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1 Introduction

It is well known that compactifications of 11-dimensional supergravity on an n-torus give

rise to an enhancement of the manifest SL(n,R) symmetry to symmetries including the

exceptional groups En(n) [1, 2], and that their suitable discrete subgroups are interpreted
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as the U-duality symmetries of M-theory [3]. The search for a manifest origin of these

symmetries in 11-dimensions prior to any toroidal compactification and without any trun-

cation, which started in [4, 5],1 has culminated in a series of papers [7–10] where this was

achieved in a framework called exceptional field theory (ExFT). It is based on a general-

ization to exceptional geometry [11–15] of the double field theories (DFT) that provide a

manifest realization of the T-duality group O(n, n) that arises in toroidal compactification

of string theory [16–18]. In that case the 10-dimensional spacetime coordinates are doubled

and certain conditions on fields known as section constraints are imposed. The latter are

required for the symmetries to form a closed algebra and, in effect, remove dependence on

coordinates beyond ten dimensions. For a more detailed description of the ideas behind

these theories, with several references to earlier works, see [7].

Exceptional field theories are well motivated for a number of reasons. Firstly, they

have made it possible to derive fully nonlinear and consistent reductions to gauged su-

pergravities in lower dimensions. For example the long standing problem of finding the

nonlinear and consistent reduction of Type IIB supergravity on AdS5 × S5 was solved in

this way [19]. Second, exceptional field theory provides a convenient framework for tak-

ing into account the BPS states in the computation of loop corrections to the string low

energy effective action [20]. Furthermore, higher derivative corrections to the supergravity

limit of string/M-theory may be powerfully tackled by employing the DFT/ExFT in which

the U-duality symmetry is manifestly realized. For the case of DFT, see [21] and several

references therein for earlier work. Last but not least, the generalized geometry under-

lying exceptional field theories may pave the way to the construction of effective actions

that genuinely go beyond 11D supergravity, thereby shedding light on important aspects

of M-theory.

In this paper, we shall focus on the exceptional field theory based on E7(7) [9], and

starting from its supersymmetric extension provided in [22], we formulate the theory in

(4 + 56|32) dimensional superspace. One of our main motivations is the construction of

actions for M-branes propagating in a target space described by the generalized geometry

of exceptional field theory. This problem is still open, though progress has been made in the

form of exceptional sigma models for string theory [23]. The importance of a superspace

formulation of target space supergravities becomes especially clear with the realization

that all known actions for branes beyond strings are feasible only as sigma models in

which the target is a superspace. Another motivation for the exploration of supergeometry

in exceptional field theories is to find clues in the search for an extended geometrical

framework which would unify the external (spacetime) and internal space diffeomorphisms.

Our approach to the superspace formulation of the supersymmetric E7(7) ExFT is to

elevate the 4-dimensional “external” spacetime to (4|32) dimensional “external” super-

space2 and to augment this with a 56-dimensional “internal” space. As such, the external

diffeomorphisms and local supersymmetry transformations of ExFT are unified to external

superdiffeomorphisms with structure group GL(4|32), with E7(7) internal diffeomorphisms

1See also [2, 6] where related conjectures were made.
2Ungauged 4D N = 8 superspace was constructed in [24, 25], see also [26, 27]. Our construction will

reduce to this upon discarding all dependence on internal coordinates.
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treated separately. In particular, there are separate (super)vielbeins for the two spaces.

This is in contrast to early work involving so-called “central charge superspace” [28] where

the vielbeins were unified into a single sehrvielbein but with all fields independent of the

additional 56 coordinates,3 as well as more recent efforts in superspace double field theory

where a unified description is sought (see e.g. [30–33]).

Our approach turns out to require more than just a superspace lift of [22]. We find

that it is important to redefine a constrained two-form of the theory, so that it transforms

inhomogeneously under Lorentz transformations. This allows one to eliminate the internal

part of the Lorentz spin connection everywhere, with the constrained two-form now playing

its role. Another important step is the relaxation of the constraints imposed on the E7(7)

connection Γmn
p in [22]. Recall that these constraints amounted to (i) the elimination

of non-metricity of the internal generalized vielbein postulate; (ii) the vanishing of the

E7(7) torsion tensor; and (iii) requiring that the 4D volume form be covariantly constant,

∇me = 0. Here we will find it convenient to relax all of them, and to take a completely

generic internal E7(7) connection. Naturally, this is consistent only if the undetermined

pieces drop out of the supersymmetry transformations, which we will show.

We also probe further the sector of the theory that involves extra 3-form and 4-form

potentials within the framework of the tensor hierarchy formalism. In particular, we show

that the solutions to the superspace Bianchi identities lead to on-shell duality equations for

the p-form field strengths for p ≤ 4. We also show that the reduction to component fields

provides a complete description of the on-shell supersymmetric theory, including the higher

order fermion terms. As an application of our results, we perform a generalized Scherk-

Schwarz reduction and obtain the superspace formulation of maximal gauged supergravity

in four dimensions parametrized by an embedding tensor.

The paper is organized as follows. In section 2, we review the locally supersymmetric

E7(7) exceptional field theory in components. In section 3 we lay the groundwork for the

superspace formulation, in particular describing the required redefinition of a constrained

2-form potential, and its consequences. In section 4, we describe the superspace formu-

lation, including the superspace Bianchi identities and their solutions. In section 5, we

present the component results, establishing that they agree with the component formula-

tion of [22] subject to the redefinition of the 2-form potential. In section 6, we perform a

generalized Scherk-Schwarz reduction and obtain the superspace formulation of maximal

gauged supergravity in four dimensions parametrized by an embedding tensor. In section 7

we comment further on our results and point out future directions. In appendix A, we give

some details of our conventions. Appendix B contains some technical details of the algebra

of external and internal covariant derivatives that we found useful in explicit computations.

2 Supersymmetric E7(7) exceptional field theory in components

Let us begin by reviewing the structure of the E7(7)-covariant ExFT, first in its original

bosonic formulation [9] and then its supersymmetrized extension [22]. The bosonic field

3For a discussion of how to derive the E7(7) section condition from a superparticle moving in central

charge superspace, see [29].
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content is given by

{
em

a ,Vma , Amm , Bmnα , Bmnm
}

. (2.1)

The vierbein em
a describes the geometry of external 4D spacetime, while the 56-bein Vma,

parametrizing the coset E7(7)/SU(8), describes the internal geometry. The 1-form Am
m

gauges internal diffeomorphisms on external spacetime and lies in the fundamental (56) of

E7(7). Requiring closure of internal diffeomorphisms on the 1-form requires the existence

of 2-forms Bmnα and Bmnm valued respectively in the adjoint (133) and fundamental

(56) representations. The internal tangent space index a on the 56-bein decomposes under

SU(8) as 28 + 28,

Vma = {Vmij ,Vmij} , (2.2)

satisfying Vmij = (Vmij)∗ with SU(8) indices i, j, · · · = 1, . . . , 8.

All fields in the theory, including the symmetry transformation parameters that will

be encountered below, depend on both external (xm) and internal (ym) coordinates, with

the dependence on the latter subject to the section conditions. We write these as

(tα)mn ∂m ⊗ ∂n = 0 , Ωmn ∂m ⊗ ∂n = 0 (2.3)

where the derivatives are understood to act on any two (or the same) fields or parameters.

Here (tα)m
n are the E7(7) generators in the fundamental representation, Ωmn is the invari-

ant symplectic form of E7(7) ⊂ Sp(56), and we employ the usual (NW-SE) conventions for

raising and lowering 56 indices, e.g. (tα)mn = Ωmp (tα)p
n and (tα)mn = (tα)m

p Ωpn.

In addition, the field Bmnm is constrained on its internal index so that it obeys the

section condition with respect to both ∂m and itself, i.e.

(tα)mnBm ⊗ ∂n = 0 , ΩmnBm ⊗ ∂n = 0 ,

(tα)mnBmBn = 0 , ΩmnBmBn = 0 . (2.4)

In the first set of equations, the derivative may act on another field or on Bmnm itself.

In principle, 3-forms and 4-forms are also required for a complete description of the

tensor hierarchy, but these drop out of the action, and so one can usually avoid any explicit

discussion of their properties. Nevertheless, we will find it useful to discuss them briefly

in a few places. The 3-forms are Cmnp
m
α and Cmnp m

n, with the former valued in the

912 and the latter constrained on its lower index. The unconstrained 4-forms are Dmnpq α

and Dmnpq
mn

α, respectively in the 133 and in the 8645, while there appear to be as

many as three constrained 4-forms Dmnpq m, Dmnpq m
α, and Dmnpq m

np, each obeying the

section condition on their lower index m, with the last field constrained in the 1539 in its

upper indices.
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2.1 Generalized vielbein postulates

For later purposes, we record the generalized vielbein postulates (GVP) satisfied by external

and internal vielbeins:4

0 = ∂men
a −Amn∂nena −

1

2
∂nAm

n en
a − ωmabenb − Γmn

pep
a

= Dmen
a − ωmabenb − Γmn

pep
a , (2.5)

0 = ∂men
a − 1

3
Γkm

k en
a − ωmabenb + πm

abenb , (2.6)

0 = DmVna − VnbQmba − VnbPmba (2.7)

0 = ∂mVna − VnbQmba − Γmn
p Vpa . (2.8)

The connections Γmn
p and πm

ab = πm
(ab) are defined by (2.5) and (2.6), and Q and P live

in SU(8) and its orthogonal complement in E7(7), respectively, so that

Qmba =

(
δ[k

[iQml]j] 0

0 −δ[i
[kQmj]l]

)
, Pmba =

(
0 Pmklij

Pmklij 0

)
(2.9)

and similarly for Qm and Pm. The E7(7) covariant derivative Dm is defined as

Dm := ∂m − LAm , (2.10)

where the generalized Lie derivative acts on a fundamental vector V m of weight λ(V m) as

LΛV
m := Λn∂nV

m − 12
[
∂nΛm

]
adj

V n + λ(V ) ∂nΛn V m (2.11)

where the second term is projected onto the adjoint of E7(7), i.e.[
∂nΛm

]
adj

:= Pmnrs ∂rΛs , (2.12)

with the adjoint projector given by

Pmnrs = (tα)mn (tα)rs =
1

24
δmn δ

r
s +

1

12
δms δ

r
n + (tα)mr (tα)ns −

1

24
Ωmr Ωns . (2.13)

We emphasize that the symplectic metric Ωmn is used to raise and lower the 56-plet in-

dices as V m = ΩmnVn and Vn = V mΩmn, and it is an invariant tensor of weight 0,

namely LΛΩmn = 0.

Defining the generalized torsion tensors as

Γ[mn]
p =

1

2
Tmn

p , (2.14)

Γmn
k − 12Pknrs Γrm

s + 4Pknrm Γsr
s = Tmnk , (2.15)

4Our convention for the spin connection matches that of [34], which differs in sign from that used in the

previous E7(7) papers [9, 22].
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the following constraints are imposed in [22]

Tmn
p = 0 , Tmnk = 0 . (2.16)

The definition of generalized torsion Tmnk is motivated by the relation

L∇VWm − LVWm = Tnkm V nW k , (2.17)

for vectors V,W of weight 1
2 where L∇V denotes the generalized Lie derivative with all partial

derivatives replaced by covariant derivatives. Explicit evaluation of this relation gives the

expression (2.15).

The connection Γmn
p lives in the algebra e7(7) and as such we can write

Γmn
p = Γm

α(tα)n
p ∈ e7(7) . (2.18)

Using this relation in (2.15), one finds that

1

7
Tmα = P(912)m

αn
β Γn

β , (2.19)

where the projector onto the 912 dimensional representation is given by [35]

P(912)m
αn

β :=
1

7

(
δm

n δαβ + 4(tαtβ)m
n − 12(tβt

α)m
n
)
. (2.20)

We have used the notation (tαtβ)m
n ≡ (tα)m

k (tβ)k
n.

2.2 Bosonic symmetries, duality equations and tensor hierarchy

The full bosonic theory is invariant under the generalized diffeomorphisms,

vector, and tensor gauge symmetries, and shift symmetries with parameters

(ξm, Λm, Ξmα, Ξmm, Ωmnm
n, Ωmn

n
α), respectively. These transformations are given by

δem
a = ξnDnem

a +Dmξ
nen

a + LΛem
a ,

δVma = ξmDmVma + LΛVma ,

δAm
m = ξnFnmm +Mmn gmn ∂nξ

n +DmΛm + 12 (tα)mn ∂nΞmα +
1

2
Ωmn Ξmn ,

∆Bmnα = ξpHmnpα + (tα)mn ΛmFmnn + 2D[mΞn]α

+∂mΩmn
m
α + (tα)m

nΩmnn
m ,

∆Bmnm = ξpHmnpm − 2i εmnpqg
qrDp

(
grs∂mξ

s
)

+ Fmnn∂mΛn − ∂mFmnnΛn

+2D[mΞn]m + 48 (tα)n
r
(
∂r∂mA[m

n
)

Ξn]α

−∂mΩmnn
n − 2 ∂nΩmnm

n , (2.21)

– 6 –
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where

∆Bmnα := δBmnα + (tα)mnA[m
m δAn]

n ,

∆Bmnm := δBmnm +
(
A[m

n∂mδAn]n − ∂mA[m
nδAn]n

)
, (2.22)

and

Mmn = VmijVnij + Vn ijVmij , (2.23)

Fmnm = 2∂[mAn]
m − [Am, An]

m
E − 12 (tα)mn ∂nBmnα −

1

2
ΩmnBmnn , (2.24)

with the E-bracket defined by

[Am, An]
m
E := 2A[m

n∂nAn]
m +

1

2

(
24 (tα)mn(tα)pq − ΩmnΩpq

)
A[m

p ∂nAn]
q . (2.25)

The field strengths Hmnpα and Hmnp are defined by the Bianchi identity

D[mFnp]m = −4(tα)mn ∂nHmnpα −
1

6
ΩmnHmnpn . (2.26)

Note that F , DmF and Hα transform covariantly under internal diffeomorphisms, while

Hm does not, which is evident from the presence of the non-covariant term ∂nHα term

in (2.26). From this equation, upon using the definition of F , one finds that

Hmnpα := 3D[mBnp]α − 3 (tα)mnA[m
m∂nAp]

n + (tα)mnA[m
m[An, Ap]]

n
E

− ∂mCmnpmα − (tα)m
nCmnp n

m , (2.27)

Hmnpm :=
[
3DmBnpm − 3

(
Am

n∂m∂nApn − ∂mAmn∂nApn
)

+ 72 (tα)k
p ∂m∂pAm]k Bnpα

+
(
Am

n∂m[An, Ap]E n − ∂mAmn[An, Ap]E n

) ]
[mnp]

+∂mCmnp n
n + 2 ∂nCmnp m

n . (2.28)

The three-forms Cmnp
m
α and Cmnp n

m introduced in (2.27) and (2.28) are projected out

of the Bianchi identity (2.26) using the section condition.5 They may be thought of as

parametrizing the part of the field strengths Hmnpα, Hmnpm, which is left undetermined

by (2.26) with their presence being necessary for invariance of the curvatures under the

higher p-form gauge transformations. The covariant derivatives read explicitly

DmBnpα = ∂mBnpα −Amm ∂mBnpα − 12 (tγ)rs f
γβ
α∂rAm

sBnpβ − ∂nAmnBnpα ,
DmBnpm = ∂mBnpm −Amn ∂nBnpm − ∂mAmnBnpn − ∂nAmnBnpm . (2.29)

The 3-form field strengths in turn obey the Bianchi identities

4D[mHnpq]α = −3 (tα)mnF[mn
mFpq]n − ∂mGmnpqmα − (tα)m

nGmnpq n
m , (2.30)

4D[mHnpq]m = −6F[mn
n ∂|m|Fpq]n − 24(tα)p

n∂m∂nA[m
pHnpq]α

+∂mGmnpq n
n + 2 ∂nGmnpq m

n , (2.31)

5We use the identity (2.13) and tα(mnCmnp
p)α = 0. The latter identity follows from the fact that

Cmnp
p
α belongs to the 912 of E7(7) while (56× 56× 56)S does not contain the 912.

