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Abstract

Motivation: Protein complexes play critical roles in many aspects of biological functions. Three-
dimensional (3D) structures of protein complexes are critical for gaining insights into structural
bases of interactions and their roles in the biomolecular pathways that orchestrate key cellular
processes. Because of the expense and effort associated with experimental determinations of 3D
protein complex structures, computational docking has evolved as a valuable tool to predict 3D
structures of biomolecular complexes. Despite recent progress, reliably distinguishing near-native
docking conformations from a large number of candidate conformations, the so-called scoring
problem, remains a major challenge.

Results: Here we present iScore, a novel approach to scoring docked conformations that combines
HADDOCK energy terms with a score obtained using a graph representation of the protein—protein
interfaces and a measure of evolutionary conservation. It achieves a scoring performance competi-
tive with, or superior to, that of state-of-the-art scoring functions on two independent datasets: (i)
Docking software-specific models and (ii) the CAPRI score set generated by a wide variety of dock-
ing approaches (i.e. docking software-non-specific). iScore ranks among the top scoring
approaches on the CAPRI score set (13 targets) when compared with the 37 scoring groups in
CAPRI. The results demonstrate the utility of combining evolutionary, topological and energetic in-
formation for scoring docked conformations. This work represents the first successful demonstra-
tion of graph kernels to protein interfaces for effective discrimination of near-native and non-native
conformations of protein complexes.

Availability and implementation: The iScore code is freely available from Github: https://github.
com/DeepRank/iScore (DOI: 10.5281/zenod0.2630567). And the docking models used are available
from SBGrid: https://data.sbgrid.org/dataset/684).
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1 Introduction

Protein—protein interactions (PPIs) play a crucial role in most cellu-
lar processes and activities such as signal transduction, immune re-
sponse, enzyme catalysis, etc. Getting insight into the three
dimensional (3D) structures of those protein—protein complexes is
fundamental to understand their functions and mechanisms (Aloy
and Russell, 2006; Kiel ez al., 2008). Due to the prohibitive cost and
effort involved in experimental determination of the structure of
protein complexes (Shoemaker and Panchenko, 2007), computa-
tional modelling, and in particular docking, has established itself as
a valuable complementary approach to obtaining insights into struc-
tural basis of protein interactions, interfaces and complexes
(Halperin et al., 2002; Huang, 2014; Melquiond ez al., 2012;
Rodrigues and Bonvin, 2014; Soni and Madhusudhan, 2017; Stein
etal.,2011; Vangone et al., 2017).

Computational docking typically involves two steps (Halperin
et al., 2002; Huang, 2014; Rodrigues and Bonvin, 2014; Soni and
Madhusudhan, 2017): Sampling, i.e. the search of the interaction
space between two molecules to generate as many as possible near-
native models; and scoring, i.e. the identification of near-native
models out of the pool of sampled conformations. As shown in the
community-wide Critical Assessment of PRediction of Interactions
(CAPRI) (Lensink and Wodak, 2010; 2013; Lensink et al., 2007,
2017), scoring is still a major challenge in the field. There is thus still
plenty of room to improve the scoring functions used in protein—
protein docking (Moal et al., 2013; Vangone et al., 2017).

Scoring functions can be classified into three types: (i) physical
energy term-based, (ii) statistical potential-based and (iii) machine
learning-based. Physical energy-based scoring functions are usually
a weighted linear combination of multiple energetic terms. These are
widely used in many docking programs such as HADDOCK
(Dominguez et al., 2003; Vangone et al.,, 2016), SwarmDock
(Torchala et al., 2013), pyDock (Cheng et al., 2007; Grosdidier
et al., 2007; Jiménez-Garcia et al., 2013), ZDock (Pierce et al.,
20145 Pierce and Weng, 2007) and ATTRACT (Zacharias, 2003).
Taking HADDOCK as an example, its scoring function consists of
intermolecular electrostatic and van der Waals energy terms com-
bined with an empirical desolvation potential (Fernandez-Recio
et al., 2004) as well as a buried surface area (BSA)-based term de-
pending on the stage of the protocol (Vangone et al., 2016).
Statistical potential-based scoring functions such as 3D-Dock
(Moont et al., 1999), DFIRE (Zhou and Zhou, 2002) and SIPPER
(Pons et al., 2011b), typically convert distance-dependent pairwise
atom-atom or residue-residue contacts distributions into potentials
through Boltzmann inversion. Unlike classical scoring functions that
consist of linear combinations of energy terms, or simple geometric
and physicochemical features (Bourquard ez al., 2011; Fink et al.,
2011; Moal et al., 2017), a machine learning approach can discover
complex nonlinear combinations of features of protein—protein
interfaces to train a classifier to label a docking model as near-native
model or not. Simple machine learning algorithms work with fixed
dimensional feature vectors. Because interfaces of different docking
models can vary widely in size and shape, and in the arrangement of
their interfacial residues, most machine learning based scoring func-
tions typically use global features of the entire interface, for ex-
ample, the total interaction energy and the BSA. However, such an

approach fails to effectively utilize details of the spatial arrangement
of interfacial residues/atoms.

Graphs, in which the nodes encode the amino acid residues or
atoms and the intermolecular contacts between them are encoded by
the edges, offer a natural and information-rich representation of
protein—protein interfaces. Unlike the global interface feature vec-
tors described above, a graph has a residue- or atom-level resolution
and naturally encodes the topological information of interacting res-
idues/atoms (Bunke and Riesen, 2011; Vento, 2015). Furthermore,
the size of a graph is not fixed and can vary depending on the size of
the interface.

