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Multicriteria risk analysis of commodity-specific dock
investments at an inland waterway port
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aDepartment of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee;
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ABSTRACT
Managing risks to critical infrastructure systems requires decision
makers to account for impacts of disruptions that render these sys-
tems inoperable. This article evaluates dock-specific resource alloca-
tion strategies to improve port preparedness by integrating a
dynamic risk-based interdependency model with weighted multicri-
teria decision analysis techniques. A weighted decision analysis tech-
nique allows for decision makers to balance widespread impacts due
to cascading inoperability with certain industries that are important
to the local economy. Further analysis of the relationship between
inoperability and expected economic losses is explored per com-
modity flowing through the port, which allows an understanding of
cascading impacts through interdependent industries. Uncertainty is
accounted for through the use of probability distributions of total
expected loss per industry that encompass the uncertainty of the
length of disruption and severity of the impact that is mitigated by
alternative strategies. A set of discrete allocations options of pre-
paredness plans is analyzed in a study of the Port of Catoosa in
Oklahoma along the Mississippi River Navigation System. The eco-
nomic loss analysis showed that the integration of multicriteria deci-
sion analysis helps in prioritizing strategies according to several
criteria such as gross domestic product (GDP) and decision maker
risk aversion that are not typically addressed when strategies are pri-
oritized according to the average interdependent economic
losses alone.

Introduction and motivation

Critical infrastructure systems, such as electric power networks, telecommunications,
and transportation systems, are essential to economic productivity and the functioning
of society (Department of Homeland Security [DHS] 2013). When such infrastructure
systems are disrupted, widespread inoperability can be felt across many industries that
rely on them. The resilience of these infrastructure systems, generally defined as the
ability of a system to withstand, adapt to, and recover from a disruptive event
(Obama 2013), is an important consideration in infrastructure preparedness planning.
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When investing limited resources to prepare for disruptive events, it is important to
understand the relationship between the amount invested and the efficacy of that invest-
ment to enhance resilience, as measured across the multiple industries that experience
inoperability resulting from a disruptive event such as an attack, accident, natural disas-
ter, or common-cause failure.
In particular, the multimodal transportation system is considered critical due to its

centrality in enabling the flow of commodities and commuter traffic. In 2012, the U.S.
transportation system transported a daily average of 54 million tons of freight valued at
nearly $48 billion (Federal Highway Administration 2014). Currently, over 70% of
goods are moved by truck, but there are growing concerns about highway congestion,
emissions, and bottlenecks (Government Accountability Office 2013; Margreta et al.
2014). A majority of urban areas are seeing worsened measures of congestion, including
the average duration of daily congestion, travel times during peak versus nonpeak peri-
ods, and the variability (or unreliability) of travel time (Federal Highway
Administration 2015). In 2011, the cost of congestion was estimated at more than $120
billion, or nearly $820 for every commuter in the United States (Schrank et al. 2012),
which is primarily calculated from passenger and truck value of lost time and fuel
expended and not fully accounting for the cost of delayed freight shipments.
Inland waterway ports play perhaps an underutilized role in the larger multimodal

transportation system and have potential as a viable alternative that is less expensive,
more fuel efficient, and environmentally friendly (Kruse et al. 2012). Inland waterway
barges expend less than a third of the energy, in British thermal units per ton-mile,
relative to trucks (Kruse et al. 2009). Recognizing the need to reduce road and rail con-
gestions, the U.S. Maritime Administration, a division of the U.S. Department of
Transportation, has called for an investment in inland waterways for general freight
movement (U.S. Department of Transportation 2011). Some pressing challenges that
prevent inland waterway networks from playing a more significant role in multimodal
transportation are aging infrastructure and resulting maintenance delays (American
Society of Civil Engineers 2013). However, there are viable scenarios where inland
waterway networks are successful and could play an important role in the future growth
of the economy (Kruse and Hutson 2010).
The study of the impacts of disruptive events (e.g., natural disasters, attacks, acci-

dents, and other common-cause failures) to inland waterway networks is a relatively
underdeveloped area of research compared to highway and railway transport systems
and coastal ports (discussed subsequently). Due to their aging infrastructure, inland
waterway networks are especially vulnerable to disruptions and in need of investigation.
In 2012, the DHS allocated $1.3 billion to the Preparedness Grant Program and distrib-
uted over $97 million to the Port Security Grant Program (PSGP) to support increased
port-wide risk management (DHS 2012). Risk analysis plays a key role in allocating
resources to ports applying to PSGP for funding.
Several studies have addressed port security (Talley and Lun 2012; Trbojevic and

Carr 2000) and the impacts of disruptive events at coastal ports (Chang 2000; Yip
2008), but little work addresses such problems at inland ports. Further, economic
impact analyses of disruptions to transportation systems primarily deal with highway
and railway transport systems (Gordon et al. 2004; Ham et al. 2005a, 2005b; Sohn et al.
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2004). Pant et al. (2011) integrated a port operations simulation model with a risk-based
interdependency model to quantify the multiregional, multi-industry impacts of disrup-
tions to port operations. MacKenzie, Barker, and Grant (2012) explored the multire-
gional, multi-industry impacts of shipping recovery options (e.g., finding alternate
routes, holding commodities until operability is regained). Pant et al. (2015) evaluated
multiregional, multi-industry impacts of dock-specific closures and subsequent recov-
eries at an inland waterway port. Baroud et al. (2014) integrated the interdependency
modeling paradigm with stochastic decision analysis to assess investment strategies,
highlighting the relationship between preparedness investment and (i) the probability of
a disruptive event, (ii) the severity of the event, (iii) the length of time of recovery, and,
ultimately, (iv) the reduction in multi-industry impacts following the event. The disrup-
tive event can be the result of a natural hazard, a human-made attack, or an accident,
the occurrence and severity of which are governed by probability distributions. Previous
work by Whitman et al. (2015) assessed the dynamic multi-industry impacts of dock-
specific investment alternatives, incorporated with multicriteria decision analysis to
effectively evaluate risk-based preparedness strategies.
This article builds on previous work by integrating the dock-specific approach from