– 7 –
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field em
a ξm Vmij Am

m, Λm Bmnα , Ξmα Bmnm, Ξmm χijk ψm
i , εi

λ 1
2 0 0 1

2 1 1
2 −1

4
1
4

Table 1. λ-weights for the bosonic and fermionic fields and parameters.

which serve to define the curvatures Gmnpq
m
α and Gmnpq m

n associated with the 3-form

potentials. This leads to the introduction of 4-form potentials in certain representations of

E7(7) and obeying certain constraints. The transformation rules for the 3-form and 4-form

potentials can be determined from the requirement of the closure of the algebra. We will

not need these transformation rules, except for the behavior of the 3-form potentials under

external diffeomorphisms, which we shall derive below. We will also derive the duality

equations obeyed by 4-form field strengths below, and we shall comment on the occurrence

of particular 4-form potentials in their definitions in section 4.5.

The curvatures associated with the p-form potentials with p = 1, 2, 3 obey duality

equations given by [9]6

Fmnm =
i

2
εmnpq ΩmnMnk Fpq k , (2.32)

εmnpqHnpqα = (tα)n
m
(
PmijklVnijVmkl − PmijklVnijVmkl

)
,

= − i
2

(tα)m
n(DmMmk)Mnk , (2.33)

1

12
εmnpqHnpqm = −2i ea

meb
n
(
∂mωn

ab −Dnωm
ab
)
− 1

3
DmVnij∂mVnij , (2.34)

where

ωm
ab := −en[a∂men

b] . (2.35)

The first duality equation (2.32) is required together with the second-order pseudo-action

given in [9] in order to describe the correct vector field dynamics. The second order field

equation for the vector fields can then be obtained by the external curl of (2.32) together

with the Bianchi identity (2.26). Comparing this second order equation to the one obtained

from variation of the pseudo-action gives rise to the duality equations (2.33), (2.34). As

in the Bianchi identity (2.26), the duality equations (2.33) and (2.34) only follow under

projection with (tα)mn ∂n, and their remaining parts may thus be taken as an equations

for the three-form potentials introduced in (2.27) and (2.28).7 The variations of the 3-form

potentials under all the bosonic symmetries can be determined from the requirement of the

invariance of the duality equations above. For later purposes we shall in particular need

their variations under the external diffeomorphisms. To determine them, we consider the

invariance of the duality equation (2.33) under the external diffeomorphisms. To this end,

6The first equation can also be written as F−
mn ij ≡ 1

2
Fmn ij− 1

4
εmnpqFpqij = 0. The third equation (2.34)

had an overall sign mistake in [9, 22] that is corrected below, keeping in mind the change in sign of the

spin connection.
7It is worth noting that the variation of the duality equation (2.32) yields (2.33) but not (2.34) for the

constrained field. The latter involves two derivative terms on the right hand side, and these are derived

in [9] by employing a suitable action.

– 8 –
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the following formula for the general variation of Hα is useful:

δHmnpα =
[
3Dm(∆Bnpα)− 3 (tα)mn δAm

mFnpn

−∂m∆Cmnp
m
α − (tα)m

n ∆Cmnp n
m
]

[mnp]
, (2.36)

where

∆Cmnp
m
α =

[
δCmnp

m
α + 21 (P912)α

mβ
nBmnβ δAp

n

−7 (P912)α
mβ

n (tβ)rsAm
nAn

rδAp
s
]

[mnp]
,

∆Cmnpn
m =

[
δCmnpn

m − 3

2
δAm

mBnpn + 24 ∂nδAm
r Bnpα(tα)r

m

− 12 δAm
r ∂nBnpα(tα)r

m − 12 (tα)rs(t
α)k

m ∂nAm
kAn

rδAp
s

−5

6
δAm

m∂n(AnkAp
k) +

1

6
∂nδAm

mAnkAp
k − 2

3
Am

m∂nδAnkAp
k

− 1

6
∂nAm

mδAnkAp
k +

1

3
Am

mδAnk∂nAp
k

]
[mnp]

, (2.37)

and we have used the following identity:

(tβ)ks (tβ)(mn (tα)r)s =
1

3
(tβ)s(m (tβ)nr) (tα)ks − 1

12
(tα)(mn δr)

k . (2.38)

Under external diffeomorphisms

∆Cmnp
m
α = ξrGrmnp

m
α ,

εm
npq ∆Cnpq n

m = εm
npq ξrGrnpq n

m + 6 i ∂nξ
n Fnm

m + 12 i ∂(n

(
Mmk ∂k)ξ

n gmn

)
− 8i ∂kMkm gmn∂nξ

n , (2.39)

the duality equation of Hα transforms covariantly, provided that we also impose the fol-

lowing duality equation for the four-form field strength

εmnpq Gmnpq
m
α = 14i (P912)mαn

βMnrJrβ , (2.40)

with the current Jrβ defined by

Mnk∂rMkm = Jrα (tα)m
n . (2.41)

In this calculation the terms involving the field strength Gmnpqm
n cancel, and consequently

a duality equation for this field strength does not follow. However, Hmnpα determined from

(2.33), substituted into the Bianchi identity (2.30) gives

(tα)m
n

(
e εmnpqGmnpq n

m + 48iMnr
δ(eV )

δMmr
+ 14i(tβ)n

m(P912)kβ r
γ∂k

(
eMrsJsγ

))
= 0 ,

(2.42)
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from which one can derive8

1

24
e εmnpq Gmnpq n

m = i∂r

(
e ∂nMrm

)
+
i

3
∂n

(
eMrsMrm

)
− i

24
eMmt∂nMrs

(
∂tMrs − 12∂rMts

)
+
i

2
∂rMmtMrs∂nMts .

(2.43)

In obtaining this result, we have used (2.32) and the following scalar field equation that

follows from the action given in [9]:

(tα)m
kMkn

(
Dm (eDmMmn) + 3eFmnmFmnn + 24

δ(eV )

δMmn

)
= 0 , (2.44)

where

V = − 1

48
Mmn ∂mMrs

(
∂nMrs − 24 ∂rMsn

)
−
(
e−1∂me

)
e−1∂n

(
eMmn

)
−1

4
Mmn∂mg

mn∂ngmn . (2.45)

2.3 Supersymmetry transformation rules

The supersymmetry transformation rules are given by

δem
a = ε̄iγaψmi + ε̄iγ

aψm
i ,

δVmij = 2
√

2Vmkl
(
ε̄[iχjkl] +

1

24
εijklmnpq ε̄mχnpq

)
,

δAm
m = −i

√
2 ΩmnVnij

(
ε̄k γµ χijk + 2

√
2 ε̄i ψµj

)
+ c.c. ,

∆Bmnα = −2

3

√
2 (tα)pq

(
Vp ijVq kl ε̄[i γmn χjkl] + 2

√
2Vp jkVqik ε̄i γ[m ψn]

j + c.c.
)
,

∆Bmnm =
16

3
Vnij DmVnjk ε̄kγ[mψn]i −

4
√

2

3
VnijDmVnkl ε̄[i γmn χjkl]

− 8i
(
ε̄i γ[mDmψn]i −Dmε̄i γ[m ψn]i

)
+ 2iεmnpq g

qr Dm
(
ε̄iγpψr i

)
+ c.c. ,

δψm
i = 2Dmεi − 4iVmij∇̂m (γmεj) ,

δχijk = −2
√

2Pmijklγµεl − 12
√

2iVm[ij ∇̂mεk] . (2.46)

The coset currents Pmijkl are defined as

DmVnij ≡ DmVnij +Qmk
[i Vnj]k = Pmijkl Vnkl , (2.47)

which also defines the composite SU(8) connection

Qmij =
2i

3
Vn jkDmVnki . (2.48)

8In order to strip off the (tα)m
n, we make use of the fact that Gmnpqm

n is constrained on its m index.

This condition means that G lies in a generic 56 × 56 representation, as any projection operation would

spoil the section condition. Since a generic 56× 56 always contains the adjoint representation, there is no

ambiguity in solving this equation.
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The covariant derivatives of a spinor Xni with and without Christoffel connection are

defined as

DmXn i = DmXn i −
1

4
ωm

abγabXn i +
1

2
Qmi

jXn j , (2.49)

DmXn i = ∂mXn i −
1

4
ωm

abγabXn i +
1

2
Qmi

jXn j , (2.50)

∇mXn i = DmXn i − Γmn
rXr i −

2

3
λ(X)Γrm

rXn i . (2.51)

The hatted covariant derivative ∇̂m is obtained from ∇m by replacing ωm
ab with

ω̂m
ab ≡ ωmab +

1

4
MmnFmnn emaenb . (2.52)

Finally, let us note the simplification

∆Bmnm + 2 Γm
α∆Bmnα = −8i

(
ε̄i γ[mDmψn]i −Dmε̄i γ[m ψn]i

)
+2i εmnpq g

qr Dm
(
ε̄iγpψr i

)
+ c.c. , (2.53)

and that writing out the covariant derivatives in the variations of the fermionic fields gives

δψm
i = 2Dmεi +

1

4
Fabijγabγmεj + i(en

a∂nepa)Vnijγnpγmεj − 4iVnij∂n(γmεj)

−2iVmij qmj
kγmεk − 2iVmkl pmijklγmεj , (2.54)

δχijk = −2
√

2Pmijklγmεl +
3
√

2

4
Fab[ijγabεk] + 3

√
2i(em

a∂mena)Vm[ijγmnεk]

−12
√

2iVm[ij∂mε
k] + 6

√
2iVm[ij qml

k]εl − 8
√

2iVmrs pmijkrεs

−6
√

2iVmrs pmrs[ijεk] . (2.55)

where

qmi
j ≡ 2

3
Vnjk∂mVnki , pm

ijkl ≡ iVnij∂mVnkl . (2.56)

3 Laying the groundwork for superspace

The supersymmetry transformations described in the previous section do not readily admit

a lift to a conventional superspace due to a number of obstacles. Some of these, for

example, the term involving the internal derivative of the supersymmetry parameter in the

gravitino transformation (2.46), are rectified by understanding the structure of external

superdiffeomorphisms in superspace. Other issues, such as the nature of the last term

in the transformation of Bmnm, require that we first make some redefinitions of fields

appearing at the component level before considering their superspace analogues.

In this section, we will elaborate upon a few modifications of the component theory

that shed light on its superspace lift. First, we describe the action of the external diffeomor-

phisms on the fermions. Then we proceed to describe a redefinition of the two-form Bmnm,

which appears necessary to make sense of its superspace analogue. The redefined two-form
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turns out to have a simpler transformation under both external diffeomorphisms and super-

symmetry transformations. Finally, we compute the algebra of external diffeomorphisms.

Afterwards, we will describe the fate of the four generalized vielbein postulates, (2.5)–

(2.8), in superspace. As we shall see, only the latter two of these, involving the 56-bein,

continue to play any role. We will further argue that a more democratic form of the inter-

nal GVP (2.8), which includes non-metricity and leaves the generalized torsion unfixed, is

more natural from a superspace perspective. This will prove useful both for understanding

some of the structure of the supersymmetry transformations and for connecting with the

superspace of gauged supergravity after a generalized Scherk-Schwarz reduction [19], as we

shall see in section 6.

3.1 External diffeomorphisms of the fermions

Let us first summarize some details about external diffeomorphisms in the supersymmet-

ric theory that have not previously appeared in the literature. As in the bosonic theory

(see (2.21)), the vierbein em
a and the 56-bein transform as tensors under external diffeo-

morphisms. It turns out the same is not true of their superpartners ψi and χijk. Rather,

these fields transform under external diffeomorphisms as

δξψm
i = Dmξ

nψn
i + ξnDnψm

i + 4iVmij∂mξn γ[nψm]j −
i
√

2

2
Vmjk∂mξn γnγmχijk ,

δξχ
ijk = ξnDnχ

ijk − 6i
√

2Vn [ij∂nξ
mψm

k] − i

6
εijkpqrstVnpq∂nξmγmχrst . (3.1)

The non-tensorial terms involving internal derivatives of ξm, which we will refer to as

anomalous terms, can be justified in a few different ways. Perhaps the simplest (which we

followed) is to compute them directly in D = 11 supergravity after reformulating it to make

the local SO(1, 3) × SU(8) tangent space symmetry manifest [5]. This corresponds to an

explicit solution of the section condition in ExFT, and so the results can be lifted to ExFT

exactly along the lines followed in [22, 36, 37]. Another approach, formulated entirely

within ExFT, would be to require closure of the algebra of external diffeomorphisms. It

will be convenient to work out this algebra after performing a redefinition of the two-form

Bm as we shall do below.

3.2 Redefinition of the two-form and the algebra of external diffeomorphisms

While, as we will see, the external diffeomorphisms of most of the fields can be directly

lifted to superspace, the transformation of Bmnm — specifically the second term in (2.21)

— proves to be problematic. This is due to the presence of the inverse vierbein. Whereas

we will be identifying the component vierbein em
a as the element Em

a of the supervielbein

EM
A, the inverse vierbein ea

m has no simple interpretation in superspace, as it does not

correspond to the element Ea
m of the inverse supervielbein. This is why, typically in su-

persymmetric theories, one can formulate supersymmetry transformations without explicit

use of the inverse vierbein.
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It turns out that there is a redefinition of the two-form Bmnm that resolves this issue.9

We will take

B′mnm = Bmnm − 2i εmn
pqep

a∂meqa

= Bmnm − 2i εmnab ωm
ab . (3.2)

It follows that the symmetry transformations of (Am
m, Bmnα) given in (2.21) preserve

their form with Bmnm replaced by B′mnm in Fmnm and Hmnpα, provided one makes the

compensating Ξ and Ω transformations with parameters

Ξmm = −2i ξnεnmab ωn
ab , Ωmnn

m = iΛmεmnab ωn
ab . (3.3)

Thus we have

δξ,ΛAm
m = ξnFnmm(B′) +Mmn gmn ∂nξ

n +DmΛm ,

∆ξ,ΛBmnα = ξpHmnpα + (tα)mn ΛmFmnn(B′) . (3.4)

Now noting that

δξωm
ab = ξnDnωm

ab − ∂mξnem[aDnem
b] − em[aen

b]Dm∂mξ
n ,

εmn
pqDp(gqr∂mξ

r) = εmnab

(
eapeq

bDp∂mξ
q + ∂mξ

neamDmenb
)
, (3.5)

where we have used D[men]
a = 0, one finds from (2.21) that

∆ξ,ΛB
′
mnm = ξpHpmnm(B′)− 2i εmnab ∂mξ

pωp
ab + Fmnn(B′)∂mΛn − ∂mFmnn(B′)Λn .

