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ABSTRACT

Detecting “similar code” is useful for many software engineer-
ing tasks. Current tools can help detect code with statically
similar syntactic and—or semantic features (code clones) and
with dynamically similar functional input/output (simions).
Unfortunately, some code fragments that behave similarly
at the finer granularity of their execution traces may be ig-
nored. In this paper, we propose the term “code relatives” to
refer to code with similar execution behavior. We define code
relatives and then present DYCLINK, our approach to detect-
ing code relatives within and across codebases. DYCLINK
records instruction-level traces from sample executions, or-
ganizes the traces into instruction-level dynamic dependence
graphs, and employs our specialized subgraph matching algo-
rithm to efficiently compare the executions of candidate code
relatives. In our experiments, DYCLINK analyzed 422+
million prospective subgraph matches in only 43 minutes.
We compared DYCLINK to one static code clone detector
from the community and to our implementation of a dynamic
simion detector. The results show that DYCLINK effectively
detects code relatives with a reasonable analysis time.

CCS Concepts

eSoftware and its engineering — Software mainte-
nance tools; Assembly languages;
eInformation systems — Nearest-neighbor search;

Keywords

Code relatives, runtime behavior, link analysis, subgraph
matching, code clones

1. INTRODUCTION

Code clones [45], which represent textually, structurally,
or syntactically similar code fragments, have been widely
adopted to detect similar pieces of software. However, code
clone detection systems typically focus on identifying static
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patterns in code, so relevant code fragments that behave
similarly at runtime, though with different structures, are
ignored. Detecting code fragments that accomplish the same
tasks or share similar behavior is pivotal for understanding
and improving the performance of software systems. For
example, with such functionality, it may be possible to auto-
matically replace an old algorithm in a legacy system with
a new one or to detect commonly repeated tasks to create
APIs (semi)automatically. It may allow quick search and
understanding of large codebases, and de-obfuscation of code.

Towards detecting similarly behaving code, previous work
observed code fragments that yield the same output for the
same input [14,22] or that share similar identifiers and struc-
tural concepts [5,39,41]. A significant challenge in detecting
similar but not equivalent code fragments by comparing
input and output pairs, a technique also known as finding
simions [23], is judging how similar two outputs need to be
for the two code fragments to be considered simions. Partic-
ularly, with object-oriented languages, this problem may be
more complex: the same data can be designed with different
project-specific data types between projects [11].

Our key insight is to shift this similarity comparison to
study how each code fragment computes its result, rather
than simply comparing those output results or comparing
what that code looks like. That is, we can gauge how similar
two code fragments are without even looking at the respective
inputs and outputs. To represent runtime similarity (i.e.,
how the code fragment computes its result), we introduce
the term Code Relatives. Code relatives are continuous or
discontinuous code fragments that exhibit similar behavior,
but may be expressed in structurally or even conceptually
different ways. The key relationship between these code
fragments is that they are performing a similar computation
regardless of how similar or dissimilar their outputs may be.

Our key contribution is an efficient system for detecting
these code relatives that is agnostic to the output format or
identifiers used in the code. Our system, DYCLINK, traces
each program’s execution creating a dynamic dependency
graph that captures behavior at the instruction level. These
dependency graphs encode rich and dense behavioral informa-
tion, more than would be found simply observing the outputs
of parts of a program or obtained from a static analysis of
that program. Code relatives are isomorphic (sub)graphs via
fuzzy matching that occur repeatedly between and within
these profiled execution graphs. DYCLINK detects code
relatives at any granularity: a code relative may be a part of
a single method or instead be composed of several methods
that are executed in a sequence.



The resulting graphs are large: containing a single node
for every instruction, plus edges representing dependen-
cies. Hence, typical approaches for detecting isomorphic
(sub)graphs are time prohibitive — requiring expensive com-
parisons between each potential set of code relatives. In
our evaluation, we examined 118 projects for code relatives,
containing a total of 1,244 different dynamic dependence
graphs, which represented a total of over 422 million sub-
graphs that would be compared for similarity. To efficiently
identify code relatives in these graphs, we have developed a
new algorithm, LinkSub, that leverages the PageRank [33]
algorithm to compare subgraphs and to reduce the number of
pairwise comparisons needed between subgraphs to efficiently
detect code relatives (in our evaluation, filtering away over
99% of the comparisons).

