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Integrating Operational and Organizational Aspects in
Interdependent Infrastructure Network Recovery

Camilo Gomez ,1,∗ Andrés D. González,2 Hiba Baroud ,3

and Claudia D. Bedoya-Motta1

Managing risk in infrastructure systems implies dealing with interdependent physical net-
works and their relationships with the natural and societal contexts. Computational tools
are often used to support operational decisions aimed at improving resilience, whereas
economics-related tools tend to be used to address broader societal and policy issues in in-
frastructure management. We propose an optimization-based framework for infrastructure
resilience analysis that incorporates organizational and socioeconomic aspects into opera-
tional problems, allowing to understand relationships between decisions at the policy level
(e.g., regulation) and the technical level (e.g., optimal infrastructure restoration). We focus
on three issues that arise when integrating such levels. First, optimal restoration strategies
driven by financial and operational factors evolve differently compared to those driven by so-
cioeconomic and humanitarian factors. Second, regulatory aspects have a significant impact
on recovery dynamics (e.g., effective recovery is most challenging in societies with weak insti-
tutions and regulation, where individual interests may compromise societal well-being). And
third, the decision space (i.e., available actions) in postdisaster phases is strongly determined
by predisaster decisions (e.g., resource allocation). The proposed optimization framework
addresses these issues by using: (1) parametric analyses to test the influence of operational
and socioeconomic factors on optimization outcomes, (2) regulatory constraints to model and
assess the cost and benefit (for a variety of actors) of enforcing specific policy-related condi-
tions for the recovery process, and (3) sensitivity analyses to capture the effect of predisaster
decisions on recovery. We illustrate our methodology with an example regarding the recov-
ery of interdependent water, power, and gas networks in Shelby County, TN (USA), with
exposure to natural hazards.
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des, Bogotá, Colombia.

2School of Industrial and Systems Engineering, University of Ok-
lahoma, Norman, OK, USA.

3Department of Civil and Environmental Engineering, Vanderbilt
University, Nashville, TN, USA.

∗Address correspondence to Camilo Gomez, Centro para la Op-
timización y Probabilidad Aplicada (COPA), Departamento de
Ingenierı́a Industrial, Universidad de los Andes, Bogotá, Colom-
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1. INTRODUCTION

Infrastructure systems are becoming increas-
ingly interdependent, posing new challenges in
addressing their vulnerability to natural and human-
made hazards. Disruptive events can produce cas-
cading failures throughout multiple infrastructure
systems and economic sectors, ultimately impacting
the communities that rely on the functionality of
these systems. Logistically and financially efficient re-
sponse and recovery strategies are necessary to mit-
igate the impacts of disruptions while maximizing
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Fig. 1. Conceptual framework for the proposed methodology.

benefit at the societal level. The decision processes
required in such recovery problems are complex be-
cause of the multiple stakeholders involved, whose
diverse preferences often lead to competing objec-
tives. In particular, decisions made by infrastructure
operators affect communities and are, hence, subject
to public policy. Consequently, achieving infrastruc-
ture resilience requires solutions that respond to the
perspectives of users, public agencies, and infrastruc-
ture operators.

Some approaches to infrastructure resilience fo-
cus on societal aspects of disaster response and
recovery at a macroscopic level, whereas others
address detailed operational problems, as discussed
in Section 2. Attempting to bridge both views, we
adopt mathematical optimization models that sup-
port operational decisions and enhance them with
capabilities related to the broader societal context,
accounting for organizational and policy-related as-
pects of the entities that use, operate, and regulate
infrastructure systems.

Fig. 1 outlines an optimization problem (right-
hand block) supporting response and recovery deci-
sions, such as prioritization of component repair ac-
tivities at different periods with a cost minimization
objective, and operational constraints. The left-hand
side of Fig. 1 presents societal considerations that,
in general, are not treated in mathematical models
with the level of operational detail of the problem
presented on the right-hand side. The contribution of
the proposed framework consists of connecting these
operational and societal aspects through innovative
variations to mathematical optimization models.

First, we define time-dependent cost structures that
capture how different combinations of operational
and socioeconomic factors may result in different
strategies and recovery trajectories; for instance,
while financial and operational factors make prompt
recovery difficult to achieve, socioeconomic and hu-
manitarian factors make late recovery significantly
expensive due to unavailability of essential services,
temporary displacements, and business interruption,
among others. Second, we propose constraints that
model the potential effect of regulatory measures on
the recovery processes, along with their associated
costs for different actors; this allows to anticipate and
avoid behaviors that may jeopardize key recovery
actions in weak institutional contexts. Third, we
explore scenario-based analyses to assess the influ-
ence of predisaster resource allocation on recovery
trajectories, as postdisaster strategies are highly
limited (or potentiated) by predisaster decisions.

To demonstrate our framework, we adopt the
Interdependent Network Design Problem (INDP)
(González, Dueñas-Osorio, Sánchez-Silva, &
Medaglia, 2016), because of its comprehensive set
of constraints, and the time-dependent feature in-
corporated in González, Chapman, Dueñas-Osorio,
Mesbahi, and D’Souza (2017), which is useful for
our proposals in Section 4.1. However, note that the
proposed methods and analysis could also be used
in conjunction with other recovery-oriented mixed
integer programming (MIP) models (Cavdaroglu,
Hammel, Mitchell, Sharkey, & Wallace, 2011; Lee
II, Mitchell, & Wallace, 2007; Nurre, Cavdaroglu,
Mitchell, Sharkey, & Wallace, 2012). Our proposal
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extends the ideas from González et al. (2017) in two
main ways. First, our contribution focuses on how
operational models can contribute to broader policy
analysis of resilience, rather than focusing on specific
aspects of an optimization problem. In fact, rather
than using optimization to pursue a unique solution
to the operational problem, we use it to explore
the decision space and analyze the type of recovery
strategies that may emerge under different settings
of stakeholders’ interests and policy alternatives. As
a result, our methodology provides the means to
evaluate how infrastructure response and recovery
processes can be shaped by different stakeholders’
perspectives and policy scenarios, without the as-
sumption of an unambiguous, fully defined objective
function associated with a centralized decisionmaker.
Second, we extend the mathematical formulation
with several features, namely: multicriteria objective
and time-dependent parameters capturing societal
factors; novel constraints to incorporate regula-
tion on recovery trajectories; novel constraints to
incorporate the effect of preemptive decisions on
recovery, focusing on the time-dependent availabil-
ity of consumable and nonconsumable resources;
additional constraints (i.e., valid inequalities) that
improve computational performance.

