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1 Introduction

It is well known that compactifications of 11-dimensional supergravity on an n-torus give

rise to an enhancement of the manifest SL(n,R) symmetry to symmetries including the

exceptional groups E,(,) [1, 2], and that their suitable discrete subgroups are interpreted



as the U-duality symmetries of M-theory [3]. The search for a manifest origin of these
symmetries in 11-dimensions prior to any toroidal compactification and without any trun-
cation, which started in [4, 5],! has culminated in a series of papers [7-10] where this was
achieved in a framework called exceptional field theory (ExFT). It is based on a general-
ization to exceptional geometry [11-15] of the double field theories (DFT) that provide a
manifest realization of the T-duality group O(n,n) that arises in toroidal compactification
of string theory [16-18]. In that case the 10-dimensional spacetime coordinates are doubled
and certain conditions on fields known as section constraints are imposed. The latter are
required for the symmetries to form a closed algebra and, in effect, remove dependence on
coordinates beyond ten dimensions. For a more detailed description of the ideas behind
these theories, with several references to earlier works, see [7].

Exceptional field theories are well motivated for a number of reasons. Firstly, they
have made it possible to derive fully nonlinear and consistent reductions to gauged su-
pergravities in lower dimensions. For example the long standing problem of finding the
nonlinear and consistent reduction of Type IIB supergravity on AdSs x S° was solved in
this way [19]. Second, exceptional field theory provides a convenient framework for tak-
ing into account the BPS states in the computation of loop corrections to the string low
energy effective action [20]. Furthermore, higher derivative corrections to the supergravity
limit of string/M-theory may be powerfully tackled by employing the DET/ExFT in which
the U-duality symmetry is manifestly realized. For the case of DFT, see [21] and several
references therein for earlier work. Last but not least, the generalized geometry under-
lying exceptional field theories may pave the way to the construction of effective actions
that genuinely go beyond 11D supergravity, thereby shedding light on important aspects
of M-theory.

In this paper, we shall focus on the exceptional field theory based on Er7) [9], and
starting from its supersymmetric extension provided in [22], we formulate the theory in
(4 + 56/32) dimensional superspace. One of our main motivations is the construction of
actions for M-branes propagating in a target space described by the generalized geometry
of exceptional field theory. This problem is still open, though progress has been made in the
form of exceptional sigma models for string theory [23]. The importance of a superspace
formulation of target space supergravities becomes especially clear with the realization
that all known actions for branes beyond strings are feasible only as sigma models in
which the target is a superspace. Another motivation for the exploration of supergeometry
in exceptional field theories is to find clues in the search for an extended geometrical
framework which would unify the external (spacetime) and internal space diffeomorphisms.

Our approach to the superspace formulation of the supersymmetric E77) ExFT is to
elevate the 4-dimensional “external” spacetime to (4|32) dimensional “external” super-
space? and to augment this with a 56-dimensional “internal” space. As such, the external
diffeomorphisms and local supersymmetry transformations of ExF'T are unified to external
superdiffeomorphisms with structure group GL(4|32), with E7(7) internal diffeomorphisms

See also [2, 6] where related conjectures were made.
?Ungauged 4D N = 8 superspace was constructed in [24, 25], see also [26, 27]. Our construction will
reduce to this upon discarding all dependence on internal coordinates.



treated separately. In particular, there are separate (super)vielbeins for the two spaces.
This is in contrast to early work involving so-called “central charge superspace” [28] where
the vielbeins were unified into a single sehrvielbein but with all fields independent of the
additional 56 coordinates,? as well as more recent efforts in superspace double field theory
where a unified description is sought (see e.g. [30-33]).

Our approach turns out to require more than just a superspace lift of [22]. We find
that it is important to redefine a constrained two-form of the theory, so that it transforms
inhomogeneously under Lorentz transformations. This allows one to eliminate the internal
part of the Lorentz spin connection everywhere, with the constrained two-form now playing
its role. Another important step is the relaxation of the constraints imposed on the Er ()
connection I'y,n2 in [22]. Recall that these constraints amounted to (i) the elimination
of non-metricity of the internal generalized vielbein postulate; (ii) the vanishing of the
E7(7y torsion tensor; and (iii) requiring that the 4D volume form be covariantly constant,
Vme = 0. Here we will find it convenient to relax all of them, and to take a completely
generic internal E7(7) connection. Naturally, this is consistent only if the undetermined
pieces drop out of the supersymmetry transformations, which we will show.

We also probe further the sector of the theory that involves extra 3-form and 4-form
potentials within the framework of the tensor hierarchy formalism. In particular, we show
that the solutions to the superspace Bianchi identities lead to on-shell duality equations for
the p-form field strengths for p < 4. We also show that the reduction to component fields
provides a complete description of the on-shell supersymmetric theory, including the higher
order fermion terms. As an application of our results, we perform a generalized Scherk-
Schwarz reduction and obtain the superspace formulation of maximal gauged supergravity
in four dimensions parametrized by an embedding tensor.

The paper is organized as follows. In section 2, we review the locally supersymmetric
E7(7) exceptional field theory in components. In section 3 we lay the groundwork for the
superspace formulation, in particular describing the required redefinition of a constrained
2-form potential, and its consequences. In section 4, we describe the superspace formu-
lation, including the superspace Bianchi identities and their solutions. In section 5, we
present the component results, establishing that they agree with the component formula-
tion of [22] subject to the redefinition of the 2-form potential. In section 6, we perform a
generalized Scherk-Schwarz reduction and obtain the superspace formulation of maximal
gauged supergravity in four dimensions parametrized by an embedding tensor. In section 7
we comment further on our results and point out future directions. In appendix A, we give
some details of our conventions. Appendix B contains some technical details of the algebra

of external and internal covariant derivatives that we found useful in explicit computations.

2 Supersymmetric E77) exceptional field theory in components

Let us begin by reviewing the structure of the E;(7)-covariant ExFT, first in its original
bosonic formulation [9] and then its supersymmetrized extension [22]. The bosonic field

3For a discussion of how to derive the E7(7y section condition from a superparticle moving in central
charge superspace, see [29].



content is given by
{ema)vmgaAmmmena)anm} . (21)

The vierbein e,,* describes the geometry of external 4D spacetime, while the 56-bein V%,
parametrizing the coset E7(7)/SU(8), describes the internal geometry. The 1-form A;,™
gauges internal diffeomorphisms on external spacetime and lies in the fundamental (56) of
E7(7). Requiring closure of internal diffeomorphisms on the 1-form requires the existence
of 2-forms Byuna and B, valued respectively in the adjoint (133) and fundamental
(56) representations. The internal tangent space index a on the 56-bein decomposes under
SU(8) as 28 + 28,

Vi = Vi, Vimij} (2.2)

satisfying Vinij = (V™ )* with SU(8) indices 4,,--- =1,...,8.

All fields in the theory, including the symmetry transformation parameters that will
be encountered below, depend on both external (z™) and internal (y™) coordinates, with
the dependence on the latter subject to the section conditions. We write these as

(ta)™0m ®0, = 0, V"0, ® 0y, =0 (2.3)

where the derivatives are understood to act on any two (or the same) fields or parameters.
Here (to)m™ are the E;(7) generators in the fundamental representation, ™" is the invari-
ant symplectic form of E77) C Sp(56), and we employ the usual (NW-SE) conventions for
raising and lowering 56 indices, e.g. (to)™ = Q™2 (tq)p™ and (ta)mn = (ta)m® Qpn-

In addition, the field B, is constrained on its internal index so that it obeys the
section condition with respect to both 0, and itself, i.e.

(ta)™ Bp ® 0y =0, Q™ B, ®0, =0,
(ta)™ BmBn =0, Q"2 BB, =0 . (2.4)

In the first set of equations, the derivative may act on another field or on By, », itself.

In principle, 3-forms and 4-forms are also required for a complete description of the
tensor hierarchy, but these drop out of the action, and so one can usually avoid any explicit
discussion of their properties. Nevertheless, we will find it useful to discuss them briefly
in a few places. The 3-forms are Cyp™a and Chinp '™, with the former valued in the
912 and the latter constrained on its lower index. The unconstrained 4-forms are Dynpq o
and Dynpg ™, respectively in the 133 and in the 8645, while there appear to be as
many as three constrained 4-forms Dinnpgm, Dmnpg m®, and Dyppg m™2, each obeying the
section condition on their lower index m, with the last field constrained in the 1539 in its
upper indices.



2.1 Generalized vielbein postulates

For later purposes, we record the generalized vielbein postulates (GVP) satisfied by external

and internal vielbeins:*

0 = Omen” — Ap"Onen” — éaﬂAmQ en® — wm™eny — LhnPep?

= Dpen® — wm™ey — Fnlep” (2.5)
0 = Opmen” — éFmﬁ en® — winPeny + T Pens (2.6)
0 = DV — V2 Qump?® — Vi Prp® (2.7)
0 = O Vp® — Vu?Qmp® — Tn? V" - (2.8)

The connections I'y,,? and 7y, * = 7,,(%) are defined by (2.5) and (2.6), and Q and P live
in SU(8) and its orthogonal complement in E;(7), respectively, so that

813, Qpp”! 0 0 Pnti
O ( 0 —0* Q1 ’ Pmkiij 0 (29)

and similarly for Q,, and Pp,. The E;(7) covariant derivative Dy, is defined as
Dy, :=0pm —La,, , (2.10)
where the generalized Lie derivative acts on a fundamental vector V™ of weight A\(V™) as
LAV = AR, V™ — 12 [0, A™] o VE+ A(V) Op AV (2.11)

where the second term is projected onto the adjoint of E7(7), i.e.

[OuA™] g = P05 OpA®, (2.12)
with the adjoint projector given by
m T a\m T 1 m T 1 m T a\mr 1 mr
Pyt = (1%)" 9 (ta)™s = ﬂ(siﬂ 0" + E(Sii 6 + (t%)™ (ta)ns — ﬂgf Qns . (2.13)

We emphasize that the symplectic metric Q™% is used to raise and lower the 56-plet in-
dices as V™ = Q™V, and V, = V™Q,,,, and it is an invariant tensor of weight 0,
namely L Q™2 = (.

Defining the generalized torsion tensors as

1
I\[mn]p - QTmnpa (214)

T — 12PE 5 T +4PE D T8 = Tonk, (2.15)

4Our convention for the spin connection matches that of [34], which differs in sign from that used in the
previous E7(7) papers [9, 22].



the following constraints are imposed in [22]
T =0,  Tpat=0. (2.16)
The definition of generalized torsion T, is motivated by the relation

LyWw™? — Ly W2 = T2 VEWE, (2.17)

for vectors V, W of weight % where }Lg denotes the generalized Lie derivative with all partial
derivatives replaced by covariant derivatives. Explicit evaluation of this relation gives the
expression (2.15).

The connection Iy, lives in the algebra e7(7) and as such we can write

Lon? = P (ta)n® € er(r) - (2.18)

Using this relation in (2.15), one finds that

1
2 Tm® = Proioym™ s r,”, (2.19)

where the projector onto the 912 dimensional representation is given by [35]

(6m™ 6% 3 + 4(t%tg)m™ — 12(tat™)m™) - (2.20)

|+

Po12)m ™" p =
We have used the notation (tatg)m™ = (ta)m” (tg)r™

2.2 Bosonic symmetries, duality equations and tensor hierarchy

The full bosonic theory is invariant under the generalized diffeomorphisms,
vector, and tensor gauge symmetries, and shift symmetries with parameters

&, A Ena, Emms Qmnm® Qmna), respectively. These transformations are given by

dem® = E"Dpem® + D& en® + Lpen®,
Wi = "Dy Vin® + LAV ®,
0A™ = " Fum™ + M™ gy, On" + Dy A™ + 12 (t%)™ 0,5, o + % 0=,
ABpna = € Hunpa + (ta)mn A%Fmn™ + 2 DpnEnla
+0mQmn™a + (ta)m™ Qmnn™,
ABpnm = & Hpmnpm — 26 €Emnpgg? D (grsﬁmﬁs) + Fon"OmAn — O Frmn™ An
+2D1,Epim + 48 (1) 0" (0rOmApn™) Enja

_8QOnﬂﬂ -2 8anan7 (221)



where

ABmna = 0Bnna + (ta)m A[mm(sAn}Q7
Aanm = 5anm + (A[mﬂam(SAn}Q — 8mA[mﬂ5An]ﬂ) s (2.22)

and
Mpmn = Vmijvﬂij + Vﬂijvmij ) (2.23)
Fnn™ = 20 A — [Apy A2 — 12 (£%)22 9, B, o — %QM Bron » (2.2)
with the E-bracket defined by
m n m 1 mn /4o mn
[Ams AnE = 2 Apn 0 An™ + 5 (24 (fo) (%) g — Q—Qﬂ) AP Op Ay . (2.25)

The field strengths Hyppa and Hy,, p are defined by the Bianchi identity

1
D[mf”p]m = _4(ta)m aﬂHmnpOt - EQMHman . (226)

Note that F, D, F and Hq transform covariantly under internal diffeomorphisms, while
H,, does not, which is evident from the presence of the non-covariant term 0,Hq term
in (2.26). From this equation, upon using the definition of F, one finds that

Hmnpa =3 D[mBnp] a— 93 (ta)m A[mﬂanAp}ﬂ + (ta)m A[mm[An, Ap]]%

- 8mcfmnpmoz - (ta)mﬂcmnp Qﬂ ’ (227)
Hypnpm = [3 DinBupm — 3 (An0mOn Apn — O A0y Apn) + T2 (t%)i2 00y A Bupe