Pant et al. (2015) and the relationship between preparedness investment and multi-
industry impact from Baroud et al. (2014) to provide a more tangible assessment of the
effect of preparedness planning on particular (important) commodities that flow
through the port as proposed in Whitman et al. (2015). The emphasis on dock-specific
investments is important because each dock has special equipment that handles particu-
lar commodities, each of which have different monetary values and are used as inputs
to production by different industries. We treat different plans for preparedness resource
allocation as discrete alternatives, and we make use of a multicriteria decision analysis
technique, TOPSIS, or the technique of order preference similarity to the ideal solution,
to compare these alternatives with industry impacts representing the multiple criteria
weighted by their importance to decision makers. Moreover, an in-depth investigation
of the impact of mitigation strategies on the dynamic inoperability per commodity pro-
vides a more holistic understanding of the proposed framework. We then compare the
rankings with previous results in Whitman et al. (2015) to understand the impact of dif-
ferent historical freight profiles flowing through the port. The following section provides
the methodological background of the interdependency modeling methodology, the
decision analysis technique, and the integrated approach for dock resource allocation
(extending some initial results by Whitman et al. 2015). The next section details a case
study of a disruption of the inland waterway Port of Catoosa in Oklahoma, and the last
section provides concluding remarks.

Methodological background

This section provides a discussion of the components of port preparedness decision
framework: (i) the multi-industry impact model, (ii) the multicriteria decision analysis
technique, and (iii) the approach for dock resource allocation used to evaluate different
investment strategies for port preparedness.
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Interdependency Model

The input–output model is a widely accepted Nobel Prize–winning model to linearly
describe the interconnected relationships of industries (Leontief 1966). The basic inpu-
t–output model is shown in Equation (1). Vector x of size n� 1 corresponds to the total
production outputs of n industries. Matrix A of size n� n corresponds to the propor-
tional interdependence between industries, so Ax is the actual intermediate demand
between industries resulting from producing x. Finally, c provides final consumer
demand. The U.S. Bureau of Economic Analysis (BEA) (2012a) provides extensive inpu-
t–output data at different levels of industry aggregation, and other organizations exist in
other countries to assemble similar commodity flow analyses. Readily available data
make the input–output enterprise a practical approach for measuring economic interde-
pendencies, despite the rigid linear relationship assumed by the model (Santos 2006).
The economic impacts of disruptive events are well studied (Hallegatte 2008, 2013;
Jonkeren and Giannopoulos 2014; Okuyama 2004; Rose 2009).

x ¼ Ax þ c ) x ¼ I�A½ ��1
c: (1)

The input–output model was extended to provide a complementary perspective of
inoperability, or the proportional reduction in functionality due to a disruptive event
(Santos and Haimes 2004). The inoperability input–output model (IIM) is shown in
Equation (2). Inoperability in infrastructure sector (e.g., transport) and industry sectors
(e.g., manufacturing) i, qi; takes on values ranging from 0 to 1, where a value of 0 indi-
cates operation at an as-planned level and a value of 1 suggests completely halted func-
tionality. Vector q represents inoperability, the proportional extent to which a sector is
not productive (unrealized functionality), at time t. c? quantifies disruptions in demands
as the normalized difference in as-planned production and perturbed demand. Matrix
A? is a normalized interdependency matrix describing the degree of interdependence
among sectors. Further details on the calculation of these parameters are found in
Santos and Haimes (2004).

q ¼ A?qþ c? ) q ¼ I�A?½ ��1
c?: (2)

To model the dynamic nature of the onset of inoperability and subsequent recovery,
Lian and Haimes (2006) introduced the dynamic IIM (DIIM), as shown in Equation
(3). With a matrix K, the DIIM models how the inoperability vector, q tð Þ; as well as
the vector of proportional demand reduction, c? tð Þ; changes over time as the system
recovers from a disruptive event.

q t þ 1ð Þ ¼ I�K½ �q tð Þ þ K A?q tð Þ þ c? tð Þ� �
: (3)

To calculate matrix K, diagonal element ki is calculated with a static recovery rate in
Equation (4). Value qi 0ð Þ is the initial inoperability experienced in infrastructure or
industry i following a disruptive event; qi Tið Þ is the desired inoperability state after
recovery, which requires Ti time periods to achieve (qi Tið Þ can be small but nonzero);
and a?ii is the ith diagonal element of the A? matrix.

ki ¼
ln qi 0ð Þ

qi Tið Þ
h i

Ti 1�a?iið Þ : (4)
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Measures of interdependent performance after a disruptive event include (i) qi tð Þ; the
inoperability of infrastructure or industry i at a particular point in time (e.g., some
number of days after a disruptive event); (ii) Qi; the interdependent economic losses
experienced in infrastructure or industry i calculated across a given time horizon, s; cal-
culated as Qi ¼

Ps
t¼1 xiqi tð Þ; and (iii) Q; a cumulative economic measure of the effect

of inoperability across a given time horizon and across all infrastructures or industries,
calculated as Q ¼ Pn

i¼1

Ps
t¼1 xiqi tð Þ:

The IIM and its extensions have been applied to decision-making contexts across
many disruptive event domains, including the aforementioned inland waterway disrup-
tions (Baroud et al. 2014; MacKenzie, Barker, and Grant 2012; Pant et al. 2011, 2015),
inventory policies (Barker and Santos 2010a, 2010b; Galbusera et al. 2014; MacKenzie,
Santos, and Barker 2012), and electric power outages (Anderson et al. 2007; Li et al.
2018; MacKenzie and Barker 2012), among others.