This article is structured as follows: Section 2
presents related work on addressing organizational,
logistical, and socioeconomic aspects in the context
of community resilience, and concerning existing
approaches to infrastructure network recovery.
Section 3 summarizes the key features of the
time-dependent INDP (td-INDP), as one possi-
ble recovery model to demonstrate the proposed
methodology. Section 4 discusses the inclusion of
multiple actors and interests, as well as regulation
and preparedness, within the definition of optimal
recovery strategies for interdependent infrastructure
systems. Section 5 illustrates the use and capabilities
of the proposed framework by presenting a case
study on the recovery of the water, power, and
gas networks in Shelby County, Tennessee, which is
subject to earthquake hazards, due to its proximity to
the New Madrid Seismic Zone, and flood risk, given
its location near the Mississippi River. Section 6
provides conclusions and ideas for future work.

2. BACKGROUND

The treatment of operational problems in in-
frastructure resilience has been intensive in the ar-
eas of optimization and network analyses (Brummitt,

D’Souza, & Leicht, 2012; Dueñas-Osorio, Craig,
Goodno, & Bostrom, 2007; Medal, Pohl, & Rossetti,
2014), as discussed in Section 2.1. The discussion
of broader societal issues regarding human and or-
ganizational factors is primarily explored in social
sciences (as shown in Section 2.2), with engineer-
ing approaches emerging mainly from agent-based
and game-theoretical perspectives (Gomez, Sánchez-
Silva, & Dueñas-Osorio, 2014; Nikolic & Dijkema,
2006; Osman, 2012; Zhang, Peeta, & Friesz, 2005).
Furthermore, survey studies such as Altay andGreen
(2006) and Galindo and Batta (2013) emphasize the
need for approaches to resilience and disaster oper-
ations that account for issues related to stakehold-
ers and organizations. A few studies address such
issues by addressing challenges in the coordina-
tion of humanitarian supply chains (Balcik, Beamon,
Krejci, Muramatsu, & Ramirez, 2010). To the best
of our knowledge, there is novelty and relevance in
proposing a holistic approach that can relate detailed
operational decisions with issues such as competing
interests from different stakeholders, the effect of
regulatory measures, or attitude toward risk.

2.1. Interdependent Infrastructure
Network Recovery

It is vital to develop appropriate tools and tech-
niques to reduce the vulnerability of critical infras-
tructure networks and increase their recoverability
and overall resilience. However, the rapid growth
of infrastructure networks in space and demand, as
well as their increasingly interdependent dynamics
and operation, increases their vulnerability and their
complexity (Havlin, Kenett, Bashan, Gao, & Stan-
ley, 2014). In recent years, there have been diverse
works focusing on understanding andmodeling inter-
dependent infrastructure systems. Rinaldi, Peeren-
boom, and Kelly (2001) studied and characterized
how multiple infrastructure networks are intercon-
nected and classified infrastructure interdependen-
cies into four main categories: physical, geographical,
cyber, and logical. Ouyang (2014) characterized the
different approaches that are used to model infras-
tructure interdependencies into six main categories:
empirical, agent based, system dynamics based, eco-
nomic theory based, network based, and others. In
particular, network-based approaches have been ex-
tensively studied, since they can relate the damage
states of individual components of the systems with
its overall performance (by accounting for the flow
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of commodities through the system of infrastructure
networks).

Lee II et al. (2007) proposed a mathematical
formulation based on mixed integer programming
(MIP) that focused on optimizing the recovery of a
system of infrastructure networks, while modeling
diverse instances of interdependencies, such as
input, mutual, shared, or exclusive dependencies.
However, they did not explicitly consider the diverse
costs associated with the recovery process. Later,
Cavdaroglu, Hammel, Mitchell, Sharkey, and Wal-
lace (2011) presented a mathematical framework
that permitted modeling both the recovery process
of damaged systems of interdependent networks and
the associated job scheduling. However, they did not
consider the existence of diverse limited resources
or the possible savings associated with recovering
multiple colocated components. González et al.
(2017) proposed a general mathematical formu-
lation, denominated the td-INDP. The td-INDP
allows determining the minimum-cost recovery strat-
egy for a system of interdependent networks while
considering multiple operational constraints such
as diverse limited resources, the existence of shared
spaces between multiple colocated components, and
the existence of multiple types of interdependencies.
In particular, the td-INDP uses time-indexed cost
coefficients, which allow modeling costs or penaliza-
tions that change in time while the system’s recovery
evolves. We adopt the td-INDP in this article as a
means to test how the interests of different actors,
regulatory constraints, and logistical conditions
affect “optimal recovery strategies” for interdepen-
dent infrastructure networks. However, note that the
proposed cost functions and other constraints could
be easily adapted and integrated to other mathe-
matical models, such as the one proposed by Cav-
daroglu, Hammel, Mitchell, Sharkey, and Wallace
(2011).

2.2. Organizational Behavior in
Resilience Modeling

The role of communities and organizations re-
garding preparedness for, and recovery from, dis-
asters has been studied for decades (Dynes, 1975).
However, prior work in this area has mostly fo-
cused on social behavior. Several studies highlight
the critical role that social capital plays in disaster
management and hazard mitigation (Murphy, 2007).
More specifically, the success of mitigation strategies
requires shifting the focus toward public participa-

tion and community planning (Mileti, 1999; Pearce,
2003). Community engagement is so important that,
while government and state agencies establish miti-
gation policies, their adoption and the implementa-
tion of corresponding strategies are dependent on
local communities (Godschalk, Kaiser, & Berke,
1998). As a result of communities requesting to be
involved in disaster mitigation and recovery decision
making (Rubin, 1991), many neighborhood emer-
gency programs are starting to flourish that involve
leaders and volunteers contributing to preparedness
and recovery of their communities (for example, the
Home Emergency Response Organization System
[HEROS] in Coquitlam, British Columbia).

Although organizational behavior in disaster
relief has been extensively studied from a qualitative
perspective, it is still considered to be a gap in
infrastructure network recovery modeling (Santos,
Herrera, Yu, Pagsuyoin, & Tan, 2014). Organi-
zational strategies are often referred to in great
detail in government reports without an assessment
of their effectiveness and implication for decision
making (Ouyang, 2014). Most models work under
the assumption of a single decisionmaker optimizing
an objective function. Overlooking the decisionmak-
ers’ perspectives and preferences in infrastructure
preparedness and recovery across multiple interde-
pendent systems may negatively impact the network
performance in the recovery process (Reilly, Samuel,
& Guikema, 2015; Sharkey et al., 2015). Several stud-
ies use agent-based modeling, and systems dynamics
approaches, to address the complexities of decentral-
ized decision processes in infrastructure restoration,
modeling infrastructure systems as complex adaptive
systems (Ouyang, 2014; Rinaldi et al., 2001). Agent-
based modeling involves the definition of agents
(infrastructure systems or components, operators,
users), their characteristics and values, and the rule
according to which they will interact with each
other. A simulation-based model is then developed
to assess the interactions of agents under different
scenarios. Agent-based models have become a
popular choice to model infrastructure interde-
pendence (Barton et al., 2000; Barrett et al., 2010;
Cardellini, Casalicchio, & Galli, 2007; North, 2001;
Rigole, Vanthournout, & Deconinck, 2006). These
models, while able to capture interdependencies at
multiple scales of infrastructure and human agents,
are computationally intensive and highly sensitive to
the definition and assumptions of the agents and the
simulation model, resulting in a lack of flexibility.
On the other hand, system dynamics approaches,
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which rely on causal influence and information flow
through systems, can incorporate utility functions
to capture the impact of decisionmakers on infras-
tructure management strategies (Ouyang, 2014).
Applications of these approaches include analysis of
power and communications sectors interdependen-
cies in emergencies, considering consumer behavior
(Conrad, LeClaire, O’Reilly, & Uzunalioglu, 2006),
and modeling the displacement of people after
hurricane Katrina (Steinberg, Santella, & Zoli,
2011).