We built DYCLINK, targeting Java programs, but our
methodology applies to most high level languages. We eval-
uated DYCLINK on a corpus of Java programs that were
known to contain clusters of similar programs. DYCLINK
effectively reconstructed the clusters of programs with very
high precision (90+%). We compared DYCLINK with one
state-of-the-art static clone detector plus one dynamic simion
detector (input-output similarity checker), finding it to be
more effective at clustering similarly behaving software.

2. BACKGROUND

Before discussing the details of DYCLINK, we first define
the key terms used in this paper and discuss some use cases
of code relatives.

2.1 Basic Definitions

When discussing the notion of similar code, it is important
to have a clear definition of what similar means. For our
purpose, two code fragments are similar if they produce
similar instruction-level runtime behavior, which is witnessed
by execution traces (dynamic dependency graphs) that are
roughly equivalent.

e Code fragment: Either a continuous or discontinuous
set of code lines.

Code clone: “A code fragment CF» is a clone of
another code fragment C'F if they are similar by some
given definition of similarity” [45]. We express this as
follows. C'F1 and CF5 are code clones if:

fsim(CFh CFZ) 2 gstat (1)

where fsinm is a similarity function and 0s:4: is a pre-
defined threshold for static code fragments.

Code relative: An execution of a code fragment gen-
erates a trace of that execution, Ezec(CF). We denote
the set of a code fragment’s traces as {Exzec(CF)}.
Given a similarity function fsim and a threshold fqyn
for code execution, two code fragments, CF; and CF5,
are code relatives if:

Sfsim({Exec(CS1)}, { Exec(CS2)}) > Oayn  (2)
In this work, we capture execution traces as dynamic program
dependency graphs, and we model the similarity between
two code fragments as a subgraph isomorphism problem
described further in §4.

Code relatives are distinct from “simions” in that simions
are code fragments that show similar outputs given an in-
put, while code relatives show similar behavior, regardless
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of their outputs [23]. Moreover, code relatives may consider
discontinuous code fragments and include cases in which their
intermediate results (but not outputs) are similar. Code rela-
tives are not tied to a particular programming abstraction: a
code relative may be a portion of a method, or may represent
computation that is performed across several methods. All
code relatives are behavioral code clones given that the defi-
nition of “similarity” is limitless for clones in general. We use
the term code relative rather than a variant of code clone or
simion to make their distinctions clear and avoid ambiguity.

2.2 Motivation

Detecting similar programs is beneficial in supporting sev-
eral software engineering tasks, such as helping developers
understand and maintain systems [41], identifying code pla-
giarism [37], and enabling API replacement [30]. Although
code clone detection systems can efficiently detect struc-
turally similar code fragments, they may still miss some
cases for optimizing software and—or hardware that require
information about runtime behavior [12]. Programs that have
syntactically similar code fragments usually have similar be-
havior; however programs can still have similar behavior even
if their code is not alike [22,23].

Moreover, programs may have similar behavior even if their
outputs for the same or equivalent inputs are not identical.
In fact, in many cases, it may be difficult to judge that two
outputs are equivalent, or even similar, due to differences in
data structures. On detecting functionally equivalent code
fragments in Java, Deissenboeck et al. reported that 60-
70% of the studied program chunks across five open-source
projects referred to project-specific data types [11]. Hence,
it is impossible to directly compare inputs and outputs for
equivalence across many projects. To get around these dis-
similar data types, developers would have to specify adapters
to convert from project-specific datatypes to abstract repre-
sentations that could be compared. By ignoring the outputs
of code fragments and observing only their behavior, we can
avoid this output equivalence problem.

Consider, for example, the two code examples shown in
Figure 1, taken from the libraries Apache Commons Math®
and Jama?, both of which perform the same matrix decom-
position task. In the case of Figure la, all computation is
done in a single method and the result is stored as instance
fields of the object being constructed. In the case of Figure
1b, computation is split between several methods: solve,
which invokes several methods to compute the result, which
is returned as a Matrix object (a type defined by the library).
A simion detector (comparing inputs and outputs) would
have difficulty to compare the inputs and outputs when the
data structures do not match exactly, and there may not be
clearly defined outputs. A typical clone detector using the
abstract syntax tree of this code would also find it hard to
detect the multi-method clone. It would need to compute
callgraph information to consider valid multi-method clones,
which again, have many subtle differences in code structure.
In fact, clone detection tools may not consider these two
code listings to be clones, while we argue that they are code
relatives and are indeed detected by DYCLINK.