Multicriteria Decision Analysis

Note that Q; the multi-industry economic impact measure discussed previously, sums
economic losses in an unweighted fashion. However, to compare port preparedness
investments strategies, we desire a new measure of interdependent impact that empha-
sizes inoperability and economic losses to particular industries that are important to the
regional economy. As such, we make use of TOPSIS. TOPSIS is based on the philoso-
phy of a compromise solution, providing a ranking of alternatives according to their
shortest distance from the best alternative for a particular criterion and the farthest dis-
tance from the worst alternative for that criterion (Tzeng and Huang 2011).
Consider m alternatives, j ¼ 1; :::;m; which are compared across n criteria, i ¼

1; :::; n: The performance of each alternative with respect to each criterion is contained
in matrix Y ¼ yijð Þ; where yij is the value of the ith criterion for alternative j: In this
work, the alternatives represent the m preparedness strategies that allocate resources to
different docks (discussed in the Illustrative Example section), and the decision criteria
represent impact measures for each of n industries. For example, yij could represent
economic loss for industry i; Qi; calculated for a disruption after the implementation of
preparedness strategy j: The weighting factor, wi; is typically determined by the decision
maker to assign importance to criterion i (this application uses a more objective
regional economic importance weight, as discussed in the Illustrative Example section).
The selection of criteria weights has a significant impact on the final solution and
should be determined by the decision maker with domain experience (Olson 2004).
Performance ratings yij can be normalized if the various performance criteria exhibit

different ranges (e.g., inoperability on [0, 1] along with economic losses in millions of
dollars) with a variety of normalization approaches. The distributive normalization,
shown in Equation (5), has been demonstrated to have most consistent qualities
(Chakraborty and Yeh 2009).

rij ¼ yijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 y

2
ij

q : (5)

Once the performance ratings are normalized, a weighted normalized rating is calcu-
lated as shown in Equation (6):
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vij ¼ wirij (6)

The positive ideal solution has all of the best attainable criteria values for a given
alternative, whereas the negative ideal solution has all worst possible criteria values. The
positive ideal solution, Bþ; is found with Equation (7). Set Cþ represents the set of
benefit criteria, where larger values of the criteria are preferred (e.g., profit, time
between failure). Set C� is the set of cost criteria, where smaller values of the criteria
are preferred (e.g., inoperability, economic losses). Both benefit and cost criteria are dis-
cussed here for completeness, but the decision problem illustrated in the Illustrative
Example section deals exclusively with cost criteria. Equation (7) suggests that the posi-
tive ideal solution consists of those weighted performance ratings that maximize benefit
criteria and minimize cost criteria. Likewise, the negative ideal solution, or the weighted
performance ratings that represent the smallest from set Cþ and largest from set C�; is
provided in Equation (8).

Bþ ¼ vþ1 ; :::; v
þ
n

� � ¼ max
j

vijji 2 Cþ� �
; min

j
vijji 2 C�� �	 


(7)

B� ¼ v�1 ; :::; v
�
mf g ¼ min

j
vijji 2 Cþ� �

; max
j

vijji 2 C�� �	 

: (8)

Once the positive ideal, Bþ; and negative ideal, B�; solutions are determined for each
performance criterion, the Euclidean distance from the positive and negative ideal solu-
tions is calculated for each alternative as shown in Equations (9) and (10):

dþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

vþi �vij
� �2r

(9)

d�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

v�i �vijð Þ2
r

: (10)

The preference order of alternatives can then be generated by ordering the measure
in Equation (11) in descending order where Dj is a measure of the similarity to the
positive ideal solution (scores closer to 1 suggest closeness to the positive ideal solu-
tion):

Dj ¼ d�j
dþj � d�j

: (11)

One major assumption of TOPSIS is the independence of criteria, which might not
be realistic when considering the specific problem addressed in this work. Because the
interdependencies have been modeled with the input–output model described earlier in
this section, TOPSIS might overevaluate correlated performance criteria that are highly
interdependent. For a small number of performance criteria, there are several techniques
to address correlated criteria, such as modifying the distance formula used in Equations
(9) and (10) or modifying the TOPSIS method itself (Bondor and Muresan 2012; C. H.
Chang et al. 2010; Vega et al. 2014). Due to the low number of alternatives m relative
to the number of performance criteria n for the specific application in this article, there
are not enough samples (alternatives) to sufficiently estimate the correlation between
performance criteria, which are thus assumed to be independent.
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TOPSIS is just one of several techniques for comparing discrete alternatives under
multiple criteria. We choose TOPSIS due to its simplicity and its ability to implement a
compromise solution. The choice of decision analysis technique could influence the
ranking of alternatives (Opricovic and Tzeng 2004), though a comparison is not
sought here.