In addition to addressing organizational behav-
ior in modeling interdependent infrastructures, ac-
counting for social impact and public participation
in the infrastructure recovery modeling allows for
a better understanding of the implication of deci-
sions made at the policy level for local communities.
Not only are disasters becoming more frequent and
more intense, but they are also expected to result in
more severe social and economic impacts as commu-
nities rely more on infrastructure systems that are
becoming increasingly interconnected through cy-
ber technologies (Robinson, Woodard, & Vanardo,
1998). Also, Quarantelli (1986) argues that shifting
communities from being victims to being resources
helps avoid organizational problems and improves
recovery effectiveness. Therefore, addressing the im-
pact on communities and social systems in infrastruc-
ture recovery modeling is critical. The goal of this
research is to provide amodeling approach for infras-
tructure recovery that accounts for both operators’
perspective and community impacts.

3. OPTIMIZATION OF INTERDEPENDENT
INFRASTRUCTURE NETWORK
RECOVERY

This section presents a general structure of re-
covery models proposed in the literature to contex-
tualize typical objective functions and constraints.
Without loss of generality, the notation is consis-
tent with the INDP proposed by González et al.
(2016) and its time-dependent extension (i.e., the td-
INDP in González et al., 2017), which is an opti-
mization approach to restore damaged infrastructure
networks in which the functionality of nodes may
depend on that of nodes in other networks.

The main variables in the model are
�
wi t and

�
yi jt ,

which are binary decisions on whether to repair node
i , or arc (i, j), at time t , respectively; variables wi t

and yi jt state whether a node or arc is functional at

time t , depending on damage states and repair deci-
sions (i.e., a damaged component does not become
functional unless it is repaired). Variables xi jlt rep-
resent the flow of commodity l through arc (i, j) at
time t , whereas δ+

ilt and δ−
ilt , which appear as auxiliary

variables in González et al. (2017), are crucial in our
analysis, since they represent over- and undersupply
(respectively) of commodity l at node i and time t .
The primary role of δ+

ilt is to keep track of excess com-
modity at production nodes whenever flow cannot be
delivered due to damage at arcs and/or consumption
nodes. For instance, if all arcs were damaged (pro-
hibiting all flows), then δ+

ilt would absorb excess at
production nodes, whereas δ−

ilt would absorb short-
age at consumption nodes, in order to honor the
equality in flow balance constraints. An alternative
modeling approach (without δ+

ilt) can be achieved by
rewriting balance constraints as inequalities.

Expressions O1 through O3 account for terms
that participate in a typical objective function, where
fi j t and qit denote the cost of repairing arc (i, j) and
node i at time t , respectively; ci jlt is the unit cost of
sending commodity l through arc (i, j) at time t , or
in a more general sense, it may represent profits in-
stead of costs for providing commodity flow (which
guarantees a realistic incentive to satisfy demand for
all functional components). Parameters μ+

ilt and μ−
ilt

represent penalties for over- and undersupplied de-
mand of commodity l at node i and time t .

(O1) Recovery:
∑

t∈T (
∑

(i, j)∈A′
k
fi j t

�
yi jt + ∑

i∈N ′
k

qit
�
wi t).

(O2) Operation:
∑

t∈T
∑

l∈Lk
(
∑

i∈Nk
μ+
iltδ

+
ilt+∑

(i, j)∈Ak
ci jlt xi jlt).

(O3) Unavailability:
∑

t∈T
∑

l∈Lk

∑
i∈Nk

μ−
iltδ

−
ilt .

A standard optimization model for recovery of
interdependent networks would, thus, conform to the
following general form:

minimize O1 + O2 + O3, (1)

subject to constraints of different types; namely:

(C1) Flow conservation: A classical network flow
balance condition with additional slack vari-
ables δ+

ilt and δ−
ilt that allow over- and under-

supply (respectively) to model damaged states
of the network without infeasibility.

(C2) Damage effect on flow dynamics: Flow is not
allowed through an arc if any of its end nodes,
or the arc itself, are damaged (damaged com-
ponents are not functional at t = 0).
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(C3) Relationship between functionality and repair
actions: A damaged component (node or arc)
can only become functional after being re-
paired (i.e., relating �wi t and �yi jt with wi t

and yi jt , respectively).
(C4) Interdependence: A node can only be func-

tional if the node(s) upon which it depends are
also functional.

(C5) Resource availability: Incorporate several
types of resources whose scarcity may limit the
execution of repair actions.

(C6) Variables domain: Repair and functionality

variables take binary values (
�
wi t ,

�
yi jt , wi t , yi jt ,

and zst), whereas flow-related variables and
their slacks are continuous (xi jlt , δ+

ilt , and δ−
ilt).

Although most parameters in the original td-
INDP formulation include time indices, the potential
of their time dependence to model restoration and
recovery dynamics is not explored in González et al.
(2017), where parameters have constant values over
time. In Section 4, we exploit this feature to incor-
porate postdisaster dynamics from the perspective of
infrastructure operators and users.

The mathematical formulation in González et al.
(2017) relies on the assumption that, in any of the
networks, repair actions are instantaneous, which
may not necessarily be the case. Incorporating re-
pair times of more than one period (in at least one
network) would require adjustments (e.g., using the
smallest time unit, and including precedence and
continuity constraints, typical of scheduling prob-
lems). However, such adjustments are not necessary
for the analysis proposed in this work. The Appendix
provides an instance of a detailed mathematical for-
mulation of the problem described in this section,
based on González et al. (2017) and updated with the
methodology proposed in Section 4.

4. SOCIETAL-LAYERED
INTERDEPENDENT INFRASTRUCTURE
NETWORK RECOVERY

The proposed methodology incorporates
organizational and socioeconomic factors into
mathematical optimization models that address
operational problems for the restoration of inter-
dependent infrastructure networks, thus enriching
decision processes for systems’ resilience. Section 4.1
explores how tradeoffs between operational and
socioeconomic interests give rise to a variety of
“optimal recovery strategies”; we implement this

by running the optimization model for a set of
objective functions that weight time-dependent
costs differently. Section 4.2 focuses on cases in
which operational interests may compromise societal
well-being, and on the impact of possible regulations
to overcome such situations; we implement this
by running the optimization model subject to con-
straints that model regulatory policies and assessing
their impact on the objective function(s). Section 4.3
explores how predisaster resource allocation may
affect recovery trajectories; we implement this by
running the optimization model for different levels
and types of available resources.