+ (A0 An, Apln — OmAm™[An, Apluy) } -
+0mCrnp n™ + 2 0 Cronp m™ - (2.28)

The three-forms Cyppnp™a and Cppp n™ introduced in (2.27) and (2.28) are projected out

5

of the Bianchi identity (2.26) using the section condition.” They may be thought of as

parametrizing the part of the field strengths Hy,npa, Hmnpm, which is left undetermined
by (2.26) with their presence being necessary for invariance of the curvatures under the
higher p-form gauge transformations. The covariant derivatives read explicitly

DmBnpa = 8m-Bnpoz - Amm amBnpa —12 (t7)£§ f‘y'BaaﬁAAm§ Bnpﬁ - aﬂAmﬂ Bnpa 9
Dy Brpm = OmBrpm — Am™ OnBrpm — OmAm™ Brpn — OnAm™ Bnpm - (2.29)
The 3-form field strengths in turn obey the Bianchi identities
4 Dy Hypgl o = =3 (ta)mn Fimn Fpg™ — OmGmnpg™a — (ta)m™ Gmnpgn™,  (2.30)

4D [manq]m = =67 [mnﬁ almlf pqln 24(75‘1)13@8@82/1[7%3 anq] «a
+ame7qu EQ + 2 8ﬂGmnpq mﬁ Y (231)

SWe use the identity (2.13) and t*(™2C,,,,2)> = 0. The latter identity follows from the fact that
Crnpfa belongs to the 912 of E7(7) while (56 x 56 x 56)s does not contain the 912.



field | e, | €™ Vm” Amma A™ Brnas Ema anmy Emm Xijk (N

0 0 1

1 1
2 1 1

N[ =

Table 1. \-weights for the bosonic and fermionic fields and parameters.

which serve to define the curvatures Grnpg™a and Grnpg m™ associated with the 3-form
potentials. This leads to the introduction of 4-form potentials in certain representations of
E7(7) and obeying certain constraints. The transformation rules for the 3-form and 4-form
potentials can be determined from the requirement of the closure of the algebra. We will
not need these transformation rules, except for the behavior of the 3-form potentials under
external diffeomorphisms, which we shall derive below. We will also derive the duality
equations obeyed by 4-form field strengths below, and we shall comment on the occurrence
of particular 4-form potentials in their definitions in section 4.5.

The curvatures associated with the p-form potentials with p = 1,2,3 obey duality
equations given by [9]°

Fonn™ = % Emnpg V2 Moy, FPIE (2.32)
Emnqunpqa = (ta)@m (Pmijklvﬂijvmkl - Pmijklvmjvmkl> )
= St (D" M) My (233)
%6m"qunpqm = —2ie,"ep" <8mwn“b — anmab> — éDmvmjamvmj , (2.34)
where
Wy = —e”[aamenb} . (2.35)

The first duality equation (2.32) is required together with the second-order pseudo-action
given in [9] in order to describe the correct vector field dynamics. The second order field
equation for the vector fields can then be obtained by the external curl of (2.32) together
with the Bianchi identity (2.26). Comparing this second order equation to the one obtained
from variation of the pseudo-action gives rise to the duality equations (2.33), (2.34). As
in the Bianchi identity (2.26), the duality equations (2.33) and (2.34) only follow under
projection with (¢t*)™2 9, and their remaining parts may thus be taken as an equations
for the three-form potentials introduced in (2.27) and (2.28).” The variations of the 3-form
potentials under all the bosonic symmetries can be determined from the requirement of the
invariance of the duality equations above. For later purposes we shall in particular need
their variations under the external diffeomorphisms. To determine them, we consider the
invariance of the duality equation (2.33) under the external diffeomorphisms. To this end,

6The first equation can also be written as F, ,, i = %]—'mn ij*% EmnpgF %5 = 0. The third equation (2.34)
had an overall sign mistake in [9, 22] that is corrected below, keeping in mind the change in sign of the
spin connection.

"It is worth noting that the variation of the duality equation (2.32) yields (2.33) but not (2.34) for the
constrained field. The latter involves two derivative terms on the right hand side, and these are derived

in [9] by employing a suitable action.



the following formula for the general variation of H, is useful:

dHmmpa = |3Dm(ABppa) — 3 (ta)mn 0AR™ Fup™

~OnACmnp™a = (ta)n™ ACmnp ™| (2.36)

[mnp]
where
AC’mnpmoz = [6Cmnpma +21 (P912)amﬁﬂ an,@ 51410ﬂ

~7(Po12)a™"n (tg)rs AmﬂAnﬁ‘SAPi}

[mnp] '

ACmnpn™ = [5Cmnpnm — g 0AL™ Brpn + 24000 An" Brp o (t%),™

— 1284 00 Brpa(t%)r™ — 12 (ta)rs (1) ™ On A E AL TS ALS

1 2
—% § A ™00 (Anp ApE) + G OndAm™ An Ak — 3 Am™On0 An g Ak
1 m k 1 m k
= 5 OnAm™ 0 An Ayt + 5 A0 Ay 00 A - (2.37)
mnp

and we have used the following identity:

(tﬂ)@ (tﬁ)(m (ta)z)é = %(tﬁ)ﬂm (tﬁ)m) (ta)@ - %(ta>(m 5z)E : (238)

Under external diffeomorphisms

AC(mnpma = gr Grmnpma )
Em™ ACrpgn™ = em™ € Crnpgn™ + 61 O™ F™ + 1210, (M’"—’“ D)€" gmn>
— 8i ME™ g DLET (2.39)

the duality equation of H transforms covariantly, provided that we also impose the fol-
lowing duality equation for the four-form field strength

MG npg o = 147 (Po12) 2o P M, 5, (2.40)
with the current J,.3 defined by
MG Mpm = Jra (1%)m™ - (2.41)

In this calculation the terms involving the field strength G,,pqm™ cancel, and consequently
a duality equation for this field strength does not follow. However, H,,,; o determined from
(2.33), substituted into the Bianchi identity (2.30) gives

5(eV
(ta)mn<e MG npgn™ + 482'/\/17”6](\2 ) + 14i(t'3)ﬂm(P912)Eﬂ£76E (GMEJS‘/) > =0,
o (2.42)



from which one can derive®

ie MG g 0™ = 10y (e aﬂ/\/lm> + %(‘h (e ./\/lﬁ./\/lm) |
_ ie/\/lmaﬂ/\/lﬁ (@Mﬁ _ 123@@8) n %@MMME%ME .
(2.43)

In obtaining this result, we have used (2.32) and the following scalar field equation that
follows from the action given in [9]:

(ta)mEMin <Dm (eD™ M) 4 3eF ™ F ™ 4 24 (;5/(\2‘/) > -0, (2.44)

where
V = g ME O ME (0, My — 240, Mu) — (7 0e) 70y (eM™2)
_i M G, G (2.45)
2.3 Supersymmetry transformation rules
The supersymmetry transformation rules are given by
Sem® = @ PYmi + &7 "%m’,

g o 1 ..
Vi = 22 Vi <e“xjk” + ﬂa”klm”pq emxnpq> ,

SAp™ = —i V2R, (& oy i+ 2V2E ) + e
2 A . . .
ABppa = —gx/i(ta)ﬁ (ng'ngkz e Y X 4+ 2v2 V) 1 Vo™ & A ) + C'C') ’

4v2

Jkl]
3

16 . .
ABpnm = ? y Dmvmk EkV[mwn]i - Vﬂijpmvﬂ kl E[Z TYmn X

— 8 (Ei ’Y[m,men]z — Dmgi Vim wn]z) + 2i5mnpq gqr Dm (gi’)/pwri) +c.c.,
5thm’ = 2Dyl — 4i VI, (ymej)
SXIE = —22P,, Mate — 12v/2iVylT G M (2.46)
ijkl

The coset currents P, are defined as

DmVQU = Dmvgij + ka[l ng}k — 7Dmijkl V@kl ) (247)

which also defines the composite SU(8) connection

. 2% A
Qmij = gvﬂ]k DmVnki- (2-48)

8In order to strip off the (to)m™, we make use of the fact that Gnpgm™ is constrained on its m index.
This condition means that G lies in a generic 56 x 56 representation, as any projection operation would
spoil the section condition. Since a generic 56 x 56 always contains the adjoint representation, there is no
ambiguity in solving this equation.

~10 -



The covariant derivatives of a spinor X,; with and without Christoffel connection are
defined as

1 1 .
DmX@i = DmXQi - Z Wmab’YabXﬂi + §Qminﬂj y (249)
1 1 .
D Xni = OmXni — 1 wmab'YabXﬂi + igmi]X@j ) (2.50)
2
ViXni = DmXni — FmﬁXU- — g)\(X)FmﬁXﬁi . (2.51)

The hatted covariant derivative ﬁm is obtained from V,, by replacing wmab with

1
O™ = wmab + 1 Mopn Fn™ emaent (2.52)

Finally, let us note the simplification

+2i Emnpg 97 Dim (€4P0,3) + c.c. (2.53)

and that writing out the covariant derivatives in the variations of the fermionic fields gives
Othy' = 2D,€t + i}"abij'y“b'ymej + i(en Onepa) VEIN Py e — iV O, (i)
—20V25 g, Ky — 20V pr T e (2.54)
SxTE = —2v/2P,, 1Tkl yme; + ?’ffab[ijyabe’“] + 3V2i (e " Opena) VLT ymn k]
—12v2iV2099,,, €M 4 6v/2iV™0 g Fleh — 8v/2iVm  p, T €l

—6V/ 20V, M (2.55)

where
VYR Vki, P = iV, VM (2.56)

wl N

Omi’ =

3 Laying the groundwork for superspace

The supersymmetry transformations described in the previous section do not readily admit
a lift to a conventional superspace due to a number of obstacles. Some of these, for
example, the term involving the internal derivative of the supersymmetry parameter in the
gravitino transformation (2.46), are rectified by understanding the structure of external
superdiffeomorphisms in superspace. Other issues, such as the nature of the last term
in the transformation of Bj,,m, require that we first make some redefinitions of fields
appearing at the component level before considering their superspace analogues.

In this section, we will elaborate upon a few modifications of the component theory
that shed light on its superspace lift. First, we describe the action of the external diffeomor-
phisms on the fermions. Then we proceed to describe a redefinition of the two-form By, i,
which appears necessary to make sense of its superspace analogue. The redefined two-form

- 11 -



turns out to have a simpler transformation under both external diffeomorphisms and super-
symmetry transformations. Finally, we compute the algebra of external diffeomorphisms.
Afterwards, we will describe the fate of the four generalized vielbein postulates, (2.5)-
(2.8), in superspace. As we shall see, only the latter two of these, involving the 56-bein,
continue to play any role. We will further argue that a more democratic form of the inter-
nal GVP (2.8), which includes non-metricity and leaves the generalized torsion unfixed, is
more natural from a superspace perspective. This will prove useful both for understanding
some of the structure of the supersymmetry transformations and for connecting with the
superspace of gauged supergravity after a generalized Scherk-Schwarz reduction [19], as we
shall see in section 6.

3.1 External diffeomorphisms of the fermions

Let us first summarize some details about external diffeomorphisms in the supersymmet-
ric theory that have not previously appeared in the literature. As in the bosonic theory
(see (2.21)), the vierbein e,;,* and the 56-bein transform as tensors under external diffeo-
morphisms. It turns out the same is not true of their superpartners ¢’ and x**. Rather,
these fields transform under external diffeomorphisms as

V2

— Vit Om€" L

BT = €Dy I — 612 VRIIOE™ Yy — LTSIy, 0, €My (3.1)

551/}mi = Dmfn%l + annme +4i lejamé“n V[nwm]j -

The non-tensorial terms involving internal derivatives of ¢, which we will refer to as
anomalous terms, can be justified in a few different ways. Perhaps the simplest (which we
followed) is to compute them directly in D = 11 supergravity after reformulating it to make
the local SO(1,3) x SU(8) tangent space symmetry manifest [5]. This corresponds to an
explicit solution of the section condition in ExF'T, and so the results can be lifted to ExFT
exactly along the lines followed in [22, 36, 37]. Another approach, formulated entirely
within ExFT, would be to require closure of the algebra of external diffeomorphisms. It
will be convenient to work out this algebra after performing a redefinition of the two-form
B,, as we shall do below.

3.2 Redefinition of the two-form and the algebra of external diffeomorphisms

While, as we will see, the external diffeomorphisms of most of the fields can be directly
lifted to superspace, the transformation of By, — specifically the second term in (2.21)
— proves to be problematic. This is due to the presence of the inverse vierbein. Whereas
we will be identifying the component vierbein e,,% as the element E,,* of the supervielbein
Eu?, the inverse vierbein e, has no simple interpretation in superspace, as it does not
correspond to the element E,™ of the inverse supervielbein. This is why, typically in su-
persymmetric theories, one can formulate supersymmetry transformations without explicit
use of the inverse vierbein.
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It turns out that there is a redefinition of the two-form B, », that resolves this issue.?