Dock Resource Allocation Approach

To relate port preparedness strategies to resulting inoperability and economic losses, the
simulation used by Baroud et al. (2014) is modified to reflect dock-specific commodity
flows described in Pant et al. (2015). The relationship between the investment and
resulting preparedness of the port is shown in Figure 1 in an influence diagram adapted
from Baroud et al. (2014). From the figure, the amount to invest in the entire port is
assumed to be already determined and is shaded in grey. The cost objective, represented
by a diamond, is the entire amount invested in the port and is not a decision point in
the article but does influence other parameters. The decision to make—how much to
invest in each dock—is represented by a rectangle and will vary by dock for each strat-
egy. Both the total amount invested in the port and the amount invested in each dock
indirectly impact the objective function, which is the expected economic loss per indus-
try. The total amount invested in the port affects three uncertainties: (i) the probability
of a disruptive event occurring, (ii) the recovery time for the port after a disruptive
event has occurred, and (iii) the severity of the disruption. The amount invested will
directly impact the probability of occurrence of a disruption and the severity through a
relationship between a factor of influence of the investment and the parameters of the
probability distribution describing these events. The recovery time is indirectly influ-
enced through the initial impact on industries. The amount invested in each dock also
impacts the extent of damage suffered by each of the industries flowing through the
dock with an additional level of protection for the commodities flowing through the
port. Port-wide disruptions from large-scale events can be short term in nature (e.g., an

Figure 1. Influence diagram describing the infrastructure preparedness investment decision-mak-
ing process.
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accident) or long term (e.g., flooding) and impact the entire port and each dock
differently.
The resource allocation among docks results in a different level of preparedness for

each dock and thus a different level of severity of the effect of a disruptive event. This
level of preparedness is modeled with a factor of influence hi to reflect the level of influ-
ence of an investment by dock, linearly related to the dock investment amount, Ii; and
the maximum amount to be invested, Imax, as shown in Equation (12):

hi ¼ Ii
Imax

: (12)

The factor hi takes on a value between 0 and 1 with larger values corresponding to a
higher level of preparedness. The value Imax is much larger than the total port invest-
ment to reflect the likelihood that the amount invested in the port is not the maximum
amount of protection achievable. These dock-specific investments influence the uncer-
tainty associated with the severity of a disruptive event and are the direct connection
between the amount invested and the impact those investments have on port prepared-
ness. According to Baroud et al. (2014), the probability that a disruption occurs is equal
to 0.02, and it is assumed to decrease exponentially with increasing investment. The
severity of the disruption is defined for each individual dock based on the factor of
influence, hi: The severity of the disruption affects the sample mean of the demand per-
turbation as described by Baroud et al. (2014) for each commodity flowing through the
dock. Docks that have a higher investment amount allocated will suffer less of a
demand perturbation.
The output of this simulation is in the form of a distribution of expected losses EQi

per industry i. The expected value of the distribution of expected losses for each indus-
try is used as criterion i in TOPSIS. To capture the potentially extreme nature of indus-
try impacts, two conditional upper tail values were also considered: the average of the
largest 5% of industry losses (CEQi;0:05) and of the largest 1% of industry losses
(CEQi;0:01) (Baroud et al. 2014; Haimes 2009).
The proposed resource allocation approach assumes that the level of preparedness of

each dock relies on the investment level, as well as the amount and type of commodities
flowing through the dock. Other structural and operational dock characteristics would
normally be explicitly considered in the assessment of the dock preparedness level. The
approach adopted here is general and assumes that the investment can be used to
enhance any dock characteristic, such as improving security infrastructure, access con-
trols, inspection systems, law enforcement agency collaborations, lighting, and personnel
training, among others (Pate et al. 2007).

Illustrative example: inland waterway port

The framework developed in this article is illustrated with a case study of an inland
waterway port disruption at the Port of Catoosa, an inland waterway port in Tulsa,
Oklahoma, along the Mississippi River Navigation System. Four different docks make
up the port, each equipped to handle different specific commodities. The dry cargo
dock handles large items, primarily steel, iron, and machinery. The dry bulk dock han-
dles a variety of loose commodities that are moved by conveyer, such as sand, gravel,
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and fertilizer. The grains dock moves agricultural products such as corn, wheat, and
soybeans. The liquid bulk dock moves liquid products including chemicals, liquid fertil-
izers, and even molasses.
The Port of Catoosa applied to the DHS PSGP for funding in 2012 and was awarded

$380,000 to strengthen the port’s security against disruptive events (DHS 2012). Though
administrators of the Port of Catoosa likely put together a specific application to receive
those funds, a broader set of preparedness plans could have been developed with that
funding amount, dividing resources to the four docks. Discrete investment alternatives
provide a different level of preparedness for each dock, resulting in a different reduction
in inoperability and economic impact for each industry that relies on the port’s com-
modities if the dock is disrupted. This economic impact is distributed among all indus-
tries that are affected by the disruption, but decision makers at the Port may want to
prioritize industries according to their criticality to the Oklahoma economy when decid-
ing where to target their funding.