4.1. The Impact of Operational and Socioeconomic
Factors on Recovery Strategies

Prompt recovery often demands a plentiful
allocation of resources in predisaster stages, as well
as a capacity to operate under crisis circumstances
(involving training, extra investments, etc.). Late
recovery, on the other hand, leads to costs related to
lack of access to basic services, temporary displace-
ments, and business interruption. Although both
types of costs are relevant to all actors (operators,
users, policymakers), societal factors (e.g., cultural
and institutional norms, attitude toward risk) can
drive recovery strategies and prioritization in dif-
ferent directions. Accordingly, we classify the terms
in the objective function presented in Equation (1)
into different categories, namely: O1 and O2 refer to
operational costs (i.e., node/arc restoration and flow
transmission), whereas O3 can be related to the
socioeconomic consequence of service unavailabil-
ity. The prioritization of these objectives may be
different for different actors, as well as across so-
cioeconomic contexts. Specifically, weak institutions
and regulations may induce poor restoration and
recovery processes as a result of individual financial
interests in conflict with societal well-being (Am-
braseys & Bilham, 2011; Reid, 2013; Saharan, 2015).

We propose a multicriteria objective function
that allows us to model strategies that follow both
operational and socioeconomic optimality. In the
following sections, we introduce time-dependent
parameters to capture specific postdisaster dynamics.
First, fi j t and qit (cost of repairing arcs and nodes,
respectively) might evolve differently over time
for different operators depending on their level of
organizational and logistical preparedness. Second,
μ−
ilt (penalty on undersupply) can also evolve in a

way that responds to users’ tolerance to the lack
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of service of a specific commodity, depending on
the type of user (e.g., residential and industrial)
and socioeconomic conditions as well. Equation (2)
presents an updated objective function, in which
α ∈ [0, 1] represents how operational and socioeco-
nomic factors are weighted (i.e., larger values of α

favor operational interests, and vice versa).

minimize α ∗ [O1 + O2] + (1 − α) ∗ [O3] (2)

4.1.1. Decreasing Crisis Cost for Operations

Equation (3) defines �(t) as a function that cap-
tures a crisis-induced cost increase � in the immedi-
ate aftermath of a disaster, decreasing back to nor-
mality at a rate λ over time:

�(t) = 1 + �e−λt . (3)

Parameter λ can be interpreted as the opera-
tor’s organizational adaptation capacity (i.e., how
fast the operator can bounce back to normal oper-
ation), which is central to infrastructure resilience.
Stronger capacity can be expected from organiza-
tions with adequate predisaster resource allocation,
personnel training, and expedited administrative and
financial procedures.

We use � to incorporate abnormal organiza-
tional and logistical effects of the postdisaster stage
into the costs of repairing nodes and arcs. The ex-
pressions fit = fi∗�(t) and qi jt = qi j∗�(t) assign the
described time-dependent feature to the static costs
fi∗ and qi j∗.

4.1.2. Increasing Penalty on Service Unavailability

We introduce a parameter μ−
ilt (Equation (4))

that captures negative effects due to unsupplied de-
mand of commodity l at node i at time t (e.g., users’
dissatisfaction, business interruption, temporary dis-
placement). The dynamics of μ−

ilt has several char-
acteristics: an initial value of zero, accounting for
users’ tolerance to unavailability in the immediate
aftermath of a disaster, and a threshold time period
τli , representing the point at which lack of commod-
ity l becomes critical for node i (i.e., when buffers
such as batteries or collected water become insuf-
ficient). And a rate κ at which the dissatisfaction
reaches a steady-state value given by the function’s
numerator. Parameter M− is a rescaling factor based
on an upper bound for reconstruction investment
(Equation (5)) to make μilt comparable with oper-
ational costs (i.e., to balance the terms in the ob-

Fig. 2. Evolution of costs (normalized) over time, driven by: oper-
ational/financial factors (above), socioeconomic/humanitarian fac-
tors (center), and possible aggregation depending on stakeholders’
preferences (below).

jective function). Parameter ηi , on the other hand,
seeks to capture the relative socioeconomic impor-
tance of nodes in the area of interest to determine
adequate priority levels for nodes. Although sev-
eral indices could fit this purpose, we compute ηi as
the Social Vulnerability Index (SoVI) for the cor-
respondent geographical location. The SoVI is built
from information collected at the census-tract level
(data obtained from the Centers for Disease Con-
trol and Prevention/Agency for Toxic Substances
and Disease Registry/Geospatial Research, Analy-
sis, and Services Program), and has been previously
used in infrastructure restoration problems (Barker,
Karakoc, & Almoghathawi, 2018). The index ac-
counts for 15 social factors grouped under four com-
ponents: (i) socioeconomic, (ii) housing composition
and disability, (iii) minority status and language, and
(iv) housing and transportation:

μ−
ilt = (1 + ηi )M−

1 + eκ(t−τli )
, (4)

M− =
⎡
⎢⎢⎢

∑
k∈K

∑
t∈T

⎡
⎣∑

i∈N′
k

qit +
∑

(i, j)∈A′
k

fi j t

⎤
⎦

⎤
⎥⎥⎥ . (5)

Fig. 2 illustrates the cost structures enabled
by the introduced time-dependent functions. From
an operational/financial point of view, disaster-
induced disruptions discourage early restoration ac-
tions, which appear costly in the upper section of
Fig. 2. From a socioeconomic/humanitarian point of
view, failure to restore services that respond to ba-
sic human needs (as well as the overall functioning of
society) rapidly results in negative consequences, as
seen in the middle section of Fig. 2. The cultural and
regulatory context of different societies may reflect
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different combinations of these interests (lower sec-
tion of Fig. 2), and these, in turn, produce different
recovery processes. The role of optimization in the
proposed methodology, unlike in previous works, is
not to provide a prescriptive restoration solution, but
to model and understand how rational actors may re-
spond to different socioeconomic settings (e.g., how
may restoration unfold in societies where operators
lack adaptation capacity, or institutions cannot en-
force efficiency or transparency).