(3.6)

The second term in this transformation can be readily lifted to superspace as it involves only

forms. Here we interpret ωp
ab as a one-form that can be lifted to superspace, as opposed

to expressing it as a composite in terms of the vierbein and its inverse. In achieving this

simplification, we have paid a price. The field B′mnm now transforms under local Lorentz

transformations as

δB′mnm = −2i εmnab ∂mλ
ab . (3.7)

We will find soon find that the internal spin connection ωm
ab no longer appears in any

expressions and covariance under y-dependent Lorentz transformations is now ensured by

the field B′ and the field strength F(B′) in which it appears.

Before moving on, there are a number of features of the field strength F(B′) we should

discuss. Because we have essentially redefined it as

Fmn ij(B′) = Fmn ij(B)− iVmij εmnpq epa ∂meqa , (3.8)

the self-duality equation (2.32) now takes the form

F̂mn ij =
1

2
e εmnpq F̂pqij , (3.9)

9This redefinition is naturally related to one recently made in the so-called “topological phase” of E8

ExFT that allowed its reinterpretation as a Chern-Simons theory [38]. There it was the constrained one-form

Bmm that admitted a redefinition.
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in terms of the modified field strength

F̂mn ij ≡ Fmn ij(B′)− 2iVnij e[m
a ∂nen]a , (3.10)

or equivalently

F̂mnm ≡ Fmnm(B′) + 2Mmn e[m
a ∂nen]a . (3.11)

The additional term in F̂ can be understood as the twisted dual of the term we have added

to B, which is necessary so that F̂ continues to be twisted self-dual. It transforms under

Lorentz transformations as

δF̂ab ij = −2iVmij
(
δa
cδb

d +
1

2
εab

cd

)
∂mλcd = −4iVmij∂mλ+

ab . (3.12)

As a consequence of the additional term in its definition, F̂ satisfies a modified Bianchi iden-

tity

D[pF̂mn]
m = −4 (tα)mn∂nHmnpα −

1

6
ΩmnHmnpn(B′)

+2
(
D[pMmn

)
em

a∂nen]a − 2Mmne[m
aen

b∂nωp]ab , (3.13)

where we have used the vanishing of the external torsion Tmn
p = 0.

Later on, it will be convenient to rewrite this expression in a form that is manifestly

covariant under internal diffeomorphisms. To this end, we note that

∇nHα = ∂nHα + Γn
β fβα

γ Hα −
2

3
Γkn

kHα , (3.14)

and introduce a modified three-form field strength

Hm = Hm(B′)− 24 (tα)m
n Γn

β fβα
γ Hγ + 16 (tα)m

n Γkn
kHα + 2 TmαHα

= Hm(B′) + 2 Γm
αHα . (3.15)

The field strength Hm is a tensor under internal diffeomorphisms, whereas Hm(B′) is not.

Now the Bianchi identity (3.13) takes the form

D[pF̂mn]
m = −4(tα)mn∇nHmnpα +

1

3
ΩmnTnαHmnpα −

1

6
ΩmnHmnpn

+2
(
D[pMmn

)
em

a∇nen]a − 2Mmne[m
aen

b∇nωp]ab , (3.16)

In the above expressions, we have kept explicit the generalized torsion tensor Tmα, even

though it was constrained to vanish in [22]. We will soon see that it is convenient to relax

this requirement and allow a non-vanishing Tmα. The modified field strength Hm similarly

appears in the covariantized variation of B′mnm, which is given by

∆ξ,ΛB
′
mnm + 2 Γm

α∆ξ,ΛBmnα = ξpHpmnm − 2i εmnab ∂mξ
pωp

ab

+ Fmnn(B′)∇mΛn −∇mFmnn(B′) Λn . (3.17)
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While the on-shell duality equation (2.33) of Hmnpα is unchanged by the redefinition

of B, the duality equation (2.34) for Hmnpm now reads

1

12
εmnpqHnpqm(B′) = −2i ea

meb
n∂mωn

ab − 1

3
DmVnij∂mVnij . (3.18)

Note that the duality equation for the modified field strength can be written

1

12
εmnpqHnpqm(B′) = −2i ea

meb
n∂mωn

ab +
i

24
DmMpq∇mMpq , (3.19)

which is manifestly covariant under internal diffeomorphisms.

Turning to the supersymmetry transformations, the redefinition of the two form Bmnm
clearly affects only those for Bmnm, ψm

i, and χijk, which now take the form

∆B′mnm =
16

3
Vnij DmVnjk ε̄kγ[mψn]i −

4
√

2

3
VnijDmVnkl ε̄[i γmn χjkl]

− 8i
(
ε̄i γ[mD′mψn]i −D′mε̄i γ[m ψn]i

)
+ c.c. ,

δψm
i = 2Dmεi − 4iVmij∇′m(γmεj) +

1

4
γnpγmF̂npijεj

δχijk = −2
√

2Pmijklγµεl − 12
√

2iVm[ij ∇′mεk] +
3
√

2

4
γmnε[kF̂mnij] , (3.20)

where D′m is obtained from Dm defined in (2.50) by dropping the internal connection ωm
ab,

and ∇′m is obtained from ∇m defined in (2.51) by replacing Dm with D′m. We also give the

transformation rule

∆B′mnm + 2 Γm
α∆Bmnα = −8i

(
ε̄i γ[mD′mψn]i −D′mε̄i γ[m ψn]i

)
+ c.c. (3.21)

Note that the last term in the supersymmetry variation of Bmnm has vanished, and the

internal connection ωm
ab has dropped out everywhere, thereby making the superspace lift

of these formulae possible, as we shall see later.

Finally, computing the commutators of the external diffeomorphism, with the two-form

field redefinition performed, we find the following soft algebra10

[δξ1 , δξ2 ] = δext.diff.(ξ12) + δint.diff.(Λ12) + δLorentz(λ12) + δSU(8)(λ12) + δ(Ξ12) + δ(Ω12) ,

(3.22)

with the composite parameters given by

ξ12
m = −2ξ[1

nDnξ
m
2] ,

Λ12
m = ξ[1

nξ2]
pFpnm(B′) + 2ξ[1

ngnpMmn∂nξ2]
p ,

λ12
ab = 2Mmn∂mξ[1

n∂nξ2]
p en

[aep
b] ,

λ12j
i = −16gmnVmjkVnik∂mξ[1

m∂nξ2]
n ,

Ξ12
mα = −ξn1 ξ

p
2 Hmnpα ,

Ξ12
mk = ξn1 ξ

p
2Hmnpk(B

′)− 4i εmnab ∂kξ
p
[1 ξ

n
2] ωp

ab . (3.23)

10The appearance of non-trivial SO(1, 3) and SU(8) parameters is less surprising if one recalls that

in the 4+7 reformulation of D = 11 supergravity, the external diffeomorphism corresponds to an 11D

diffeomorphism plus a local SO(1, 10) transformation; the commutator of two such transformations gives

an SO(1, 3)× SO(7) transformation.
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These can be deduced by working out the commutator algebra on em
a,Vma and Am

m. As

for the composite Ω-transformations, they can be computed from the closure of external

diffeomorphisms on Bmnα and they will involve the 4-form field strengths. We shall skip

the derivation of these field strengths and the resulting composite Ω parameters, as they

are not needed here.

3.3 Generalized vielbein postulates

Now let us address the generalized vielbein postulates. Two of them, (2.5) and (2.6), involve

the external vielbein. Neither of these turn out to have natural superspace analogues.

A straightforward superspace generalization of the first equation (2.5) by extending the

coordinate index to a supercoordinate index, m→ M , runs into the problem that its mn
a

component differs from the mn
a component of the original bosonic equation (2.5) due to the

presence of a term Γmn
ρEρ

a (and its complex conjugate), where ρ (ρ̇) is the 16-component

index of the chiral (antichiral) Grassmann coordinate θρ (θρ̇). This is problematic because

Eρ
a has no geometric meaning at the component level.11

One cannot circumvent this issue by setting Γmn
ρ to zero by hand, as this violates

general supercovariance. Conventional superspace avoids this because the affine connec-

tion is actually unnecessary for describing supergravity; it appears in no supersymmetry

transformation, nor is it included in the gravitino kinetic term. Instead, one uses the

spin connection, which can be fixed to its usual expression by requiring the torsion tensor

T a = Dea to vanish. This condition in turn has a natural lift to superspace. Thus, we shall

abandon (2.5) in superspace and instead define the vector torsion tensor

T a := DEa + Eb ∧ Ωb
a = DEa =

1

2
EBECTCB

a , (3.24)

where Ωb
a is the Lorentz-valued superconnection. (A similar torsion tensor can be defined

in terms of the gravitino one-form Eαi, but we will postpone its discussion to the next

section.) The physics originally encoded in the vanishing torsion condition will now be

encoded in constraints placed upon TCB
a. We will discuss these in due course. The point

is that one avoids ever introducing an affine connection ΓMN
P in superspace and so there

is no analogue to (2.5).

Similar statements pertain to (2.6), although here the situation is somewhat different.

This equation can be interpreted as a definition of a field πmn
a,

∂men
a − 1

3
Γkm

k en
a − ωmabenb =: −πmna . (3.25)

The constraint amounts to requiring πm
a
b := πmn

aeb
n to be symmetric in ab, which allows

one to determine the internal spin connection. Equivalently, a choice of internal spin

connection permits one to set the antisymmetric part of πm
a
b to zero. However, this

11Component fields and forms are derived from superfields and superforms by projecting θ = 0 and

dθ = 0. Geometrically, this is the pullback of the inclusion map that embeds spacetime into superspace.

For the vector vielbein one-form Ea, the only component that survives this projection is em
a = Em

a|θ=0.

The components Eρ
a|θ=0 and Eρ̇a|θ=0 turn out to be pure gauge degrees of freedom. While they can be

set to zero as a Wess-Zumino type gauge fixing condition, this is not necessary.
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has no natural superspace lift. One would need to introduce πmN
a = πm

a
BEN

B, but this

involves also πm
a
βj and πm

aβ̇j . A choice of internal spin connection leaves these unaffected.

Moreover, they cannot be set to zero without constraining the internal derivative of EN
a

itself. Therefore, we must dispense with (2.6) as well.

At first glance, this is problematic because it forces us to drop the internal spin con-

nection as there is no longer any ability to define it. But as mentioned above, the role of

the internal spin connection will turn out to be played by the constrained two-form. The

remaining two vielbein postulates (2.7) and (2.8) involve only the 56-bein and these pose

no obstacles to a superspace interpretation. The external derivative of the 56-bein (2.7)

we will lift to superspace simply by replacing m with M .

However, for the purely internal GVP (2.8), we find that it is useful to choose a more

general form. It was already observed in [22, 36] that the internal GVP derived from the

SU(8) reformulation of D = 11 supergravity does not take the restricted form (2.8), but

rather includes so-called non-metricity. The most general form of the internal GVP is

∇nVmij := ∂nVmij +Qnk [iVmj]k − Γnm
p Vpij = PnijklVmkl

= DnVmij − Γnm
p Vpij . (3.26)

Here Qmij is the internal SU(8) connection and the non-metricity Pmijkl is a pseudo-real

expression in the 70 of SU(8). There is significant ambiguity in this expression because

both the E7(7) connection Γ and the set {Q,P} are describing the same 56×133 degrees of

freedom (up to the section condition) encoded in ∂nVmij . This can be clarified as follows.

Using (2.18), the internal GVP can be rewritten as

∂nVmij + (Qnk [i + Γn
αQαk [i)Vmj]k =

(
Pnijkl + Γn

αPαijkl
)
Vmkl , (3.27)

where Qαij and Pαijkl correspond to the “flattened” components of the E7(7) generator,

living in the 63 and 70 of SU(8), defined by

(tα)m
nVnij = −Qαk [iVmj]k + Pα

ijklVmkl . (3.28)

Evidently one can solve (3.27) either for Qmij and Pmijkl in terms of Γmn
p, or Γmn

p in

terms of Qmij and Pmijkl. In the latter case, one finds that

Γnm
p = −iDnVmijVpij + iPnijklVmklVpij + c.c. (3.29)

There are a myriad of ways to reduce the ambiguity. One particular way is to set Q and

P to zero, eliminating it entirely. This is the Weitzenböck connection, and we denote it by

˚over the various symbols:

Weitzenböck connection: Q̊ = P̊ = 0 , Γ̊mn
p = −i ∂mVnijVijp + c.c. (3.30)

The conventional choice in ExFT is different [22]. It involves taking P = 0, and then

eliminating as much (but not all) of the ambiguity by imposing constraints on Γ, through

the vanishing torsion condition (2.16). Let’s review some group theory briefly to remember
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how the various parts of Γ are usually constrained in ExFT. Decomposing under E7(7) and

then SU(8) gives

Γ : 56× 133 = 56 + 912 + 6480 ,

56→ 28 + 28 ,

912→ 36 + 420 + c.c. ,

6480→ 28 + 420 + 1280 + 1512 + c.c. ,

Q and P decompose under SU(8) as

Q : (28 + 28)× 63 = 28 + 36 + 420 + 1280 + c.c. ,

P : (28 + 28)× 70 = 28 + 420 + 1512 + c.c.

In conventional ExFT, after setting P to zero, Γ and Q have residual ambiguity: the

representations appearing in Q are counted twice. Killing the 912 part of Γ (corresponding

to torsion) removes 36 + 420 and their conjugates. Constraining the 56 part of Γ to be

related to e−1∂me removes further ambiguity. The remaining ambiguity is the 1280 and

its conjugate that appear in both Q and the 6480 of Γ. There is no E7(7) covariant way

to eliminate this piece. However, as shown in [22], this undetermined piece always drops

out of the SUSY transformations.

There is already a reason to reconsider this approach when generalizing to superspace.

The determinant e = det em
a is, like the inverse vielbein, an unnatural object to encounter

in superspace as it violates general supercovariance, so the constraint imposed on the

56 part of Γ is difficult to lift to superspace. The superdeterminant E = sdetEM
A is

more natural, but does not reduce naturally to e when returning to components. This

suggests that one should leave the 56 part unfixed and hope for it to drop out of the SUSY

transformations as well. Actually, as we will demonstrate, there is no need to fix any of the

ambiguity in Γ, Q, and P. We will allow both the non-metricity P and the torsion tensor

Tmnp, defined in (2.15), to be nonzero. This requires that the SUSY transformations be

modified to include contributions of these tensors, but in the result, all of the undetermined

pieces drop out, not just the one in the 1280.

