of examples

(a) Content Wizard (b) TF*IDF

Fig. 5: F1@15 performances with different number of code examples for five topics
in dataset 3 that have at least 10 code examples.

6.3 Discovered Limitations

A deeper analysis of recommendation performance helped us to reveal some lim-
itations in our approach. First, the current approach doesn’t take into account
the fact that some concepts within a topic might be more important than others.
For example, in the topic while loop, the concept WhileStatement is more impor-
tant than concept BreakEzpression. Exploring the importance of each concept

and adding its weight to Equation (1) may potentially help Content Wizard to
achieve a better ranking. However, it is still unclear how the importance of a
specific concept can be derived from data rather than by asking the instructor.
We tried a natural idea to use TF*IDF weights as importance weights, but this
did not improve the overall performance of Content Wizard. Indeed, TF*IDF
weights more heavily most unique concepts, i.e., BreakEzrpression, while the key
topic concept, i.e, WhileStatement might dominate topic problems.

Second, we discovered that the code examples provided by the instructors
are frequently not exhaustive in listing all concepts that the instructor wants to
teach in a unit. By observing the automatically deduced course structure that
was produced in our study, we noticed that although in most of the cases the
concepts from the code examples cover all the concepts from the content selected
by the instructors, some concepts such as PostIncrementExpression (+=) do
appear in the selected content, but not in any provided code examples (though
these do contain the concept PostDecrementExpression (-=)).

Finally, the Wizard will fail to recommend items for a unit that doesn’t
introduce new concepts, but instead uses learned concepts to introduce a specific
class of problems; for instance, finding the mazximum value in an array or the
topics using truth values and instructors on code-writing and problem solving in
dataset 3. While a new type of problems could be considered as new knowledge
[18], it is not recognized by our Java parser.

7 Discussion and Future Work

This paper presented a course-adaptive content recommender system called Con-
tent Wizard, which assists instructors in authoring adaptive online programming
courses. We introduce a novel unobtrusive example-based approach to build a
fine-grained course structure that encodes an instructor’s vision of course orga-
nization. We also presented a novel content recommendation approach that uses
the whole course structure to recommend the most relevant content for each
course unit. Altogether, these innovations aim to decrease the effort required to
build a high-quality course based on reusable learning content (i.e., efficiency and
time to author [5,6]) and facilitate the task of maintaining its coherent sequen-
tial structure. We believe that this approach could be most valuable for adaptive
educational systems, such as ITSs or adaptive hypermedia, since personalization
algorithms require a much larger volume and variety of learning content for each
topic (to allow fine-grain personalization), rather than static courses.

We assessed the performance of the proposed approach using three datasets
collected from different universities. Comparing our system’s performance with
a standard baseline, we demonstrated that Content Wizard provides higher-
quality recommendations, especially in more challenging and realistic contexts.
The good recall performances suggest that Content Wizard could be efficiently
used in a real-life context: with content ranked by Content Wizard, an instructor
only needs to review the top 15 items out of several hundreds of items to select
the ideal content for each course topic.

While our work indicates the strong potential of the suggested approach,
we recognize that the approach itself and our evaluation process have several
limitations, which we plan to address in future work. First, this study doesn’t
consider that different concepts might have different importance within a topic.
Second, it doesn’t account for the fact that the examples provided by instructors
might not be exhaustive. While a group of related concepts is usually introduced
in the same unit, only some of these concepts are usually illustrated in the
code examples. In future work, we plan to extract the relationships between the
programming concepts from the ontology introduced in Section 4.2, and assume
that a group of closely related concepts is added as a whole to a unit once at least
one concept is used in the examples. Third, the current Java parser is unable to
recognize higher-level domain concepts, such as a specific type of problem. We
intend to improve the Java parser in order to extract more complex knowledge
of programming content.

On the evaluation side, while the data-centered (off-line) performance evalu-
ation approach is a dominant way to evaluate recommender systems, we believe
that only an online user study could provide a reliable assessment of the system
as a tool to support course authors. In particular, a user study is essential to
evaluate “beyond ranking” aspects of the Wizard, such as content warning signs.
In future work, we plan to engage course instructors in the evaluation process.

The current implementation and evaluation of our recommendation approach
has been performed in the area of learning programming where problem-solving
examples in the form of code are both popular and well-structured (allowing
concept extraction). The necessity to automatically process instructors’ worked
examples limits the applicability of our approach in the suggested form, however,
there is a considerable number of popular domains (math, physics, chemistry)
where worked examples are well-structured (i.e., formulas, equations) and could
be automatically processed for concept extractions. In the future, we plan to
explore our approach in some of these domains.

Acknowledgements We would like to thank Arto Hellas from University of
Helsinki for providing dataset 3. We would like to thank Yun Huang, Roya
Hosseini, and other members of the PAWS lab for their feedback on this paper.