We will take

/ _ . a
Brnm = Bmnm — 2i emntlep" Omeqa

= Bonm — 20 €mnab Wm™ - (3.2)

It follows that the symmetry transformations of (A,,™, Byna) given in (2.21) preserve

/
mnm

their form with By, replaced by B in Fun™ and Hpypp o, provided one makes the

compensating = and () transformations with parameters

. b . b
mm = —20&" Enmab wn™ Q™ = 1A mmap wn* (3.3)

—_
—
—

Thus we have

6§,AAmm = gn fnmm(B/) + mgmn aﬂén + DmAmv
A{,Aanoz = gp Hmnpa + (ta>m Am]:mnﬂ(B/) : (3'4)

Now noting that
5§wmab _ gnanmab - 8m§n6m[aDn6mb] - em[aenb] Dmamfn 7

EmnP Dp(GqrOmE”) = Emmat (eapequpamgq + amgneampmenb> : (3.5)
where we have used D, e, = 0, one finds from (2.21) that

AeaABhnm = " Hpmnm(B') = 2i €mnab On&wp™ + Frn™(B')OpnAn — O Frnn™(B') A -

(3.6)

The second term in this transformation can be readily lifted to superspace as it involves only

b

forms. Here we interpret w,?’ as a one-form that can be lifted to superspace, as opposed

to expressing it as a composite in terms of the vierbein and its inverse. In achieving this

/

T onm DOw transforms under local Lorentz

simplification, we have paid a price. The field B
transformations as

6B, = —2i Emnab am)‘ab : (37)

mnm

b

We will find soon find that the internal spin connection w,,”” no longer appears in any

expressions and covariance under y-dependent Lorentz transformations is now ensured by
the field B’ and the field strength F(B’) in which it appears.

Before moving on, there are a number of features of the field strength F(B’) we should
discuss. Because we have essentially redefined it as

fmnij (B/) = fmnij(B) — ivmij Emnpq €pa 8m€qa s (3.8)

the self-duality equation (2.32) now takes the form

_ 1 N
]:mnij = 5 € Emnpq ]:pqij , (3'9)

9This redefinition is naturally related to one recently made in the so-called “topological phase” of Eg
ExFT that allowed its reinterpretation as a Chern-Simons theory [38]. There it was the constrained one-form
Bpm that admitted a redefinition.

~13 -



in terms of the modified field strength

ﬁmnij = fmnzg(B/) -2 Vﬁij e[ma 8ﬂen}a ) (310)
or equivalently
Fon™ = Frn™(B') + 2 MM e, " Opeplq - (3.11)

The additional term in F can be understood as the twisted dual of the term we have added
to B, which is necessary so that F continues to be twisted self-dual. It transforms under
Lorentz transformations as

~ 1
6 Fabij = —2i V™ (5a05bd + 25abcd> OmAed = —4i V™;0m ], - (3.12)
As a consequence of the additional term in its definition, F satisfies a modified Bianchi iden-
tity
~ 1
]‘)[P‘/Twm]m = =4 )"0 Hmnpa — 6 QmHmnpn(B,)
+2 (D[p./\/[m) em Onénja — 2 Mme[m“enbaﬂwp]ab , (3.13)

where we have used the vanishing of the external torsion T;,,? = 0.
Later on, it will be convenient to rewrite this expression in a form that is manifestly
covariant under internal diffeomorphisms. To this end, we note that

2
ViHo = 0,Ho + TP f30" Ho — gr,ﬂﬁHa : (3.14)
and introduce a modified three-form field strength
Hop = Hp(B') — 24 ()" TP faa” Hy + 16 (t*) 0" T Ho + 2 Tp® Ha
= Hp(B')+2T,* Hy . (3.15)

The field strength .74, is a tensor under internal diffeomorphisms, whereas H,,(B’) is not.
Now the Bianchi identity (3.13) takes the form

= m a\mn 1 mno o 1 mn
D[pfmn]* = —4(t ) VﬂHmnpa + g Q E Hmnpa - EQ %mnpﬂ
mn a mn a, b
+2 (DpM™) €, "V ey — 2 eim”en”VnWplab ; (3.16)

In the above expressions, we have kept explicit the generalized torsion tensor 7,,%, even
though it was constrained to vanish in [22]. We will soon see that it is convenient to relax
this requirement and allow a non-vanishing 7,,*. The modified field strength .7, similarly

appears in the covariantized variation of B/, .., which is given by

A{,AB;nnm +2 FmaAf,Aana = fp%mnm — 2i Emnab 8m§pwpab
+ Foin™(B") Vi Ay — Vin Frnn™(B') Ay - (3.17)
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While the on-shell duality equation (2.33) of Hynnpa is unchanged by the redefinition
of B, the duality equation (2.34) for H,,pnpm now reads

1 1 .
€ Hypgm (B') = —2i €™ ey Omiwn™’ - 3 D"V O Vi (3.18)
Note that the duality equation for the modified field strength can be written
1 .
S g (B) = —2iea ey O™ + ;ZDmvamM@ : (3.19)

which is manifestly covariant under internal diffeomorphisms.
Turning to the supersymmetry transformations, the redefinition of the two form By, m
clearly affects only those for B m, ¥m’, and x*, which now take the form

16 . 44/2 ) :
AB;nnm = ? e Dmvmk Ekfy[mwn]l - \3/> Vﬂij'DmV@ kl g[l Ymn X]k”

— & (Ei 'Y[mD/mwn]z - D/mgl Yim wn]z) +c.c.,
' A N 1 ~
0m' = 2Dpe’ — LV™IN] (Ymej) + Z’an’Ym]:np”Ej

. . . 3./2 .
6)(”'“ = —2\/§Pm”kl7“q — 12v/2i ymli V'mek} + :{’ym”e[k}'mn”] ,  (3.20)

b

)

where Dy, is obtained from Dy, defined in (2.50) by dropping the internal connection w;,"
and V7, is obtained from V, defined in (2.51) by replacing D, with Dj,. We also give the
transformation rule

AB i + 20 m*ABrna = —=8i (€ VP Unji — D€ Vm npi) + c-C- (3.21)

Note that the last term in the supersymmetry variation of B,,,» has vanished, and the
internal connection wmab has dropped out everywhere, thereby making the superspace lift
of these formulae possible, as we shall see later.

Finally, computing the commutators of the external diffeomorphism, with the two-form
field redefinition performed, we find the following soft algebra'®

06,5 0¢y] = Oext.difr. (§12) + Gint.dift. (A12) + OLorentz(M12) + su(g) (A12) + 0(ZE12) + 0(Q12)

(3.22)
with the composite parameters given by
§12™ = =261 " Dn&yl
A1p™ = &P Fyn™(B') + 261" grpM™2 065"
A2 = 2MPRO &1 " Ono)” enley?
A2j = —16gmn Vi VR0 M Ony"
Ena = ~61€ Humpa
Sk = €1 Hnpe(B) — 4 mnnab Oy E5w0p™” - (3.23)

0The appearance of non-trivial SO(1,3) and SU(8) parameters is less surprising if one recalls that
in the 447 reformulation of D = 11 supergravity, the external diffeomorphism corresponds to an 11D
diffeomorphism plus a local SO(1,10) transformation; the commutator of two such transformations gives
an SO(1, 3) x SO(7) transformation.
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These can be deduced by working out the commutator algebra on e;,*, V;,* and A,;,,™. As
for the composite -transformations, they can be computed from the closure of external
diffeomorphisms on B,y o and they will involve the 4-form field strengths. We shall skip
the derivation of these field strengths and the resulting composite {2 parameters, as they
are not needed here.

3.3 Generalized vielbein postulates

Now let us address the generalized vielbein postulates. Two of them, (2.5) and (2.6), involve
the external vielbein. Neither of these turn out to have natural superspace analogues.
A straightforward superspace generalization of the first equation (2.5) by extending the
coordinate index to a supercoordinate index, m — M, runs into the problem that its ,,,%
component differs from the ,,,,* component of the original bosonic equation (2.5) due to the
presence of a term I',,,” E,* (and its complex conjugate), where p (p) is the 16-component
index of the chiral (antichiral) Grassmann coordinate 6° (6;). This is problematic because
E,% has no geometric meaning at the component level. '

One cannot circumvent this issue by setting I',,,” to zero by hand, as this violates
general supercovariance. Conventional superspace avoids this because the affine connec-
tion is actually unnecessary for describing supergravity; it appears in no supersymmetry
transformation, nor is it included in the gravitino kinetic term. Instead, one uses the
spin connection, which can be fixed to its usual expression by requiring the torsion tensor
T% = De® to vanish. This condition in turn has a natural lift to superspace. Thus, we shall
abandon (2.5) in superspace and instead define the vector torsion tensor

1
T .= DE®+ E* AQ,* = DE® = 5EBECTCB“, (3.24)

where % is the Lorentz-valued superconnection. (A similar torsion tensor can be defined
in terms of the gravitino one-form E*, but we will postpone its discussion to the next
section.) The physics originally encoded in the vanishing torsion condition will now be
encoded in constraints placed upon Top®. We will discuss these in due course. The point

P in superspace and so there

is that one avoids ever introducing an affine connection I"p;n
is no analogue to (2.5).
Similar statements pertain to (2.6), although here the situation is somewhat different.

This equation can be interpreted as a definition of a field m,,%,

1
Omen” — 3 ka en® — wmabenb = —Tmn” . (3.25)
The constraint amounts to requiring m,%, := Tmn“ep" to be symmetric in ab, which allows
one to determine the internal spin connection. Equivalently, a choice of internal spin

connection permits one to set the antisymmetric part of 7,,%, to zero. However, this

" Component fields and forms are derived from superfields and superforms by projecting # = 0 and
df = 0. Geometrically, this is the pullback of the inclusion map that embeds spacetime into superspace.
For the vector vielbein one-form E®, the only component that survives this projection is em,* = En*|o=0-
The components E,%|s=o and E?*|s—o turn out to be pure gauge degrees of freedom. While they can be
set to zero as a Wess-Zumino type gauge fixing condition, this is not necessary.
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has no natural superspace lift. One would need to introduce m, N = mp* sENE, but this
involves also 7% ; and WmaBj . A choice of internal spin connection leaves these unaffected.
Moreover, they cannot be set to zero without constraining the internal derivative of En®
itself. Therefore, we must dispense with (2.6) as well.

At first glance, this is problematic because it forces us to drop the internal spin con-
nection as there is no longer any ability to define it. But as mentioned above, the role of
the internal spin connection will turn out to be played by the constrained two-form. The
remaining two vielbein postulates (2.7) and (2.8) involve only the 56-bein and these pose
no obstacles to a superspace interpretation. The external derivative of the 56-bein (2.7)
we will lift to superspace simply by replacing m with M.

However, for the purely internal GVP (2.8), we find that it is useful to choose a more
general form. It was already observed in [22, 36] that the internal GVP derived from the
SU(8) reformulation of D = 11 supergravity does not take the restricted form (2.8), but
rather includes so-called non-metricity. The most general form of the internal GVP is

ViV = 00V + Qui Vi — Tom V" = Po " Vi
= DpVim" — Tnm® Vgij : (3.26)

Here Q,,;’ is the internal SU(8) connection and the non-metricity P,,"* is a pseudo-real
expression in the 70 of SU(8). There is significant ambiguity in this expression because
both the E7(7) connection I' and the set {Q, P} are describing the same 56 x 133 degrees of
freedom (up to the section condition) encoded in 0, V;,"7. This can be clarified as follows.

Using (2.18), the internal GVP can be rewritten as
On V" + (Qual + Tn*Qak )V = (Pﬂ"ﬂ“ + r@aPaiﬂ'“) Vinkt (3.27)

where Qqn;7 and Po* correspond to the “fattened” components of the E7(7) generator,

living in the 63 and 70 of SU(8), defined by
(ta)m™Vn" = —Qak V™ + Po ™V . (3.28)

Evidently one can solve (3.27) either for Q,,;/ and P, in terms of Tyl or ['yyy? in
terms of Q,,,;7 and P,,*. In the latter case, one finds that

Cpm? = —iDp Vi VP 4 iP ¥V VP + c.c. (3.29)

There are a myriad of ways to reduce the ambiguity. One particular way is to set Q and
P to zero, eliminating it entirely. This is the Weitzenbock connection, and we denote it by
°over the various symbols:

Weitzenbock connection: Q=P =0, [pnf = —i 9V’ ViiP + c.c. (3.30)

The conventional choice in ExFT is different [22]. It involves taking P = 0, and then
eliminating as much (but not all) of the ambiguity by imposing constraints on I', through
the vanishing torsion condition (2.16). Let’s review some group theory briefly to remember
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how the various parts of I are usually constrained in ExFT. Decomposing under Ez(7) and
then SU(8) gives

I: 56 x 133 =56 + 912 + 6480,
56 — 28 + 28,
912 — 36 + 420 + c.c.,
6480 — 28 + 420 + 1280 + 1512 4 c.c.,

Q and P decompose under SU(8) as

Q: (28 + 28) x 63 = 28 + 36 + 420 + 1280 + c.c.,
P (28 +28) x 70 = 28 + 420 + 1512 + c.c.

In conventional ExFT, after setting P to zero, I' and Q have residual ambiguity: the
representations appearing in Q are counted twice. Killing the 912 part of I" (corresponding
to torsion) removes 36 + 420 and their conjugates. Constraining the 56 part of I' to be
related to e~ 1d,,e removes further ambiguity. The remaining ambiguity is the 1280 and
its conjugate that appear in both Q and the 6480 of I'. There is no E () covariant way
to eliminate this piece. However, as shown in [22], this undetermined piece always drops
out of the SUSY transformations.

There is already a reason to reconsider this approach when generalizing to superspace.
The determinant e = det e,,* is, like the inverse vielbein, an unnatural object to encounter
in superspace as it violates general supercovariance, so the constraint imposed on the
56 part of T' is difficult to lift to superspace. The superdeterminant E = sdet Ep? is
more natural, but does not reduce naturally to e when returning to components. This
suggests that one should leave the 56 part unfixed and hope for it to drop out of the SUSY
transformations as well. Actually, as we will demonstrate, there is no need to fix any of the
ambiguity in I', Q, and P. We will allow both the non-metricity P and the torsion tensor
Tmnk, defined in (2.15), to be nonzero. This requires that the SUSY transformations be
modified to include contributions of these tensors, but in the result, all of the undetermined
pieces drop out, not just the one in the 1280.