Such graph-based descriptions have been used previously in sev-
eral scoring functions (Chang et al., 2008; Khashan et al., 2012;
Pons et al., 2011a). Graph (or network) topology-based metrics
have mostly been used. Chang et al. (2008) exploited node degrees
(measuring the number of direct contacts of a node) and clustering
coefficients (measuring how likely a node and its neighbours tend to
form a clique) to score docking models. Similarly, Pons et al.
(2011a) used closeness (measuring how far a node from the rest of
the nodes in a network) and betweenness (measuring how important
a node as a connector in a network) in scoring with the intuition
that residues with high centralities in a network tend to be key func-
tional residues. Unlike the network topology-based approaches, the
SPIDER (Khashan et al., 2012) scoring function uses a graph to rep-
resent the interface at residue level with nodes labeled by their
amino acid identity. It ranks the docking models by counting the fre-
quency of native motifs in the interface graph. However, all the pre-
ceding fail to fully exploit the rich features of protein interfaces.

Against this background, we represent the interface with a
labeled graph, where the nodes encode the interface residues, edges
encode residue-residue contacts, and the nodes are annotated with
evolutionary conservation profiles. We treat the scoring problem as
a binary classification problem. By calculating the similarity be-
tween an interface graph from a docking model with the positive
(native) and negative (non-native) interface graphs in the training
set, we predict the likelihood of the query interface graph belonging
to the positive class or the negative class (Fig. 1). We make use of a
novel graph kernel to compute the pair-wise similarity between the
graph representations of protein—protein interfaces. We call the
resulting graph kernel-based scoring function GraphRank.

GraphRank exploits random walk graph kernel (RWGK)
(Vishwanathan et al., 2010) for computing the similarity of labeled
graphs, which has previously been used for protein function predic-
tion (Borgwardt et al., 2005) to calculate the similarity between two
interface graphs. By simultaneously conducting random walks on
two graphs, RWGK measures the similarity of two graphs by aggre-
gating the similarity of the set of random walks on the two graphs.
Unlike previous graph-based scoring functions, RWGK allows
GraphRank to fully exploit various node labels and edge labels and
to explicitly specify the starting and ending probability of the ran-
dom walks. GraphRank has two major advantages over classical
machine learning based scoring functions. First, GraphRank uses a
more detailed representation of protein interfaces than that provided
by the fixed dimensional feature vectors used by classical machine
learning approaches. GraphRank exploits residue level attributes
and network topology. Second, GraphRank uses the full profile of
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Fig. 1. Schematic workflow of our graph kernel-based scoring method.
Docking models for a protein—protein complex are first represented as graphs
by treating the interface residues as graph nodes and the intermolecular con-
tacts they form as graph edges. Interface features are added to the graph as
node or edge labels (only PSSM profiles as node labels in this case). Then,
each of the interface graphs of the docking models is compared to the inter-
face graphs of both the positive (native) structure and negative (non-native)
models. This graph comparison generates a similarity matrix for the docking
models with the number of rows and columns corresponding to the number
of docking models and the total number of positive and negative graphs, re-
spectively. Next, the support vector machine takes the graph kernel matrix as
input and predicts decision values that are used as the GraphRank score. The
final scoring function iScore is a linear combination of the GraphRank score
and HADDOCK energetic terms (van der Waals, electrostatic and desolvation
energies). The weights of this linear combination are optimized using the
genetic algorithm (GA) over the BM4 HADDOCK dataset

interface conservation as node labels, i.e. each node is represented as
a 20 by 1 vector of conservation profile extracted from the Position
Specific Scoring Matrix (PSSM). Residue conservation information
plays an important role in protein—protein recognitions (Andreani
and Guerois, 2014; de Oliveira and Deane, 2017; Hopf et al., 2014)
and hence different types of conservation information have been
used in several existing scoring functions (Andreani et al., 2013;
Tress et al., 2005; Xue et al., 2014). The PSSM is a multiple-
sequence-alignment (MSA) based conservation matrix. Its value is a
log likelihood ratio between the observed probability of one type of
amino acid appearing in a specific position in the MSA and the
expected probability of that amino acid type appearing in a random
sequence. Each position in a protein can be represented as a 20 by 1
PSSM profile, which captures the conservation characteristic of each
amino acid type at a specific position.

For GraphRank we designed a specific random walk graph ker-
nel to compare interface graphs. A graph similarity matrix was cal-
culated from a balanced dataset of native and non-native structures
from the protein—protein docking benchmark version 4.0 (BM4)
(Hwang et al., 2010), and was used to train a support vector ma-
chine (SVM) classifier. GraphRank, the resulting scoring function,
uses only the residue conservation information as node labels and as
the basis of starting and ending probabilities of random walks. We
further combined the GraphRank score with intermolecular ener-
gies, resulting our final scoring function, iScore. We benchmarked
the iScore and GraphRank scoring functions on two independent
sets of docking models for two different purposes: (i) 4 sets of dock-
ing software-specific models and their respective scoring functions
and (ii) the CAPRI score set, a set of docking software-nonspecific
models, in which models from different docking programs are mixed
together. We also compare our performance with that of IRaPPA
(Moal et al., 2017), one of the latest state-of-the-art machine learn-
ing based scoring functions. The results of our experiments on both
benchmark sets show that iScore achieves scoring performance that
is competitive with or superior to that of the state-of-the-art scoring
functions. These results represent the first successful demonstration
of the use of graph kernel applied to protein interfaces for effective
discrimination of near-native and non-native conformations of pro-
tein complexes.