Assumptions

The input data used to investigate this case study can be divided into two categories:
simulation input and decision analysis input. To simulate the annual flow of commod-
ities through the Port of Catoosa, tonnage values through the individual dock were
derived from the U.S. Army Corps of Engineers and adapted to an economic value
amount from commodity flow surveys (Margreta et al. 2014; U.S. Army Corps of
Engineers 2011). Data from the 2012 benchmark data set from the Bureau of Economic

Figure 2. Estimates of the 2012 annual commerce through specific docks at the Port of Catoosa,
shown in value ($106) and tonnage (103).
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Analysis were used to calculate the A? matrix (MacKenzie, Barker, and Grant 2012;
Pant et al. 2011).
The estimated total annual value of imports and exports (measured in millions of

U.S. dollars) through the Port of Catoosa through each dock in 2012 is shown in Figure
2. The bulk of the valuable freight appears to flow through the liquid bulk dock, with
dry bulk dock commodities having little value. Even though the tonnage through the
grains dock is high, the general dry cargo dock has more value with less tonnage. The
nine industries shown in the figure are part of 62 BEA industry and infrastructure sec-
tors making up this illustrative example. The complete list of 62 BEA industries is
included in Table A1 (see Appendix). In addition, Table 1 provides the total tonnage
and value of commodities moving through the Port of Catoosa in terms of imports
and exports.
The nine dock-specific industries, as labeled by the North American Industry

Classification System (NAICS), that flow through the four docks include primary met-
als, machinery, fabricated metal products, miscellaneous manufacturing, nonmetallic
mineral products, construction, food and beverage products, chemical products, and
petroleum and coal products. Each dock is equipped with specific machinery to handle
the types of commodities associated with it. Preparedness plans allocate resources to
each dock, resulting in different abilities to withstand and recover from disruptive
events and maintain flows of dock-specific commodities.
Ten resource allocation strategies were developed, as shown in Table 2. The max-

imum amount of funding distributed to a dock is $380,000, which corresponds to the
total budget for resource allocation across the port. For example, strategy S7 allocates

Table 1. Estimates of the 2012 annual commerce through specific docks by value at the Port of
Catoosa, in $106 for imports, exports, and total value.
Dock name Description NAICS industry Import value Export value Total value

General dry Primary metals 331 230 5 235
Cargo Fabricated metal products 332 96 14 110

Machinery 333 0 248 248
Miscellaneous manufacturing 339 0 19 19

Dry bulk Nonmetallic mineral products 327 7 8 16
Construction 23 15 0 15

Grains Food and beverage products 311FT 16 183 199
Liquid bulk Chemical products 325 255 241 496

Petroleum and coal products 324 26 427 453

Table 2. Resource allocation investment strategies, including dock-specific allocation (in $103).
Dock

Strategy General dry cargo Dry bulk Grains Liquid bulk Description

S1 380 0 0 0 Prioritize general dry cargo dock
S2 0 380 0 0 Prioritize dry bulk dock
S3 0 0 380 0 Prioritize grains dock
S4 0 0 0 380 Prioritize liquid bulk dock
S5 95 95 95 95 Divide evenly among docks
S6 8 8 133 232 Percentage of tonnage, exports
S7 34 11 95 239 Percentage of tonnage, total
S8 95 4 61 220 Percentage of value, exports
S9 129 8 42 201 Percentage of value, total
S10 57 0 19 304 Combination of alternatives 4, 9
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resources based on the percentage of total commodity flow through each dock measured
in tonnage (thereby investing most in the liquid bulk dock). These investment strategies
will be used to calculate a distribution of expected losses per industry i through 10,000
simulation iterations.
The 10 most important industries to the Oklahoma economy, as determined by state

gross domestic product (GDP) measured in billions of U.S. dollars, are shown in Table
3 (BEA 2012b). The percentage of total state GDP is shown in the fourth column,
which determines the weight, wi, for industry i as referenced in Equation (6).
Oklahoma’s total GDP is valued at $175 billion with the top 10 industries in Oklahoma
representing 60% of overall state GDP. The respective percentages of total state GDP
per industry i for all 62 industries are calculated to parameterize wi for each industry i.
We prioritize the industries that contribute the most to Oklahoma’s economy and
weight all 62 BEA industries by Oklahoma’s state GDP. None of the commodities flow-
ing through the Port of Catoosa are in the top 10 industries of Oklahoma except for
construction (dry bulk dock), but they might be strongly related. For example, oil and
gas extraction is the most profitable industry in Oklahoma and has a strong inter-
dependency with the petroleum products industry that flows through the liquid bulk
dock at the Port of Catoosa. By prioritizing important Oklahoma industries, we achieve
a holistic perspective and the best alternative might not be an obvious decision when
considering economic losses alone.
To account for the uncertainty in the severity of disruptions described in the influ-

ence diagram in Figure 1, Monte Carlo simulation is used to simulate multiple disrup-
tion scenarios and the effectiveness of each of the 10 resource allocation strategies
described in Table 2. The following steps guide the simulation for each iteration and for
each investment strategy (modified from Baroud et al. [2014] to allow for dock-specific
investments):

1. Based on the current resource allocation strategy, calculate the factor of influence for
each dock.

2. Generate a random variable from the power law distribution within the bounds of min-
imum and maximum severity (minimum of 10 days, maximum of 100 days).

3. Given the severity of disruption, dock-specific factor of influence, and elicited values for
c�max and qmaxð0Þ; calculate sample mean, X; and standard deviation, s; of the demand
perturbation.

4. Calculate the parameters of DIIM, which include q 0ð Þ and recovery matrix K (both
impacted by dock-specific factor of influence).

Table 3. 2012 Top 10 subset of 62 BEA industry sectors in Oklahoma (state GDP in $109).
Industry NAICS industry State GDP Percentage of total

Oil and gas extraction 211 20.5 12
State and local government GSL 19.0 11
Real estate 531 13.7 8
Retail trade 44RT 10.4 6
Wholesale trade 42 9.7 6
Federal government GF 8.0 5
Construction 23 7.0 4
Ambulatory health care services 621 5.6 3
Administrative and support services 561 5.1 3
Hospitals and nursing and residential care facilities 622HO 5.0 3
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5. Using sample mean, X; and standard deviation, s; from step 3, compute estimates for
beta distribution which describes demand perturbation. Draw random elements from this
distribution for each industry element in the demand perturbation vector.