Because the torsion tensor lies in the 912, we can employ the same representation

theory as for the embedding tensor [34]. Defining the tangent space components Tcab =

VcmVanTmnpVpb as for the embedding tensor,

Tij ab =

−2
3δ[k

[p T q]l]ij 1
24εklpqrstu T

rstu
ij

T klpqij 2
3δ[p

[k T l]q]ij

 (3.31)

one finds

T klmnij = −4

3
δ[i

[k Tj]lmn] ,

Tijkl = 2×
(
− 3

4
A2i

jkl − 3

2
A1

j[k δl]i

)
, (3.32)
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where A1
ij = A1

(ij) is in the 36 and A2i
jkl = A2i

[jkl] (and traceless) is in the 420. Here

we have inserted an additional factor of 2 in the last relation to match the historical

conventions for the so-called T -tensor.12

Later on, it will be useful to extract the undetermined pieces in the internal connections

to ensure that they cancel. We will do this by converting to the Weitzenböck connection,

and writing expressions in terms of Γ̊, isolating the undetermined pieces into Q and P. In

terms of the Weitzenböck connection, one can show that

A1
ij = Å1

ij − iVmk(iQmkj) , (3.33a)

A2i
jkl = Å2i

jkl +
[
4iPmjklpVmip + 3iQmijVmkl

]
420

= Å2i
jkl + 4iPmjklpVmip − 2i δi

[jPmkl]pqVmpq
+ 3iQmi[jVmkl] − i δi[jQmpkVml]p , (3.33b)

Γnm
p = Γ̊nm

p + iQnklijVmklVpij + (iPnijklVmklVpij + c.c.) (3.33c)

We have included above the corresponding formula for the E7(7) connection.

From now on, unless we comment otherwise, ∇m will correspond to an internal co-

variant derivative carrying an E7(7) connection and SU(8) connection with arbitrary non-

vanishing torsion and non-metricity. It will not carry any internal spin connection.

4 E7(7) exceptional field theory in (4 + 56|32) superspace

Now we turn to the construction of E7(7) exceptional field theory in superspace. In addition

to the four external coordinates xm describing spacetime and the 56 internal coordinates

ym describing the exceptional structure, there will be 32 anticommuting (Grassmann) coor-

dinates, which we split into chiral and antichiral coordinates θµ and θµ̇.13 Supersymmetry

will be associated with diffeomorphisms in the fermionic direction, in a manner to be

described in due course. The full set of coordinates are collectively denoted ZM ,

ZM = {ZM , ym} = {xm, θµ, θµ̇, ym} . (4.1)

We reserve ZM to denote the (4|32) coordinates (xm, θµ, θµ̇) parametrizing an “external”

4D N = 8 superspace, with the additional 56 “internal” coordinates ym describing the

exceptional structure.

The supervielbein on the (4|32) superspace is denoted EM
A whose tangent space index

A decomposes as (a, α i, α̇ i) so that

EM
A = (EM

a, EM
αi, EMα̇i) . (4.2)

We will refer to EM
a and EM

αi as the vielbein and gravitino super one-forms, respectively,

as they are the superfield analogues of em
a and ψm

αi. The internal exceptional space is

12In other words, the tangent space components of T differ from the T -tensor by a factor of 2.
13Here we use the chiral (antichiral) Grassmann coordinate θµ (θµ̇) with µ = 1, · · · , 16. Typically in 4D

N = 8 superspace, one writes θµI with µ = 1, 2 and I = 1, · · · , 8 as curved analogues of the two-component

spinor and SU(8) indices. For compactness, we use µ collectively for µI.
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equipped with a 56-bein,

Vma = (Vmij ,Vmij) . (4.3)

While it would be natural to encode EM
A and Vma as components of an even larger

sehrvielbein EMA (as in central charge superspace [28]), we will leave discussion of this to

future work. From the point of view of the external 4D N = 8 superspace, the 56-bein is

a scalar superfield while EM
A are components of a super one-form EA = dZMEM

A.

In addition to the external and internal vielbeins, there is a tensor hierarchy of p-forms.

These include the one-form vector field

Am = dZM AM
m , (4.4)

and two super two-forms

Bα =
1

2
dZMdZNBNM α , B′m =

1

2
dZMdZNB′NM m . (4.5)

As in components, the second two-form is a constrained tensor on its fundamental E7(7)

index. Just as in ExFT, there are additional 3-forms and 4-forms making up the tensor

hierarchy, but we will stop our analysis at the two-forms. Because the unprimed B does

not naturally occur in superspace, henceforth, we will drop the prime.

Finally, the superspace is also equipped with a pair of one-forms that gauge the local

tangent group SO(1, 3) × SU(8). These are the Lorentz connection Ωa
b and the SU(8)

connection Qij ,

Ωa
b = dZMΩMa

b , Qij = dZMQMi
j . (4.6)

Constraints in superspace will be chosen so that these connections become composite,

describing no independent degrees of freedom of their own.

These superfields each have natural analogues in the component theory. The only

component field we have not mentioned in superspace yet is the spin-1/2 fermion. And

indeed, there is also a fermionic superfield, which we denote χα
ijk, whose lowest component

is the field of the same name. In conventional 4D N = 8 superspace [24, 25], this superfield

actually appears in the curvature super-forms, and so can be treated as a derived quantity.

In exceptional superspace, it plays a somewhat more fundamental role, as the gravitino one-

form EM
αi turns out to directly transform into it under external superdiffeomorphisms.

4.1 Symmetry transformations

Under internal diffeomorphisms (Λm) and the tensor hierarchy transformations (ΞM α,

ΞMm, ΩMN
m
α,ΩMNm

n) the various superfields transform exactly as their component ana-
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logues, with

δEM
A = LΛEM

A ,

δVma = LΛVma ,

δχα
ijk = LΛχα

ijk ,

δAM
m = DMΛm + 12 (tα)mn∂nΞM α +

1

2
Ωmn ΞM n ,

∆BNM α = (tα)mn ΛmFNMn + 2D[NΞM ]α + ∂mΩNM
m
α + (tα)m

nΩNMn
m ,

∆BNM m = FNMn∂mΛn − ∂mFNMnΛn + 2D[NΞM ]m + 48 (tα)n
r
(
∂r∂mA[N

n
)

ΞM ]α

− ∂mΩNMn
n − 2 ∂nΩNMm

n , (4.7)

where

∆BNM α := δBNM α + (tα)mnA[N
m δAM ]

n ,

∆BNM m := δBNM m +A[N
n∂mδAM ]n − ∂mA[N

nδAM ]n . (4.8)

Here the λ weights of the various superfields match their component cousins. The curvature

two-form FNMm (and later, the three-forms HPNM α and HPNM m) are defined exactly as

in components, replacing m → M . We collect their superspace definitions in the next

subsection.

There is a minor technical subtlety that the superindices M and A come equipped with

a Z2 grading, which causes certain signs to appear when their relative ordering changes. For

example [NM ] above should be understood as a graded commutator. This is common in

superspace and we briefly review it in appendix A. To keep formulae as legible as possible,

we suppress such grading factors.

The transformations under external diffeomorphisms are somewhat more involved. We

list first the ones whose transformations can be directly compared to (2.21):

δEM
a = DMξ

N EN
a + ξNDNEM

a ,

δVma = ξMDMVma ,
δAM

m = ξNFNMm +Mmn∂nξ
N GNM , GNM := EN

aEMa

∆BNM α = ξPHPNM α . (4.9)

A relevant feature is, as in components, the appearance of an anomalous term in δAM
m

involving ∂mξ
N . The constrained two-form BNM m transforms not only with an additional

explicit spin connection term (matching the redefined component two-form (3.6)), but with

a few additional terms involving the gravitino one-forms,

∆BNM m = ξPHPNMm − 2i EN
aEM

bεabcd ∂mξ
PΩP

cd

− 16i ∂mξ
PEPα̇iE[N

αiEM ]
a(γa)α

α̇ + 16i ∂mξ
PEP

αiE[Nα̇iEM ]
a(γa)α

α̇ . (4.10)

– 21 –



J
H
E
P
0
1
(
2
0
1
9
)
0
8
7

The gravitino one-form EM
αi and the spin-1/2 fermion χα ijk have even more involved

anomalous terms,

δEM
αi = DMξ

NEN
αi + ξNDNEM

αi + 2iVmij∂mξN
(
ENβ̇jEM

c − ENcEMβ̇j

)
(γc)

β̇α

− i

2
√

2
Vmjk∂mξNENdEMcχβjki(γcγd)β

α ,

δχαijk = ξNDNχ
αijk − 12i

√
2Vn [ij∂nξ

NEN
αk] +

i

6
εijkpqrstVnpq∂nξNENbχ̄β̇rst(γb)

β̇α .

(4.11)

While the exact relation between the supervielbein and the component fields has not been

specified yet, a natural definition, which will be provided in section 5, motivates the above

form of the external superdiffeomorphisms in view of the supersymmetry transformation

rules (3.1). Note also that, as already mentioned above, because the gravitino transforms

directly into χ, we are led to treat χ on the same level as the gravitino and the other

fundamental superfields rather than as a derived curvature superfield.

Finally, we should mention that just as in components, the constrained two-form

BNMm possesses an anomalous Lorentz transformation,

δBNM m = −2i EN
aEM

bεabcd ∂mλ
cd . (4.12)

4.2 Covariant external superdiffeomorphisms and modified curvature tensors

The curvature super-forms of the tensor hierarchy have already appeared above in the

symmetry transformations of the tensor hierarchy fields. They are defined as at the com-

ponent level14

Fm = dAm +
1

2
[A,A]

m
E − 12 (tα)mn ∂nBα −

1

2
ΩmnBn , (4.13)

Hα = DBα −
1

2
(tα)mnA

mdAn +
1

12
(tα)mnA

m[A,A]
n
E − ∂mC

m
α − (tα)m

nCn
m , (4.14)

Hm = DBm + 24 (tα)r
s ∂m∂sA

r Bα −
1

2
Ωrs ∂mA

r dAs +
1

2
ΩrsA

r ∂mdAs

− 1

3
Ωrs

(
Ar ∂m[A,A]

s
E + [A,A]

s
E ∂mA

r
)

+ ∂mCn
n + 2 ∂nCm

n . (4.15)

We have included the super 3-forms Cmα and Cm
n in their definitions for completeness, but

they will not play a major role in the subsequent discussion. We emphasize that because Bm
transforms anomalously under Lorentz transformations, the same is true of its curvature

Hm. In fact, the curvature Hm is not even a tensor under internal diffeomorphisms, a fact

that we will return to soon.

In addition to the tensor hierarchy curvatures, there are curvature super-forms associ-

ated with the supervielbein EM
A and the Lorentz and SU(8) connections, Ω and Q. The

former define the super torsion tensor,

TA := DEA = DEA + EBΩB
A + EBQBA (4.16)

14The reader is cautioned that we employ superspace conventions for differential forms, see e.g. [39] and

appendix A.
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where

ΩB
A =

Ωb
a 0 0

0 1
4Ωcd(γcd)β

α 0

0 0 1
4Ωcd(γcd)

β̇
α̇

 , QBA =

0 0 0

0 −1
2Qj

iδβ
α 0

0 0 1
2Qi

jδβ̇ α̇

 ,

(4.17)

as well as the Lorentz and SU(8) curvatures,

Ra
b := DΩa

b + Ωa
cΩc

b , Ri
j := DQij −

1

2
QikQkj . (4.18)

Typically, the superspace Bianchi identities determine the latter curvatures in terms of the

torsion tensor. One then finds that imposing suitable constraints on the tangent space

components TCB
A of the torsion tensor prove to define the supergeometry. However, the

situation is more subtle in exceptional superspace. The main reason is that the curvature

tensors we have introduced above are not actually the natural curvature tensors from the

point of view of superspace. By this, we mean that some of them do not possess natural

expansions in terms of the superspace frame EA.

It turns out to be more illuminating to first consider the curvature two-form Fm.

Recall that under external diffeomorphisms

δAM
m = ξNFNMm +Mmn∇nξNENaEMa ,

where we have used ∂nξ
N = ∇nξN . We would like to rewrite this expression as a covariant

external diffeomorphism. A covariant external diffeomorphism is defined in terms of the

tangent space parameter ξA = ξMEM
A as

δcov(ξA) = δ(ξM )− δLorentz(ξ
NΩN

ab)− δSU(8)(ξ
NQNij) . (4.19)

For the vector fields, the additional transformations do not contribute, but nevertheless

the transformation rule takes a different form when rewritten in terms of ξA:

δcov(ξ)AM
m = ξN F̂NMm +Mmn∇nξaEMa −Mmnξa∇nEMa , (4.20)

where we have defined

F̂NMm := FNMm + 2MmnE[N
a∇nEM ]a . (4.21)

This expression for F̂m proves to be the superspace analogue of the component modified

field strength introduced in (3.11).15 Recall that the motivation for introducing this mod-

ified field strength in components was that, upon redefining the constrained two-form, it

was this modified field strength that possessed the twisted self-duality relation. The anal-

ogous statement in superspace is that F̂m will be the tensor that is constrained in order

to define the supergeometry. That is, it will be chosen to possess a sensible expansion16

F̂NMm = EN
BEM

AF̂BAm , (4.22)

15One can trade ∂n for ∇n in (4.21) as the connection terms drop out.
16Of course, because the supervielbein is assumed to be invertible, one can always define FBAm :=

EB
NEA

MFNMm. The problem is that one finds a contribution to FBam of the form MmnEB
N∇nENa

that is difficult to make sense of upon reducing to components. No such contribution to F̂BAm occurs.
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where (as we will discuss in the next section) the tangent space components F̂BAm are set

equal to other covariant superfields (such as χαijk) or are constrained in some other way,

e.g. twisted self-duality (up to fermions) in the case of F̂bam. As at the component level,

the term we have added in (4.21) is not Lorentz invariant because the internal derivative

carries no internal spin connection. But Fm is itself not Lorentz invariant due to the

anomalous Lorentz transformation (4.12) of the constrained two-form. This leads (only)

the top component F̂abm in (4.22) to transform. As in components, we find, for the

inhomogeneous part of the Lorentz transformation,

δanomF̂abij = 2iVmij
(
δa
cδb

d − 1

2
εab

cd

)
∂mλcd = 4iVmij∂mλ−ab . (4.23)

What about the supervielbein? For the vierbein one-form EM
a, it turns out that a

covariant external diffeomorphism leads to the usual expression

δcov(ξ)EM
a = DMξa + ξNTNM

a , (4.24)

which suggests that the vector torsion tensor possesses a sensible tangent space expansion

TNM
a = EN

CEM
BTCB

a , (4.25)

without modification. For the gravitino EM
αi, the situation is more subtle. We find

δcov(ξ)EM
αi = DMξαi + ξNTNM

αi + 2iVmij∇mξN
(
ENβ̇jEM

c − ENcEMβ̇j

)
(γc)

β̇α

− i

2
√

2
Vmjk∇mξNENdEMcχβjki(γcγd)β

α . (4.26)

This can be rewritten as

δcov(ξ)EM
αi = DMξαi + ξN T̂NM

αi

+ 2iVmij∇m
(
ξ̄β̇jEM

c(γc)
β̇α
)
− 2iVmij∇m

(
ξcEMβ̇j(γc)

β̇α
)

− i

2
√

2

(
∇mξdEMc − ξc∇mEMd

)
Vmjkχβjki(γcγd)βα , (4.27)

where we have exchanged ξM in the additional terms for ξA = ξMEM
A. The modified

gravitino torsion tensor in this expression is

T̂αi = Tαi + 2iVmij∇m(Eβ̇j ∧ E
c)(γc)

β̇α − i

2
√

2
Vmjk χβjki(γcγd)βα∇mEd ∧ Ec . (4.28)

As we will see, this leads to a sensible tangent space expansion T̂NM
αi = EN

CEM
BT̂CB

αi.