2 Materials and methods

2.1 Constructing interface graph and random walk
graph kernel

2.1.1 Representing protein—protein interfaces as labeled bipartite
graphs

A residue is defined as an interface residue if any of its atoms is with-
in 6 A of any atom of another residue in the partner protein. This is
a commonly used interface definition (Xue et al., 2015), and, for ex-
ample, a similar cutoff (5.5 A) has been shown to work well for
contacts-based binding affinity prediction (Vangone and Bonvin,
2015). We represent the interface of a native complex or a docking
model as a bipartite graph (Fig. 1), in which each node is an inter-
face residue, and each edge consists of two nodes that are within 6 A
distance from each other (based on any atom-atom distance within
6 A between those residues). We further label the graph node with
residue conservation profiles from Position Specific Scoring Matrix
(PSSM). Each node is thus represented by a 20 x 1 vector of PSSM
profile. Our current implementation uses a single type of nodes,
namely residues, labeled with their PSSM profiles, and a single type
of edges, namely, those that encode inter-residue contacts. However,
our framework admits multiple types of nodes and edge labels.

The PSSM was calculated through PSI-BLAST (Altschul, 1997)
of BLAST 2.7.1+. The parameters of the BLAST substitution ma-
trix, word size, gap open cost and gap extend cost were automatical-
ly set based on the length of protein sequence using the
recommended values in the BLAST user guide (https://www.ncbi.
nlm.nih.gov/books/NBK279684/) (see Supplementary Table S1).
Other parameters were: Number of iterations set to 3 and the e-
value threshold to 0.0001. The BLAST database used was the nr
database (the non-redundant BLAST curated protein sequence data-
base), version of February 4, 2018.

2.1.2 Random walk graph kernel for interface graphs

We define a random walk graph kernel (RWGK) to measure the
similarity of two interface graphs. Given two labeled graphs, a
RWGK first applies simultaneous random walks on the two graphs
with the same walk length (the number of edges) and then calculates
the similarity between those two random walks. The RWGK score is
then the weighted sum of the walk similarity varying the walk length
from 0 to infinity (Ghosh et al., 2018).

Girtner et al. 2003) proposed an elegant approach for calculat-
ing all random walks within two graphs using direct product graphs.
A graph G consists of a set of 7 nodes V = {vy,v2,...,v,} and a set
of m edge E = {e1,ea,...,e,} where the edge ¢; is defined by two
nodes. Given two graphs G = {V,E} and G’ = {V', E'}, the direct
product graph G is a graph defined as follows:

G. =GxG = {V,,E.}, (1)
Vy = {(U,‘,U})‘U,‘ cV, U;- c V'}, (2)

E, = {((U,‘,U}), (Uk,v}))|(vi,vk) € E, (v;, 1/,) S E’},

where V. is the node set and E is the edge set. In other words, G«

=

is a graph over pairs of nodes from G and G, and two nodes in G,
are neighbors if and only if the corresponding nodes in G and G’ are
both neighbors (Vishwanathan ez al., 2010).

The simultaneous random walks on graphs G and G’ are equiva-
lent to a random walk on the direct product graph Gy. In other
words, each walk on the direct product graph G, corresponds to
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two walks on the two individual graphs, allowing the calculation of
a similarity score between them. When the walk length is 1, these
similarity scores are the elements of the weight matrix W, of
G. W consists of similarity scores of walk length of I. The simi-
larity between graphs G and G’ is thus the weighted sum of these
walk similarities.

Formally, the random walk graph kernel is originally defined by
Vishwanathan et al. (2010) as:

wgtWp, 4)

NgE

k(G,G) =

Il
=

where [ is the length of random walk on Gy, pu(l) is a factor that
allows one to (de-)emphasize walks with different lengths, W is the
weight matrix of Gy, and gy and p, are the starting and stopping
probabilities of random walks on G, respectively. In our study, we
limit the maximum walk length to 3, and u(/) is set to 1 for [ = 0
to 3.

And W,, q. and p are designed as follows.

Rnode(Vis V) * Ruode (U, ) * keageler, €)), i=] | _¢
0, i#j ’

W, ((Vh ”:)1 (U/’U;' )) = Ryode (viy V) * k,,m]e(y,, 1/;) *kgdge(eh e}),
if ((v,, v), (vh u;)) € Ex =1

0, otherwise

(5)

where /eedge(el,e’]) is the kernel to measure the similarity between
two edges, e; = (vj,v;) and e’] = (v, U;) Since we do not use specific
edge labels here, kedge(el,e’]) is simply set to 1. k4. (v,-, vi) is the

kernel to measure similarity between nodes defined as follows:

_ 2
/ vi —V;
kyode (Vh U,') = ¢&xp < ”202H>, (6)

where #; and v; are node labels for nodes v; and v, respectively.
As described above, we used PSSM residue conservation profiles as
node label. ¢ was set to 10 by simply checking the distribution of
some ||v; — v; || values.