6. Compute inoperability vector at each point in time.
7. Compute expected value of industry-specific total economic loss as the product of loss

and probability p of a disruptive event, EQ Tð Þ ¼ Q Tð Þp:

The above steps are repeated for 10,000 iterations and for each investment strategy
results in an industry-specific cost distribution EQ per strategy. The mean values and
conditional means for industry-specific total economic losses are used in TOPSIS to
rank resource allocation strategies based on shareholder specific weighting criteria.

Results

The economic losses experienced in each sector are due to a wide range of factors
related to demand perturbation and production inoperability. These factors can be
endogenous (e.g., the disruption of port or dock operations) or exogenous (e.g., the cost
and availability of alternative supply sources and modes of transportation). The prob-
ability distribution governing the disruption severity and demand perturbation is a the-
oretical representation of the different factors resulting in economic losses for
each industry.
To visualize the impact of the investment on total expected losses, a sample distribu-

tion of expected losses when no investment is made and for strategy 1 is shown in
Figure 3a. The expected economic loss for all sectors was calculated by running 10,000
simulations of the probability distribution of severity under two preparedness strategies:
(i) no preparedness investment and (ii) S1, where all resources are invested in the dry
bulk dock. Figure 3a is a histogram of the frequency of expected economic losses for
these 10,000 simulations under each of the respective strategies. The colored dashed ver-
tical lines represent the mean and conditional means of each respective distribution. As
shown in Figure 3a, the port investment for strategy 1 has a large impact on the total
expected losses relative to no investment at all. Figure 3b alternatively plots sample dis-
tributions of total economic losses for strategy 3 and strategy 10. As shown in the fig-
ure, the distributions look similar with expected values and conditional means much

Figure 3. Normalized frequency of the expected total economic losses across all industries compari-
son for certain scenarios for 10,000 simulations. (a) No investment (blue) and strategy 1 (orange) and
(b) Strategy 3 (blue) and strategy 10 (orange).
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closer together than those shown in Figure 3a. In order to determine whether the sam-
ple distributions of total economic losses obtained from Monte Carlo simulation are
statistically different, a pairwise comparison of the 10 distributions was done using a
two-sample Kolmogorov-Smirnov (KS) test. Also known more generally as the Smirnov
test, the KS test quantifies the distance between empirical distributions and is one of
the most useful and general nonparametric method for comparing two distributions
(Berger and Zhou 2005). Despite the similarity in distributions, results from the KS stat-
istic report p-values less than a significance level of a¼ 0.001 and are shown in Table 4.
Thus, all 10 sample distributions of total expected economic losses obtained from the
10 decision alternatives are statistically different from each other. The distributions for
the other strategy types are similar in behavior in that all have lower mean and condi-
tional means compared to no investment. Each run simulates a disruption scenario, and
the overall impacts are multiplied by the probability of the disruption occurring. The
severity of a disruptive event is modeled with the power law distribution. Extreme
events of low likelihood but high consequence that might be of particular interest to
decision makers are effectively modeled with a power law distribution (Clauset et al.
2007; Johnson et al. 2006). Baroud et al. (2014) considered expected value and upper
tail values of total economic losses across all industries, EQ: The mean total expected
losses, as well as the conditional means associated with the top 1% (CEQ0:01) and top
5% (CEQ0:05) values, are plotted on the horizontal axis in dashed lines to visualize what
information decision makers might extract from this distribution.
To visualize the impact of dock-specific investments, the mean demand disruption

for two resource allocation strategies is shown in Figure 4. Each dock-specific invest-
ment mitigates the severity of the disruption for all industries whose commodities flow
through the dock. The mean disruption per industry with no resources allocated is
shown in the figure for comparison as a base case scenario. The “no investment” scen-
ario results in the largest disrupted demand, because there were no resources allocated
toward preparedness. For strategy S3, all resources were allocated to the grains dock,
primarily measured in terms of food and beverage products (industry 311FT) along the
horizontal axis of Figure 4. For strategy S10, most of the resources were concentrated
on the liquid bulk dock (chemicals and coal/petroleum) and had a much larger impact
on mitigating the amount of demand that was disrupted when compared to strategy S3.
It is clear from Figure 4 that although strategy S3 greatly reduced the demand disrupted
for the grains dock, strategy S10 is much more effective at mitigating disrupted demand
across more industries with the highest value.

Table 4. Recorded p-values from KS test comparing simulation results of total expected economic
losses distributions of each strategies.
Strategy 1 2 3 4 5 6 7 8 9 10