Because the torsion tensor lies in the 912, we can employ the same representation
theory as for the embedding tensor [34]. Defining the tangent space components TQQ =
VY, 2TV, as for the embedding tensor,

_%5[]6 lp 7'(1] l]ij igklpqrstu TTStuij
Tija = (3.31)
Tklpqij %5[p[k 7—[] Jij

one finds
4
kimn k Imn
TG = —55[1'[ 7,

Tk = 2 x ( - zAQijkl - gfhj[k 5”1‘) ; (3.32)

~ 18 —



where A1% = A;(9) is in the 86 and Ay;/* = A,k (and traceless) is in the 420. Here
we have inserted an additional factor of 2 in the last relation to match the historical
conventions for the so-called T-tensor.'?

Later on, it will be useful to extract the undetermined pieces in the internal connections
to ensure that they cancel. We will do this by converting to the Weitzenbock connection,
and writing expressions in terms of r , isolating the undetermined pieces into @ and P. In

terms of the Weitzenbock connection, one can show that
Ay = AT jymblig ) (3.33a)
AgiM = Ao M 4[4 PV, 4+ 31 Qi V|
= Ap M 4 4i P IMeYm, 24 5,Up,, Mlprym
+ 3iQp IVl — 5,0 9, Fymilp (3.33b)
Com® = Do 4+ 1Qnt™ Vin V5 + (1P ¥V Vi + c.c.) (3.33¢)

We have included above the corresponding formula for the Er 7y connection.

From now on, unless we comment otherwise, V,, will correspond to an internal co-
variant derivative carrying an Eq 7y connection and SU(8) connection with arbitrary non-
vanishing torsion and non-metricity. It will not carry any internal spin connection.

4 Er(r) exceptional field theory in (4 4 56|32) superspace

Now we turn to the construction of E7(7) exceptional field theory in superspace. In addition
to the four external coordinates x™ describing spacetime and the 56 internal coordinates
y™ describing the exceptional structure, there will be 32 anticommuting (Grassmann) coor-
dinates, which we split into chiral and antichiral coordinates 6* and 0;,13 Supersymmetry
will be associated with diffeomorphisms in the fermionic direction, in a manner to be
described in due course. The full set of coordinates are collectively denoted Z2L,

ZM — {ZM,ym} — {‘xm’guagﬂ’ym} ) (4'1)

We reserve ZM to denote the (4|32) coordinates (z™, 6, 0,) parametrizing an “external”
4D N = 8 superspace, with the additional 56 “internal” coordinates y™ describing the
exceptional structure.

The supervielbein on the (4|32) superspace is denoted Ejr* whose tangent space index
A decomposes as (a, i, i) so that

EMA = (EMavEMaivEMdi) . (42)

We will refer to Ej® and Ej® as the vielbein and gravitino super one-forms, respectively,

ai

as they are the superfield analogues of e,,* and ,,“*. The internal exceptional space is

12Tn other words, the tangent space components of 7~ differ from the T-tensor by a factor of 2.

!3Here we use the chiral (antichiral) Grassmann coordinate 6* (0,,) with g = 1,---,16. Typically in 4D
N = 8 superspace, one writes 0“7 with y=1,2and I =1,---,8 as curved analogues of the two-component
spinor and SU(8) indices. For compactness, we use p collectively for pl.

~19 —



equipped with a 56-bein,

Vi = Vi, Vinij) - (4.3)
While it would be natural to encode Ep4 and V,% as components of an even larger
sehrvielbein £,/4 (as in central charge superspace [28]), we will leave discussion of this to
future work. From the point of view of the external 4D N = 8 superspace, the 56-bein is
a scalar superfield while Ej;4 are components of a super one-form E4 = dZM EyA.

In addition to the external and internal vielbeins, there is a tensor hierarchy of p-forms.
These include the one-form vector field

A = dzM Ay, (4.4)
and two super two-forms

1 1
Ba = §dZMdZNBNMa, B, = 5dZMdZNB;VMm . (4.5)
As in components, the second two-form is a constrained tensor on its fundamental Er ()
index. Just as in ExF'T, there are additional 3-forms and 4-forms making up the tensor
hierarchy, but we will stop our analysis at the two-forms. Because the unprimed B does
not naturally occur in superspace, henceforth, we will drop the prime.

Finally, the superspace is also equipped with a pair of one-forms that gauge the local
tangent group SO(1,3) x SU(8). These are the Lorentz connection ,” and the SU(8)
connection Q;7,

Q.0 = dZMOu.L J=dzMQN . (4.6)

Constraints in superspace will be chosen so that these connections become composite,
describing no independent degrees of freedom of their own.

These superfields each have natural analogues in the component theory. The only
component field we have not mentioned in superspace yet is the spin-1/2 fermion. And
indeed, there is also a fermionic superfield, which we denote "/, whose lowest component
is the field of the same name. In conventional 4D N = 8 superspace [24, 25], this superfield
actually appears in the curvature super-forms, and so can be treated as a derived quantity.
In exceptional superspace, it plays a somewhat more fundamental role, as the gravitino one-

form Ejp* turns out to directly transform into it under external superdiffeomorphisms.

4.1 Symmetry transformations

Under internal diffeomorphisms (A™) and the tensor hierarchy transformations (2 q,
EMms QU Na, 2 Nm™) the various superfields transform exactly as their component ana-
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logues, with
0EM™ = LaBn",
Vm® = LAV,
5xe7® = Lpxa 9% |
SANM™ = Dy A™ 4 12 (t%) ™ 0pEpr o + %Qm EMn,
ABnima = (ta)mn AFNm™ + 2 DinErsa + O™ + (ta)m QN an™

ABJ\UWm = ]:NMﬂamAﬂ — am]:NMﬂAﬂ + 2D[NEM]M + 48 (ta)ﬂ£ ((9£8mA[Nﬂ) EM]a
— OmSAINMR"™ — 200N Mm™ (4.7)
where

ABNMa = 5BNM0¢ =+ (ta)MA[Nm(;AM]Q,
ABNMm = 5BNMm + A[N@(?méAMm — amA[NﬂéAMm . (48)

Here the A weights of the various superfields match their component cousins. The curvature
two-form Fnp™ (and later, the three-forms Hpn o and Hpn s m) are defined exactly as
in components, replacing m — M. We collect their superspace definitions in the next
subsection.

There is a minor technical subtlety that the superindices M and A come equipped with
a Zs grading, which causes certain signs to appear when their relative ordering changes. For
example [N M] above should be understood as a graded commutator. This is common in
superspace and we briefly review it in appendix A. To keep formulae as legible as possible,
we suppress such grading factors.

The transformations under external diffeomorphisms are somewhat more involved. We
list first the ones whose transformations can be directly compared to (2.21):

0EM" = Du€™ En® + €V Dy En®,
V= EM Dy Vi,
SAM™ = EN Fnp™ + M™20,N G GNm == EN"Epq
AByya =E¢"HpnMa - (4.9)
A relevant feature is, as in components, the appearance of an anomalous term in JAp,™
involving 8m§N . The constrained two-form By s, transforms not only with an additional

explicit spin connection term (matching the redefined component two-form (3.6)), but with
a few additional terms involving the gravitino one-forms,

ABNym = ECHpnvm — 20 EN®Eneaped OméT Qp

— 160 Om&" Epai En® Ean® (Ya)a® + 161 0m&"” Ep® Eini Ean®(Va)a® - (4.10)
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at @ijk have even more involved

The gravitino one-form Fp/* and the spin-1/2 fermion x

anomalous terms,
SEN® = DyeNEN® + ENDNEy ™ + 20 V™9 9,6 (ENB']-EMC - ENCEMBJ-> (70)%
- mi@vmjkamgN EnTEx XM (vera) s
5y ik — €N Dyt _ 195/3ynliig eN pyakl 4 éeijkpqrstvﬂpqaﬂgN B (1)
(4.11)

While the exact relation between the supervielbein and the component fields has not been
specified yet, a natural definition, which will be provided in section 5, motivates the above
form of the external superdiffeomorphisms in view of the supersymmetry transformation
rules (3.1). Note also that, as already mentioned above, because the gravitino transforms
directly into x, we are led to treat x on the same level as the gravitino and the other
fundamental superfields rather than as a derived curvature superfield.

Finally, we should mention that just as in components, the constrained two-form
By vm possesses an anomalous Lorentz transformation,

5BNMm = -2 ENaEMbEabcd 8m/\0d . (412)

4.2 Covariant external superdiffeomorphisms and modified curvature tensors

The curvature super-forms of the tensor hierarchy have already appeared above in the
symmetry transformations of the tensor hierarchy fields. They are defined as at the com-
ponent level'4

Fmo— dAm %[A, A~ 12(1%)™ 9, By — % Qunp, (4.13)
Hoo= DBa— 5 (ta)mn APAA™ + - (ta) mn A™{A, AT — 00 — (fa)n®Cy™, (4.14)
Hin = DBy + 24 (fa) 2 00 A" Ba — 305 O A A 4 0y A2 A2

- égi (A2 0 [A, AT + [A, ATj 0 A7) + 0 Ca + 20,0 (4.15)

We have included the super 3-forms C™,, and C},™ in their definitions for completeness, but
they will not play a major role in the subsequent discussion. We emphasize that because By,
transforms anomalously under Lorentz transformations, the same is true of its curvature
H,,. In fact, the curvature H,, is not even a tensor under internal diffeomorphisms, a fact
that we will return to soon.

In addition to the tensor hierarchy curvatures, there are curvature super-forms associ-
ated with the supervielbein Epr* and the Lorentz and SU(8) connections, Q and Q. The
former define the super torsion tensor,

T4 .= DEA = DE” + EBQp* + EPQp? (4.16)

1The reader is cautioned that we employ superspace conventions for differential forms, see e.g. [39] and
appendix A.
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Qp® 0 0 0 0 0
Qpt = 0 10%(y.q)5" 0 , Qpt=10-10i5> 0 ,
0 0 iQCd(%d)Ba 0 0 %Qij56a
(4.17)
as well as the Lorentz and SU(8) curvatures,
b b cqy b : i lokp i
Ro’ =D’ + Q" R =DQ7 - 5Q"Q) . (4.18)

Typically, the superspace Bianchi identities determine the latter curvatures in terms of the
torsion tensor. Omne then finds that imposing suitable constraints on the tangent space
components Tep? of the torsion tensor prove to define the supergeometry. However, the
situation is more subtle in exceptional superspace. The main reason is that the curvature
tensors we have introduced above are not actually the natural curvature tensors from the
point of view of superspace. By this, we mean that some of them do not possess natural
expansions in terms of the superspace frame E4.

It turns out to be more illuminating to first consider the curvature two-form F™.
Recall that under external diffeomorphisms

SAM™ = EN Fny™ + M™2V &N En®Ea

where we have used 8E§N = VﬂéN . We would like to rewrite this expression as a covariant
external diffeomorphism. A covariant external diffeomorphism is defined in terms of the
tangent space parameter &4 = M Ep A as

5cov(§A) = 6(€M) — OLorentz (fNQNab) - 5SU(8) (éN QNij) . (419)

For the vector fields, the additional transformations do not contribute, but nevertheless
the transformation rule takes a different form when rewritten in terms of &4:

Seov (€)An™ = €N Fap™ + M™2V €9 Eprg — MP2EON,, By (4.20)
where we have defined
Fanr™ = Faar™ + 2M22 By Vo Byl - (4.21)

This expression for Fm proves to be the superspace analogue of the component modified
field strength introduced in (3.11).!° Recall that the motivation for introducing this mod-
ified field strength in components was that, upon redefining the constrained two-form, it
was this modified field strength that possessed the twisted self-duality relation. The anal-
ogous statement in superspace is that F™ will be the tensor that is constrained in order

to define the supergeometry. That is, it will be chosen to possess a sensible expansion'®

Fau™ = ExBEyAFpa™, (4.22)

50ne can trade 8, for V,, in (4.21) as the connection terms drop out.

180f course, because the supervielbein is assumed to be invertible, one can always define Fpa™ :=
EsgVNEAM Fyu™. The problem is that one finds a contribution to Fg,™ of the form MMEBNVQENQ
that is difficult to make sense of upon reducing to components. No such contribution to Fpa™ occurs.
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where (as we will discuss in the next section) the tangent space components Fpa™ are set

equal to other covariant superfields (such as Xaijk) or are constrained in some other way,

e.g. twisted self-duality (up to fermions) in the case of fbaﬂ. As at the component level,
the term we have added in (4.21) is not Lorentz invariant because the internal derivative
carries no internal spin connection. But F™ is itself not Lorentz invariant due to the
anomalous Lorentz transformation (4.12) of the constrained two-form. This leads (only)
the top component ]?abm in (4.22) to transform. As in components, we find, for the
inhomogeneous part of the Lorentz transformation,

~ .. L 1 L
SanomFapd = 24 Ymid <5a05bd — anbcd> OmAea = 4 VI (4.23)

What about the supervielbein? For the vierbein one-form FEj;%, it turns out that a
covariant external diffeomorphism leads to the usual expression

Scov (§) Eng® = D€ + N Ty ®, (4.24)
which suggests that the vector torsion tensor possesses a sensible tangent space expansion
Tnm® = ExCENPTop?, (4.25)
without modification. For the gravitino Ej;*, the situation is more subtle. We find
Seon(€) Enr™ = Dage® + €V Twa + 20 V9V ™ (B 5, Bas® — Ex“Bary ) (0%
2\/»Vm]kvm§ N ENCEreX PR (yeva) 5 - (4.26)

This can be rewritten as
5COV (g)EMOcZ — IDMfoa’L + é—Nj—\vNMal
+2i v@jvm (EBjEMC(%)ﬁa) — 2 vm"jvm<gCEM5j(%)ﬁa)

(Vin? Bar® = €V B ) VM () 5° (4.27)

2[
where we have exchanged ¢V in the additional terms for é4 = ¢M Ej 4. The modified
gravitino torsion tensor in this expression is

T = T 4 2 V™IV (B A E)(76)7 = V5 X (1,90) g2 Vin B A S (4.28)

2xf
As we will see, this leads to a sensible tangent space expansion T v = ENCEyP T\c B

The internal counterparts to the supervielbein are the two superfields Vmij and Y9k,
While these are not gauge superfields, they also have curvatures naturally associated with
them: their covariant derivatives. Because the 56-bein transforms under external covariant
diffeomorphisms as

Scov(§) Vi = M Dy V"7 (4.29)
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its covariant derivative should possess a sensible tangent space expansion. As in compo-
nents we take

DV, =PV, P = BAP4IM, (4.30)

to both define the one-form P¥* valued in the 70 of SU(8) and the SU(8) connection
Q,7. However, the fermion superfield y*“* has additional terms in its transformation rule,
suggesting we define the one-form

Far®k = D@k 4 12iv/2 V20, By oM - %s““m“ ViV EaX s ()7 (4.31)
so that
5COV(§)onijk _ fM?Maijk o 1271\/5 Vﬂ[i‘ijé-ak] + ésijklpqrs Vﬁlpvﬂngqus (,yb),éa . (432)

This suggests that the one-form 7 possesses a natural tangent space expansion, 7y, *7* =
EMB?Baijk.