Software clustering and Code search are two domains that
rely on similarity detection between programs and could ben-
efit from code relatives. Software clustering locates and aggre-

"https://commons.apache.org/proper/commons-math/
http://math.nist.gov/javanumerics/jama/



1 public SingularValueDecomposition(final RealMatrix
matrix) {

2 P

3 // Generate U.

4

5 for (int k = nct - 1; k >= 0; k--) {
6 if (singularValues[k] !'= 0) {

7 for (int j = k + 1; j < n; j++) {
8 double t = 0;

9 for (int i = k; i < m; i++) {
10 t += ULil[k] * ULil[j]1;

11 }

12 t = -t / Ulk][k];

13 for (int i = k; i < m; i++) {
14 ULil[j] += t * ULil[k];

15 }

16 }

17

8 3

19 // Generate V.

20 for (int Xk = n - 1; k >= 0; k--) {

21 if (k < nrt &&

22 elk] !'= 0) {

23 for (int j = k + 1; j < n; j++) {
24 double t = 0;

25 for (int i = k + 1; i < n; i++) {
26 t += V[il[k] * V[il[jl;

27 }

28 t = -t / V[k + 1]1[k];

29 for (int i = k + 1; i < n; i++) {
30 VIil[j] += t * V[il[k]1;

31

32 }

33 ¥

34

35 }

36 }

(a) Commons maths’s SingularValueDecomposition.<init>

1 public Matrix solve (Matrix B) {

2 return (m == n ? (new LUDecomposition(this)).solve
(B) (new QRDecomposition(this)).solve(B));

3%}

4 public QRDecomposition (Matrix A) {

5 e

6 for (int k = 0; k < n; k++) {

7 .

8 if (nrm !'= 0.0) {

9 .

10 for (int j = k+1; j < n; j++) {

11 double s = 0.0;

12 for (int i = k; i < m; i++) {

13 s += QR[i1[kI*QR[i][j]1;

14 }

15 s = -s/QRI[k][k];

16 for (int i = k; i < m; i++) {

17 QRL[iJ[j] += s*QR[i][k];

18 ¥

19 }

20 }

21 Rdiag[k] = -nrm;

22

23 }

24 public Matrix solve (Matrix B) {

25 .

26 for (int k = 0; k < n; k++) {

27 for (int j = 0; j < nx; j++) {

28 double s = 0.0;

29 for (int i = k; i < m; i++) {

30 s += QR[i]J[kI*X[il[j];

31 T

32 s = -s/QR[k][k];

33 for (int i = k; i < m; i++) {

34 X[il[j] += s*QR[i]l[k];

35

36 T

37 }

38 .

39}

(b) Jama’s Matrix.solve

Figure 1: A partial comparison of matrix decomposition code from two different libraries. Despite differences

in each method, both are code relatives.

gates programs having similar code or behavior. The clusters
support developers understanding code semantics [32, 38],
prototyping rapidly [7], and locating bugs [13]. Code search
helps developers determine if their codebases contain pro-
grams befitting their requirements [41]. A code search system
takes program specifications as the input and returns a list
of programs ranked by their relevance to the specification.

Software clustering and code search can be based on static
or dynamic analysis. Static analysis relies on features, such
as usage of APIs, to approzimate the behavior of a program.
Dynamic analysis identifies traits of executions, such as in-
put/output values and sequences of method calls, to represent
the real behavior. A system that captures more details and
represents program behavior more effectively (e.g., instead
of simions) can more precisely detect similar programs in
support of both software clustering and code search.

Based on the use cases above, instead of identifying static
code clones or dynamic simions, we designed DYCLINK, a
system to detect dynamic Code Relatives, which represent
similar runtime behavior between programs. We have eval-
uated DYCLINK, finding it to have high precision (90+%)
when applied to software clustering, results discussed in §5.

3. RELATED WORK

Code similarity detection tools can be distinguished by
the similarity metrics that they use, exact or fuzzy matching,
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and the intermediate representation used for comparison.
Common intermediate representations tend to be token-based
[4,25,35], AST-based [6,21], or graph-based [6,21,27,28, 30,
37]. Deckard [21] detects similar but perhaps structurally
different code fragments by comparing ASTs. SOURCERERCC
[46] compares code fragments using a static bag-of-tokens
approach that is fast, but does not target specifically similarly
behaving code with different structures.