1 1 1.2E-101 5.8E-122 2.9E-155 3.7E-128 6.3E-156 5.0E-151 1.0E-142 2.4E-151 2.6E-141
2 1.2E-101 1 1.6E-126 3.8E-153 1.6E-113 2.2E-150 1.1E-146 5.8E-139 8.3E-148 6.7E-140
3 5.8E-122 1.6E-126 1 4.2E-171 8.0E-144 4.6E-170 2.9E-163 1.3E-155 1.9E-165 1.7E-152
4 2.9E-155 3.8E-153 4.2E-171 1 6.3E-149 8.8E-119 4.6E-132 5.8E-139 4.2E-130 2.8E-123
5 3.7E-128 1.6E-113 8.0E-144 6.3E-149 1 7.0E-143 4.7E-140 1.4E-133 3.8E-141 8.5E-137
6 6.3E-156 2.2E-150 4.6E-170 8.8E-119 7.0E-143 1 6.1E-87 1.7E-71 2.4E-82 8.4E-106
7 5.0E-151 1.1E-146 2.9E-163 4.6E-132 4.7E-140 6.1E-87 1 1.6E-96 2.6E-102 8.9E-117
8 1.0E-142 5.8E-139 1.3E-155 5.8E-139 1.4E-133 1.7E-71 1.6E-96 1 1.5E-89 1.9E-124
9 2.4E-151 8.3E-148 1.9E-165 4.2E-130 3.8E-141 2.4E-82 2.6E-102 1.5E-89 1 3.3E-118
10 2.6E-141 6.7E-140 1.7E-152 2.8E-123 8.5E-137 8.4E-106 8.9E-117 1.9E-124 3.3E-118 1
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Another perspective of the impact of disruptions is to visualize the total economic
loss by industry of the top 10 industries in Oklahoma by state GDP. In addition to the
mean expected loss, extreme values are considered. Figure 5 shows the mean and
extreme values for the top industries in Oklahoma under strategy S10. Even though
only strategy S10 is shown, the behavior is consistent across most strategies. As shown
in Figure 5, the average expected loss for all 10 of the top industries is well under
$500,000, but the conditional means vary greatly and have large ranges (e.g., oil and gas
industry). Considering only average expected losses does not fully capture the extreme

Figure 4. Comparison of strategies 3 and 10 on effectiveness of reducing the average amount of
demand disrupted. Each graph shows average demand disruption with no investment for comparison.

Figure 5. Mean and conditional mean (top 1% and 5%) economic loss for each of the top 10 indus-
tries in Oklahoma by state GDP.
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industry-specific impacts, and this does not fully describe the actual loss if this disrup-
tion occurred because the expected loss includes the low probability of occurrence.
From the Interdependence Model subsection, inoperability changes over time as each

industry recovers from the port disruption. Figure 6 shows the recovery of each of the
seven commodities imported through the Port of Catoosa and how each industry recov-
ers differently over time when no resources are allocated. Shown in Figure 6, all indus-
tries start from the same inoperability point but vary due to industry type, with primary
metals and chemical products having higher peaks relative to the other imports. These
two industries are the top two imports (in value) through the Port of Catoosa and have
slower recovery relative to the other industries. Inoperability appears to impact com-
modities differently depending on whether they are the imports or exports, and this
could reflect the varied propagation of inoperability across interdependent systems.
To visualize the effectiveness of preparedness strategies, the industry inoperability

resulting from each import commodity perturbation is analyzed per strategy in Figures
7a–7g. The biggest difference between resource allocation strategies is their effect on the
initial inoperability experienced by each industry and the time until full recovery where
the inoperability is approximately 0. As shown in each of the graphs in Figure 7, each
strategy affects each industry differently. For example, in Figure 7a, the effect of inoper-
ability in the construction industry for each of the 10 strategies is consistent, with S2
and S4 having relatively little effect on the initial inoperability compared to the other
strategies. When compared to Figure 6, all seven industries have a lower initial inoper-
ability regardless of the strategy used. This is due to the port-wide investment impact
on the severity of the event as discussed with Figure 1, but the impact of the individual
strategies is apparent. For example, in Figure 7f, the petroleum and coal industry is

Figure 6. Inoperability, qi tð Þ; over time (t) in days for each industry with no resources allocated.
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analyzed for all 10 strategies, with strategy S2 having a negative impact on the inoper-
ability with a swift rise in inoperability before decreasing to 0. Recall that strategy S2
invests all resources in the dry bulk dock with no resources allocated to the liquid bulk
dock, which explains this negative effect on the petroleum and coal industry. When
comparing all seven industries, the industries with the higher imports, such as primary
metals and chemical products, have more extreme behaviors across strategies, which
indicates that imports are more sensitive to inoperability propagation than exports.
Table 5 lists the strategies according to their ranking based on the economic loss

measure, such that the strategy that ranks first results in the lowest economic loss.
Expected and conditional expected values provide three measures for the economic loss,
EQ; CEQ0:05; and CEQ0:01: The three measures are calculated for two cases, yielding (i)
unweighted economic losses without using TOPSIS and (ii) weighted economic losses
informed by several criteria.

Figure 7. Inoperability, qi tð Þ; over time in each industry for each preparedness strategy: (a) construc-
tion, (b) nonmetallic minerals, (c) primary metals, (d) fabricated metals, (e) food and beverage, (f) pet-
roleum and coal, and (g) chemical products.

Table 5. Ranking of resource allocation strategies using (i) the typical unweighted economic loss
measure and (ii) TOPSIS to account for the weighted compromise solution.