We bias the random walks to start and end with conserved resi-
dues by giving those higher starting and ending probabilities.
For this, we define the starting and ending probabilities
qx((vi, v;)) and py((v;, v)) from the normalized conservation
score as follows:

0, if IC,, < 0.5 and IC; < 0.5
IC, xIC,

iﬂZICV/*ICUr
=1 k=1 ,

pe((ve ) = (v ) ®)

where IC,, and IC, are the PSSM information content (IC) for the
nodes v; and v, respectively, and 7 and #" are the numbers of nodes

, otherwise : 7)

a<((v ) =

in graph G and G, respectively. IC is always >0. The higher the IC,
the more conserved a residue is.

2.1.3 Support vector machine (SVM) algorithm

SVM maps arbitrary data objects (vectors, sequences, graphs, etc.)
into a kernel-induced feature space where it searches for a hyper-
plane that maximizes (or approximately maximizes) the separation

between classes (Vapnik, 2013). We used the SVM implementation
from the LIBSVM (Chang and Lin, 2011) package to train a scoring
function taking the N x N graph kernel matrix from the training
dataset as input (N is the number of the training graphs). Given a
test data (an interface graph of a docking model in our case), we cal-
culate the kernel vector that consists of the similarities of this query
graph with all the training graphs. The trained SVM-based scoring
model uses the resulting vector of similarities of the query graph
with all of the training graphs as well as the labels of the training
graphs to predict the likelihood of the query graph corresponds to a
near-native conformation.

2.2 Evaluation metrics to compare scoring functions
Each scoring function has its own default protocol for selecting top
models. To avoid subjectivity in the selection of top models in our
comparisons, we used the success rate at cluster level to evaluate the
scoring functions on the BM35 dataset. We defined a cluster as a hit
if at least one of the top four models in that cluster is of acceptable
or better quality. The success rate on top N clusters was defined as
the number of cases (complexes) with at least one hit out of the N
clusters divided by the total number of complexes considered.

The quality of the docking models was evaluated using standard
CAPRI criteria based on the interface or ligand Root Mean Squared
Deviations (i-RMSDs and I-RMSDs, respectively) and fraction of
native contacts (Fnat) [for details refer to Figure 1 of Lensink et al.
(2007)]. They were classified as incorrect (i-RMSD > 4A or Fnat <
0.1), acceptable (2 A<i-RMSD<4A and Fnat>0.1), medium
(1A<i-RMSD<2A and Fnat>0.3) or high (i-RMSD<1A and
Fnat > 0.5) quality (Lensink ez al., 2007).

2.3 Training on docking benchmark 4 docking models
2.3.1 Training dataset for GraphRank

The dataset for training was based on protein—protein complexes
from the protein—protein docking benchmark version 4.0 (BM4),
considering only dimers and excluding antibody complexes, result-
ing in a set of 117 non-redundant protein—protein complexes.
Docking models for those complexes had been generated previously
by running HADDOCK in its ab initio mode using center of mass
restraints (Karaca et al., 2013). The crystal structures of these 117
complexes (the ‘native’ structures) form our positive training set.
The average number of nodes and edges in the corresponding graphs
for this native set are 68 =25 and 119 = 535, respectively. To create
a balanced training set, we randomly selected 117 non-native
(wrong) models from the pool of HADDOCK models with i-
RMSD > 10 A and number of graph nodes >5 as our negative train-
ing set. The average number of nodes and edges in the non-native set
are 48 =14 and 70 = 23, respectively. In total, we thus have 234

(=117%*2) structures as our training set.

2.3.2 Training dataset for iScore

For the training of iScore we selected BM4 complexes for which
HADDOCK, running in ab initio mode using center of mass
restraints, generated at least one good model in the final water re-
finement stage. This resulted in 63 cases for which at least one dock-
ing model with acceptable or better quality was present in the final
set of 400 water-refined models. This dataset is denoted in the fol-
lowing as the BM4 HADDOCK dataset.
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2.3.3 Training the graph kernel based scoring function

(GraphRank)

We applied the commonly used SVM classifier C-SVC from
LIBSVM (Chang and Lin, 2011) to train our scoring function. We
precomputed the random walk graph kernel matrix (234 x 234) for
the training data and used it as input of the SVM classifier. The
SVM outputs the predicted decision values for a test case (the deci-
sion values from libsvm is defined as d x |— w|, where d is the dis-
tance from a point to the hyperplane and — w is the weight vector
of SVM that defines the classification hyperplane). To be consistent
with energy terms which we later incorporated into iScore (the
lower the energy, the better a model), we used the negative decision
value from the SVM as the final score of GraphRank. The resulting
optimized SVM classifier is denoted as the ‘GraphRank’ scoring
function.

2.3.4 Integrating GraphRank score with energetic terms (iScore)
We combined the GraphRank score with three energetic terms
from HADDOCK to train a simple linear scoring function named
iScore.

The HADDOCK energetic terms used are:

* Evdw, the intermolecular van der Waals energy described by a
12-6 Lennard-Jones potential;

* Eelec, the intermolecular electrostatic energy described by a
Coulomb potential;

* Edesolv, an empirical desolvation energy term.

The van der Waals and electrostatic energies are calculated using
a 8.5A distance cut-off using the OPLS united atom force field
(Jorgensen and Tirado-Rives, 1988).

The GraphRank score and HADDOCK terms were normalized
with the following equation:

X — median(X)

normalised X = W ,

9)
where the X is a set of values for a specific term, median(X) is the
median value of this term, IOR is the interquartile range, which is
the difference between the 75th and 25th percentiles.