The internal counterparts to the supervielbein are the two superfields Vmij and χαijk.

While these are not gauge superfields, they also have curvatures naturally associated with

them: their covariant derivatives. Because the 56-bein transforms under external covariant

diffeomorphisms as

δcov(ξ)Vmij = ξMDMVmij , (4.29)
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its covariant derivative should possess a sensible tangent space expansion. As in compo-

nents we take

DVmij = P ijklVmkl , P ijkl = EAPAijkl , (4.30)

to both define the one-form P ijkl valued in the 70 of SU(8) and the SU(8) connection

Qij . However, the fermion superfield χαijk has additional terms in its transformation rule,

suggesting we define the one-form

τ̂M
αijk := DMχαijk + 12i

√
2Vn[ij∇nEMαk] − i

6
εijklpqrs Vnlp∇nEMbχβ̇qrs(γb)

β̇α , (4.31)

so that

δcov(ξ)χαijk = ξM τ̂M
αijk − 12i

√
2Vn[ij∇nξαk] +

i

6
εijklpqrs Vnlp∇nξbχβ̇qrs(γb)

β̇α . (4.32)

This suggests that the one-form τ̂ possesses a natural tangent space expansion, τ̂M
αijk =

EM
B τ̂B

αijk.

For the two-forms, the situation is again somewhat subtle. The transformation for

BNM α is unchanged,

∆cov(ξ)BNM α = ξPHPNM α , (4.33)

suggesting that HPNM α possesses a sensible tangent space expansion. The covariant trans-

formation of BNM m is more involved. Keeping in mind the anomalous Lorentz transforma-

tion (4.12) and the Lorentz connection contribution to covariant diffeomorphisms (4.19),

one finds that

∆cov(ξ)BNM m = ξPHPNMm + 2i EN
aEM

bεabcd ξ
P∇mΩP

cd

− 16i∇mξPEPα̇iE[N
αiEM ]

a(γa)α
α̇

+ 16i∇mξPEP αiE[Nα̇iEM ]
a(γa)α

α̇ . (4.34)

In light of the comments in section 3.2, a more natural form for the covariant variation of

BNM m is

∆covBNM m + 2 Γm
α∆covBNM α = ξPHPNM m + 2i EN

aEM
bεabcd ξ

P∇mΩP
cd

− 16i∇mξPEPα̇iE[N
αiEM ]

a(γa)α
α̇

+ 16i∇mξPEP αiE[Nα̇iEM ]
a(γa)α

α̇ , (4.35)

where Hm is the modification of the field strength Hm,

Hm := Hm + 2 Γm
αHα , (4.36)

which transforms covariantly under internal diffeomorphisms, in contrast to Hm itself. The

form of (4.35) suggests the definition

Ĥm := Hm − iEaEb εabcd∇mΩcd + 8i Ea∇mEαiEα̇i(γa)αα̇ − 8i Ea∇mEα̇iEαi(γa)αα̇ ,
(4.37)
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so that

∆covBNM m + 2 Γm
α∆covBNM α

= ξP ĤPNM m

− 16i ξαi
↔
∇mE[Nα̇iEM ]

a(γa)α
α̇ + 16i ξα̇i

↔
∇mE[N

αiEM ]
a(γa)α

α̇

− 4i ξa
(
εabcdE[N

b∇mΩM ]
cd + 4E[N

αi
↔
∇mEM ]α̇i(γa)α

α̇
)
. (4.38)

Again, the suggestion is that ĤPNM m should possess a sensible tangent space expansion.

4.3 Superspace Bianchi identities

Having now some idea of the relevant superspace curvatures and what combinations of

them should involve sensible tangent space expansions, we turn to a brief discussion of the

Bianchi identities that need to be solved.

We begin with the fields of the p-form hierarchy. As at the component level, the field

strength Fm must obey the Bianchi identity

DFm = −12 (tα)mn∂nHα −
1

2
ΩmnHn

= −12 (tα)mn∇nHα + Ωmn TnαHα −
1

2
ΩmnHn , (4.39)

where we have used the definition (4.37) for Hm. The above form of the Bianchi makes it

apparent that Hm cannot be covariant under internal diffeomorphisms (because ∂nHα is

not), whereas Hm is. Keeping in mind that it is F̂m rather than Fm that will possess a

conventional tangent space expansion, one can rewrite this Bianchi identity as in (3.16)

DF̂m = − 12(tα)mn∇nHα + Ωmn TnαHα −
1

2
ΩmnHn −MmnEa∇nTa +MmnT a∇nEa

− (DMmn)Ea∇nEa +MmnEaEb∇nΩab . (4.40)

The 3-form field strength Hα in turn obeys the Bianchi identity

DHα = −1

2
(tα)mnFmFn − ∂mGmα − (tα)m

nGn
m

= −1

2
(tα)mnFmFn −∇mGmα −

1

3
(tα)n

m TmβGnβ − (tα)m
n Gn

m . (4.41)

In the second line, we have introduced

Gm
n := Gm

n − Γm
αGnα , (4.42)

which unlike Gm
n is a tensor under internal diffeomorphisms. These 4-form curvatures are

further discussed in section 4.5.

The constrained 3-form Hm obeys the Bianchi identity

DHm = ΩrsFr∂mFs + 24(tα)r
n∂m∂nA

rHα + ∂mGn
n + 2 ∂nGm

n . (4.43)
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Its covariant version Hm in turn obeys

DHm = ΩpqFp∇mFq − 2Rm
αHα +∇mGn

n + 2∇nGmn − 2 Tmn
kGk

n

+
1

7
∇mGnα Tnα +

3

7
Gnα∇mTnα − 2Rmn

αGnα . (4.44)

The tensors Tmn
k, Rm

α = dZNRNm
α, and Rmn

α correspond to objects that appear in

the commutators between internal covariant derivatives. They are collected in appendix B.

The Bianchi identities for the supervielbein are a bit more complicated. From the

definition (4.16), one concludes that

DT a = EbRb
a − LFEa , (4.45)

DTαi =
1

4
EβiRcd(γcd)β

α − 1

2
EαjRj

i − LFEαi . (4.46)

Typically in superspace, the torsion Bianchi identity allows one to determine the curvature

tensors Rb
a and Rj

i in terms of the torsion tensor. This is somewhat more subtle in

exceptional superspace because these curvature tensors may now involve terms with internal

derivatives of the supervielbein. This is apparent when considering the Bianchi identities

for the 56-bein, which read (using Rkl
ij = δ[k

[iRl]
j])

D2Vmij = −RklijVmkl − LFVmij =⇒

DP
ijkl = −iVmklLFVmij

Rkl
ij = iVmklLFVmij − P ijrsPrskl

. (4.47)

The second identity defines the SU(8) curvature and involves terms with internal derivatives

on the field strength tensor F (which itself involves internal derivatives of the vielbein).

Finally, we mention the Bianchi identities for the χ curvature, which we leave in the form

D2χαijk =
1

4
χβijkRcd(γcd)β

α − 3

2
χαl[ijRl

k] − LFχαijk . (4.48)

4.4 Constraints and solution of the Bianchi identities

We present here the set of constraints on the various curvatures that provide the solution

to the Bianchi identities. While we have not explicitly checked the higher dimension com-

ponents of (4.46) or (4.48), which provide the explicit form of the Riemann tensor (and

the superspace version of Einstein’s equation), the other Bianchi identities are sufficient to

determine the other curvatures. We leave its full characterization to future work, where

a unified exceptional geometry would be expected to shed light on some of the structure

encountered. While the identities that we need to solve are a good bit more involved

than in conventional superspace, luckily, most of the relations correspond exactly to re-

sults expected from N = 8 superspace [24–26]. We summarize them below. Most of the

computations were achieved using Cadabra [40, 41].

The 56-bein curvature Pijkl. We impose the following constraints on the supercovari-

ant derivative of the 56-bein (4.30):

Pαkijpq = 2
√

2 δ
[i
kχα

jpq] , P α̇k ijpq =

√
2

12
εijpqkrstχα̇rst . (4.49)
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The vector torsion tensor. The vector torsion tensor is constrained so that its non-

vanishing components in tangent space are

Tαi
β̇jc = 2 δi

j (γc)α
β̇ , Tabc =

1

12
εabcdχ

αijk (γd)αα̇ χ
α̇
ijk . (4.50)

The choice of Tab
c is a matter of convention and can be altered by a covariant redefinition

of the spin connection. The choice we expect here is to match the convention used in 4D

gauged supergravity [34], although it is easy to change this. Therefore, the full constraint

on the covariant derivative of Ea can be written as

T a := DEa = − 1

24
εabcdEb ∧ Ec χαijk (γd)αα̇ χ

α̇
ijk + 2Eαi ∧ Eβ̇ (γa)α

β̇ . (4.51)

The two-form curvature Fm. The two-form curvature Fm is constrained through

the modified field strength F̂m given in (4.21). The lower dimension parts of F̂BAm are

constrained as

F̂βj αim = −8iVmji εβα , F̂ β̇j α̇im = +8iVmji εβ̇α̇ , (4.52a)

F̂βj am = −
√

2 iVmkl(γa)ββ̇χ
β̇
jkl , F̂ β̇jam =

√
2 iVmkl(γa)β̇βχβjkl . (4.52b)

The vector-vector component F̂abm is also constrained so that

F̂+
ab
ij := F̂+

ab
mVmij =

1

144
εijklpqrsχ̄klpγabχqrs , (4.53)

as in gauged supergravity. This is the twisted self-duality constraint in ExFT. Note that

the self-dual part of F̂abij is actually Lorentz covariant, whereas the anti-self-dual part

transforms as (4.23).

The 3-forms Hα and Hm. Analyzing the Bianchi identity (4.40), and comparing terms

with explicit internal derivatives, one determines the tangent space components of Hα =
1
3!E

AEBECHCBAα to be

H γ̇k
βj aα =

8

3
(tα)mnVmjlVnkl(γa)γ̇β , (4.54a)

Hγi baα = −2

3

√
2 (tα)mnVmijVnkl(γba)γβχβjkl , (4.54b)

H γ̇i
baα = −2

3

√
2 (tα)mnVmijVnkl(γba)γ̇ β̇χ

β̇
jkl , (4.54c)

Hcbaα = −1

3
εcbad (tα)mn

(
1

2
VmijVnklPdijkl −

1

2
VmijVnklPdijkl

+ VmikVnjk χαjpq(γd)αα̇χα̇ipq
)
, (4.54d)

with all other components vanishing. From the component perspective, the last equality

is an equation of motion on the three-form field strength and corresponds to its on-shell

duality condition. These expressions agree with those from ungauged 4D N = 8 super-

space [26].
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Determining the constrained 3-form field strength is somewhat more involved. From

the Bianchi identity (4.40), one can directly show that

Hm = iEaEb εabcd∇mΩcd − 8i Ea∇mEαiEα̇i(γa)αα̇ + 8i Ea∇mEα̇iEαi(γa)αα̇

− 2i

3

√
2EaEbEβi(γab)βαχ

αjklPmijkl +
2i

3

√
2EaEbEβ̇i(γab)

β̇α̇χα̇jklPmijkl

− i

9
EaEbEc εabcd

(
PmijklPdijkl +

1

2
∇mχαijkχα̇ijk(γd)αα̇

+
1

2
∇mχα̇ijkχαijk(γd)αα̇

)
. (4.55)

This explicit expression for the field strength Hm is covariant under internal diffeomor-

phisms as required by the Bianchi identity (4.40). However, the presence of the explicit

spin connection means it cannot be covariant under Lorentz transformations, which is as

expected. Note that the definition (4.37) for Ĥm, which we motivated in the hope of it

having a conventional tangent space expansion, indeed leads to such a result:

Ĥm :=
1

3!
EAEBECĤCBAm

= −2i

3

√
2EaEbEβi(γab)βαχ

αjklPmijkl +
2i

3

√
2EaEbEβ̇i(γab)

β̇α̇χα̇jklPmijkl

− i

9
EaEbEc εabcd

(
PmijklPdijkl +

1

2
∇mχαijkχα̇ijk(γd)αα̇

+
1

2
∇mχα̇ijkχαijk(γd)αα̇

)
. (4.56)

From the component perspective, the constraint on Ĥcbam corresponds to an on-shell

duality condition.

The actual (non-covariant) field strength Hm can be found by inverting (4.36):

Hm = iEaEb εabcd∂mΩcd − 8i Ea
(
∂mE

αi − 1

2
qmj

iEαj
)
Eα̇i(γa)α

α̇

+ 8i Ea
(
∂mEα̇i +

1

2
qmi

jEα̇j

)
Eαi(γa)α

α̇ − 2i

3

√
2EaEbEβi(γab)βαχ

αjklpmijkl

+
2i

3

√
2EaEbEβ̇i(γab)

β̇α̇χα̇jklpm
ijkl − i

9
EaEbEc εabcd

(
pm

ijklPdijkl

+
1

2
∂mχ

αijkχα̇ijk(γ
d)α

α̇ +
1

2
∂mχα̇ijkχ

αijk(γd)α
α̇ − 3

2
qml

iχαljkχα̇ijk(γ
d)α

α̇

)
,

(4.57)

where qmi
j and pm

ijkl are given by (2.56).

There are several consistency checks which the expressions for Hm and Hm satisfy:

• The definition of the covariant Hm (4.36) involves the E7(7) connection, which as

we have discussed contains undetermined pieces. These drop out from the Bianchi

identity (4.40) when the explicit expressions for Hm and Hα are used, as well as the

expression (3.29) for the E7(7) connection.
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• Hm is a constrained tensor on its m index, obeying the conditions (2.4). However,

Hm does not unless the E7(7) connection is also constrained. As this involves unde-

termined pieces, this may or may not be the case.

• Because of the underlying non-Lorentz invariance of the two-form field strength,

the curvature Hm has the appropriate anomalous Lorentz transformation, consistent

with (4.12),

δHm = D
(
iεabcdE

aEb∂mλ
cd
)
. (4.58)

The gravitino torsion tensor. The modified gravitino torsion tensor T̂αi, defined

in (4.28), is constrained so that its lower tangent space components are

T̂γk βj
αi = 0 , (4.59a)

T̂ γ̇kβj
αi = 0 , (4.59b)

T̂ γ̇k β̇j αi =
√

2 εγ̇β̇χαkji , (4.59c)

T̂βjc
αi =

1

8
(χ̄iklγaχjkl)(γcγa)β

α , (4.59d)

T̂ β̇jc
αi =

1

8
(γcγ

ab)β̇αF̂abij −
1

1152
εijklpqrs(χ̄klpγ

abχqrs)(γabγc)
β̇α (4.59e)

+ i(γc)
β̇αVmklPmijkl − (γc)

β̇αA1
ij

=
1

8
(γcγ

ab)β̇α F̂abij −
1

8
(γabγc)

β̇α F̂abij + i(γc)
β̇αVmklPmijkl − (γc)

β̇αA1
ij .

Because the internal covariant derivative ∇m does not carry any internal spin connection,

the modified tensor T̂αi has an anomalous Lorentz transformation; this is reproduced by

the constraints above due to the field strength F̂abij . Also, because ∇m does depend on

the internal E7(7) connection, T̂αi depends on the precise choice of internal connections

even though Tαi := DEαi does not. This is apparent above in the appearance of both

Pmijkl and component A1
ij of the E7(7) torsion tensor. However, one can check that the

undetermined pieces of the internal GVP drop out of Tαi itself. This is the superspace

version of the observation in [22] that the 1280 component of the SU(8) connection drops

out of the SUSY transformation of the gravitino.