Among static approaches, DYCLINK is most similar to
those that used program dependence graphs (PDGs) to de-
tect clones. Komondoor and Horwitz [27] generate PDGs
for C programs, and then apply program slicing techniques
to detect isomorphic subgraphs. The approach designed
by Krinke [30] starts to detect isomorphic subgraphs with
maximum size k after generating PDGs. The granularity
of Krinke’s PDGs is finer than the traditional one: each
vertex roughly maps to a node in an AST. The approach
proposed by Gabel et al. [17] is a combination of AST and
graph. It generates the PDG of a method, maps that PDG
back to an AST, and then uses Deckard [21] to detect clones.
GPLAG [37] determines when to invoke the subgraph match-
ing algorithm between two PDGs using two statistical filters.

Compared with these graph-based approaches that identify
static code clones, DYCLINK detects the similar dynamic
behavior of programs (code relatives). This allows DYCLINK
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Figure 2: The high-level architecture of DyCLINK including instruction instrumentation, graph construction,
link analysis and final pairwise subgraph comparison.

to detect code relatives that are dependent upon dynamic
behavior, for example splitting across multiple methods.

Other previous works in dynamic code similarity detection
focus on observing when code fragments produce the same
outputs for the same inputs. Jiang and Su [22] drive programs
with randomly generated input and then observe their output
values, identifying clones as two methods that provide the
same output for the same input. Li et al. detect functional
similarity between code fragments using dynamic symbolic
execution to generate inputs [34]. Similarly, the MeCC
system [26] detects code similarity by observing two methods
that result in the same abstract memory state. CCCD,
or concolic clone detection [31], takes a similar approach,
comparing the concolic outputs of methods to detect function-
level input/output similarity. Elva and Leavens propose
detecting functionally equivalent code by detecting methods
with exactly the same outputs, inputs and side effects [15].
Juergens et al. propose simions, two methods that are found
to yield similar outputs for the same input, but provide
no automated technique for detecting such simions [11,23].
We implement a simion detector for Java, HITOSHIIO [48],
which attempts to overcome the problem of different data
structures through a fuzzy equivalence matching. HiTosHilO
compares the input/output of functions while observing their
executions in-vivo.

Code relatives differ from all of these dynamic code similar-
ity detection systems in that similarity is compared between
the computations performed, not between the resulting out-
puts. This important distinction allows for similarly behaving
code to be detected even when different data structures and
output formats are used. Moreover, it allows for arbitrary
code fragments to be detected as code relatives: techniques
that compare output equivalence tend to work best at a per-
function granularity, because that format provides a clear
definition of inputs and outputs.

In addition to work on fine-granularity clones, much work
has been done in the general field of detecting similarly be-
having software. Marcus and Maletic propose the notion
of high level concept clones, detecting code that addressed
the same general problem, but may have significant struc-
tural differences, by using information retrieval techniques
on code [39]. Similarly, Bauer et al. mine the use of identi-
fiers to detect similar code [5]. In addition to code, several
approaches analyze software artifacts such as class diagrams
and design documents. This type of analysis helps develop-
ers understand similarities/differences between software at
system level [9,29].

Software birthmarking uses some representative compo-
nents of a program’s execution to create an obfuscation-
resilient fingerprint to identify theft and reuse [47,50]. Code
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relatives are comparable to birthmarks in that both cap-
ture information about how a result is calculated. How-
ever, code relatives are computed using more information
than lightweight birthmarks focusing on the use of APIs
[3,36,41,51].

4. DETECTING CODE RELATIVES WITH
LINK ANALYSIS

The high-level procedure of DYCLINK is shown in Fig-
ure 2. To begin, the program(s) to be analyzed are in-
strumented to allow DYCLINK to trace their respective
executions. Next, the program(s) are executed given some
sample inputs or workloads representative of their typical use
cases, and DYCLINK creates graphs to represent executions
of each program, where each instruction is represented by a
vertex, and each data and control dependency is represented
by an edge. Then, DYCLINK analyzes these graphs (offline)
to detect code relatives. DYCLINK traces program execu-
tion, so its results will be dependent upon the inputs given
to the program: some methods may not be executed at all,
while others may only be executed along some specific paths.
One upside to this approach is that it exposes common be-
havior, allowing code that handles boundary input cases and
hence may not be typically executed to be ignored for the
purposes of code relative detection. However, it still requires
that the inputs to the program are representative of actual
and typical workloads. We will discuss this design decision
further in §4.4.