The functions in Fig. 2 are a conceptual repre-
sentation of time-dependent postdisaster processes.
Parameters are not conceived as inherent charac-
teristics of actors, but as a means to capture general
temporal patterns. For example, parameter λ is not
directly mapped to any one characteristic of an orga-
nization’s adaptation capacity; instead, it models the
normalization effect between crisis costs and routine
costs. Similarly, τli and κ do not correspond to spe-
cific users’ variables, but model the transition from a
phase of tolerable interruption to a phase of scarcity
and other major consequences (e.g., sanitation
problems, perished goods, lost revenue). Therefore,
although the functions are sensitive to these param-
eters, the general patterns of these time-dependent
phenomena remain valid. For instance, the transition
to costly consequences might occur on day five rather
than day three, and be more (or less) smooth, but the
rationale and pattern of the phenomenon remains
valid, capturing the fact that decision processes
respond to a society’s (undeclared) way of balancing
the investment necessary to react early and the
need to avoid negative consequences. Further-
more, specific values of λ, τli , and κ may represent
situations in which crisis-induced costs normalize
well before consequences become critical; these
cases do not invalidate our modeling but represent
minor disruptions in which little or no conflict arises
between operational and societal interests. Similarly,
minor disruptions imply smaller cost increases �

and consequences μ−
ilt ; as a result, time-dependent

parameters become plainer and lead the model to
more evident unique solutions, which follows the
logic of a situation close to normal operation.

4.2. The Effect of Regulation on Recovery
Strategies and Outcomes for Actors

Section 4.1 illustrated how societal settings might
give rise to a variety of recovery processes, and
highlighted how a lack of regulation and institu-
tional strength might hinder adequate recovery. We

enhance the td-INDP formulation by adding con-
straints that model potential regulatory policies that
demand different levels of demand satisfaction after
specific periods in the aftermath of a disaster.

Let us consider regulatory constraints that en-
force satisfying at least εe% of the demand by pe-
riod θe, for conditions e ∈ E (e.g., satisfying 50%,
90%, and 97% of the demand by periods 5, 10,
and 15, respectively). It is possible to quantify the
percentage of unsupplied demand at a given pe-
riod (by summing unsupplied demand δ−

ilt for a
commodity l at node i and time t). Equation (6) com-
putes unsatisfied demand as the ratio between cu-
mulative unsatisfied demand δ−

ilt , and the cumulative
demand bilt , both until period θe. This regulatory
constraint enforces that such ratio is no more than
(1 − εe) for a set of pairs: εe, θe:∑θe

t=1

(∑
i∈N

∑
l∈L δ−

ilt

)
∑θe

t=1

(∑
i∈N

∑
l∈Lbilt

) ≤ (1 − εe), ∀e ∈ E . (6)

By incorporating such constraints, it is possible
to assess how a specific policy may affect different
parts of the objective function (i.e., O1 through O3)
and, in turn, different stakeholders. For instance,
a policy demanding unrealistic early demand satis-
faction may improve service availability (O3, more
closely associated with users) at the expense of dis-
proportionate restoration costs (O1, more closely
associated with operators), and vice versa. Opti-
mization, thus, allows an exploration of the deci-
sion space that can help decisionmakers in dismissing
policies that produce undesirable outcomes for any
stakeholders. Finally, aside from modeling regula-
tory policies, these constraints can be used to design
restoration processes that pursue a desired recovery
trajectory, and to determine necessary actions and
resources to achieve it (thus, being able to evaluate
whether its benefits justify its costs).

4.3. The Impact of Preemptive Decisions
on Recovery

Recovery processes are not only affected by
the decisions made in the recovery stage itself, but
they are also highly impacted (either limited or po-
tentiated) by predisaster decisions. Although sev-
eral predisaster decisions are important (retrofitting
components, communicating risk, and training per-
sonnel), we focus on the availability of resources
(financial, material, and human) that directly im-
pact recovery capabilities. We classify resources as
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consumable or nonconsumable. For instance, human
resources and equipment are nonconsumable since
they can be reused at each period; financial resources
and materials, on the other hand, are consumed as
used. Nonconsumable resources (e.g., teams), encap-
sulated in set R, limit the number of restoration
actions that can be executed per period, whereas
consumable resources (e.g., budget), in set R′, limit
the overall actions through the time horizon.

The original td-INDP includes resource con-
straints that are adequate for nonconsumable re-
sources (Equation (7)), where hi jrt and pirt denote
the amount of resource r ∈ R necessary to restore
nodes or links at time t , respectively, and vr t is the
amount of available nonconsumable resource r ∈ R
at time t ∈ T:∑
i∈N′

pirt
�
wi t +

∑
(i, j)∈A′

hi jrt
�
yi jt ≤ vr t , ∀r ∈ R, t ∈ T.

(7)

For consumable resources, we update the td-
INDP with resource constraints that follow an in-
ventory structure that models how resources are
acquired, stored, and consumed throughout the time
horizon. Variables Irt represent the inventory for re-
source r at time period t , Ĩr,0 is a parameter for the
initial amount of resource r , and ρr t represents po-
tential replenishment of resource r at time t (e.g.,
from federal and international funds), which may en-
able further repair actions. Equations (8)–(10) de-
scribe the introduced set of constraints:

Ir0 = Ĩr,0, ∀r ∈ R′, (8)

Irt = Ir,t−1 + ρr t −
∑
i∈N′

pirt
�
wi t −

∑
(i, j)∈A′

hi jrt
�
yi jt ,

∀r ∈ R′, t ∈ T, (9)

Irt ≥ 0, ∀r ∈ R′, t ∈ T. (10)

Themodeling capabilities provided by these con-
straints enable analyses of the impact of predis-
aster resource availability on recovery efficiency,
allowing decisionmakers to evaluate compromises
between preemptive investments and the corre-
sponding decrease in total losses. In Section 5, we ex-
plore a scenario-based analysis to evaluate different
predisaster policies. A two-stage stochastic optimiza-
tion version of such analysis, resembling the work in

Gomez and Baker (2019), is part of ongoing research.
The recovery optimization problem is computation-
ally demanding, and the extensive development to
embed it in a two-stage approach exceeds the scope
of this article.

The Appendix details the incorporation of these
and other minor novel features into the td-INDP and
related models.

5. ILLUSTRATIVE EXAMPLE

We illustrate the proposed methodology with an
example that addresses the recovery of the water,
gas, and power networks in Shelby County, Ten-
nessee, under exposure to seismic hazards due to the
New Madrid seismic zone (NMSZ). The water, gas,
and power networks are represented as graphs with
49, 16, and 60 nodes, and 142, 34, and 152 arcs, re-
spectively, plus a set of 45 physical interdependence
links across networks. This modeling produces opti-
mization problems on the order of 30,000 variables
and 30,000 constraints for each scenario (with vari-
ations due to differing numbers of damaged compo-
nents across scenarios). These graphs represent real
infrastructure networks that are currently operated
by theMemphis light, gas, and water company, which
serves more than 400,000 customers in the City of
Memphis and Shelby County. Our case study is lim-
ited to this unique operator, although future work
aims at including multiple actors. It is worth noting
that the choice of this case study is due to the avail-
ability of network data, and there is no relationship
between the company and the hypothetical behaviors
and strategies described in the article. Fig. 3, origi-
nally presented in González et al. (2017), illustrates
the topology of the networks. Each node has an asso-
ciated socioeconomic vulnerability index, which de-
pends on users’ geographical location and commod-
ity type, as discussed in Section 4.1.