For the two-forms, the situation is again somewhat subtle. The transformation for
BN o is unchanged,

Acov(‘f)BNMcx = §PHPNM01 ) (433)

suggesting that Hpn s« possesses a sensible tangent space expansion. The covariant trans-
formation of By s, is more involved. Keeping in mind the anomalous Lorentz transforma-
tion (4.12) and the Lorentz connection contribution to covariant diffeomorphisms (4.19),
one finds that

Acov(§)Bnarm = € Hpnam + 20 EN*Eneapea € Vi Q2p™
— 162 vmfPEpdi E[NaiEM]a(’ya)ad
+16i Vint" Ep® EinvaiBan® (Ya)a® - (4.34)
In light of the comments in section 3.2, a more natural form for the covariant variation of
BNMm is
ACOVBNMm +2 FmaAcovBNMa = {P%PNMM + 24 ENaEMbEabcd gpvaPCd
— 16i V" Epsi En® Ean®(a)o®
+16i Vi Ep™ Eingi Ean®(Va)a® (4.35)
where 777, is the modification of the field strength H,,,

Ay = Hpy + 2T, Hy (4.36)

which transforms covariantly under internal diffeomorphisms, in contrast to H,, itself. The
form of (4.35) suggests the definition

—

oy, = Ky — i B E €apeaV i + 81 By Vi EY Esi(7)0® — 8i Eo Vi Bai B (7)),
(4.37)
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so that

AcovBNMm +2 I_‘maAcovBNMa
= Honvm
=160 £ Vi Enai Ean® (Ya)a™ + 160 €si Vi En® En® (Va)a®

. .
—4i " (Eabcd EN V™ + 4 By VmEM]ai(%)aa) : (4.38)
Again, the suggestion is that a%/’;NM m should possess a sensible tangent space expansion.

4.3 Superspace Bianchi identities

Having now some idea of the relevant superspace curvatures and what combinations of
them should involve sensible tangent space expansions, we turn to a brief discussion of the
Bianchi identities that need to be solved.

We begin with the fields of the p-form hierarchy. As at the component level, the field
strength F™ must obey the Bianchi identity

1
DF™ = —12 (1) Ho — 5™ H,
1
= —12(t%)Vy Ho + Q7 Ty Ho — Q™ (4.39)

where we have used the definition (4.37) for .7#,. The above form of the Bianchi makes it
apparent that H,, cannot be covariant under internal diffeomorphisms (because 0, Ho is
not), whereas 74, is. Keeping in mind that it is 7™ rather than F™ that will possess a
conventional tangent space expansion, one can rewrite this Bianchi identity as in (3.16)
~ 1
DF™ = —12(t%)™*V Hq + Q™ T, Hq — §QM% — MPREN,, T, + M™TV B,
— (DM™2) BV, By + M™2ECEPY, Q- (4.40)

The 3-form field strength Hg in turn obeys the Bianchi identity

DH,, — —%(ta)m FRFL 9, G0 — (to)m Gp™
- —%(ta)mn FRFL -V, G2 — %(ta)anmﬁG% — (ta)m™ %™ . (441)
In the second line, we have introduced
G = G — TGl (4.42)

which unlike G,,® is a tensor under internal diffeomorphisms. These 4-form curvatures are

further discussed in section 4.5.
The constrained 3-form H,, obeys the Bianchi identity

DHy, = Qs F O F* + 24(t%) " 0mOn A" Ho + 0 Gn™ + 2 0,Gr™ . (4.43)
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Its covariant version .7}, in turn obeys

Dy = Qg FEVmFL = 2Ry Hoy + Vin @™ + 2V D™ — 2 Ty "%
1
7

The tensors Tmﬁ, R,® = dzVN Rnm®, and Ry, correspond to objects that appear in

3
VG T 4 26 Vi Ty = 2Ry G (4.44)

the commutators between internal covariant derivatives. They are collected in appendix B.
The Bianchi identities for the supervielbein are a bit more complicated. From the
definition (4.16), one concludes that

DT — EbRba —LrE“, (4.45)
) 1 . 1 . . .
DTM::ZEﬁUW%%ﬂMa"§waﬁ“—LfEm- (4.46)

Typically in superspace, the torsion Bianchi identity allows one to determine the curvature
tensors Rp® and Rji in terms of the torsion tensor. This is somewhat more subtle in
exceptional superspace because these curvature tensors may now involve terms with internal
derivatives of the supervielbein. This is apparent when considering the Bianchi identities
for the 56-bein, which read (using Ry” = 5[k[iRl]j])

y y . DPIM = — iYL zy,, 1
DV = —Ry"Vp" —LpVn? = ) o . (447)
Ry” = iV LpVm® — P Prsi
The second identity defines the SU(8) curvature and involves terms with internal derivatives
on the field strength tensor F (which itself involves internal derivatives of the vielbein).
Finally, we mention the Bianchi identities for the y curvature, which we leave in the form

DQXaijk _ iXﬂiijCd(’Vcd)ﬁa - gxal[inlk} - L]__onijk . (448)

4.4 Constraints and solution of the Bianchi identities

We present here the set of constraints on the various curvatures that provide the solution
to the Bianchi identities. While we have not explicitly checked the higher dimension com-
ponents of (4.46) or (4.48), which provide the explicit form of the Riemann tensor (and
the superspace version of Einstein’s equation), the other Bianchi identities are sufficient to
determine the other curvatures. We leave its full characterization to future work, where
a unified exceptional geometry would be expected to shed light on some of the structure
encountered. While the identities that we need to solve are a good bit more involved
than in conventional superspace, luckily, most of the relations correspond exactly to re-
sults expected from N = 8 superspace [24-26]. We summarize them below. Most of the
computations were achieved using Cadabra [40, 41].

The 56-bein curvature P%*,  We impose the following constraints on the supercovari-
ant derivative of the 56-bein (4.30):

PPl = 2v/2 51[§Xa]pq1 , Pk ijpg — \1€ 5qukTStXarst ) (4.49)
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The vector torsion tensor. The vector torsion tensor is constrained so that its non-
vanishing components in tangent space are

Tonﬂjc =2 6ij ('Yc)aﬂ ) Tabc = ﬁ 5abchaUk (Vd)ad Xaijk . (450)
The choice of Ty, is a matter of convention and can be altered by a covariant redefinition
of the spin connection. The choice we expect here is to match the convention used in 4D
gauged supergravity [34], although it is easy to change this. Therefore, the full constraint
on the covariant derivative of E* can be written as

1 . . ) .
T":=DE"= - e Ey N Ee X" (va)aa X% ijk + 2B N Eg (7)o" (4.51)

The two-form curvature F™. The two-form curvature F™ is constrained through
the modified field strength F™ given in (4.21). The lower dimension parts of Fps™ are
constrained as

Fajai™ = —8i Vs €54, Fhidim _ 4 gjymii fé (4.52a)
‘7?5]' o= *ﬂivmkl(ﬁ’a)ﬁgxﬂjkl ) j_\-Bjam = \@ivmkl(’m)ﬂﬁ)(ﬁjkl . (4.52D)

The vector-vector component F ;™ is also constrained so that

~ ~ - 1 ..

]:;?)Z] = ‘F;?)mvﬂw = meljklpqrsiklp’Yaqurs ) (453)
as in gauged supergravity. This is the twisted self-duality constraint in ExFT. Note that
the self-dual part of % is actually Lorentz covariant, whereas the anti-self-dual part
transforms as (4.23).

The 3-forms H, and H,,. Analyzing the Bianchi identity (4.40), and comparing terms
with explicit internal derivatives, one determines the tangent space components of H, =
HEAEBECHepaq to be

H™"gja0 = 5 (ta) ™ VanjtVa™ (1) 75 (4.54a)
2 .

Hwi baax — _g\/i(ta)mvmijvﬂkl(Vba)'yBXﬁjkl ) (454b)
» 9 ~ o

Hﬂﬂbaa — _g\/5(ta)mvmljvﬂkl(’Yba)yﬁ'xﬂjk‘l ) (454C)

1 1 .. 1 B
Hepao = _ggcbad (ta)m<2vmzjvnkl77dijkl — ivmz‘jV@klPd”kl

e ) IR
with all other components vanishing. From the component perspective, the last equality
is an equation of motion on the three-form field strength and corresponds to its on-shell

duality condition. These expressions agree with those from ungauged 4D N = 8 super-
space [26].
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Determining the constrained 3-form field strength is somewhat more involved. From
the Bianchi identity (4.40), one can directly show that

Ay = i B E® € 4peqVin Q24 — 81 By Vin E¥ Esi(7Y) 0 + 81 By Vi Esi B (7)o
2i . , 2 . 3
- §\/iEaEbEm(’Yab)ﬁaxa]klpmijkl + §\@EaEbEgi(’Yab)ﬁadekle”kl

i . 1 - ;
-9 E*EE° e qped (Pm”klpdijkl + ivmxaljkxaijk(’yd)aa

1 y .
+ 2VmXa¢ija”k(7d)aa> : (4.55)

This explicit expression for the field strength 7}, is covariant under internal diffeomor-
phisms as required by the Bianchi identity (4.40). However, the presence of the explicit
spin connection means it cannot be covariant under Lorentz transformations, which is as
expected. Note that the definition (4.37) for %%, which we motivated in the hope of it
having a conventional tangent space expansion, indeed leads to such a result:
— 1
S, = 30
2

- _g\/iEaEbEﬁl(’Yab)ﬁaxajklpmijkl + g\/iEaEbEBi(ryab)ﬂaxdjklfpmzjkl

i g 1 3 .
-3 E“E’E° € aped (Pm”klpdijkz + §vaaUkXdijk('7d)aa

EAEPEC Hpam

1 y .
+ 2vao'ziijka(7d)aa> . (4.56)

From the component perspective, the constraint on <%/ﬂc\bam corresponds to an on-shell
duality condition.
The actual (non-covariant) field strength H,, can be found by inverting (4.36):

1 .
I’Im = iEaEb EabcdamQCd — & Ea <8mEm — 2qsza]>Edi(,ya)aa
. 1 A Y , ,
+ 8 E* <8mEo'zi + 2QmijEdj)Em('7a)aa - g\@EQEbE&('Yab)ﬁaxa]klpmijkl
+ g\@EaEbEgi('Yab)ﬁadeklme]kl ~ 3 E°E"E° caped <pm”kl7’dijkz

1 g 1 g .3 .
+ §amXaUkXdijk('7d)aa + §8mXaiija”k(’Yd)aa - QQmIZXalijdijk(’Yd)aa> )
(4.57)
where ¢,/ and p,,* are given by (2.56).
There are several consistency checks which the expressions for H,, and J%,, satisfy:

e The definition of the covariant 77, (4.36) involves the E7y connection, which as
we have discussed contains undetermined pieces. These drop out from the Bianchi
identity (4.40) when the explicit expressions for 7%, and H, are used, as well as the
expression (3.29) for the E;(7) connection.
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e H,, is a constrained tensor on its m index, obeying the conditions (2.4). However,
Hy, does not unless the E7(7) connection is also constrained. As this involves unde-
termined pieces, this may or may not be the case.

e Because of the underlying non-Lorentz invariance of the two-form field strength,
the curvature H,, has the appropriate anomalous Lorentz transformation, consistent
with (4.12),

SH,, = I)(ieabcd12a12b651A0d> . (4.58)

The gravitino torsion tensor. The modified gravitino torsion tensor fo‘i, defined
in (4.28), is constrained so that its lower tangent space components are

~

Typp™ =0, (4.592)
TVkg% =0, (4.59b)
TrikBioi — (/5 Ay okii (4.59¢)
T = %(XikZVGXij)(7c7a)Ba’ (4.59d)
793 01 = %(vcvab)gafabij - leeij’“lpq”(szp’y“bxqrs)('yab%)ga (4.59¢)

+ () VI P M — ()P Ay

= 2™ Furl = (%0 B + i)V P — (1) Ay
Because the internal covariant derivative V,, does not carry any internal spin connection,
the modified tensor 7% has an anomalous Lorentz transformation; this is reproduced by
the constraints above due to the field strength fabij . Also, because V,, does depend on
the internal E7(7) connection, T depends on the precise choice of internal connections
even though T := DE* does not. This is apparent above in the appearance of both
P " and component A1 of the E7(7) torsion tensor. However, one can check that the
undetermined pieces of the internal GVP drop out of T itself. This is the superspace
version of the observation in [22] that the 1280 component of the SU(8) connection drops
out of the SUSY transformation of the gravitino.