DYCLINK consists of two major components: online graph
construction and offline (sub)graph matching. The graph
constructor instruments and observes the execution of the
code being evaluated to generate these dynamic dependency
graphs (§4.1), while the subgraph matcher analyzes the col-
lected graphs to detect code relatives (§4.3). We calculate the
similarity of the two dynamic dependency graphs by first link-
analyzing their important instructions (centroids), linearizing
them into vectors, and then calculating the Jaro-Winkler
distance between them. This process will be described in
detail in the following sections.

We have selected Java [24] as our target language, so
the instructions recorded by DYCLINK are Java bytecodes.
DYCLINK makes extensive use of the ASM bytecode in-
strumentation library [2], requiring no modifications to the
JVM to find code relatives even without source code present.
To implement the graph matcher for other target languages,
we could similarly use runtime binary instrumentation to
capture execution graphs, an approach examined by Demme
et al. [12]. The subgraph matching mechanism, which occurs
offline after program execution, is language agnostic.



4.1 Constructing Graphs

To construct dependency graphs, DYCLINK follows the
JVM’s stack machine to derive the dependencies between
instructions, recording data and control dependencies. Each
execution of each method results in the generation of a new
dynamic instruction dependency graph Ggig, where each
vertex represents an instruction and each edge represents an
observed dependency. These graphs contain all instructions
executed both by that method, and by the methods that
method calls. Each edge in the graph is labeled with a weight,
representing the frequency of its occurrence. We consider
three types of dependencies for our graphs:

e depinst: A data dependency between an instruction and
one of its operands.
e depurite: A read-after-write dependency on a variable.
® depeontro1: A weighted edge indicating that some in-
structions are controlled by another (e.g., through a
jump), corresponding to the frequency that control will
follow that edge based on the observed executions.
While it is possible to set a different weight for each type of
dependency, we currently weight each equally.

When one method calls another, DYCLINK stores a pointer
from the calling method to its callee, allowing for code rel-
atives to be detected that span method boundaries. This
way, when a target method is examined for code relatives,
DyYCLINK actually considers both the trace of that method
and the traces of all methods that it calls.

DYCLINK uses two strategies to reduce the total number
of graphs recorded. First, DYCLINK stores these graphs
in a flattened form — when a method calls another many
times (e.g., in a loop), DYCLINK identifies that redundancy
by using the number of vertices and edges as a hash value,
and simply updates execution counts for each edge in the
graph. Second, DYCLINK imposes a configurable quota
on the number of times (geq) that a given method will be
captured at a given call site, which will be discussed in §5.

4.2 Example

To showcase how DYCLINK constructs a dependency
graph, consider the mult() method in Figure 3. Figure
3a shows the Java source for this method that multiplies
two numbers, while Figures 3¢ and 3b show the Java com-
piler’s translation of this source code into bytecode. Consider
tracing an execution of this code, using {a = 8,b = 1} as
input arguments. Figure 3d shows the graph that may be con-
structed from such an execution. The label of each numbered
vertex is the index of a bytecode in Figure 3c, bytecodes in
the add method (Figure 3b) are labeled as A2, A3 and A4;
each edge is labeled with a counter indicating the number of
times it occurred during the run. Every time that mult () is
executed during profiling, a new Ga;g will be generated.

To see how the edges are constructed, consider the iload
2 instruction on line 7 (iload x loads a local variable x
onto the JVM’s stack). When this instruction is executed,
the controlling instruction is if _icmplt 7 at line 14, so the
dependency depcontro1(14,7) is constructed. Any additional
dependencies are captured transitively in the graph. Be-
cause iload 2 is reading the 2,4 local variable, DYCLINK
detects the last instruction executed that wrote it, which is
istore 2 at line 3, creating the dependency depurite(3,7).
invokestatic on line 9 has two depinst from iload 2 and
iload 0, because these instructions are used to invoke the
add method. When add is called, its graph is stored sepa-
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1 static int mult(int a, int b) { 1 static add(II)I

2 int ret = 0; 2 iload O

3  for(int i = 0; i < b; i++) { 3 iload 1

4 ret = add(ret, a); 4 iadd

5 ¥ 5 ireturn

6} return ret; (b) The add() in-

; structions.

9 static int add(int a, int b) {

10 return a + b;

11}

(a) The mult() method.

Dep_inst
-

Dep_write

1 static mult(II)I —
iconst_0O

istore 2
iconst_0

istore 3

goto 12

iload 2

iload O

9 invokestatic add

Dep_control

10 istore 2

11 iinc 3 1

12 iload 3

13 iload 1

14 if_icmplt 7
15 iload 2

16 ireturn

(c) The mult() instruc-
tions.