A set of 2,000 recovery experiments was solved,
accounting for 20 objective function weights (α),
equally spaced in the [0, 1] range. Each of these ob-
jective functions is run for 100 realizations of damage
based on the NMSZ hazard, considering earthquake
magnitudes 6, 7, 8, and 9. Realistic information on
the Shelby County network recovery problemwas re-
trieved from previous studies (González et al., 2016;
Hernandez-Fajardo & Dueñas-Osorio, 2011; Song &
Ok, 2010), where data, as well as their gathering and
processing procedures, are detailed. A time horizon
of 20 days is proposed, considering a range of three
weeks to recover the three networks.
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(a) (b)

(c)

Fig. 3. Spatial representation of (a) water, (b) power, and (c) gas networks for Shelby County.

The implementations were coded in Python, us-
ing Gurobi on a personal computer with an Intel
Core i7@2.5GHz processor and a RAM of 8GB.
Solving one instance of our problem for 100 damage
scenarios takes an average of 4 minutes; running for
20 objective function weights, four regulation poli-
cies, and six resource scenarios may take a few hours
(instances with major damage, scarce resources, or
stringent policies are generally slower).

5.1. Restoration Strategies for Different
Societal Settings

Fig. 4 shows illustrative cases of network restora-
tion over time for different weights (α) of the ob-
jective function. The number of repair actions per
period is shown, as well as the progress of percentual
demand satisfaction. Vertical dashed bars indicate,
from left to right, the period at which demand sat-
isfaction reaches 50%, 90%, and 97% (noted θ50, θ90,
and θ97).

The patterns in Fig. 4 evidence how the op-
timization produces less effective restoration pro-
cesses (longer times to achieve demand satisfaction)
as the focus deviates from societal consequences to-
ward operational/financial interests. This pattern is
of special concern in cases in which weak institutions
and regulation may lead to moral hazard (i.e., some-

one having an incentive to make potentially irrespon-
sible decisions when consequences are likely to be
suffered by others), particularly when those in charge
of implementing recovery actions have interests mis-
aligned with societal goals.

5.2. Modeling and Evaluation of
Regulatory Policies

For illustrative purposes, we consider a moder-
ate policy A (EA) and a strong policy B (EB). The
moderate policy (A) demands achieving 50%, 90%,
and 99% of demand satisfaction by periods 5, 12, 18,
respectively; thus, εe = 0.5, 0.9, 0.97 and θe = 5, 12,
18. The strong policy (B) is characterized by εe = 0.5,
0.9, 0.97 and θe = 2, 4, 7. The two policies are tested
under intermediate and operationally oriented objec-
tive functions (i.e., α = 0.4 and 0.9). Since α = 0.4 is
already biased toward socioeconomic outcomes, the
effects of “civic-minded” regulation are not so noto-
rious. We focus on the more interesting α = 0.9, in
which both policies are able to obtain societal benefit
from a hypothetical operationally driven actor (with
different outcomes in terms of cost–benefit).

Fig. 5 illustrates the effects of the strong and
moderate policies on operational and socioeconomic
objectives. The moderate policy (A) can improve
benefit from a socioeconomic perspective (i.e.,
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Fig. 4. Instances of optimal recovery strategies for different weights for actors in the objective function: from left to right, 20%, 50%, and
80% assigned to the operator. Executed repair actions per period (upper section) and satisfied demand over time (lower section).

Fig. 5. Analysis of moderate and strong regulation policies (A and
B) for network restoration. Impact on operational (left) and so-
cioeconomic (middle) outcomes, as well as net gain in terms of
benefit–cost (right).

diminishes aggregate unsatisfied demand over time),
and while such benefit implies a cost, the balance is
convenient (i.e., the net gain is positive). The strong
policy (B), on the other hand, can further improve
societal benefit, but this extra benefit takes a dispro-
portionate toll on operational costs, thus producing a
negative net gain, andmaking the policy unattractive.

Beyond this illustration, the inclusion of reg-
ulatory aspects within comprehensive quantitative
techniques adds value to resilience engineering by
coupling high-level strategic and policy-making de-

cisions with operational and tactical decisions. Also,
policymakers can anticipate how different actors may
respond to potential regulatory conditions (i.e., what
would their optimal reaction be under assumptions
of rationality and perfect information).

5.3. Evaluating the Impact of Preemptive
Decisions

Decisions on adequate preemptive investments
to minimize expected consequences are a central
problem in risk and resilience engineering. We ad-
dress the impact of predisaster resource allocation
on network recovery by subjecting our updated ver-
sion of the td-INDP to different scenarios of resource
availability. Without loss of generality, we assume
that resources are quantified in such a way that one
unit is necessary for one recovery action, and per-
form sensitivity analysis on the possibility of having
one through six resources available (e.g., recovery
crews) from the predisaster stage. Fig. 6(a) shows
how recovery trajectories are affected by resource
availability, where the slowest and fastest recovering
instances correspond to one and six resources, re-
spectively. Moreover, Fig. 6(b) presents marginal
costs and savings associated with each additional unit
of resource. For instance, when passing from one to
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(a)

(b)

Fig. 6. Optimal recovery trajectories depending on available re-
sources from predisaster stage (upper part). Marginal costs (green)
and savings (red) associated with each additional unit of resource
(lower part).

two resource units, unmet demand can be reduced
by over 20%, with an increase of under 10% in ex-
tra costs (more repair actions and flow transmission
are possible with more resources). The marginal sav-
ings consistently outweigh the cost increase when
augmenting the number of resources, but the ben-
efit is more drastic when fewer resources were ini-
tially available. For example, passing from five to six
resources appears less attractive than passing from
three to four, as the obtained benefit is lower. De-
pending on the absolute costs and savings associated
with these increases in resources, it is possible to
quantify the maximum price that should be paid for
every extra unit of resource (i.e., the idea of shadow
price, or dual variable, which is not generally avail-
able in integer problems).

Because the proposed methodology integrates
a broad set of aspects of infrastructure network
recovery, we rely on several assumptions to build
parameters that reflect logistical, organizational, and
socioeconomic features of the problem. In general,
our analysis addresses questions related to macro-
scopic dynamics and behaviors (rather than specific
numeric results); thus, the significance of our contri-
bution holds despite numerical variations that may

appear in solutions due to potential changes in pa-
rameter values.

6. CONCLUSIONS

We propose an optimization-based framework
to analyze how recovery processes in interdepen-
dent infrastructure networks respond to societal fac-
tors such as stakeholders’ interests, institutional and
regulatory contexts, and relationships between pre-
and postdisaster decisions (e.g., resource allocation).
Without loss of generality, we test our framework
on the td-INDP and enhance its mathematical for-
mulation to relate its operational decisions (on re-
pairing components) to broader aspects of disaster
recovery. We incorporate time-dependent parame-
ters that capture specific postdisaster dynamics and
evaluate tradeoffs between operational and societal
factors that drive recovery processes in different di-
rections. We, thus, model how a society’s undeclared
preferences may produce restoration strategies that
favor expensive early actions over the (more) costly
consequences of late recovery, and vice versa.We en-
hance the td-INDP with constraints that model reg-
ulatory (or self-imposed) recovery policies, allowing
analysts to determine their suitability in terms of the
costs and benefits for different actors. Furthermore,
we evaluate the effect of resource availability (pre-
disaster) on the trajectory of recovery.