As a consequence of the Bianchi identities, in particular the 7™ Bianchi identity (4.40),
the top component fcb‘” itself obeys several constraints. Its self-dual component is fixed as
fp[aijkl (v)** Xajht + \;ffabcd PR i (v + ?Xaijkf;g;jk ,  (4.60)
whereas the spin-1/2 part of its anti-self-dual component is

~

THaoi _
Tab -

Tabm(’Yb)aa = §A2zjklxajkl (Ya)aa + ﬂpbwklxﬁ'jkz(%%)ﬁa + Zjvmjk mewk (Va) et

V2 V2

V2 ' , ,
o Z?vmszmjklpxaklp(’)/a)ad + Zjvwkpwklpxmlp(')/a)ad

\/i —ijk. lpq . arst

+ 1728X XX (’}/a)ad Ejklpgrst - (4.61)
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These correspond to the gravitino equations of motion in the underlying component theory.
Note that T, itself is not Lorentz covariant, although T},,,®* is. This is because it is T},
itself that is directly related to the gravitino equations of motion.

The x curvature. The curvature 7);% is defined in (4.31), and it takes values in tangent
space as

~ aij 3 i aT j \/i o _ijkpgrst —
T = *1\551[ (Vab) ) — ﬂ‘sﬂ e TR e Xt

— 6iV2 05V PP §H — 8in/2 55V PP — 2/265% A9/ R | (4.62a)
?Blaijk _ 2@(7&)Bapaijkl . (462b)

The spin-1/2 part of its top component 7,%7* is constrained as

-~ k k]l t kl
Taaz] (’Ya)ocd - 6142 [’Llpq e’ lipgrs Xarst + gEU pQTsvmrsvadlpq

- QiVmTSPmijkthrst - Gier[iijk]Sthrst + GiVm[iermk}rstxdrst

1 i 3 ik 1 irtoars = :
+ ZX” th Xérst — EXT[Z]X Jst Xearst + @51] pqrsfabrs X/Blpq(’)/ab)ﬁd (4'63)
corresponding to the x equation of motion. As with the gravitino torsion components,
these constraints arise most directly by analyzing the F™ Bianchi identity (4.40). Here
as well the specific choice of connection terms in V,, influences the x curvature. The
absence of an internal Lorentz connection is reflected in the appearance of F,;%, and the

dependence on the precise E;(7) connection is reflected by the appearance of P, 1kl

and
the generalized torsion component As;*. As with the gravitino curvature, one can check

that the undetermined pieces of the internal GVP drop out of Dy*¥¥,

4.5 The G curvatures

For the sake of completeness, we record here a number of results related to the 4-form field
strengths G™,, and G, in superspace. These arise by solving the Bianchi identities (4.41)
and (4.44), which provided for us a consistency check on our solutions for Hy and 7;,. As
when one solves for the H field strengths using the F Bianchi identities, there is ambiguity
in these solutions having to do with the kernel of the projector appearing on the right-hand
side of the Bianchi identity. To put it more simply, to solve for the 4-form curvatures G,
we must implicitly make a choice for the 4-form potentials of the tensor hierarchy, as these
have not yet appeared in any curvatures. It is interesting that the superspace versions of
the G curvatures that we will give below possess on-shell duality conditions that do not
reduce to the ones given in (2.40) and (2.43), and thus must correspond to a redefinition
of one or more of the 4-form potentials.

The superspace curvature G, which is in the 912, enjoys like H, a standard tangent
space expansion with components

321 >
GBjaivaa = —?(’Yab)a,a VL VI YRR (ta)np » G ™0 =0, (4.64a)
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14: . ;
Gai cbama = ?ﬁaabcd(f)/d)aa (dekl Vﬁiq quj ngl) tﬁﬁ PQIZQﬁama (464b)
77

Gicba™ o = ggabcd <Xaijk6045X5T8tvtkrv§stvﬂij

+ Xaijre™Px BrsthkTV;th ) 57 Po19n o™ + 24i € aped 20
(4.64c)

where 2™, is a purely scalar expression determined only by derivatives of the coset fields.
In terms of the Weitzenbdck connection, it can be written most simply as

zZm, = 2; 5 (L1 T MEZMEL My + Tt 8Ty M ) Py o™ (4.65)
entirely in terms of the Weitzenbock torsion and the internal metric. Note that this does
not coincide with the bosonic expression (2.40) given in section 2. This suggests that these
two bosonic results for G™, must differ by a redefinition of a 4-form potential. We will
show this below. The fact that this form of the expression seems to more naturally arise in
superspace is quite remarkable for the following reason. In a Scherk-Schwarz reduction of
the type we will discuss in section 6, the Weitzenbock torsion is replaced by the embedding
tensor, and the above result is then proportional to the variation of the scalar potential of
gauged supergravity with respect to the embedding tensor. It is expected that the D-form
field strengths of gauged supergravities should be equal to this quantity, see e.g. the D = 3
discussion of [42].

The compact expression (4.65) can be rewritten as

e ) i ) 1 ‘ 1 ;
Zma = |:Q,6'z'] <8vnk1A1jk + gvﬂijllk + gvﬂkzvmﬂkal + gvﬂkjvmlemlk)
L 7Z nlp l nipym ijkq l nlpyymij k

” T 7 7
+ Pg'tl <M4 fp AP ije — 7V*lpV‘pq'Pmijkq + @Vﬂlpvmij kapﬂ Po1on” o™,
(4.66)

where Qg and Pq are the SU(8) projections of (tq)m™, see (3.28). In the latter expression,
we have done two things. First, we have exchanged 7 built from the Weitzenbdck connec-
tion for 7 built from the generic E;(7) connection I'. Remember this carries undetermined
pieces, corresponding to freedom to redefine Q,,, and Pp,, which now appear explicitly. We
have subsequently rewritten 7 in terms of the SU(8) tensors A; and As.

The reason for rewriting Z™,, in this way is to emphasize that it is not SU(8) invariant,
with the internal connection Qmij appearing explicitly. The SU(8) transformation of Z™,
leads to a transformation of G™, itself,

5G™ —zE“EbECEdeabcd[ Paijit V2V 0,0 + £ Pa”klvmww’fa A

36

- Qm-j< VI Vg, N 4 2vm VN vmk VEEG, A,

7

T

81/%,12"’“8 \j ) —i—c.c.] (4.67)
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Because there is no internal derivative on a frame field, this can only arise from a non-
covariant SU(8) transformation of one of the constrained 4-form potentials Dgpnarm?L.
Extrapolating from the pattern of the 2-form and 3-form potentials, this field should obey
the section condition on m and the upper pair of indices pg should live in some particular
representation of E7(7) in the product 56 x 56 = 1+ 133 + 1463 +1539. It is not hard to
show that all but the 1463 are in principle present, meaning that they are projected out
from the right-hand side of the H Bianchi identities. (It may be that they are not actually
required to ensure gauge invariance of the field strengths.) Writing these three fields as
Dy, Dp,™, and D, "2, their full contributions to the field strengths G™ and G, are

Go =+ TPo12% ™0 (fim =Dy + Dyt (t,@)gg) : (4.68a)
G =+ Q(0, Dy — 9pDpy) + 120, D (t)2% + 40y, D, (t5)P%
2
+ 20, D™ + gangf‘ﬂ . (4.68b)

In order to generate the anomalous SU(8) transformation (4.67), one should assign the
following anomalous transformation to Dy,"2,

5D, 1 = %E“EbEcEd Eabed ( — ONIVEIRVL 4 9,0 VR VIR > . (4.69)

This is an intriguing result, because it seems very similar to what we found for the con-
strained 2-form, where it seemed necessary to assign an anomalous Lorentz transforma-
tion (4.12).

This anomalous SU(8) behavior seems to be at the root of the difference between the
bosonic part (4.65) of the superform G™, and the purely bosonic expression (2.40) for
G™q. Namely, there seems to be a tension between maintaining SU(8) invariance and
maintaining covariance under internal diffeomorphisms. We derived the expression (2.40)
in a formulation with only an internal metric and no explicit 56-bein; it was not possible
to violate SU(8) invariance, and we were led to an expression that transforms anomalously
under internal diffeomorphisms. In deriving the superform G™4 above, manifest E7)
diffeomorphism covariance was assumed everywhere and led to an expression that violates
SU(8) invariance. As it turns out, one can write down the bosonic shift in D,,?4 that
exchanges (2.40) for (4.65):

ADpP = %E“EbECEd € abed
X (amvﬁmqulij + 9, VR VI 4 %Qﬂ(amvwvm + amvnijvn“)) . (4.70)

It is easy to see that this induces the anomalous SU(8) transformation discussed above.

For completeness, we also give the rather complicated expression for ¥, that we

found in superspace. As with J#,, it is useful to separate out a part gfmﬂ that possesses a
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conventional tangent space expression from the rest:
G — G = 8 E*EPEV 1, B (7o) 0 V% — 4 EX BT BN 1, By €0V (4.71)
2 ) . )
+ *gE“EbvaCE%abcd(wd)aaxd@-kvmk

+ V2 E°E*Y 1 By E® (Ya) o X i VI

5v2 ) . .
_ TEaEbEcvamgabcd('Yd)aaXdijkak
i A 1 y
+ EaEbEcvac <88abdefden - m(’yab)aﬁXal]kxﬂpqrsijkpqmtvnﬁ>

+ Ceaved BB BV, VBT M2
i apbpeg  md (p ijklyp. yn ypikyn

+ %SabchaEbEcngd (’Pmijklvﬂijvﬂk[ + Qmﬂvﬂikvﬂjk)
+ c.c. (4.72)

The conventional part g?mﬂ = %EAEB ECEP QA DCBA m™ has non-vanishing pieces

. /9 ‘
Gebaai m™ = 6v2 apod(Va)a’ (Xdz’jkpm]klpvnlp

9
4 jklpymn 2 njk
- §dekl73m VZip — Tgvadzjk V ) (4.73a)
~ .. . (2 .
gcba&Z mﬂ = —6\/§ €abcd(f>/d>aa (gxaljklpmmpvnlp
4 ajkl nip 2 aijk yym
X Punjrip VP — Evmx V2%, (4.73b)

. . P
Gicba mﬂ = 241 €gped <18Xawk6aﬁxﬁlrs Pmijkl V2, .

— @Xa”keagvmxmpq&ijklpqrsvﬂm + C.C.> + 244 Eabed ZmE .

(4.73c)

The last term Z,,,™ gives the purely bosonic part of g?mﬁ and involves the rather unwieldy ex-

pression!”

1 . A 1 , 1 g
Zw™ = = 5 Qmi’ Oy MP™ + gv%jvwvmggkﬂ + gv%v’iklvmpgwkl

+ gAlij kazvmk _ 478A2ijklgmjlvﬂkl 4 36A2i]klpmjklpvmp
1 .. 1 . 1 .
+ Prmijki (QPPU’WVPMVW + P IV VI — o Py PV, Ve

1 o 1 o
- %Qgplvmkvﬂl” - %Qppzvmpvpkl)

"The Vi in VimQni’ is to be understood to carry the same SU(8) connection as if Q were a tensor.
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1 . . 4 . 1 o1 .
=5 Quup Py (VYR — ki) 1 9,10, (MV”MV”” + 8vpklvm’)
+c.c. (4.74)

As with 27,, much of the structure is determined by requiring that the undetermined parts
of the various connections cancel when one computes G,,™ from %,,™. The expression for
G can be recovered by setting I' = 0, Q@ = ¢, and P = p in the expression for ¢,,. We
should also add that the expression for gmﬂ (that is, with the Weitzenb6ck connection) is
quite simple as Qom and 75m both vanish.

The bosonic part of G,,™ must coincide with the one given in (2.43) after some redef-
inition of the 4-forms. We have already seen for G2, that the redefinition is restricted
to the constrained 4-forms, in particular (4.70) for D,,,™2. No redefinition was needed for
D, but we have not checked if one is needed for D,,. (The latter constrained 4-form is
absent in G™4.)

5 Component results from superspace

Here we verify that the use of the proposed generalized superdiffeomorphisms and con-
straints on torsion and curvatures produce the component results.

5.1 Component fields and supersymmetry transformations

First, we must identify the component fields in terms of the various superfields. For the
component one-forms, the correct procedure is to identify them as the # = df# = 0 part of
the superspace one-form. Formally, this corresponds to the pullback of the inclusion map
embedding spacetime into superspace. For the vierbein, this amounts to

e = E%_qp—0 == e*=dz"en?, en(z,y) = En“(Z)|o—0 . (5.1)
For the gravitino, it is conventional to include an additional factor of 2,
Vo' = 2E, o—a0—0 =  Uma' (1,9) =2 Ena(2)|o=o - (5.2)
For all other one-forms, we make the analogous choices, i.e.

Amm(‘rv y) = Amm(z)‘Q:O y an a(x7 y) = an a(Z)|0=O )
Bin m(%,9) := Bimn m(Z)|o=0 (5.3)

for the fundamental one-forms, and similarly for the composite one-forms,
wn™(2,y) == 0™ (Z)]o=0 , Omi (z,y) == Qmi (Z)]o=0 - (5.4)

All other component fields correspond to 6 = 0 parts of identically named superfields. For
example, xo7*(x,7) := xa*(Z)|9=0, and so forth.