We optimized the weights of the various iScore terms (the nor-
malized GraphRank score and energetic features) on the BM4
HADDOCK dataset (63 cases and 400 models/case), using a genetic
algorithm (GA). We used the normalized discounted cumulative
gain (nDCG) (Wang et al., 2013) to evaluate the model ranking
from each combination of the GraphRank score and energetic terms.
This is a common measure of ranking quality for evaluating web
search engine algorithms (Croft ef al., 2010). Specifically, nDCG is
defined as follows:

DCG

wce= PG (10)

pce= YL (11)
i=1

pco— 3 EL (12)

=1

where DCG is the discounted cumulative gain calculated over the
total number of models (here 7 in Eq. 11 is 400). iDCG is the ideal
DCG (meaning all the hits are ranked at the top 1, 2, ..., m, where

m is the total number of hits), and zDCG is the normalized DCG. i
is the ranking position of a model, w; is the weight of a model
ranked at position i. Here, we set w; = 1 if i is a near-native model,
and w; = 0 otherwise. Thus, the contribution of a model to DCG
becomes 0 or 1, where i is the ranking of the model.

The fitness function for the GA optimization (maximization)
was defined as squared nDCG values averaged over the N=63
cases:

N
S uDCG?

GA fitness = 13
fitness N , (13)
The parameters of the GA optimization were: Population size =
800, maximum generations = 100, crossover rate = 0.8 and stop-
ping tolerance = 0.001. The GA converged quickly, stopping at the
51th generation. The GA optimization was repeated 30 times and

the median values were used as final weights.

2.4 Validation and comparison with state-of-the-art
scoring functions

2.4.1 Validation on models from different docking programs

We validated iScore’s performance on docking models from four dif-
ferent docking programs: HADDOCK (Dominguez et al., 2003; van
Zundert et al., 2016), SwarmDock (Torchala et al., 2013), pyDock
(Cheng et al., 2007; Grosdidier et al., 2007; Jiménez-Garcia et al.,
2013) and ZDock (Pierce et al., 2014; Pierce and Weng, 2007).
These models were used to evaluate our scoring functions and com-
pare them with the original scoring functions in these respective
docking programs. The protein—protein complexes used for testing
consist of the new entries from the protein—protein docking bench-
mark version 5.0 (BMS5) (Vreven et al., 2015), on which none of the
docking software listed above has been previously trained. These
new cases are not present in and hence are non-redundant with
BM4, which is our training set. Antibody complexes were excluded.
The HADDOCK docking models for the BM5 new cases were gen-
erated using predicted interface residues from CPORT (de Vries and
Bonvin, 2011) as reported in the BMS5 paper (Vreven et al., 2015).
The docking models for ZDock, pyDock and SwarmDock were
taken from the work of Moal et al. (2017). In total, we could use 9,
18, 14 and 10 complexes for HADDOCK, SwarmDock, pyDock
and ZDock, respectively, with the number of models per case vary-
ing from 125 to 500, for which at least one near-native model was
present in the set of generated models.

Calculating HADDOCK energetic terms. We used HADDOCK
to calculate the intermolecular energies for the docking models from
other docking programs. For this, the missing atoms of the models
were built according to the OPLS force field topology with standard
HADDOCK scripts using CNS (Briinger et al., 1998). A short en-
ergy minimization (EM) was then performed with the following set-
tings: 50 steps of conjugate gradient EM, van der Waals interactions
truncated below the distance of 0.5 A, and dielectric constant set
to 1.

Removing docking models containing clashes. Docking models
originating from rigid-body docking programs, such as ZDock and
pyDock, often contain clashes that a short EM cannot resolve. We
removed those clashing models from the test dataset following the
CAPRI assessment procedure: A clash is defined by a pair of heavy
atoms between protein partners with a distance below 3 A. We dis-
carded all models with more than 0.1 clashes per A2 of buried
surface.

610z 1snBny ¢ uo 3senb Aq €11.615S/967Z3q/SONBWIOMIOIG/EE0 |0 L/1OP/AOBISAe-0[I1E-80UBAPE/SOIFEULIOJUIOIG/WOS"dNO-OIWSpEE//:SdRy WOl pepeojumoq



C.Geng et al.

Clustering. The remaining docking models for each case were
clustered with the fraction of common contacts (FCC) method
(Rodrigues et al., 2012) using a 0.6 cut-off and requiring a minimum
number of 4 members per cluster.

Comparison with IRaPPA on models from different docking
programs. We compared our performance with that of IRaPPA on
models of the new BMS5 complexes from SwarmDock, pyDock and
ZDock (Moal et al., 2017). The authors of IRaPPA kindly provided
us their selection of top 10 models (one model from each of the top
10 clusters). This allowed us to compare our results with IRaPPA on
a per model level. iScore’s default protocol of selecting top 10 mod-
els is to select top 2 models from the top 5 clusters for each target
when applicable. If less than 5 clusters are present, iScore evenly
selects top models from each cluster. In cases where the models are
too diverse to be clustered (e.g. only 1 cluster with 4 models and the
large majority of models not clustering), iScore selects all models
from all available clusters, and then chooses the remaining models
from not clustered models.