Improving resilience implies significant expenses
that may discourage decisionmakers’ initiatives to
protect infrastructure and communities. Our con-
tribution focuses on assuring a recovery process
that safeguards the needs of vulnerable communities
through the incorporation of socioeconomic vulner-
ability metrics and the development of models that
help understand and regulate potential conflicts of
interest that compromise adequate recovery in soci-
eties with weak institutional contexts. The proposed
methodology can help evaluate the quantifiable ben-
efits of infrastructure protection investments to jus-
tify and communicate the costs and benefits of such
efforts. As a result, our methodology can help poli-
cymakers by providing informed evaluations of how
potential policies would affect the needs of infras-
tructure operators and users, as well as proposing
standards, best practices, and regulation regarding
preparedness decisions. For instance, our methodol-
ogy can offer support to specify guidelines for regula-
tion and predisaster resource allocation, which highly
impact recovery trajectories, as observed in our nu-
merical results.
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Ongoing research is devoted to mathematically
coupling the recovery process with preemptive stages
including decisions on retrofitting and resource allo-
cation, as well as to improve the quantification of,
and relax assumptions about, organizational and so-
cioeconomic factors.
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APPENDIX A: SOCIETAL-LAYERED td-INDP
(MATHEMATICAL MODEL)

This appendix provides one possible mathe-
matical implementation of the framework described
in Sections 3 and 4. The notation and main struc-
ture of this model follow the td-INDP devised by
González et al. (2017). Section A.1 summarizes the
model’s notation, whereas Section A.3 presents
the full mathematical formulation. The mathemat-
ical formulation relates directly to the modeling
approach described in Section 3, and includes the
updates devised in Section 4 in order to enhance the
approach proposed in González et al. (2017) with a
societal-layered analysis.

A.1. Model Notation

Table AI presents the sets required in our math-
ematical formulation, whereas Tables AII and AIII
describe utilized parameters; Table AII refers specif-
ically to parameters associated with the societal-
layered version of the INDP, whose novelty and rele-
vance is discussed in SectionA.3. Table AIV presents
decision variables, the first one of which is new to our
formulation. It is worth noting that the formulation in
González et al. (2017) considers an additional index
k ∈ K accounting for the network k to which nodes

Table AI. Sets

E Set of regulatory policies
N Nodes before a destructive event
A Arcs before a destructive event
T Periods for the recovery process (time horizon)
S Geographical spaces (which contain the infrastructure

networks)
L Commodities flowing in the system
R Limited resources to be used in the reconstruction process
Rc Consumable resources to be used in the reconstruction

process
K Infrastructure networks
N ∗

k Nodes in network k ∈ K that require fully satisfied demand
to be functional

Nk Nodes in network k ∈ K before a destructive event
N ′

k Destroyed nodes in network k ∈ K after the event
Ak Arcs in network k ∈ K before a destructive event
A′

k Destroyed arcs in network k ∈ K after the event
Lk Commodities that flow through network k ∈ K

Table AII. Parameters Incorporated for the
Societal-layered INDP

μ−
iklt Costs of unsatisfied demand of commodity l in node i in

network k at time t
fi jkt Cost of recovering arc (i, j) in network k at time t
qikt Cost of recovering node i in network k at time t
ηi Measure of socioeconomic vulnerability for node i
α Weight of the objective functions (operator vs. users)
ρr t Rate of replenishment of consumable resource r at time t
εe Desired performance specified by policy e
θe Time period at which policy e enforces certain

performance compliance
κ Rate at which the penalty for unsupplied commodity

increases
τli Users’ tolerance to unsupplied commodity l in days
λ Organizational adaptation capacity in the aftermath of a

disaster

i or arcs (i, j) belong; by assigning unique IDs to all
components, we were able to omit such index (and
reduce the space of variables) in our current con-
tribution. The following notation, however, includes
such index.

A.2. Additional Updates on the Original INDP

The td-INDP, part of the model dynamics,
depends on its unique objective function, thus
producing inconsistencies when focusing on iso-
lated terms. For instance, when dismissing the cost
of sending flow through arcs, spurious flows may
appear. Similarly, when dismissing repairing costs,
components might be unnecessarily repaired more
than once. The following constraints prevent such
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Table AIII. Original td-INDP Parameters

vr t Availability of resource r at time t
hi jkrt Usage of resource r related to recovering arc (i, j) in

network k at time t
pikrt Usage of resource r related to recovering node i in

network k at time t
M+

iklt Costs of excess of supply of commodity l in node i in
network k at time t

φi jkst Indicates if repairing arc (i, j) in network k at time t
requires preparing space s

βikst Indicates if repairing node i in network k at time t
requires preparing space s

γi jkk̃t Indicates if at time t node i in network k depends on
node j in network k̃ ∈ K

gst Cost of preparing geographical space s at time t
fi jkt Cost of recovering arc (i, j) in network k at time t
qikt Cost of recovering node i in network k at time t
ci jklt Commodity l unitary flow cost through arc (i, j) in

network k at time t
ui jkt Total flow capacity of arc (i, j) in network k at time t
biklt Demand/supply of commodity l in node i in network k

at time t

Table AIV. Decision Variables

Irt Inventory of consumable resource r at time t
δ+
iklt Excess of supply of commodity l in node i in network k at

time t
δ−
iklt Unmet demand of commodity l in node i in network k at

time t
xi jklt Flow of commodity l through arc (i, j) in network k at

time t
wikt Binary variable that indicates if node i in network k is

functional at time t
yi jkt Binary variable that indicates if arc (i, j) in network k is

functional at time t
�
wikt Binary variable that indicates if node i in network k should

be recovered at time t
�
yi jkt Binary variable that indicates if arc (i, j) in network k

should be recovered at time t
�
zst Binary variable that indicates if space s has to be prepared

at time t

behavior and contribute to a tighter solution space,
which favors computational efficiency:∑

t∈T

�
wi t ≤ 1, ∀i ∈ N′, (A1)

∑
t∈T

�
yi jt ≤ 1, ∀(i, j) ∈ A′. (A2)

Note that using strict equalities in these con-
straints enforces repairing all damaged components,
which is not currently desired since satisfying unmet
demand does not necessarily require so. Finally, the

formulation inGonzález et al. (2017) considers an ad-
ditional index denoting the network to which a node
or arc belongs; by assigning unique IDs to all compo-
nents, we are able to omit such index and reduce the
space of variables.