As a consequence of the Bianchi identities, in particular the Fm Bianchi identity (4.40),

the top component T̂cb
αi itself obeys several constraints. Its self-dual component is fixed as

T̂+
ab
αi =

√
2

12
P[a

ijkl(γb])
α̇αχα̇jkl +

√
2

24
εabcd Pcijklχα̇jkl(γd)α̇α +

√
2

8
χαijkF̂+

ab jk , (4.60)

whereas the spin-1/2 part of its anti-self-dual component is

T̂−ab
αi(γb)αα̇ =

√
2

12
A2

i
jklχ

αjkl(γa)αα̇ +

√
2

24
Pbijklχβ̇jkl(γbγa)

β̇
α̇ + i

√
2

2
Vmjk∇mχαijk (γa)αα̇

− i
√

2

3
VmijPmjklpχαklp(γa)αα̇ + i

√
2

4
VmjkPmjklpχαilp(γa)αα̇

+

√
2

1728
χ̄ijkχlpq χαrst(γa)αα̇ εjklpqrst . (4.61)
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These correspond to the gravitino equations of motion in the underlying component theory.

Note that T̂ab
αi itself is not Lorentz covariant, although Tnm

αi is. This is because it is Tnm
αi

itself that is directly related to the gravitino equations of motion.

The χ curvature. The curvature τ̂M
αi is defined in (4.31), and it takes values in tangent

space as

τ̂βl
αijk = −3

4

√
2 δ

[i
l (γab)β

αF̂abjk] −
√

2

24
δβ
αεijkpqrstχ̄pqrχstl

− 6i
√

2 δβ
αVnpqPnpq[ijδlk] − 8i

√
2 δβ

αVnplPnijkp − 2
√

2 δβ
αA2l

ijk , (4.62a)

τ̂ β̇l αijk = 2
√

2(γa)
β̇αPaijkl . (4.62b)

The spin-1/2 part of its top component τ̂a
αijk is constrained as

τ̂a
αijk(γa)αα̇ =

1

6
A2

[i
lpq ε

jk]lpqrst χα̇rst +
i

3
εijklpqrsVmrs∇mχα̇lpq

− 2iVmrsPmijktχα̇rst − 6iVmr[iPmjk]stχα̇rst + 6iVm[ijPmk]rstχα̇rst

+
1

4
χ̄ijkχrst χα̇rst −

3

4
χ̄r[ijχk]st χα̇rst +

1

48
εijklpqrsF̂abrs χβ̇lpq(γab)

β̇
α̇ (4.63)

corresponding to the χ equation of motion. As with the gravitino torsion components,

these constraints arise most directly by analyzing the Fm Bianchi identity (4.40). Here

as well the specific choice of connection terms in ∇n influences the χ curvature. The

absence of an internal Lorentz connection is reflected in the appearance of F̂abij , and the

dependence on the precise E7(7) connection is reflected by the appearance of Pmijkl and

the generalized torsion component A2l
ijk. As with the gravitino curvature, one can check

that the undetermined pieces of the internal GVP drop out of Dχαijk.

4.5 The G curvatures

For the sake of completeness, we record here a number of results related to the 4-form field

strengths Gmα and Gm
n in superspace. These arise by solving the Bianchi identities (4.41)

and (4.44), which provided for us a consistency check on our solutions for Hα and Hm. As

when one solves for the H field strengths using the F Bianchi identities, there is ambiguity

in these solutions having to do with the kernel of the projector appearing on the right-hand

side of the Bianchi identity. To put it more simply, to solve for the 4-form curvatures G,

we must implicitly make a choice for the 4-form potentials of the tensor hierarchy, as these

have not yet appeared in any curvatures. It is interesting that the superspace versions of

the G curvatures that we will give below possess on-shell duality conditions that do not

reduce to the ones given in (2.40) and (2.43), and thus must correspond to a redefinition

of one or more of the 4-form potentials.

The superspace curvature Gmα, which is in the 912, enjoys like Hα a standard tangent

space expansion with components

Gβj αi ba
m
α = −32i

3
(γab)αβ Vmik VnjlVpkl (tα)np , Gβ̇jαi ba

m
α = 0 , (4.64a)
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Gαi cba
m
α =

14i

3

√
2 εabcd(γd)α

α̇ (χα̇jkl Vniq Vrqj Vskl) tβrs P912n
β
α
m , (4.64b)

Gdcba
m
α =

7i

3
εabcd

(
χαijkεαβχ

βrstVrkrVsstVnij

+ χα̇ijkε
α̇β̇χβ̇rstVr

krVsstVnij
)
tβ
rs P912n

β
α
m + 24i εabcdZmα

(4.64c)

where Zmα is a purely scalar expression determined only by derivatives of the coset fields.

In terms of the Weitzenböck connection, it can be written most simply as

Zmα =
1

288

(
tβk

rT̊pqsMnpMkqMrs + 7 tβk
qT̊pqkMnp

)
P912n

β
α
m , (4.65)

entirely in terms of the Weitzenböck torsion and the internal metric. Note that this does

not coincide with the bosonic expression (2.40) given in section 2. This suggests that these

two bosonic results for Gmα must differ by a redefinition of a 4-form potential. We will

show this below. The fact that this form of the expression seems to more naturally arise in

superspace is quite remarkable for the following reason. In a Scherk-Schwarz reduction of

the type we will discuss in section 6, the Weitzenböck torsion is replaced by the embedding

tensor, and the above result is then proportional to the variation of the scalar potential of

gauged supergravity with respect to the embedding tensor. It is expected that the D-form

field strengths of gauged supergravities should be equal to this quantity, see e.g. the D = 3

discussion of [42].

The compact expression (4.65) can be rewritten as

Zmα =

[
Qβij

(
i

8
VnkiA1jk +

i

8
VnkjA1

ik +
1

8
VnkiVmjlQmkl +

1

8
VnkjVmilQmlk)

+ Pβijkl
(
− 7i

144
VnlpA2p

ijk − 7

36
VnlpVmpqPmijkq −

7

48
VnlpVmijQmpk

)
+ Pβijkl

(
7i

144
VnlpA2

p
ijk −

7

36
VnlpVmpqPmijkq +

7

48
VnlpVmijQmkp

)]
P912n

β
α
m ,

(4.66)

where Qα and Pα are the SU(8) projections of (tα)m
n, see (3.28). In the latter expression,

we have done two things. First, we have exchanged T̊ built from the Weitzenböck connec-

tion for T built from the generic E7(7) connection Γ. Remember this carries undetermined

pieces, corresponding to freedom to redefine Qm and Pm, which now appear explicitly. We

have subsequently rewritten T in terms of the SU(8) tensors A1 and A2.

The reason for rewriting Zmα in this way is to emphasize that it is not SU(8) invariant,

with the internal connection Qmij appearing explicitly. The SU(8) transformation of Zmα
leads to a transformation of Gmα itself,

δGmα = iEaEbEcEdεabcd

[
1

36
PαijklVmijVnkp∂nλpl +

1

12
PαijklVmipVnjk∂nλpl

−Qαij
(

1

18
VmjkVnil∂nλlk +

5

72
VmjkVnkl∂nλli +

1

24
VmklVnik∂nλj l

+
1

48
VmklVnkl∂nλj i

)
+ c.c.

]
(4.67)
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Because there is no internal derivative on a frame field, this can only arise from a non-

covariant SU(8) transformation of one of the constrained 4-form potentials DQPNMm
pq.

Extrapolating from the pattern of the 2-form and 3-form potentials, this field should obey

the section condition on m and the upper pair of indices pq should live in some particular

representation of E7(7) in the product 56×56 = 1 + 133 + 1463 + 1539. It is not hard to

show that all but the 1463 are in principle present, meaning that they are projected out

from the right-hand side of the H Bianchi identities. (It may be that they are not actually

required to ensure gauge invariance of the field strengths.) Writing these three fields as

Dm, Dm
α, and Dm

np, their full contributions to the field strengths Gmα and Gm
n are

Gmα = · · ·+ 7P912
β
n
m
α

(
κβγ ΩnpDp

γ +Dp
qn (tβ)q

p
)
, (4.68a)

Gm
n = · · ·+ Ωnp(∂mDp − ∂pDm) + 12 ∂pDm

β (tβ)pn + 4 ∂mDp
β (tβ)pn

+ 2 ∂pDm
pn +

2

3
∂mDp

pn . (4.68b)

In order to generate the anomalous SU(8) transformation (4.67), one should assign the

following anomalous transformation to Dm
np,

δDn
pq =

i

4!
EaEbEcEd εabcd

(
− ∂nλijVpikVqkj + ∂nλj

iVpikVqkj
)
. (4.69)

This is an intriguing result, because it seems very similar to what we found for the con-

strained 2-form, where it seemed necessary to assign an anomalous Lorentz transforma-

tion (4.12).

This anomalous SU(8) behavior seems to be at the root of the difference between the

bosonic part (4.65) of the superform Gmα and the purely bosonic expression (2.40) for

Gmα. Namely, there seems to be a tension between maintaining SU(8) invariance and

maintaining covariance under internal diffeomorphisms. We derived the expression (2.40)

in a formulation with only an internal metric and no explicit 56-bein; it was not possible

to violate SU(8) invariance, and we were led to an expression that transforms anomalously

under internal diffeomorphisms. In deriving the superform Gmα above, manifest E7(7)

diffeomorphism covariance was assumed everywhere and led to an expression that violates

SU(8) invariance. As it turns out, one can write down the bosonic shift in Dm
pq that

exchanges (2.40) for (4.65):

∆Dm
pq =

i

4!
EaEbEcEd εabcd

×
(
∂mV [pijVq]ij + ∂mV [p

ijVq]ij +
1

56
Ωpq(∂mVnijVnij + ∂mVnijVnij)

)
. (4.70)

It is easy to see that this induces the anomalous SU(8) transformation discussed above.

For completeness, we also give the rather complicated expression for Gmn that we

found in superspace. As with Hm, it is useful to separate out a part Ĝmn that possesses a
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conventional tangent space expression from the rest:

Gm
n − Ĝm

n = 8EaEbEαi∇mEβj(γab)αβVnij − 4EαiEβjEa∇mEa εαβVnij (4.71)

+

√
2

3
EaEb∇mEcEαiεabcd(γd)αα̇χα̇ijkVnjk

+
√

2EaEb∇mEbEαi(γa)αα̇χα̇ijkVnjk

− 5
√

2

9
EaEbEc∇mEαiεabcd(γd)αα̇χα̇ijkVnjk

+ EaEbEc∇mEc
(
i

8
εabdeF̂den −

1

144
(γab)αβχ

αijkχβpqrεijkpqrstVnst
)

+
i

6
εabcdE

aEbEc∇m∇pEdMpn

+
i

9
εabcdE

aEbEc∇mEd
(
PpijklVpijVnkl +QpijVpikVnjk

)
+
i

3
εabcdE

aEbEc∇pEd
(
PmijklVpijVnkl +QmijVpikVnjk

)
+ c.c. (4.72)

The conventional part Ĝmn = 1
4!E

AEBECEDĜDCBA m
n has non-vanishing pieces

Ĝcbaαi m
n = 6

√
2 εabcd(γd)α

α̇

(
2

9
χα̇ijkPmjklpVnlp

− 4

9
χα̇jklPmjklpVnip −

2

18
∇mχα̇ijk Vnjk

)
, (4.73a)

Ĝcba
α̇i
m
n = −6

√
2 εabcd(γd)α

α̇

(
2

9
χαijkPmjklpVnlp

− 4

9
χαjklPmjklpVnip −

2

18
∇mχαijk Vnjk

)
, (4.73b)

Ĝdcba m
n = 24i εabcd

(
i

18
χαijkεαβχ

βlrs Pmijkl Vnrs

− i

432
χαijkεαβ∇mχβlpqεijklpqrsVnrs + c.c.

)
+ 24i εabcdZmn .

(4.73c)

The last term Zmn gives the purely bosonic part of Ĝmn and involves the rather unwieldy ex-

pression17

Zmn = − 1

96
QmijQpjiMpn +

1

9
VnijVpik∇mQpkj +

1

9
VnijVpkl∇mPpijkl

+
i

8
A1ijQmkiVnjk −

i

48
A2i

jklQmjiVnkl +
i

36
A2i

jklPmjklpVnip

+ Pmijkl
(

1

9
PpijkpVppqVnlq +

1

9
PpijpqVnpqVpkl −

1

18
PpijpqVppqVnkl

− 1

36
QppiVnjkVplp +

1

36
QppiVnjpVpkl

)
17The ∇m in ∇mQnij is to be understood to carry the same SU(8) connection as if Q were a tensor.
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+
1

12
QmpiPpijkl

(
VnjpVpkl − VnjkVplp

)
+QmijQpjk

(
1

24
VnklVpil +

1

8
VpklVnil

)
+ c.c. (4.74)

As with Hm, much of the structure is determined by requiring that the undetermined parts

of the various connections cancel when one computes Gm
n from Gmn. The expression for

Gm
n can be recovered by setting Γ = 0, Q = q, and P = p in the expression for Gmn. We

should also add that the expression for G̊mn (that is, with the Weitzenböck connection) is

quite simple as Q̊m and P̊m both vanish.

The bosonic part of Gm
n must coincide with the one given in (2.43) after some redef-

inition of the 4-forms. We have already seen for Gmα that the redefinition is restricted

to the constrained 4-forms, in particular (4.70) for Dm
np. No redefinition was needed for

Dm
α, but we have not checked if one is needed for Dm. (The latter constrained 4-form is

absent in Gmα.)

5 Component results from superspace

Here we verify that the use of the proposed generalized superdiffeomorphisms and con-

straints on torsion and curvatures produce the component results.

5.1 Component fields and supersymmetry transformations

First, we must identify the component fields in terms of the various superfields. For the

component one-forms, the correct procedure is to identify them as the θ = dθ = 0 part of

the superspace one-form. Formally, this corresponds to the pullback of the inclusion map

embedding spacetime into superspace. For the vierbein, this amounts to

ea := Ea|θ=dθ=0 =⇒ ea = dxmem
a , em

a(x, y) := Em
a(Z)|θ=0 . (5.1)

For the gravitino, it is conventional to include an additional factor of 2,

ψα
i := 2Eα

i|θ=dθ=0 =⇒ ψmα
i(x, y) = 2Emα

i(Z)|θ=0 . (5.2)

For all other one-forms, we make the analogous choices, i.e.

Am
m(x, y) := Am

m(Z)|θ=0 , Bmn α(x, y) := Bmn α(Z)|θ=0 ,

Bmn m(x, y) := Bmn m(Z)|θ=0 , (5.3)

for the fundamental one-forms, and similarly for the composite one-forms,

ωm
ab(x, y) := Ωm

ab(Z)|θ=0 , Qmij(x, y) := Qmij(Z)|θ=0 . (5.4)

All other component fields correspond to θ = 0 parts of identically named superfields. For

example, χα
ijk(x, y) := χα

ijk(Z)|θ=0, and so forth.