2.4.2 Validation on the CAPRI score set

The CAPRI score set consists of a set of models collected from
CAPRI participants and used in the scoring experiment of CAPRI
(Lensink and Wodak, 2014). During the CAPRI scoring competi-
tions, each scoring group is asked to select top 10 models. We tested
our scoring functions on this dataset and compared its performance
with various scoring functions used in the CAPRI challenge.
Docking models with clashes were removed as described above.
Both dimers and multimers were considered here. We used 13 cases
from the CAPRI score set with number of models ranging between
497 and 1987. Following the CAPRI assessment protocol, we con-
sidered only 10 models for assessment. iScore’s default model selec-
tion protocol was used, i.e. simply selecting the top 2 models of the
top 5 clusters for each target.

3 Results

3.1 Training and optimization

We first trained a graph kernel-based scoring function called
GraphRank using an SVM classifier. GraphRank ranks docking
models based on their similarity to the native/non-native set of struc-
tures used in the training. The similarity is measured concerning
interface topology and conservation profiles. The smaller the
GraphRank score is, the more similar the docking model is to native
complexes.

We then trained iScore by integrating the GraphRank score with
three intermolecular energy terms from HADDOCK (see Section 2).
iScore consists of a linear combination of those four features whose
weights were optimized on the BM4 HADDOCK docking models.
To avoid extreme values of energies, we independently normalized
the various terms for models from each case with their median and
interquartile range values. The iScore function with its optimized
weights is:

iScore = 0.941 x nGraphRanks.or +
0.041 « nE,4, +
0.217 % nE,p. +
0.032 nEdesoh,

(14)

where nGraphRank
ized GraphRank score, Evdw, Eelec and Edesolv energies, respect-
ively. The GraphRank score has the highest weight (0.941),

cores "Evdws MEelec and nE .4, are the normal-

B HaddockScore
GraphRank
B iScore

60%

50% A

Success Rate

10% 1

0% -
1 2 3 4 5

Top N clusters

Fig. 2. Success rate of HADDOCK score, GraphRank and iScore on the BM4
HADDOCK training dataset over top N clusters of models

indicating that the GraphRank score using PSSMs alone is the most
important component of iScore.

The success rates of HADDOCK score, GraphRank score and
iScore on the BM4 HADDOCK dataset (63 cases) are shown in
Figure 2. GraphRank scores are obtained by leaving-one-complex-
out, i.e. we keep all models from one complex as the testing data
and rank them after training GraphRank on the remaining com-
plexes, and we repeat this process for all complexes. Compared with
the energy-based HADDOCK score, the graph- and conservation-
based GraphRank score has higher success rates. It is also evident
that adding energetic features in iScore results in an improved scor-
ing, reaching a success rate of 62% on the top 5 clusters in compari-
son with 59% for GraphRank.

3.2 Benchmarking on docking software specific docking
models and their respective scoring functions

Sampling and scoring are typically not independent components.
They are often interrelated since a specific scoring method might de-
pend on the sampling strategy followed and the representation of
the system. We benchmarked here the performance of iScore and
GraphRank, which are trained on HADDOCK models, on docking
software-specific docking models and compared their performance
with that of each software respective scoring function.

For this, models from the new protein—protein complexes of
Docking Benchmark § (Vreven et al., 2015) were generated using
four widely used docking programs: HADDOCK (Dominguez et al.,
2003; van Zundert et al., 2016), SwarmDock (Torchala et al.,
2013), pyDock (Cheng et al., 2007; Grosdidier et al., 2007;
Jiménez-Garcia et al., 2013) and ZDock (Pierce et al., 2014; Pierce
and Weng, 2007). The numbers of available complexes with near-
native docking models for those four widely used docking programs
are 9, 18, 14 and 10, respectively, with the numbers of docking
models per complex varying from 125 to 500. The scoring perform-
ance was assessed with clustering of the docking models using our
cluster procedure descried in Section 2.

iScore outperforms HADDOCK, ZDOCK and pyDock scoring
functions and competes with that of SwarmDock on their respective
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Fig. 3. Success rates measured at cluster level on four sets of docking pro-
gram-specific models for newly added protein-protein complexes in BM5.
GraphRank and iScore are compared with scoring functions from HADDOCK
(A), SwarmDock (B), pyDock (C) and ZDock (D) on the docking models of the
corresponding docking program, respectively

docking program-specific models (Fig. 3). On the HADDOCK mod-
els (Fig. 3A), iScore shows the same performance as GraphRank,
both outperforming HADDOCK on the top2 to top4, reaching 33%
success rate for top 5 clusters. For all the other model sets, iScore
outperforms GraphRank. It shows a better scoring performance
than the original scoring functions of pyDock (Fig. 3C) and ZDock
(Fig. 3D), while the original SwarmDock scoring function remains
the best in terms of scoring performance (Fig. 3B). iScore reaches a
success rate of 36% and 60% (top 5 clusters) on pyDock and
ZDock models, respectively, which is clearly a large improvement.

The scoring performance of iScore competes with that of
IRaPPA (Moal et al., 2017), a state-of-the-art machine learning
based scoring function, on BMS docking models generated by
SwarmDock, pyDock and ZDock (Moal et al., 2017) (for compari-
sons for each complex see Supplementary Table S2, and for overall
performances see Table 1). IRaPPA identifies at least one hit for
more cases than GraphRank and iScore, while iScore identifies
higher-quality models for more cases than IRaPPA (Table 1).
Specifically, iScore is successful in its top 10 models for 10, 6 and 6
cases for SwarmDock, pyDock and ZDock models, respectively,
while IRaPPA for 12, 10 and 8, respectively. However, iScore
appears to be more sensitive to high- or medium-quality models
than IRaPPA: iScore and IRaPPA obtain 2 and 1 high-quality com-
plexes on SwarmDock models, respectively and 5 and 3 medium-
quality models on ZDock models, respectively. Considering that
iScore was trained exclusively on BM4 HADDOCK models using a
small number of features (1 for GraphRank, 4 for iScore) it performs
well compared to IRaPPA, which exploits using 91 features and was
separately trained on docking models generated by SwarmDock,
ZDock and PyDock, respectively.