A.3. Mathematical Model

The mathematical formulation presented in this
section follows the structure of the td-INDP from
González et al. (2017), and incorporates the follow-
ing updates in order to provide a substantial societal-
layered analysis:

� The objective function is transformed to a mul-
ticriteria function in order to capture the effect
of including the interests of multiple stakehold-
ers (particularly, infrastructure operators and
users). The updated objective function is shown
in Equation (A3). The inclusion (or modifica-
tion) of parameters μ−

iklt , fi jkt , qikt , η, and α

was key in modeling the time-dependent pref-
erences of multiple stakeholders; specifically, λ

is a key parameter that captures the organiza-
tional adaptation capacity of operators after dis-
asters, whereas τli and κ help modeling users’
response to lack of service for specific com-
modities. The incorporation of the constraints
in SectionA.2 was necessary to avoid unrealistic
solutions when transforming the td-INDP to
multiple objectives. These constraints also im-
prove computational efficiency.

� A fundamental update lies in the inclusion of
regulatory constraints that model the effect of
different policies that demand certain perfor-
mance compliance levels from operators. These
are captured in Equation (A4). The inclusion of
set E , and parameters θe and εe, allowed us to
model regulatory policies and their impact on
infrastructure recovery.

� A relevant update consists in the distinction
between consumable and nonconsumable re-
sources, with the former not being accounted
for in the original INDP formulation. Equa-
tions (A17), (A18), and (A22) provide an
inventory structure that models consumable re-
sources that add a realistic dynamics to recovery
problems, in which time-dependent availability
of resources is exploited. The inclusion of vari-
able Irt and parameters ρr t , H, and Ĩ allowed
for a comprehensive modeling of resource avail-
ability and usage.
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Minimize

∑
k∈K

(
α

[ ∑
t∈T |t>0

∑
s∈S

gst�zst

+
∑
t∈T

⎛
⎝ ∑

(i, j)∈A′
k

fi jkt
�
yi jt +

∑
i∈N ′

k

qikt
�
wi t

⎞
⎠

+
∑
t∈T

∑
l∈Lk

⎛
⎝∑

i∈Nk

μ+
ikltδ

+
iklt +

∑
(i, j)∈Ak

ci jklt xi jklt

⎞
⎠

]

+ (1 − α)

⎡
⎣∑

t∈T

∑
l∈Lk

⎛
⎝∑

i∈Nk

μ−
ikltδ

−
iklt

⎞
⎠

⎤
⎦

)
(A3)

subject to:

(C0) Regulatory constraints:∑θe
t=1

(∑
i∈N

∑
l∈L

∑
k∈K δ−

iklt

)
∑θe

t=1

(∑
i∈N

∑
l∈L

∑
k∈K biklt

) ≤ (1 − εe),

∀e ∈ E . (A4)

(C1) Flow conservation:∑
j :(i, j)∈Ak

xi jklt −
∑

j :( j,i)∈Ak

xjiklt = biklt − δ+
iklt + δ−

iklt ,

∀k ∈ K,∀i ∈ Nk,∀l ∈ Lk,∀t ∈ T . (A5)

(C2) Damage effect on flow dynamics:∑
l∈Lk

xi jklt ≤ ui jktwikt , ∀k ∈ K,∀(i, j) ∈ Ak,

∀t ∈ T , (A6)

∑
l∈Lk

xi jklt ≤ ui jktw jkt , ∀k ∈ K,∀(i, j) ∈ Ak,

∀t ∈ T , (A7)

∑
l∈Lk

xi jklt ≤ ui jkt yi jkt , ∀k ∈ K, ∀(i, j) ∈ A′
k,

∀t ∈ T , (A8)

wik0 = 0, ∀k ∈ K, ∀i ∈ N ′
k, (A9)

yi jk0 = 0, ∀k ∈ K, ∀(i, j) ∈ A′
k. (A10)

(C3) Relationship between functionality and repair
actions:

wi t ≤
t∑

t̃=1

�
wi t , ∀k ∈ K,∀i ∈ N ′

k,

∀t ∈ T | t > 0, (A11)

yi jt ≤
t∑

t̃=1

�
yi jt , ∀k ∈ K,∀(i, j) ∈ A′

k,

∀t ∈ T | t > 0, (A12)

∑
t∈T

�
wi t ≤ 1, ∀i ∈ N′, (A13)

∑
t∈T

�
yi jt ≤ 1, ∀(i, j) ∈ A′. (A14)

(C4) Interdependence:∑
i∈Nk

wiktγi jkk̃t ≥ w j k̃t , ∀k, k̃ ∈ K,∀ j ∈ Nk̃, ,

∀t ∈ T . (A15)

(C5) Resource availability:

∑
k∈K

⎛
⎝ ∑

(i, j)∈A′
k

hi jkrt
�
yi jt +

∑
i∈N ′

k

pikrt
�
wi t

⎞
⎠ ≤ vr t ,

∀r ∈ R,∀t ∈ T | t > 0, (A16)

Ir0 = Ĩr,0, ∀r ∈ R′, (A17)

Irt = Ir,t−1 + ρr t −
∑
i∈N′

hr
�
wi t −

∑
(i, j)∈A′

pr
�
yi jt ,

∀r ∈ R′, t ∈ T (A18)

(C6) Geographical preparation:

�wiktφikst ≤ �zst , ∀k ∈ K,∀i ∈ N ′
k,∀s ∈ S,

∀t ∈ T | t > 0, (A19)

�yi jktβi jkst ≤ �zst , ∀k ∈ K,∀(i, j) ∈ A′
k,

∀s ∈ S,∀t ∈ T | t > 0, (A20)

wikt |biklt | ≤ |biklt | − δ−
iklt , ∀k ∈ K,∀i ∈ N ∗

k ,

∀l ∈ Lk,∀t ∈ T , (A21)
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(C7) Variables domain:

Irt ≥ 0, ∀r ∈ R′, t ∈ T (A22)

δ+
iklt ≥ 0, ∀k ∈ K,∀i ∈ Nk,∀l ∈ Lk,

∀t ∈ T , (A23)

δ−
iklt ≥ 0, ∀k ∈ K,∀i ∈ Nk,∀l ∈ Lk,

∀t ∈ T , (A24)

xi jklt ≥ 0, ∀k ∈ K,∀(i, j) ∈ Ak,∀l ∈ Lk,

∀t ∈ T , (A25)

wikt ∈ {0, 1}, ∀k ∈ K,∀i ∈ N k,

∀t ∈ T , (A26)

yi jkt ∈ {0, 1}, ∀k ∈ K,∀(i, j) ∈ A′
k,

∀t ∈ T , (A27)

�wikt ∈ {0, 1}, ∀k ∈ K,∀i ∈ N ′
k,

∀t ∈ T | t > 0, (A28)

�yi jkt ∈ {0, 1}, ∀k ∈ K,∀(i, j) ∈ A′
k,

∀t ∈ T | t > 0, (A29)

�zst ∈ {0, 1}, ∀s ∈ S,∀t ∈ T | t > 0.

(A30)
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