To derive their symmetry transformations, we must compute their transformations

under covariant external diffeomorphisms where the diffeomorphism parameter, written in
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tangent space, takes the form ξA := ξMEM
A = (0, εαi, εα̇i). Let’s discuss first how this

works with the vierbein and gravitino. From (4.24) and (4.50), we find for the vierbein

δEM
a = 2EM

βjεγ̇k(γ
a)β

γ̇δj
k + 2EMβ̇jε

γk(γa)γ
β̇δk

j , (5.5)

which reduces to the component result, rewritten in four-component notation,

δem
a = ε̄jγ

aψm
j + ε̄jγaψmj . (5.6)

From (4.27) and (4.59), we find

δEM
αi = DM εαi + 2iVmij∇m

(
εβ̇jEM

c(γc)
β̇α
)

+ EMβ̇jεγ̇k
√

2 εγ̇β̇χαkji +
1

8
EM

cεβj(χ̄iklγaχjkl)(γcγa)β
α

+
1

8
EM

cεβ̇j(γcγ
ab)β̇α F̂abij −

1

8
EM

cεβ̇j(γ
abγc)

β̇α F̂abij

+ iEM
cεβ̇j(γc)

β̇αVmklPmijkl − EMcεβ̇j(γc)
β̇αA1

ij . (5.7)

Lowering and suppressing the spinor index, and then reducing to the θ = dθ = 0 part gives

the gravitino supersymmetry transformation

δψm
i = 2Dmεi − 4iVmij∇m(γmεj)−

√
2 ε̄jψmk χ

ijk +
1

4
(χ̄iklγaχjkl) γaγmε

j

+
1

4
γabγmεj F̂abij −

1

4
γmγ

abεj F̂abij + 2γmεj

(
A1

ij + iVmklPmijkl
)
. (5.8)

For the 56-bein, (4.30) and (4.49) lead to

δVmij = 2
√

2 ε̄iχjklVmkl +

√
2

12
εijklpqrs ε̄pχqrsVmkl (5.9)

whereas for χ (4.32) and (4.62) imply

δχijk = −2
√

2Paijkl γaεl − 12i
√

2Vn[ij∇nεk] +
3
√

2

4
F̂ab[ij γabεk] −

√
2

24
εijkpqrstχ̄pqrχstl ε

l

− 2
√

2A2l
ijk εl − 6i

√
2VnpqPnpq[ij εk] − 8i

√
2VnpqPnijkp εq . (5.10)

For Am
m, we combine (4.27) with (4.52) to recover

δAm
m = 4iVMij ε̄

iψm
j − i
√

2VMij ε̄kγmχijk + c.c. (5.11)

For the adjoint-valued two-forms, (4.33) and (4.54) lead to

∆Bmnα = −2

3

√
2 (tα)mnVmijVnkl ε̄iγmnχjkl −

8

3
(tα)mnVmjlVnkl ε̄k γ[mψn]

j + c.c. (5.12)

For the constrained two-forms, (4.38) and (4.56) lead to

∆Bmnm + 2 Γm
α∆Bmnα = −8i ε̄i γ[m∇mψn]i + 8i∇mε̄i γ[mψn]i

+ 8i ε̄i γ[m∇mψn]
i − 8i∇mε̄i γ[mψn]

i

− 4i

3

√
2 ε̄iγmnχ

jklPnijkl +
4i

3

√
2 ε̄iγmnχjklPnijkl . (5.13)
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Above, we have recovered the SUSY transformations of em
a, Vmij , and Bmnα in the

form of (2.46). For the gravitino, χijk, and Bmnm, one must keep in mind that the above

rules involve the redefined field B′mnm (which we have denoted in section 4 and onward

without a prime) and so one should compare instead with (3.20). Aside from higher

fermionic corrections, some deviations arise in these transformations having to do with

allowing the internal GVP to take a more general form. For example, in comparing with

the gravitino transformation (5.8), one finds in addition to (3.20), two explicit higher-order

fermion terms, one implicit higher-order fermion term (the second F̂abij term, which is

on-shell related to a fermion bilinear via (4.53)), and the last two terms involving the A1

component of the E7(7) torsion tensor and the non-metricity Pmijkl, which vanish under

the internal GVP assumptions made in sections 2 and 3.

We emphasize that as in [22] one can confirm that all of the undetermined components

of the internal connections drop out from the above transformations. This is most easily

seen by using (3.33) to rewrite Γ in terms of the Weitzenböck connection, isolating the

undetermined pieces in the fields Qmij and Pmijkl. The latter two fields then cancel out

of all equations.

5.2 Composite connections and supercovariant curvatures

The supersymmetry transformations discussed above involve several composite quantities

— the spin connection, the SU(8) connection, the covariant field strength F̂abij — and

their component definitions need to be given for the component SUSY transformations to

be fully realized.

From the constraints on the torsion two-form, one determines the component external

spin connection by projecting (4.51) to spacetime,

2D[men]
a = 2D[men]

a + 2ωmn
a = ψ̄[m

iγaψn]i +
1

12
εmn

ab χ̄ijkγbχijk , (5.14)

and solving for ωm
ab in the usual way. One similarly obtains the component SU(8)

from (4.30),

DmVnij = DmVnij +Qmk [iVnj]k

=

(
em

aPaijkl +
√

2 ψ̄m
[iχjkl] +

√
2

24
εijklpqrs ψ̄mpχqrs

)
Vnkl , (5.15)

and inverting the relation to solve for Qmij . Both expressions for ωm
ab and Qmij match

those of ungauged N = 8 supergravity upon replacing ∂m → Dm. Note that this expression

defines Paijkl to coincide with the supercovariant one-form of ungauged N = 8 supergravity,

where it is usually denoted P̂aijkl.
The supercovariant field strength for the vector fields arises by projecting (4.21) to

components, using the constraints (4.52), and solving for F̂abm as

F̂abm = ea
meb

nFmnm + iVmij
(

4 ψ̄aiψbj +
√

2ψ̄[a
kγb]χijk

)
− iVmij

(
4 ψ̄a

iψb
j +
√

2ψ̄[akγb]χ
ijk
)
−Mmne[a

m∇nemb] . (5.16)
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It is this quantity that obeys the twisted self-duality condition (4.53), equivalently written

F̂abm =
i

2
εabcd ΩmnMnk F̂cd k . (5.17)

Although we don’t need them to realize the SUSY transformations, it is worth giving

the explicit formulae for the supercovariant 3-form field strengths of the 2-form fields. The

supercovariant form of Hmnpα corresponds to the lowest component of the superspace

tensor Habcα, which is

Habcα = ea
meb

nec
pHmnpα +

√
2 (tα)mn

(
VmijVnkl ψ̄[a

iγbc]χ
jkl + c.c.

)
+ 4 (tα)mnVmjkVnik ψ̄[a

iγbψc]j . (5.18)

The constraint (4.54d) corresponds to the on-shell duality equation

Habcα = −1

6
εabcd (tα)mn

(
VmijVnklPdijkl − VmijVnklPdijkl − 2VmikVnjk χ̄jpqγdχipq

)
(5.19)

which is a natural generalization of the bosonic result (2.33).

For the constrained two-form, the supercovariant form of its field strength corresponds

to the lowest component of Ĥabcm, which is a component of the superspace tensor Ĥm

defined in (4.37). Using the constraints (4.56), we find

Ĥabcm = e[a
meb

nec]
p
[
Hmnpm + 2 Γm

αHmnpα + 6i εmnef∇mωpef

+ 12i ψ̄m
iγn∇mψpi − 12i ψ̄miγn∇mψpi

+ 2i
√

2 ψ̄m
iγnpχ

jkl Pmijkl − 2i
√

2 ψ̄miγnpχjkl Pmijkl
]
, (5.20)

where the on-shell duality equation is given by

Ĥabcm =
2i

3
εabcd

(
PmijklPdijkl +

1

2
χ̄ijkγd

↔
∇mχijk

)
. (5.21)

This generalizes the bosonic result (2.34), where one must take care to note that the terms

involving the internal and external spin connections, ∂mωn
ab −Dnωm

ab, corresponding to

a mixed internal/external Riemann tensor Rmn
ab, have been eliminated in different ways:

the former by absorption into the definition of Habcm, and the latter by redefining B to B′.

6 Consistent Scherk-Schwarz reductions in superspace

It has already been shown in [19] that the (bosonic) E7(7) ExFT admits a consistent Scherk-

Schwarz reduction to gauged supergravity with an embedding tensor related to the twist

matrices associated with the reduction, provided the twist matrices themselves obey the

section condition. It is no surprise that a similar statement can be made connecting E7(7)

ExFT superspace with N = 8 superspace with an arbitrary embedding tensor. We sketch

the construction here for two reasons. First, with the more generic internal GVP we have

– 38 –



J
H
E
P
0
1
(
2
0
1
9
)
0
8
7

advocated, the connection between ExFT and gauged supergravity becomes completely

transparent. Second, to our knowledge, the corresponding N = 8 superspace with generic

embedding tensor has not actually appeared explicitly in the literature, although it is by

no means difficult to construct it directly from the component results [34].

In complete analogy to [19], a generalized Scherk-Schwarz reduction in superspace

arises by assuming that the y-dependence of any superfield is sequestered into two special

fields, a so-called twist matrix Um
M(y) and a scale factor ρ(y); hereafter we refer to these

collectively as twist matrices. We employ M, N, P, · · · to denote the “flat” E7(7) 56-plet indices

of gauged supergravity.18 For a superfield Φm of weight λ, carrying a single fundamental

E7(7) index, we call a covariant twist one for which

Φm(x, θ, y) = ρ−2λ Um
M ΦM(x, θ) , (6.1)

with a straightforward generalization to different E7(7) representations. Nearly every su-

perfield is covariantly twisted, e.g.

EM
a(x, θ, y) = ρ−1EM

a(x, θ) , (6.2a)

EM
αi(x, θ, y) = ρ−1/2EM

αi(x, θ) , (6.2b)

Vmij(x, θ, y) = Um
M VMij(x, θ) , (6.2c)

χα
ijk(x, θ, y) = ρ1/4 χα

ijk(x, θ) , (6.2d)

AM
m(x, θ, y) = ρ−1 (U−1)M

mAM
M(x, θ) , (6.2e)

BNM α(x, θ, y) = ρ−2 Uα
β BNM β(x, θ) . (6.2f)

The exception is for the constrained p-form fields, e.g. BNM m, which we will de-

scribe shortly.

The twist matrices cannot be chosen arbitrarily. Rather, they must obey the following

two conditions

7
[
(U−1)M

m(U−1)N
n∂mUn

P
]
912

= ρXMN
P ≡ ρΘM

α(tα)N
P , (6.3)

∂n(U−1)M
n − 3ρ−1∂nρ (U−1)M

n = 2 ρ ϑM , (6.4)

where XMN
P and ϑM are constant matrices. These correspond to the two components of the

embedding tensor of gauged supergravity, with XMN
P = ΘM

α(tα)N
P corresponding to the 912

component [34] and ϑM corresponding to the 56 component associated only to trombone

gaugings [43]. Provided one can choose twist matrices in this way, one can show that the

two pieces of the embedding tensor, XMN
P and ϑM, obey the quadratic constraints [19].

In order to convert the various ExFT formulae, it is useful to eliminate the ambiguity

inherent in the internal GVP. The easiest way to do this is to choose the Weitzenböck

connection where Γ̊m
α is determined entirely in terms of the derivative of the 56-bein with

Q̊mij and P̊mijkl both vanishing. Because of the ansatz made for the coset fields, it is easy

to see that the E7(7) connection is given purely by the twist matrices

Γ̊mn
p = ∂mUn

P(U−1)P
p . (6.5)

18These “flat” indices should not be confused with the SU(8) tangent space indices ij and ij which arise

when one contracts with Vmij or Vmij .
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In particular, it follows that the torsion tensor is

T̊mnp = ρUm
M Un

NXMN
P (U−1)P

p . (6.6)

Considering the torsion tensor as an internal tensor of weight λ = −1/2, we identify its

“flattened” version as the embedding tensor. It is also straightforward to show that the

covariant derivative of any superfield obeying the covariant twist ansatz (6.1) is

∇̊nΦm = ρ−2(λ−1) Un
N Um

M

(
4

3
λϑNΦM

)
. (6.7)

This generalizes easily to any other E7(7) representation carried by Φ. Thus, covariant

derivatives of covariantly twisted objects just map to the trombone part of the embedding

tensor, multiplied by a factor of 4
3λ.

The notable exception to the covariant twist ansatz is the constrained two-form BNM m

(and the higher constrained p-form fields). The appropriate ansatz, given in component

form in [19], can be motivated by considering a covariantized version of BNM m,

BNMm = BNM m + 2 Γm
αBNM α . (6.8)

This redefined 2-form is the natural potential associated with the 3-form field strength

HPNM m that we have been employing. For example, the field strength superform Fm can

be rewritten

Fm = dAm +An∇nAm +
1

4
(24 tαmntα rs − ΩmnΩrs)A

r∇nAs −
1

2
AnApTnpm

− 12 tαmn∇nBα + Ωmn Tn
αBα −

1

2
ΩmnBn , (6.9)

in terms of B. Above, we have converted all internal derivatives to covariant ones. Here

we are using a generic E7(7) connection, but now we will specialize to the Weitzenböck

connection. The reduction ansatz for B, when the Weitzenböck connection is chosen, can

be simply written as

B̊NMm(x, θ, y) = 0 . (6.10)

It is straightforward now to apply the reduction ansatz to all of the various curvature

superforms. For example, the field strength superfield FM becomes

FM = dAM +
2

3
ϑNA

NAM − 1

6
ΩMNϑN ΩRSA

RAS − 1

2
ANAPXNP

M

− 16 tαMNϑNBα + ΩMNΘN
αBα , (6.11)

as expected for gauged supergravity [43]. Note that there is no longer any difference

between FM and F̂M. Now the superspace constraints on FM are just given by (4.52)

and (4.53), with the index m replaced by M. Similar considerations apply to the higher

p-form field strengths in the tensor hierarchy (with the exception of the constrained field

strengths discussed below). For example, the field strength Hα of gauged supergravity will
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obey the same constraints (4.54), although its explicit form in terms of the potentials will

now involve the embedding tensor as in (6.11).

For quantities that are covariant under internal diffeomorphisms, it is useful to first

fully covariantize any internal derivatives. In particular, the external covariant derivative

D of any superfield that transforms covariantly under internal diffeomorphisms is altered

as follows. For the prototypical superfield Φm of weight λ discussed above,

DNΦm := ∂NΦm − LANΦm = ∂NΦm − L∇ANΦm −ANnTnmpΦp . (6.12)

Now covariantly twisting quantities and specializing to the Weitzenböck connection, this

becomes

DNΦM = ∂NΦm − 2λϑKAN
KΦM − 8ϑKAN

LPK
L
N
MΦN −AN NXNM

PΦP . (6.13)

The last term is the usual embedding tensor contribution, whereas the middle two terms

correspond to trombone contributions.