To derive their symmetry transformations, we must compute their transformations
under covariant external diffeomorphisms where the diffeomorphism parameter, written in
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tangent space, takes the form &4 := ¢MEA = = (0,€* €4i). Let’s discuss first how this
works with the vierbein and gravitino. From (4.24) and (4.50), we find for the vierbein

0B =2 EMﬁjeﬁk(’y“)ﬂ;Y(sjk + 2 EMBjewk('ya)vﬁékj , (5.5)
which reduces to the component result, rewritten in four-component notation,
Sem® = &Y U + &ty - (5.6)
From (4.27) and (4.59), we find
5EMM = DMEM + QiVmijvm(EBjEMC(vc)Ba>
,~ 1
+ EMBjEw\f?EWBXO‘k” + gEMCG’BJ(XlleGngl)(%%)ﬁa
1 1 P
+ gEMCGBj(’VC’Y )Ba ]:ab - gEMCGBj(Vab%)’Ba ]:abw
+iBy s, (1) VP — Enrtey(1e) 7 A (5.7)

Lowering and suppressing the spinor index, and then reducing to the § = df = 0 part gives
the gravitino supersymmetry transformation

, , o - ] :
6¢mz = 21)7715z — 44 lejvm('ymej) — \/§€jwmk lek 4(X2kl7aX]kl) 'Va'YmE]
1 ~ 1 ~ g g
+ Z’}/ab’}/mej Fud — Z’ym’}/abej Fup” + Q'mej (Allj + Z'mGﬂ)m”kl) . (5.8)
For the 56-bein, (4.30) and (4.49) lead to
. o 2
5Vm” =2V2 Elxjklvmkl + \1/; ijklpgrs €pXqrs Vmkl (5.9)
whereas for x (4.32) and (4.62) imply
iy 3V2 ~ . 2
Yk = —2\/2p, ikl yae — 12i\f2vﬁ[”vﬂek} + { Fapl¥ ’Yabﬁk] - \;;‘gukpqutqurXstl e
— 2V2 ATk € — 6in/2 V1, PP F  8in/2 ) PR (5.10)

For A,,™, we combine (4.27) with (4.52) to recover
0 A = 4i VM Epd — i/ 2 VMR ik + c.c. (5.11)
For the adjoint-valued two-forms, (4.33) and (4.54) lead to
ABpno = —g\/i(ta)wv@jvﬂkl Eivmnxjkl — g (ta)™® mﬂvﬂkl €k v[mz/)n]j +c.c. (5.12)
For the constrained two-forms, (4.38) and (4.56) lead to
ABpnm + 2T *ABmna = —8i € Y Vinthn)i + 8 Vi€ Ymthnyi
+ 80 & Y Vinthn)' — 88 Vini V¥

\[6 "YmnX ijkl + = \[ezPYmnXJkl,P it (5'13)
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Above, we have recovered the SUSY transformations of e,,%, Vmij, and B, o in the
form of (2.46). For the gravitino, y“/*

rules involve the redefined field B’

mnm

, and B,y m, one must keep in mind that the above
(which we have denoted in section 4 and onward
without a prime) and so one should compare instead with (3.20). Aside from higher
fermionic corrections, some deviations arise in these transformations having to do with
allowing the internal GVP to take a more general form. For example, in comparing with
the gravitino transformation (5.8), one finds in addition to (3.20), two explicit higher-order
fermion terms, one implicit higher-order fermion term (the second fabij term, which is
on-shell related to a fermion bilinear via (4.53)), and the last two terms involving the A;
component of the Ezy torsion tensor and the non-metricity Pmijkl, which vanish under
the internal GVP assumptions made in sections 2 and 3.

We emphasize that as in [22] one can confirm that all of the undetermined components
of the internal connections drop out from the above transformations. This is most easily
seen by using (3.33) to rewrite I' in terms of the Weitzenbock connection, isolating the
ijkl

undetermined pieces in the fields Q7 and P, *. The latter two fields then cancel out

of all equations.

5.2 Composite connections and supercovariant curvatures

The supersymmetry transformations discussed above involve several composite quantities
— the spin connection, the SU(8) connection, the covariant field strength Fupl — and
their component definitions need to be given for the component SUSY transformations to
be fully realized.

From the constraints on the torsion two-form, one determines the component external

spin connection by projecting (4.51) to spacetime,

o 1 g
2 'D[men}a =2 D[men}a + 2wmn® = w[ml’yad)n]i + Ee’fmnab lek’Yinjk , (5.14)

b

and solving for w,,% in the usual way. One similarly obtains the component SU(8)

from (4.30),

DV’ = Dy V¥ + Qv 71
V2

_ <ema7)aijkl 4 \/iqﬁm[ixjkl] T ﬁgijklpqrs wmpxqm) Vo kil (5.15)

and inverting the relation to solve for Q,,;’. Both expressions for wm® and Qmij match
those of ungauged N = 8 supergravity upon replacing 9,, — D,,. Note that this expression
defines P, ¥ to coincide with the supercovariant one-form of ungauged N = 8 supergravity,
where it is usually denoted Pk,

The supercovariant field strength for the vector fields arises by projecting (4.21) to

components, using the constraints (4.52), and solving for ﬁabm as

~

Fap™ = eq™ ey Fonn™ + i V9 (4 baith; + V2 Xijk)

— iV (4 ba' Py’ + \/id_)[ak')/b]xijk) — M Ve - (5.16)
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It is this quantity that obeys the twisted self-duality condition (4.53), equivalently written
j:-abm 2 8abcd Qme M ]:Cdk (517)

Although we don’t need them to realize the SUSY transformations, it is worth giving
the explicit formulae for the supercovariant 3-form field strengths of the 2-form fields. The
supercovariant form of Hj,n,a corresponds to the lowest component of the superspace
tensor H,p.q, which is

Hupeo = eamebnecpHmnpa + \/i (tcx)M (Vmijvﬂkl 77E[ai’)/bc} Xjkl + C'C'>
+ 4 (ta) ™Vt Vn"™ V0 Wil - (5.18)

The constraint (4.54d) corresponds to the on-shell duality equation

1 y y .
Hopea = _égabcd (ta)m (Vmw Vﬂklpdijkl - Vmijvﬁklpdwkl —2 lekVJk X]pq'Y XzP‘I>
(5.19)

which is a natural generalization of the bosonic result (2.33).

For the constrained two—form the supercovariant form of its field strength Corresponds
to the lowest component of %bcm, which is a component of the superspace tensor jf
defined in (4.37). Using the constraints (4.56), we find

Hpem = €™ eq” | Humpm + 2T ™ Hinnp oo + 60 € e Vinwp®
+ 123 &mi')/nvm"ﬂpi — 12 QZmi'anmwpi
+ 2i\[27/;mi7npxjkl sz’jkl — 2i\/§ "Lmi'anXjk:l ,Pmijkl} ) (5-20)

where the on-shell duality equation is given by

_ 92 N 1 .., e
Hopem = 3 Cabed (Pm”klpdijkl + 2X”k7dvmxz‘jk> . (5.21)

This generalizes the bosonic result (2.34), where one must take care to note that the terms

involving the internal and external spin connections, 8mwn“b — anm“b, corresponding to
a mixed internal/external Riemann tensor Rmn“b, have been eliminated in different ways:

the former by absorption into the definition of /., and the latter by redefining B to B'.

6 Consistent Scherk-Schwarz reductions in superspace

It has already been shown in [19] that the (bosonic) E7(;) ExFT admits a consistent Scherk-
Schwarz reduction to gauged supergravity with an embedding tensor related to the twist
matrices associated with the reduction, provided the twist matrices themselves obey the
section condition. It is no surprise that a similar statement can be made connecting E7(7)
ExF'T superspace with N = 8 superspace with an arbitrary embedding tensor. We sketch
the construction here for two reasons. First, with the more generic internal GVP we have
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advocated, the connection between ExFT and gauged supergravity becomes completely
transparent. Second, to our knowledge, the corresponding N = 8 superspace with generic
embedding tensor has not actually appeared explicitly in the literature, although it is by
no means difficult to construct it directly from the component results [34].

In complete analogy to [19], a generalized Scherk-Schwarz reduction in superspace
arises by assuming that the y-dependence of any superfield is sequestered into two special
fields, a so-called twist matrix Up,"(y) and a scale factor p(y); hereafter we refer to these
collectively as twist matrices. We employ M, N, P, - - - to denote the “flat” Ey(7) 56-plet indices
of gauged supergravity.'® For a superfield ®,, of weight A, carrying a single fundamental
E7(7) index, we call a covariant twist one for which

Oy (2,0,y) = p~ 2 Up" Ou(2,0) , (6.1)

with a straightforward generalization to different E7(7) representations. Nearly every su-
perfield is covariantly twisted, e.g.

EMa(x 0,y) =p ' Ex®(z,0), (6.2a)
v (x,0,y) = p~ Y2 Ep®i(x,0) (6.2D)
Vi (2,0, ) = Upn" W (x,6), (6.2¢)
”’“(z 0,y) = p"/* xa ¥ (x,0), (6.2d)
m™(z,0,y) = LUy ™ ApnM(2,0) (6.2¢)
BNMa(av 0,y) = p 2 Ua® B g(z,0) . (6.2f)

The exception is for the constrained p-form fields, e.g. Byarm, which we will de-
scribe shortly.
The twist matrices cannot be chosen arbitrarily. Rather, they must obey the following

two conditions
7 (Uﬁl)Mm(Uil)NﬂamUﬂp 912 = pXMNP = p@Ma(ta)NP, (63)
aﬂ(U_:l)Mﬂ - 30_18@0 (U_l)Mﬂ =2pVu, (6-4)

where X" and 9y are constant matrices. These correspond to the two components of the
embedding tensor of gauged supergravity, with Xjy® = Oy*(te)x" corresponding to the 912
component [34] and ¥y corresponding to the 56 component associated only to trombone
gaugings [43]. Provided one can choose twist matrices in this way, one can show that the
two pieces of the embedding tensor, Xuy" and ¥y, obey the quadratic constraints [19].

In order to convert the various ExF'T formulae, it is useful to eliminate the ambiguity
inherent in the internal GVP. The easiest way to do this is to choose the Weitzenbock
connection where f‘ma is determined entirely in terms of the derivative of the 56-bein with
Qomij and 75@” M both vanishing. Because of the ansatz made for the coset fields, it is easy
to see that the Er(7) connection is given purely by the twist matrices

fmg = 8mUQP(U_1)PB . (6'5)

8These “flat” indices should not be confused with the SU(8) tangent space indices * and ;; which arise
when one contracts with Vi or Viij.
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In particular, it follows that the torsion tensor is

Ton? = p Un" Up Xor™ (U 1)s2 . (6.6)
Considering the torsion tensor as an internal tensor of weight A\ = —1/2, we identify its

“flattened” version as the embedding tensor. It is also straightforward to show that the
covariant derivative of any superfield obeying the covariant twist ansatz (6.1) is

. 4
Vu® = p 22D N UmM<3)\ 19Nq>M> : (6.7)

This generalizes easily to any other E;(7) representation carried by ®. Thus, covariant
derivatives of covariantly twisted objects just map to the trombone part of the embedding
tensor, multiplied by a factor of %A.

The notable exception to the covariant twist ansatz is the constrained two-form By s
(and the higher constrained p-form fields). The appropriate ansatz, given in component
form in [19], can be motivated by considering a covariantized version of By asm,

%NMm:BNMm‘i‘QFmaBNMa . (68)

This redefined 2-form is the natural potential associated with the 3-form field strength
JpNMm that we have been employing. For example, the field strength superform F™ can
be rewritten

1 1
FI = dA™ - APV, AT 4 (2417 g g — QP ATV A — DA ART,
1
— 12420V, Bo + QU2 T, Bo — SO, (6.9)

in terms of 4. Above, we have converted all internal derivatives to covariant ones. Here
we are using a generic Ez7) connection, but now we will specialize to the Weitzenbock
connection. The reduction ansatz for 4, when the Weitzenbock connection is chosen, can
be simply written as

BN pim(2,0,y) =0 . (6.10)

It is straightforward now to apply the reduction ansatz to all of the various curvature
superforms. For example, the field strength superfield 7" becomes

2 1 1
F'=daA" + gﬁNANAM — BQMWN Qps ARAS — §ANAPXNPM

— 16 t*"™ Yy By + QMOy* By, (6.11)

as expected for gauged supergravity [43]. Note that there is no longer any difference
between F* and F%. Now the superspace constraints on FM are just given by (4.52)
and (4.53), with the index m replaced by M. Similar considerations apply to the higher
p-form field strengths in the tensor hierarchy (with the exception of the constrained field
strengths discussed below). For example, the field strength H,, of gauged supergravity will
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obey the same constraints (4.54), although its explicit form in terms of the potentials will
now involve the embedding tensor as in (6.11).

For quantities that are covariant under internal diffeomorphisms, it is useful to first
fully covariantize any internal derivatives. In particular, the external covariant derivative
D of any superfield that transforms covariantly under internal diffeomorphisms is altered
as follows. For the prototypical superfield ®,, of weight A discussed above,

DNy, 1= ONPpy — Ly Py = O Py — LY Py — AN Tri? Py - (6.12)

Now covariantly twisting quantities and specializing to the Weitzenbock connection, this
becomes

DN¢M = 6N(I)m - 2)\ ﬂKANKq)M - SﬁKANLPKLNMq)N - ANNXNMP(bp . (613)

The last term is the usual embedding tensor contribution, whereas the middle two terms
correspond to trombone contributions.