3.3 iScore ranks among the top scorers on the CARPI
score set

The scoring set from the CAPRI scoring experiments (Lensink and
Wodak, 2014) is a valuable resource for evaluating scoring functions.

Table 1. Comparison of GraphRank and iScore with IRaPPA on
docking program-specific models of BM5 protein—protein
complexes

Docking #Complexes GraphRank iScore IRaPPA
models

SwarmDock 18 TIVEFE[O** 10/2%**[6**  12/1%**[6**
pyDock 14 5/3%* 6/3*%* 10/3%**
ZDock 10 4/3%* 6/5%* 8/3%**

Note: 10 models are selected and evaluated. The scoring performance for
each complex is reported as the number of acceptable or better models (hits),
followed by the number of high (indicated with ***) or medium quality mod-
els (**). The overall performance of each method on all complexes is reported
here. For example, 7/1***/6** means that a scoring function is successful in
7 complexes, 1 complex out of the 7 complexes has at least a *** model and
6 out of 7 have at least a ** model in the top 10.

CAPRI is a community-wide experiment for evaluating docking pro-
grams (started in 2001) (Janin, 2002) and scoring functions (from
2005 on). The CAPRI score set consists of 15 targets, 13 of which
have near-native docking models. Each target has a mixture of 500—
2000 models from the various docking programs used in the CAPRI
prediction challenges (Table 2). This represents an ideal set for evalu-
ating scoring functions independently of docking programs.

We benchmarked iScore and GraphRank on the models from the
CAPRI score set and compared their performance with the reported
performance of the various scoring functions/groups which partici-
pated to the CAPRI scoring experiments. Following the CAPRI as-
sessment protocol, we selected only the top 10 ranked models for
assessing the performance of iScore and GraphRank. This was done
by selecting the top two models from each of the top five clusters for
each target.

The scoring performance of iScore and GraphRank on the 13
CAPRI targets containing near-native models is summarized in
Table 2, together with the performance of the best scoring function/
group in CAPRI for each target. Details of the performance of the
various scoring functions compared for these targets are available in
Supplementary Table S3. Again, iScore outperforms GraphRank
(Table 2) demonstrating the synergistic effects of conservation infor-
mation and the interacting energies in differentiating near-native
models from docking artefacts. Further, iScore selected near-native
models on the top10 for 9 out of 13 targets, with 2 targets having
high-quality models and 5 having medium-quality models. As a
comparison, selecting for each target the best CAPRI scoring func-
tion/group resulted in 10 out of 13 correctly predicted targets, with
4 and 3 targets having at least one high-quality and medium-quality
models, respectively.

Overall, iScore ranks among the top scorers on these 13 CAPRI
scoring targets (Table 3). In total 37 scoring functions/groups were
assessed (Supplementary Table S3), but only those that participated
to at least 5 targets are shown in Table 3. When considering the
common submitted targets (Supplementary Table S3), iScore still
competes with the Weng group (8/2%**/4** versus 8/3***/2**), the
Bonvin group (8/2***/4** versus 8/2***/3**) and the Bates group
(8/27%#*/4** versus 8/1***/4**), It should be noted that the CAPRI
scoring groups, e.g. Weng and Bonvin groups, selected the 10 mod-
els with help of human expertise, while our selections were only gen-
erated from iScore and GraphRank without manual selection.
Furthermore, the results clearly demonstrate the importance of the
PSSM feature: GraphRank, using only the PSSM feature, already
performs quite well (ranked in the 4th position).
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Table 2. Comparison of GraphRank and iScore with CAPRI best performing group per target on the CAPRI score set

CAPRI targets GraphRank iScore CAPRI best # Total models #Near-native
T29 4 4 9/5%* 1979 166
T30 0 0 0 1148 2
T32 4/1** 4/1%* 2 599 15
T35 0 0 1 497 3
T37 2/1%* 6/1%** 1364 97
T39 0 0 1295 4
T40 4/3%* 10/10%** 1987 535
T41 8 10/2%*** 1101 347
T46 3 4 1570 24
T47 8/5%**[3%* 10/6%**/4** 10/10%** 1015 608
TS50 0 4/3%* 7/6%* 1447 133
TS3 S/1%** S/ 8/3%* 1360 122
T54 0 0 0 1304 19
Total 8/1%**[4%* 9[2% **[§%* 10/4%**[3%*

Note: 10 models are selected and evaluated. The values are labeled in green/red when the performance of our scoring functions is better/worse than the CAPRI

best scoring group. The scoring performance for each target is reported as the number of acceptable or better models (hits), followed by the number of high (indi-

cated with ***) or medium quality models (**). For example, 8/2** means that there are totally 8 hits among the top 10 models, 2 models out of which are me-

dium-quality models. The overall performance of each method on all 13 targets (the last row) is reported in a similar way. For example, 9/2%**/5** means that a

scoring function is successful in 9 targets, 2 targets out of 9 have at least a *** model and 5 out of 9 have at least a ** model in the top 10. Note that the CAPRI

best column consists of results from 37 different groups (refer to Table 3 for a comparison of the performance per group and Supplementary Table S3 per target).