For the vierbein EM
a, the new torsion tensor T a = DEa is unchanged. Similarly,

the constraints on DVMij = P ijklVMkl exactly match the superspace ExFT results. For the

gravitino EM
αi, we define Tαi = DEαi, and using the definition (4.28) of T̂αi with its

ExFT constraints (4.59), leads to the gauged supergravity constraints

Tγk βj
αi = 0 , (6.14a)

T γ̇kβj
αi = 0 , (6.14b)

T γ̇k β̇j αi =
√

2 εγ̇β̇χαkji , (6.14c)

Tβjc
αi =

1

8
(χ̄iklγaχjkl)(γcγa)β

α , (6.14d)

T β̇jc
αi =

1

8
(γcγ

ab)β̇αFabij −
1

1152
εijklpqrs(χ̄klpγ

abχqrs)(γabγc)
β̇α

+ (γc)
β̇α(2Bij −A1

ij) (6.14e)

It helps to recall here that A1
ij in (4.59) corresponded to a specific component of the E7(7)

torsion tensor. Adopting the Weitzenböck connection and making the reduction ansatz

converts this to the corresponding component of the embedding tensor. The trombone

contribution Bij := iVMijϑM arises from the second term in the definition of T̂αi. We also

emphasize that taking the Weitzenböck connection has eliminated all factors of P and Q.

For the one-form χ curvature, ταijk := Dχαijk, we recover the constraints

τβl
αijk = −3

4

√
2 δ

[i
l (γab)β

αFabjk] −
√

2

24
δβ
αεijkpqrstχ̄pqrχstl

− 2
√

2 δβ
αA2l

ijk − 4
√

2 δβ
αδl

[iBjk] ,

τ β̇l αijk = 2
√

2(γa)
β̇αPaijkl . (6.15)

Using these constraints, one can recover the expected SUSY transformations of the com-

ponent gravitino and χ field.
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Because of the structure of the generalized Scherk-Schwarz reduction, where group-

valued twist matrices govern the entirety of the y-dependence, consistency of the re-

duced theory is straightforward. The only meaningful check is to ensure that the trivial

ansatz (6.10) for BNM m is consistent with the other ansätze, where a general (x, θ) depen-

dent piece remained. This amounts to checking that the curvature associated with BNM m

actually vanishes. Although we have not discussed this explicitly, it is relatively straight-

forward to show that Hm can be defined directly in terms of Bm and corresponds to the

covariantization of its exterior derivative. Now upon specializing to the Weitzenböck con-

nection and making the ansätze discussed above, one can see that H̊m does indeed vanish.19

(The same is true for G̊mn, ensuring that the constrained 3-forms drop out as well.)

In summary, the constraints discussed above characterize the structure of gauged su-

pergravity in superspace.

7 Conclusions

In this paper we have provided the superspace formulation for E7(7) exceptional field theory.

We have shown how the external diffeomorphisms and local supersymmetry transforma-

tions can be understood in a unified fashion as superdiffeomorphisms. In doing so, we have

found that a redefinition of constrained 2-form potential is necessary, and it provides a

geometrical framework in which the internal Lorentz connection is removed everywhere.

Interestingly, a similar field redefinition in E8(8) exceptional field theory, this time in-

volving a constrained 1-form, allowed a reinterpretation of the theory as a Chern-Simons

theory [38]. As an application of our superspace E7(7) ExFT, we have performed a gener-

alized Scherk-Schwarz reduction to obtain the superspace formulation of maximal gauged

supergravities parametrized by an embedding tensor.

The ideas of this paper are expected to be applicable to all other exceptional field

theories. Two challenging future directions are as follows. The first is an application of our

results to the construction of actions for particle, string and brane actions as suitable sigma

models in which the target space manifold is the superspace we have constructed here. The

second is to aim for a further unification. Although we have combined supersymmetry and

external diffeomorphisms, they remain distinct from internal diffeomorphisms. A master

formulation should exist where these emerge as different parts of a single set of gener-

alized (super)diffeomorphisms. In such a formulation, including fermions and their local

supersymmetry transformations, it would be interesting to understand better the reason

for the redefinitions we have encountered and whether it is indeed essential for some of the

constrained p-form fields to adopt anomalous R-symmetry transformations.
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A Conventions

The Lorentz metric is ηab = diag(−1, 1, 1, 1) and the antisymmetric tensor εabcd is imag-

inary, with ε0123 = −i. We employ the pseudotensor εmnpq := em
aen

bep
ceq

d εabcd, which

introduces some factors of e = det em
a versus corresponding formulae in [22].

A.1 Spinor conventions

We employ both four-component and two-component conventions. Our two-component

conventions follow mainly Wess and Bagger [39]. Left-handed spinors are denoted with

two-component Greek indices α, β, γ, · · · , while right-handed spinors are denoted with dot-

ted indices α̇, β̇, γ̇, · · · . Spinor indices are raised and lowered using the antisymmetric

tensor εαβ ,

ψβ = εβαψα , ψα = εαβψ
β , εαβε

βγ = δγα , ε12 = ε21 = 1 , (A.1)

and similarly with dotted indices. A complex four-component Dirac spinor Ψ decomposes

into left-handed and right-handed spinors ψα and χα̇. Its charge conjugate Ψc decomposes

into χα = (χα̇)∗ and ψα̇ = (ψα)∗ so that Ψ and its Dirac conjugate Ψ̄ are given by

Ψ =

(
ψα
χα̇

)
, Ψ̄ =

(
χα , ψα̇

)
. (A.2)

For a Majorana spinor, χ = ψ above. Our 4D gamma matrices obey

{γa, γb} = 2ηab , (γa)† = γa , γ5 = −iγ0γ1γ2γ3 . (A.3)

They decompose as

γa =

(
0 (γa)αβ̇

(γa)α̇β 0

)
, γ5 =

(
δα
β 0

0 −δα̇β̇

)
. (A.4)

The two-component matrices (γa)αα̇ are formally identical to i(σa)αα̇ where σa obey the

same relations as in [39], i.e.

(γa)α̇α := εα̇β̇εαβ(γa)ββ̇ . (A.5)

Antisymmetric combinations of γ matrices are

γab = γ[aγb] =

(
(γab)α

β 0

0 (γab)α̇β̇

)
, (A.6)

where (γab)αβ = εβγ(γab)α
γ is symmetric in its spinor indices and similarly for (γab)α̇β̇ =

εα̇γ̇(γab)γ̇ β̇ . These obey the duality properties

1

2
εabcdγ

cd = −γ5γab ,
1

2
εabcd(γ

cd)α
β = −(γab)α

β ,
1

2
εabcd(γ

cd)α̇β̇ = +(γab)
α̇
β̇ .

(A.7)
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A.2 SO(1,3) and SU(8) transformations and connections

Lorentz transformations act as

δem
a = λab em

b = −emb λba ,

δψmα
i = λα

βψmβi =
1

4
λcd(γcd)α

βψmβi ,

δψm
αi = −ψmβiλβα = −1

4
λcd ψm

βi(γcd)β
α , (A.8)

Our conventions for SU(8) indices follow [34]. In particular, the SU(8) transformations of

the 8 and 8 involve factors of 1
2 as

δVi = −1

2
λi
jVj , δV i = +

1

2
λj
iV j =⇒ δVmij = λkl

ijVmkl = δk
[iλl

j] Vmkl . (A.9)

The corresponding connections appear in the covariant derivative with a minus sign so that

Dmψni = ∂mψn
i − 1

4
ωm

cdγcdψn
i − 1

2
Qmjiψnj . (A.10)

A.3 Differential forms

Our conventions for differential forms follow the usual superspace conventions. For a p-form

Ω, we write

Ω =
1

p!
dZM1 · · · dZMpΩMp···M1 =

1

p!
EA1 · · ·EApΩAp···A1 . (A.11)

Differential forms and interior products act from the right, so that

dΩ =
1

p!
dZM1 · · · dZMpdZN∂NΩMp···M1 , (A.12)

ıV Ω =
1

(p− 1)!
dZM1 · · ·VMpΩMp···M1 . (A.13)

Whenever superindices M and N are antisymmetrized, this carries a usual grading so that

2V[MWN ] = VMWN − (−1)ε(M)ε(N)VNWM (A.14)

where ε(M) = 0 or 1 depending on if M is a bosonic or fermionic index. The grading can

be understood as arising because the indices M and N have been interchanged from their

ordering on the left-hand side. In a similar way, gradings appear in expressions like (4.22),

which should actually be read as

F̂NMm = EN
BEM

AF̂BAm (−1)ε(B)(ε(M)+ε(A)) . (A.15)

Gradings also arise from pushing super-indices past other fermionic indices. For exam-

ple, (4.26) should be read as

δcov(ξ)EM
αi = DMξαi + ξNTNM

αi

+ 2iVmij∇mξN
(

(−1)ε(M)ENβ̇jEM
c − ENcEMβ̇j

)
(γc)

β̇α

− i

2
√

2
Vmjk∇mξNENdEMcχβjki(γcγd)β

α , (A.16)

as the M index must be pushed all the way to the left and picks up a sign when passing β̇j.
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B Algebra of external and internal derivatives

In analyzing the superspace Bianchi identities, it is useful to employ covariant external and

internal derivatives to maintain manifest internal diffeomorphism covariance. In this ap-

pendix, we summarize the commutation relations of these covariant derivatives. A number

of these formulae have appeared elsewhere (see e.g. [37]), but we present them here in a

unified way in our conventions.

External derivative algebra. Defining the exterior (external) covariant differential

D := d − LA, we have as usual D2 = −LF . Because Fm has weight 1
2 , it follows that

for arbitrary tensor V m,

D2V m = −LFV m = −L∇FV m + FnTnpmV p . (B.1)

The last equation is useful because it allows us to maintain manifest internal diffeomorphism

covariance.

Mixed external/internal derivative algebra. On an internal vector V m of weight λ,

one can show

[DM ,∇m]V n = RMmp
nV p − 2

3
λRMkm

kV n , (B.2)

where the mixed E7(7) curvature

RMmp
n := DMΓmp

n − 12Pnpkl ∂m∂kAMl . (B.3)

Provided the E7(7) connection Γ transforms as a proper affine connection, the mixed E7(7)

curvature transforms covariantly, i.e. as a proper curvature.

Internal derivative algebra. The commutator of internal derivatives V m can be written

[∇m,∇n]V p = −Tmn
r∇rV p +Rmnq

p V q − 2

3
λRmn V

p . (B.4)

While the full right-hand side is a covariant expression by construction, the individual

terms are not. The “torsion tensor” defined by

Tmn
p := 2 Γ[mn]

p − 2

3
Γ[mδn]

p , Γm := Γkm
k , (B.5)

is only a tensor if it is contracted with a constrained vector on the p index, as one finds a

non-covariant part to its transformation,

δncTmn
p = Ynl

pk ∂m∂kΛ
l − Ymlpk ∂n∂kΛl ,

Ymn
kl := 12(tα)mn(tα)kl − 1

2
ΩmnΩkl . (B.6)

It cannot generically be chosen to vanish for this reason, although one can have a situation

where it vanishes always upon contraction with a constrained vector, as in [37]. Note that

the internal covariant derivative ∇m is not necessarily a constrained object.
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Some observations are in order. The object T defined above and the actual E7(7)

torsion tensor T are related by

Tmnp = Tmn
p − YnrpsΓsmr +

1

3
Ynm

pqΓrp
r . (B.7)

These happen to coincide when using the Weitzenböck connection and contracting with a

constrained vector, i.e. T̊mnp∂p = T̊[mn]
p∂p.

The E7(7) “curvature”

Rmnq
p := ∂mΓnq

p − ∂nΓmq
p − Γmq

rΓnr
p + Γnq

rΓmr
p , (B.8)

is also non-covariant, transforming as

δncRmnq
r = δncTmn

r Γrq
p . (B.9)

The scale curvature is

Rmn := ∂mΓkn
k − ∂nΓkm

k , (B.10)

which is indeed covariant. This is not given by a simple contraction of Rmnq
r, but instead by

Rmpn
p −Rnpmp =

4

3
Rmn −∇pTmn

p . (B.11)

Covariant derivatives, their connections, and curvatures. It is straightforward to

modify the definitions of DM and ∇m so that they carry spin and SU(8) connections. That

is, we take

DM := DM −
1

2
ΩM

abMab −
1

2
QMj

iIi
j , (B.12)

∇′m := ∇m −
1

2
Ωm

abMab −
1

2
QmjiIij , (B.13)

where Mab and Ii
j are the Lorentz and SU(8) generators, which act on a spinor Xmi as

MabXmi = 1
2γabXmi and Ik

lXmi = −δliXmk + 1
8δ
l
kXmi. Henceforth, we drop the prime on

∇m. It is now easy to show that

[DM ,∇m]Xn i = −1

4
RMm

abγabXn i +
1

2
RMmi

jXn j −RMmn
pXp i −

2

3
λRMkm

kXn i ,

(B.14)

involving the RMnab and RMni
j , with their obvious definitions. In the body of the paper, we

have taken the internal part of the spin connection to vanish, so that RMn
ab = −∇nΩM

ab.

Curvature relations. As a consequence of the external and internal GVPs,

DMVpij = PMijklVp kl , ∇mVpij = PmijklVp kl , (B.15)

one can show that

RMnpq = 2i
(
RMn kl

ij + PnijrsPMrskl − PMijrsPnrskl
)
V(p

klVq)ij

+ i(DMPnijkl −∇nPMijkl)VpijVqkl − i(DMPnijkl −∇nPMijkl)VpijVqkl . (B.16)
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This condition allows one to determine the E7(7) curvature RMnp
q from the SU(8) curvature

RMn kl
ij = δ[k

[iRMnl]
j] and the mixed curl of P ijkl, or vice-versa, reflecting the ambiguity

in the internal GVP. Similarly, using

D2Vmij = Rk
[iVmj]k − LFVmij , (B.17)

one can determine the two-form DP ijkl and the external SU(8) curvature Ri
j as

DP ijkl = −iVmklLFVmij , Rkl
ij = iVmklLFVmij − P ijrsPrskl . (B.18)

For these last relations, it is helpful to use

LFVmij = L∇FVmij + FnTnmpVpij . (B.19)

Then one can show for example that

Rkl
ij = −P ijrs ∧ Prskl + 12iVmklVnijPnmkl∇kF l + iFnTnklVlklVkij

= −P ijrs ∧ Prskl −
(

12∇pFq (tα)q
p + FnTnα

)
Qαklij . (B.20)

Finally, we mention for the purely internal curvatures that

Rmnp
q =

(
2i∇[mPn]

ijkl + iTmn
rPrijkl

)
VpklVqij

+
(
i Rmnkl

ij − 2iP[m
ijrsPn]rskl

)
VpklVqij + c.c. (B.21)

External derivatives of the E7(7) torsion. One final set of relations prove useful: the

external derivative of the E7(7) torsion tensor. This can be written

DMTnmp = RMnm
p − 12PpmrsRMrn

s + 4PpmrnRMsr
s . (B.22)

From this equation, one can determine the covariant exterior derivatives of A1
ij and A2i

jkl,

DMA1
ij =

1

3
A2

(i
klpPMj)klp + iRMmk

(iVmj)k − 4i

3
PmklpqVmq(iPMj)klp , (B.23a)

DMA2i
jkl =

[
2A1ipPMpjkl + 3A2

j
ipqPMpqkl + 3i RMmi

jVmkl

+ 4iVmip (DMPmjklp −DmPMjklp)− 4iPmipqr PMjpqr Vmkl
]
420

, (B.23b)

where a projection onto the 420 of SU(8) is implied in the last equality.
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