For the vierbein FEj;%, the new torsion tensor T¢ = DE® is unchanged. Similarly,
the constraints on DWW = Pk, exactly match the superspace ExFT results. For the
gravitino E;%, we define T = DE® and using the definition (4.28) of T with its
ExFT constraints (4.59), leads to the gauged supergravity constraints

T 5™ =0, (6.14a)
TV 5% =0, (6.14b)
TkBiai (/3 1By akit (6.14c)
1.
Tgjc™ = g(XlkIVGXjkz)(Vc’Ya)ﬁa7 (6.14d)
| . L . - .
T,B]Con _ *<7c7ab)ﬂadrab” _ 751]klpqm(Xklpraqurs)('Yab'}’c)ﬁa
8 1152
+ (70)P¥(2BY — A,Y) (6.14¢)

It helps to recall here that A;% in (4.59) corresponded to a specific component of the E7zn
torsion tensor. Adopting the Weitzenbock connection and making the reduction ansatz
converts this to the corresponding component of the embedding tensor. The trombone
contribution BY := iVMJJy arises from the second term in the definition of T, We also
emphasize that taking the Weitzenbock connection has eliminated all factors of P and Q.

For the one-form y curvature, 7%%* := Dy®* we recover the constraints
g 3 . A V2 iy ~
T/Bla”k = —Z\/iél[l(%b),aa ab]k} - ﬁ&ﬁaé"”kquStqurXstl

— 2V285% Ag)TF — 4/2 5526, BIH |
T,Blaijk — 2\@(,%1),3.047)(1@']'“ i (615)

Using these constraints, one can recover the expected SUSY transformations of the com-
ponent gravitino and x field.
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Because of the structure of the generalized Scherk-Schwarz reduction, where group-
valued twist matrices govern the entirety of the y-dependence, consistency of the re-
duced theory is straightforward. The only meaningful check is to ensure that the trivial
ansatz (6.10) for AN is consistent with the other ansitze, where a general (z,6) depen-
dent piece remained. This amounts to checking that the curvature associated with Xy s m
actually vanishes. Although we have not discussed this explicitly, it is relatively straight-
forward to show that J#, can be defined directly in terms of %,, and corresponds to the
covariantization of its exterior derivative. Now upon specializing to the Weitzenbtck con-
nection and making the ansatze discussed above, one can see that J“izm does indeed vanish.!”
(The same is true for gfmﬂ, ensuring that the constrained 3-forms drop out as well.)

In summary, the constraints discussed above characterize the structure of gauged su-
pergravity in superspace.

7 Conclusions

In this paper we have provided the superspace formulation for E7(7) exceptional field theory.
We have shown how the external diffeomorphisms and local supersymmetry transforma-
tions can be understood in a unified fashion as superdiffeomorphisms. In doing so, we have
found that a redefinition of constrained 2-form potential is necessary, and it provides a
geometrical framework in which the internal Lorentz connection is removed everywhere.
Interestingly, a similar field redefinition in Egg) exceptional field theory, this time in-
volving a constrained 1-form, allowed a reinterpretation of the theory as a Chern-Simons
theory [38]. As an application of our superspace E7(;y ExFT, we have performed a gener-
alized Scherk-Schwarz reduction to obtain the superspace formulation of maximal gauged
supergravities parametrized by an embedding tensor.

The ideas of this paper are expected to be applicable to all other exceptional field
theories. Two challenging future directions are as follows. The first is an application of our
results to the construction of actions for particle, string and brane actions as suitable sigma
models in which the target space manifold is the superspace we have constructed here. The
second is to aim for a further unification. Although we have combined supersymmetry and
external diffeomorphisms, they remain distinct from internal diffeomorphisms. A master
formulation should exist where these emerge as different parts of a single set of gener-
alized (super)diffeomorphisms. In such a formulation, including fermions and their local
supersymmetry transformations, it would be interesting to understand better the reason
for the redefinitions we have encountered and whether it is indeed essential for some of the
constrained p-form fields to adopt anomalous R-symmetry transformations.
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A Conventions

The Lorentz metric is n,, = diag(—1,1,1,1) and the antisymmetric tensor €,p.q is imag-

b

inary, with e9123 = —4i. We employ the pseudotensor e,,npq := enen epceqd Eabed, Which

introduces some factors of e = det e,,,* versus corresponding formulae in [22].
A.1 Spinor conventions

We employ both four-component and two-component conventions. Our two-component
conventions follow mainly Wess and Bagger [39]. Left-handed spinors are denoted with
two-component Greek indices «, 3,7, - - -, while right-handed spinors are denoted with dot-
ted indices d,B,"y, -+, Spinor indices are raised and lowered using the antisymmetric
tensor €.z,

VP =y, e =eapt?,  eap??’ =061, P =ey =1, (A1)

and similarly with dotted indices. A complex four-component Dirac spinor ¥ decomposes
into left-handed and right-handed spinors 1, and x®. Its charge conjugate ¥¢ decomposes
into xa = (xa)* and % = (¥*)* so that ¥ and its Dirac conjugate ¥ are given by

U= (;ﬁg) . U= (Xa, wd) . (A.2)

For a Majorana spinor, y = ¥ above. Our 4D gamma matrices obey

(=2, () =q., =iy (A.3)

They decompose as

a __ 0 (’Ya)a' . 50&6 0

The two-component matrices (7%)qq are formally identical to i(0%),s where o obey the
same relations as in [39], i.e.

() = e (3 05 (A5)
Antisymmetric combinations of « matrices are
ab
b lant] ((’y 0)0/3 (yag)d5> | (A.6)
where (Y%)op = €3,(7%)a” is symmetric in its spinor indices and similarly for (’yab)dﬁ- =
ecw(’y“b)ﬁ i These obey the duality properties
1 cd _ 1 cdy B _ 8 1 cdyé | _ &
2Cabed ™ = =Yabs  HEabed(V)a” = —(av)a” s SEabea()% g = ()5 -
(A.7)
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A.2 SO(1,3) and SU(8) transformations and connections

Lorentz transformations act as

5€ma = )\ab emb = _emb )\ba ’
7 1 c
5¢ma = )\aﬂdjmﬁi = Z)‘ d(’ch)aﬁwmﬁia
at 7 « 1 c 7 e
0™ = =" A5 = =A™ ()" (A-8)

Our conventions for SU(8) indices follow [34]. In particular, the SU(8) transformations of
the 8 and 8 involve factors of % as

1 . , 1 . . » g .
Vi= = AVi, VI =40V = oY = AtV = iV, (AL9)
The corresponding connections appear in the covariant derivative with a minus sign so that

, 1 1 o
menz = am¢nz - ZWmCd’VcdwnZ - §Qmjzwnj- (A.IO)

A.3 Differential forms

Our conventions for differential forms follow the usual superspace conventions. For a p-form
Q, we write

1 1
Q=—dzM™ ...dzMeQp apy = =EM - EQy g, (A.11)
p! : p! :
Differential forms and interior products act from the right, so that
1
dQ = =dz™ ... dZM*dZN On Q- (A.12)
p!
1 M M,
Whenever superindices M and N are antisymmetrized, this carries a usual grading so that
2 Vi Wiy = VW — (1) MMy wy, (A.14)

where €(M) = 0 or 1 depending on if M is a bosonic or fermionic index. The grading can
be understood as arising because the indices M and N have been interchanged from their
ordering on the left-hand side. In a similar way, gradings appear in expressions like (4.22),
which should actually be read as

Fym™ = ExPEvAFps™ (—1)BNM+elA)) (A.15)

Gradings also arise from pushing super-indices past other fermionic indices. For exam-
ple, (4.26) should be read as

Seov (€) Enr™ = D™ + N Ty ™
+ 2 VﬂijvmgN((—1)6(M)EJ\/BJ-E’MC - ENCEMBj) (7e)%
- mvmjkvméw EN?Erx " (veva) 5% (A.16)

as the M index must be pushed all the way to the left and picks up a sign when passing 8 7.
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B Algebra of external and internal derivatives

In analyzing the superspace Bianchi identities, it is useful to employ covariant external and
internal derivatives to maintain manifest internal diffeomorphism covariance. In this ap-
pendix, we summarize the commutation relations of these covariant derivatives. A number
of these formulae have appeared elsewhere (see e.g. [37]), but we present them here in a
unified way in our conventions.

External derivative algebra. Defining the exterior (external) covariant differential

D :=d — Ly, we have as usual D> = —Lr. Because FZ has weight %, it follows that
for arbitrary tensor V2,
D?*V™ = —LzV™ = —LYV™ 4 FLT,, VP . (B.1)

The last equation is useful because it allows us to maintain manifest internal diffeomorphism
covariance.

Mixed external/internal derivative algebra. On an internal vector V™ of weight A,
one can show

2
[Dar, Vin] VP = Rigimp™ V2 — 3 R ™V, (B.2)
where the mixed E7(7) curvature
Rigmp™ := DpyTonp™ — 125 0,0, Ans (B.3)

Provided the E7(7) connection I' transforms as a proper affine connection, the mixed E7(7)
curvature transforms covariantly, i.e. as a proper curvature.

Internal derivative algebra. The commutator of internal derivatives V™ can be written
2
[V, Va|VE = =T, "V, VE 4+ Riyng? V2 — g)‘Rm Ve, (B.4)

While the full right-hand side is a covariant expression by construction, the individual
terms are not. The “torsion tensor” defined by

2
Ton® = 2P pn) = ST(m0n®,  Tom o= Tl (B.5)

is only a tensor if it is contracted with a constrained vector on the p index, as one finds a
non-covariant part to its transformation,

OncTmnL = Y% 0,0 AL — Y22 0, 01AL,

1
Y™ 1= 12(tey) g (%)™ — 5QMQM . (B.6)

It cannot generically be chosen to vanish for this reason, although one can have a situation
where it vanishes always upon contraction with a constrained vector, as in [37]. Note that
the internal covariant derivative V,, is not necessarily a constrained object.
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Some observations are in order. The object T defined above and the actual E7
torsion tensor 7 are related by

1
Tinl = Tin? — Y, 22T ™ + 3 e T (B.7)

These happen to coincide when using the Weitzenbock connection and contracting with a
constrained vector, i.e. Tmn20p = T L0p-
The E7(7y “curvature”

Rimng® 1= Onl'ng® — Onlmg? — Uimg T2 + Tng™ Tims 2 (B.8)
is also non-covariant, transforming as
Oncimng™ = Onc Timn™ Trg? - (B.9)
The scale curvature is
R = Ok — Onlkm®, (B.10)
which is indeed covariant. This is not given by a simple contraction of Ry,ne"™, but instead by

4
RMB — Rmﬂ = gRM — VBTMB . (B.11)
Covariant derivatives, their connections, and curvatures. It is straightforward to

modify the definitions of Dy and V,, so that they carry spin and SU(8) connections. That

is, we take
1 ab 1 ir.J
Dy = Dym — §QM Moy — §QMj I7, (B.12)
1 1 o
Vin = Vi — iﬂmabMab - §Q@7‘ZI¢] ; (B.13)

where My, and I;7 are the Lorentz and SU(8) generators, which act on a spinor X,,; as
MpXmi = %'yamei and Ilemi = —55ka + %%Xmi. Henceforth, we drop the prime on
V. It is now easy to show that

1 1 . 2
[DM, vm]an = _ZRMmab’Yab Xgi + §RMminﬂj - RMMBXBZ' - g/\ RMEmEan s

(B.14)

involving the Ry, qp and RMmj, with their obvious definitions. In the body of the paper, we
have taken the internal part of the spin connection to vanish, so that RMﬂab = -V, w?.

Curvature relations. As a consequence of the external and internal GVPs,
DuVy? =P Vo, ViV = P’ Vi, (B.15)
one can show that
Rynpg = 2i (RM@ k" + P Porsit — Py Tspmskz)V@leg)ij
+ (D Pp ™ = Vi Par ™) VpisVart — i(Das Prijit — Vi Parigi) Vo' Vo™ - (B.16)
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This condition allows one to determine the Er(7) curvature Rprpp? from the SU(8) curvature
Ry W = [k [iRMﬂl]j] and the mixed curl of PY*! or vice-versa, reflecting the ambiguity
in the internal GVP. Similarly, using

DV, = RV, —LpV,, 7, (B.17)
one can determine the two-form DP7* and the external SU(8) curvature R/ as
DPIH = VMY, 9 RV = iV LV — PP P (B.18)
For these last relations, it is helpful to use
LV = L¥Vn" + F2Tum®V" . (B.19)
Then one can show for example that
Ry = —PU™S N Prggy + 1200V, TP, 5V FL+ i P2 Tl Vg VE
=PI N\ Prgps — (12VBJ:g (t%)g” + FQEQ) Qan” - (B.20)

Finally, we mention for the purely internal curvatures that

+ (’L Rmklij — 2 P[m’ijTSPﬂ]rskl)Vg’“lvﬂij + c.c. (B.21)

External derivatives of the E7(7) torsion. One final set of relations prove useful: the
external derivative of the Ey(7) torsion tensor. This can be written

D Tam® = Rarnm® — 12P20" s Rayren® + 4P20 0 Rarsr™ - (B.22)
From this equation, one can determine the covariant exterior derivatives of A;% and Ag7*!,
1 . o 44 o
Darr” = 2 Ag iy Par? M + iRagy V¥ — ngklpqvmq“PMJ)klp, (B.23a)
Dy Agii* = [2A1ip7DMW + 3497 1pg ParP™ 4 30 Ry i VM
+4i V™, (Da P — Doy Par?™) — 4i Poaipgr Prr?" V| (B.23D)

420

where a projection onto the 420 of SU(8) is implied in the last equality.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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