Table 3. Rankings of GraphRank and iScore in comparison with the
scorer groups on the CAPRI score set

Performance # Submitted targets
iScore 9f2%**[§%** 13
Weng 8/3*

[ 5 9

Bonvin 8/2% 9
Bates 8/1* 10
GraphRank 8/1* 13
Zou 7/4* 9
Wang 6/2% 6
Fernandez-Recio S/ 8
Elber S/ F*F[1** 5
Wolfson 4/17% %= N
Camacho RIPARST ) N

... and many others

Note: In total 37 scorer groups were assessed (Supplementary Table S3),
but only scorer groups that have submitted predictions for at least 5 out of the
13 CAPRI targets are shown here. The scoring functions/groups are ordered
based on their performance. Number of targets with submitted predictions

are shown for each function/group.

4 Discussion

We have developed a novel graph-kernel based scoring function,
iScore, for scoring and ranking docking models of protein—protein
complexes. By benchmarking on docking models from four different
docking programs, iScore shows competitive or better success rate
than the original scoring functions of those docking programs.
Further, validation on CAPRI targets and comparison with CAPRI
scorer groups highlight the high performance of iScore, which
achieves the top success rate with acceptable or better models
selected for 9 out of 13 CAPRI targets. It is worth noting that both
GraphRank and iScore were trained on a rather small dataset, using
a very limited set of features, only one for GraphRank and four for
iScore. We can expect to further improve the performance of iScore,
by increasing the size of the training set and enriching the node and
edge labels of interface graphs. Our iScore software with MPI

(Message Passing Interface) and GPU supports can be freely down-
loaded from: https://github.com/DeepRank/iScore. Currently, it
takes about 15 min to rank 1619 models of a recent CAPRI target (a
6 domain protein, ranging from 83 to 112 amino acids) using 12
CPU cores (data for this CAPRI round not published yet).

The usage of graph kernel on labeled graphs in iScore provides a
novel way to score docking models. SPIDER (Khashan et al., 2012) is
also a graph-based scoring function but is drastically different from
our GraphRank hence also iScore. SPIDER identifies common inter-
face residue patterns (i.e. interfacial graph motifs) in native complexes
and rank a docking model by counting the frequency of the interfacial
graph motifs. First of all, GraphRank is based on graph kernel func-
tions to calculate the interface similarities between a docking model
and the training complexes while SPIDER is based on the frequent
graph mining technique to identify interfacial graph motifs. Second,
and importantly, the graphs used in SPIDER has only node labels
with amino acid identity, while our GraphRank framework can po-
tentially explore not only the properties of individual interface resi-
dues with node labels, but also the features of contacts between
residues with edge labels. While we have only used node labels in this
work (residue conservation profiles), the concept can easily be
extended to add labels to the graph edges, for example in the form of
residue-residue interaction energies and coevolution information.
Third, iScore uses multi-scale representations of docked interfaces by
combining atom-level energy terms with residue-level graph similar-
ities, which allows to account for both subtle differences in 3D space,
interaction topology and residue conservations at the same time.

Both conservation profiles and intermolecular energies are im-
portant features for scoring of PPIs. Our scoring function
GraphRank, using only conservation profiles of the interface resi-
dues as features, already shows a promising scoring performance.
Physical energies have been widely used and identified as important
features in state-of-the-art scoring functions and are complementary
to evolutionary information. Considering the successful applications
of intermolecular energies in existing scoring functions, in this work
we simply combined three intermolecular energetic terms from
HADDOCK with the conservation profiles-based GraphRank score.
The resulting scoring function iScore outperforms GraphRank,
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indicating the significance of considering both evolutionary and en-
ergetic information in characterizing PPIs.

When comparing the performance of iScore on models from dif-
ferent docking programs on BMS5 new data, we do observe that
iScore is able to improve the ranking over the original scoring func-
tions for the rigid-body docking programs (pyDock and ZDock),
while iScore does not really outperform the flexible docking pro-
grams like HADDOCK and SwarmDock which generate more opti-
mized interfaces (Fig. 3). This might be related to the structure
quality of the docking models. For docking models from flexible
docking, their structures are already optimized to release steric
clashes, while the rigid-body programs usually do not have such an
optimization step, leading to unnatural interactions (clashes) within
structures. To improve the structure quality of the docking models,
we did apply a short energy minimization to optimize the structures
before calculating intermolecular energies. With higher structure
quality, like those coming out of SwarmDock and HADDOCK, the
impact of this short minimization is smaller, and the resulting im-
provement of iScore versus the original scoring functions is less.

Note that the current version of iScore does not work on
antibody-antigen complexes, because PSSMs do not capture inter-
face conservation in such complexes. Incorporation of antibody-
antigen specific features into iScore is a topic of our ongoing work.

By introducing the labeled graphs and graph kernel in our scor-
ing function iScore, we pave the way for exploring more detailed
features in the graph presentation of protein—protein complexes.
Natural extensions of this work will be to include edge labels, for
example residue-residue interaction energies and co-evolution.
Considering graphs are natural representations of biomolecules, this
general framework should be useful for other important macromol-
ecular interaction related topics, such as binding affinity predictions,
hot-spot predictions and rational design of protein interfaces.
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