References

1. Moffatt, D. V., Moffatt, P. B.: Eighteen Pascal Texts: An Objective Comparison.
SIGCSE Bull. 14, 2 (June 1982), 2-10 (1982)

2. Wang, S., He, F., Andersen, E.: A Unified Framework for Knowledge Assessment
and Progression Analysis and Design. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems. ACM, New York, USA, 937-948 (2017)

3. Cafolla, R. (2006) Project MERLOT: Bringing Peer Review to Web-Based Educa-
tional Resources. Journal of Technology and Teacher Education 14 (2), 313-323.

4. Hislop, G., Cassel, L., Delcambre, L., Fox, E., Furuta, R., Brusilovsky, P., and
Garcia, D. (2011) Sharing your instructional materials via Ensemble. Journal of
Computing Sciences in Colleges 26 (6), 160-162.

5. Murray, T.: An Overview of Intelligent Tutoring System Authoring Tools: Updated
Analysis of the State of the Art. In Authoring Tools for Advanced Technology
Learning Environments: Toward Cost-Effective Adaptive, Interactive and Intelligent
Educational Software, Murray, T., Blessing, S.B., Ainsworth, S. (eds.). Springer,
Dordrecht, 491-544 (2003)

6. Sottilare, R.A.: Challenges to Enhancing Authoring Tools and Methods for Intel-
ligent Tutoring Systems. In Design Recommendations for Intelligent Tutoring Sys-
tems, Sottilare, R.A., Graesser, A.C., Hu, X., Brawner, K. (eds.). Orlando, FL: U.S.
Army Research Laboratory, 3—7 (2015)

7. Manouselis, N., Drachsler, H., Verbert, K., and Duval, E. (eds.) (2013) Recom-
mender Systems for Learning. Berlin: Springer.

8. Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J.,
Mcguigan, N.: ASPIRE: An Authoring System and Deployment Environment for
Constraint-Based Tutors. International Journal on Artificial Intelligence in Educa-
tion. 19, 2 (2009), 155-188 (2009)

9. Aleven, V., McLaren, B.M. , Sewall, J., Koedinger, K.R.:The Cognitive Tutor Au-
thoring Tools (CTAT): Preliminary Evaluation of Efficiency Gains. In Proceedings of
the 8th International Conference on Intelligent Tutoring Systems (ITS’06). Springer-
Verlag, Berlin, Heidelberg, 6170 (2006)

10. Brusilovsky, P., Eklund, J., and Schwarz, E: Web-based education for all: A tool
for developing adaptive courseware. In: Proceedings of Seventh International World
Wide Web Conference, Brisbane, Australia, 14-18 April 1998, pp. 291-300. (1998)

11. Lane, H.C., Core, M.G., Hays, M.J., Auerbach, D., Rosenberg, M.: Situated Ped-
agogical Authoring: Authoring Intelligent Tutors from a Students Perspective. In
Artificial Intelligence in Education, Vol. 9112. Springer International Publishing,
Madrid, Spain, 195204 (2015)

12. Cristea, A.L., Aroyo, L.: Adaptive Authoring of Adaptive Educational Hypermedia.
In Proceedings of the Second International Conference on Adaptive Hypermedia and
Adaptive Web-Based Systems. Springer-Verlag, London, UK, 122-132 (2002)

13. Brusilovsky, P., Sosnovsky, S., Yudelson, M., Chavan, G.: Interactive Authoring
Support for Adaptive Educational Systems. In Proceedings of the 2005 Conference
on Al in Eucation. IOS Press, Amsterdam, 96-103 (2005)

14. Cabada, R.Z., Estrada, M.L.B., Garca, C.A.R.: EDUCA: A web 2.0 authoring tool
for developing adaptive and intelligent tutoring systems using a Kohonen network.
Expert Systems with Applications, 38 (8) (2011), 9522-9529 (2011)

15. Medio, C.D., Gasparetti, F., Limongelli, C., Sciarrone, F., Temperini, M.: Course-
Driven Teacher Modeling for Learning Objects Recommendation in the Moodle
LMS. In Adjunct Publication of the 25th Conference on User Modeling, Adaptation
and Personalization (UMAP ’17). ACM, New York, NY, USA, 141-145 (2017)

16. Brusilovsky, P., Edwards, S., Kumar, A., Malmi, L., Benotti, L., Buck, D., Ihantola,
P., Prince, R., Sirki, T., Sosnovsky, S., Urquiza, J., Vihavainen, A., and Wollowski,
M. (2014) Increasing Adoption of Smart Learning Content for Computer Science
Education. In: Working Group Reports of the 2014 Conference on Innovation and
Technology in Computer Science Education, Uppsala, Sweden, ACM, pp. 31-57.

17. Hosseini, R., Brusilovsky, P.: JavaParser: A Fine-Grain Concept Indexing Tool for
Java Problems. In The First Workshop on Al-supported Education for Computer
Science. Springer-Verlag, Berlin, Heidelberg, 60—63 (2013)

18. Falmagne, J.C., Cosyn, E., Doignon, J.P., Thiery, N.: The assessment of knowledge,
in theory and in practice. In Formal concept analysis. Springer, 61-79 (2006)