(d) The mult graph.

Figure 3: The mult() method in Java (a), translated
into bytecode (b), and a dynamic instruction depen-
dency graph (c) generated by running mult(8,1).

rately, with pointers from the mult graph into it (vertices
A2, A3 and A4). By including this callee graph (add) in its
caller graph (mult), we can detect code relatives that span
multiple methods.

Once the programs are executed with sample inputs, Gaigs
are then constructed to represent each method execution.
We can proceed to the next phase, subgraph matching.

4.3 LinkSub: Link-analysis-based Subgraph
Isomorphism Algorithm

To detect code relatives, DYCLINK first enumerates every
pair of Ggigs that were constructed: given n Gaigs, there
are at most n * (n — 1) % sub pairs to compare, where sub
represents the number of potential subgraphs. Note that
because each execution of each method will generate a new
Glaig, each method will have multiple graphs that represent
its executions, meaning that there are more Ggigs than meth-
ods. Each recorded execution of each method is potentially
compared to each of the executions of each other method.

The executions are represented as graphs, so we model code
relative detection as a subgraph isomorphism problem. There
are two types of subgraph isomorphism (or subgraph match-
ing): exact and inexact [44]. For exact subgraph matching, a
test graph needs to to be entirely the same as a (sub)graph
of a target graph. Exact subgraph matching would only
find cases where all instructions and their dependencies are
exact copies between two code fragments; this would be too
restrictive to detect code relatives. Because DYCLINK de-
tects similar but not necessarily identical subgraphs, we are
focused on techniques for inexact subgraph matching.



The key to efficiently performing this matching is to fil-
ter out pairs of graphs that can never match, reducing the
number of comparisons needed to a much smaller set. For
example, for each graph, we calculate its centroid, create a
simpler representation of each subgraph (simply a sequence of
instructions), and then identify candidate graphs to compare
it to, filtered to only those that contain that same instruction.
Next, we perform a constant-time comparison between each
potentially matching subgraph, calculating the euclidean dis-
tance between their instruction distributions, to eliminate
unlikely matches. For the remaining subgraphs, we apply a
link analysis to each subgraph to create a vectorized repre-
sentation of its instructions, ordered by PageRank. From
these ordered vectors, we apply an edit-distance based model
to calculate similarity. Hence, we reduce the running time in
two ways: we consider only potential subgraph matches that
seem likely based on some filters, and then we calculate the
actual similarity of those subgraphs.

The overall algorithm is shown at a high level in Algorithm
1. The summary of each subroutine of LinkSub is as follows:

profileGraph: Computes statistical information of a
Glig, such as ranking of each instruction and instruction
distribution to identify its centroid.

sequence: Sort instructions of Ggiy by the feature
defined by the developer to facilitate locating instruc-
tion segments. We use the execution order of each
instruction to sort a Gaig4.

locateCandidates: Given the centroid of a Gﬁﬁg, lo-
cate each instance of that centroid instruction in each
potential target graph Gﬁﬁg.

euclidDist: Compute the euclidean distance between
the instruction distributions of two Ggigss.
LinkAnalysis: Apply PageRank to a graph, returning
a rank-ordered vector of instructions.

calcSimilarity: Calculate the similarity of two PageR-
ank ordered instruction vector using edit distance.

LinkSub models a dynamic instruction dependency graph
of a method as a network, and uses link analysis [8], specif-
ically PageRank [33], to rank each vertex in the network.
The first phase of the algorithm (profileGraph) ranks each
vertex in the graph being examined, calculating the highest
ranked vertex (centroid) of the graph. This step also calcu-
lates instruction distribution for subgraph matching. The
next phase lists all instructions of the target graph, G’;‘;g, by
execution order in the sequence step to facilitate locating
candidate subgraphs. In the next step, locateCandidates,
we select all subgraphs in the target graph that match the
centroid of Gﬁﬁ-g. If a subgraph in Gfﬁg contains the centroid
instruction of G’éﬁg then it is potentially a code relative, but
if it does not contain the centroid instruction, then it can’t
be. This is effectively the first filter that reduces the largest
set of potential subgraphs to compare.