Rank

Unweighted economic loss Weighted economic loss

EQ CEQ0:05 CEQ0:01 EQ CEQ0:05 CEQ0:01

1 S10 S10 S10 S4 S10 S10
2 S4 S4 S4 S10 S4 S4
3 S6 S1 S7 S6 S2 S7
4 S9 S6 S6 S2 S6 S8
5 S8 S8 S8 S8 S8 S6
6 S5 S5 S5 S7 S7 S2
7 S7 S2 S1 S9 S1 S5
8 S2 S7 S2 S5 S9 S9
9 S1 S9 S9 S1 S5 S1
10 S3 S3 S3 S3 S3 S3
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The first three columns of Table 5 represent expected and conditional expected losses
summed across industries without using TOPSIS (that is, without considering the
importance of industries and without accounting for the compromise solution). The
expected and conditional expected losses provide different perspectives on which strat-
egies effectively reduce typical and worst-case losses, and the rankings of strategies differ
depending on the metric being used.
Alternatively, columns 4–6 in Table 5 represent results from TOPSIS, where EQ;

CEQ0:05; and CEQ0:01 columns represent the TOPSIS results calculated from the
expected and conditional expected values, respectively. When only focusing on eco-
nomic loss, the suggested strategies target the liquid bulk and general dry cargo docks,
which is not surprising because they are shipping the most valuable goods. The low
ranking of strategy 9 is surprising because allocating funds by the respective value of
goods flowing through the port was initially considered a logical decision; however, the
interdependent impacts and stakeholder interests lower the importance of the value of
individual goods. However, when state GDP is incorporated as a weighting criterion in
TOPSIS, investment strategies that emphasize the dry bulk rise significantly in ranking
though they are not identified by TOPSIS as the most ideal. This is logical because con-
struction industry goods are shipped through the dry bulk dock, and this industry is
important to Oklahoma’s economy. In addition, depending on the risk aversion of the
decision maker, different strategies are more appealing and yield less extreme losses
when compared to other strategies. Even with more emphasis on the construction com-
modities moving through the dry bulk dock, the top rankings do not vary greatly across
perspectives due to the dominance of liquid bulk cargo. When compared to the rank-
ings from the 2007 analysis of the same alternatives (Whitman et al. 2015), the rankings
are consistent in identifying strategy S10 in the upper ranks but have more variability
than is shown in Table 4. This is most likely due to the freight profiles through the
Port of Catoosa varying greatly between 2007 and 2012, with more commodities
shipped through the liquid bulk dock in 2012 than was seen in 2007.
Validation and verification processes are critical to assess the robustness of the

results. The outcome of the analysis has been validated using results from a prior study
performed with economic data from 2007 (Whitman et al. 2015). Both analyses (i) iden-
tify S10 to be among the highest ranking strategies and (ii) suggest that the remaining
strategies exhibit more variability, which is attributed to the differences in the
freight profiles.

Concluding remarks

One focus of risk-based preparedness planning is the resilience of vulnerable infrastruc-
ture systems. An ability to measure interdependent system impacts helps decision mak-
ers understand the effect that investment strategies have on mitigating risk. This article
builds upon previous work by Pant et al. (2015) and Baroud et al. (2014) by combining
dock-specific impacts with measuring investment efficacy on mitigating risk. A multicri-
teria decision analysis tool, TOPSIS, is incorporated to enable the decision maker to pri-
oritize industries relevant to the local economy (or some other weighting scheme),
balance tradeoffs associated with risk aversion, and understand system-level impacts of
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their preparedness planning decisions. This article provides valuable information
because it considers that an “optimal” allocation of resources might not be feasible,
thereby enabling a ranking of discrete investment strategies. In addition, by evaluating
discrete decision alternatives, instead of providing simply the optimal investment, deci-
sion makers have a practical tool to help them select from competing bids and input
their own stakeholder criteria. Doing so will allow decision makers to allocate resources
effectively, producing a compromise solution that accounts for multiple industries.
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Appendix

Table A1. 62 BEA industries and associated NAICS code and description.
Industry Code Description

1 111CA Farms
2 113FF Forestry, fishing, and related activities
3 211 Oil and gas extraction
4 212 Mining, except oil and gas
5 213 Support activities for mining
6 22 Utilities
7 23 Construction
8 321 Wood products
9 327 Nonmetallic mineral products
10 331 Primary metals
11 332 Fabricated metal products
12 333 Machinery
13 334 Computer and electronic products
14 335 Electrical equipment, appliances, and components
15 336 Motor vehicles, other transportation equipment
16 337 Furniture and related products
17 339 Miscellaneous manufacturing
18 311FT Food and beverage and tobacco products
19 313TT Textile mills and textile product mills

(continued)
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Table A1. Continued.
Industry Code Description

20 315AL Apparel and leather and allied products
21 322 Paper products
22 323 Printing and related support activities
23 324 Petroleum and coal products
24 325 Chemical products
25 326 Plastics and rubber products
26 42 Wholesale trade
27 44RT Retail trade
28 481 Air transportation
29 482 Rail transportation
30 483 Water transportation
31 484 Truck transportation
32 485 Transit and ground passenger transportation
33 486 Pipeline transportation
34 487OS Other transportation and support activities
35 493 Warehousing and storage
36 511 Publishing industries, except Internet (includes software)
37 512 Motion picture and sound recording industries
38 513 Broadcasting and telecommunications
39 514 Data processing, Internet publishing, and other information services
40 521CI Federal Reserve banks, credit intermediation, and related activities
41 523 Securities, commodity contracts, and investments
42 524 Insurance carriers and related activities
43 525 Funds, trusts, and other financial vehicles
44 531 Real estate
45 532RL Rental and leasing services and lessors of intangible assets
46 5411 Legal services
47 5415 Computer systems design and related services
48 5412OP Miscellaneous professional, scientific, and technical services
49 55 Management of companies and enterprises
50 561 Administrative and support services
51 562 Waste management and remediation services
52 61 Educational services
53 621 Ambulatory health care services
54 622HO Hospitals and nursing and residential care facilities
55 624 Social assistance
56 711AS Performing arts, spectator sports, museums, and related activities
57 713 Amusements, gambling, and recreation industries
58 721 Accommodation
59 722 Food services and drinking places
60 81 Other services, except government
61 GF Federal government
62 GSL State and local government
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