For each of the potential candidate subgraphs, we next
apply a simple filter (euclidDist) similar to [37], which
computes the Euclidean distance between the distributions
of instructions in the graph of Gzﬁg and a candidate subgraph
from the G’é‘}g. If the distance is higher than the threshold,
04ist, defined by the user, then this pair of subgraph matching
is rejected. We empirically came to a threshold of 0.1 (the
lower the better) to include only those subgraphs that were
mostly similar.
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If a candidate subgraph from the Gfﬁ-g passes the euclidean
distance filter, DYCLINK applies its link analysis to this
candidate. DYCLINK calculates a PageRank dynamic vector,
DV, for the candidate subgraph (LinkAnalysis), where the
result is a sorted vector of all of the instructions (vertices
from the subgraph), ordered by PageRank.

Data: The target graph Gfﬂ-g and the test graph Gfﬁ-g
Result: A list of subgraphs in th%g, CodeRelatives,
which are similar to G,
//Compute Statistical Information;
profilete = proﬁleGraph(G’;‘jg);
//Change Representation;
seqa = sequence(G},);
//Filter to find possible matches;
assigned:o = locateCandidates(segta, profilese);
CodeRelatives = 0 ;
for sub in assignedi, do
//Perform multi-phase comparison;
SD = euclidDist(SV(sub), profilei..SV);
if SD > 04;s: then
‘ continue ;
end
D\/;fl’f.l;et = LinkAnalysis(sub);
dynSim = calcSimilarity(DWsznZet, profilei..DV);
if dynSim > 04y, then
‘ CodeRelatives U sub ;
end
end
return CodeRelatives;
Algorithm 1: LinkSub.

Finally, in calcSimilarity, we use the Jaro-Winkler Dis-
tance [10] to measure the similarity of two DV's, which rep-
resents the similarity between two Ggigs. Jaro-Winkler has
better tolerance of element swapping in the instruction vector
than conventional edit distance and is configurable to boost
similarity if the first few elements in the vectors are the same.
These two features are beneficial for DYCLINK, because the
length of DV (Gaig) is usually long, and thus may involve
frequent instruction swapping. For representing the behavior
of methods, we use the PageRank-sorted instructions from
DV (Gaig). If the similarity between the PageRank vectors
from the subgraph of the Gfﬁ-g and the fﬁg is higher than
the dynamic threshold (0aqy»), DYCLINK identifies this sub-
graph as being inexactly isomorphic to fo;g. We empirically
evaluated several values of this threshold, settling on 0.82 as
a default in §5. We refer to the subgraph similar to the foig
as a Code Relative in the G, .

The runtime execution cost of our algorithm will vary
greatly with the number of subgraphs that remain after
the two filtering stages. While each filtering stage itself is
relatively cheap (the PageRank computation requires only
O(V+E) for a graph with V nodes and F edges), in the worst
case, where we would need to calculate the Jaro-Winkler
similarity of every possible pair of (sub)graphs, the overall
running time would be dominated by these computations
for (sub)graphs. In practice, however, we have found that
these two filtering phases tend to dramatically reduce the
overall number of comparisons needed, making the running
time of LinkSub quite reasonable, requiring only 43 minutes
on a commodity server to detect candidate code relatives



in a codebase with over 7,000 lines of code. Profiling this
code base resulted in 1,244 Ggig4s, requiring a total worst-
case 422+ millions of subgraph comparisons. A complete
evaluation and discussion of the scalability of our algorithm
and system are in §5.1.

4.4 Limitations

There are several key limitations inherent to our approach
that may result in incorrect detection of code relatives. The
main limitation stems from the fact that DYCLINK captures
dynamic traces: the observed inputs must exercise sufficiently
diverse input cases that are representative of true application
behavior. A second limitation comes from our design decision
to declare that two code fragments are relatives if there
is at least a single input pair that demonstrates the two
fragments to be similar. An ideal approach would require
profiling the application over large workloads representative
of typical usage. If we could guarantee that the inputs
observed were truly sufficiently diverse to represent typical
application behavior, then it may be reasonable to consider
the relative portion of inputs that result in a match compared
to those that do not. However, with no guarantee that the
inputs that DYCLINK observes are truly representative of
the same input distribution observed in practice in a given
environment, we decide for now to instead ignore counter
examples to two fragments being relatives, declaring them
relatives if at least one pair of inputs provide similar behavior.

Consider the following example of a situation where these
choices may result in undesirable behavior. The first method
will sort an array if the passed array is non-null, returning
-1 if the parameter is null. The second method will read
a file if the passed file is non-null, returning -1 if the pa-
rameter is null. If DYCLINK observes executions of each
method with a null parameter, then these two methods will
be deemed code relatives, because there is at least one input
pair that causes them to exhibit similar behavior. A future
version of DYCLINK could instead consider all of the inputs
received, and the coverage of each of those inputs towards
being representative of overall behavior.

DYCLINK can also fail to detect code that is similar in
terms of its input and output if it has different instruction-
level behavior. For example, a method can multiply two
integers, {a,b}, in a convoluted way as Figure 3 depicts, or
it can simply return a * b. By our definitions, these are not
code relatives, and wouldn’t be detected by DYCLINK.

Due to nondeterminism in a running program, DYCLINK
may record different execution graphs, causing results to vary
slightly between multiple profiling runs. In multi-threaded
applications, DYCLINK currently only considers code frag-
ments that execute within the same thread as code relatives
- there is no merging of graphs across threads.

5. EVALUATION

We evaluate DYCLINK in terms of both runtime perfor-
mance and precision. We answer two research questions:

e RQ1: Given the potentially immense number of
subgraph comparisons, is DYCLINK’s performance
feasible to scale to large applications?

e RQ2: Are the code relatives detected by DYCLINK
more precise for classifying programs than are the sim-
ilar code fragments found by previous techniques?

Unfortunately, we are limited in our choice of experimental
subjects and comparison approaches by what is publicly
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Table 1: A summary of the code subjects from the
Google Code Jam for classifying software.

# Proj Graph Size
Tot. Aut. Meth. # Viug Vinaz Faug

Year Problem

2011 Irregular Cake 48  30106/154 367 398 6698 958.1
2012 Perfect Game 48 34 122/182195 138.2 2001 276.6
2013 Cheaters 29 21 95/147374283.4 2456 631.7
2014 Magical Tour 46 33105/159 308 223.6 3709 480.5

available. For example, while there are publicly available
benchmarks of code clones [49] with a ground truth manually
provided, we found many of them did not include sufficient
dependencies and build scripts to be compiled and executed
dynamically. To focus our evaluation on projects that were
build-able and distributed with inputs/test cases, we selected
projects from the Google Code Jam repository [18]. Google
Code Jam is an annual online coding competition hosted
by Google. Participants submit their projects’ source code
online, and Google determines whether they correctly solve
a given problem. Because each submission for the same
problem attempts to perform the same task, we assume
that each project within the same year will likely share
code relatives, while projects between different years solving
different requirements will likely not share code relatives or
at least fewer.

To compare DYCLINK’s code relative detection with static
code clone detection, we selected the state-of-the-art clone de-
tector available, SOURCERERCC [46]. While SOURCERERCC
is highly performant, scaling impressively to “big code”, we
admittedly do not expect to find many near-miss static code
clones in independently written Code Jam entries. In con-
trast, we would expect to find clusters of dynamic functional
I/0O simions, since the independently written entries intend
to complete the same tasks. Previous simion detectors for
object-oriented languages do not address project-specific ob-
ject data types, due to the technical challenges reported by
Deissenboeck et al. [11]. Therefore, we developed a simion
detector that we have recently built for Java, HITosHIIO [48],
specifically designed to overcome these challenges and enable
fair comparison of the similarity models.

The information on the evaluation subjects is shown in
Table 1. For each competition year, we show the problem
name, the number of projects in the repository, the number of
automatic projects without human interactions used in this
study, the total number of executed methods in those projects
and the statistics for the captured Gg;gs including the number
of graphs and the numbers of vertices and edges. For the
executed methods, we provide two numbers: retained/all.
To avoid potentially inflating our results by including matches
of trivial methods, we filter out simple methods with little
work in them (such as toString and initialization methods).
all represents the number of all executed methods, while
retained shows the method number after such filtering.

We discuss some parameter settings of DYCLINK for
conducting the experiments in this paper. For constructing
Gaigs in §4.1, we empirically set the quota at a given call site,
Qcarl as 5. This allows for reasonable performance both in
terms of code relative detection and runtime overhead. For
conducting the inexact (sub)graph matching, we set 04;s¢ as
0.1 and 6gy, as 0.82 in Algorithm 1, where both parameters
range from 0 to 1. The details of each parameter setting



Table 2: Number of comparisons performed by DyCLINK on the Google Code Jam projects, showing worst
case number of comparisons (without any filtering) and actual comparisons performed along with the relative
reduction in comparisons achieved by DyCLINK. We also show the total analysis time needed to complete

each set of comparisons.

Subgraphs Compared

Analysis Time (sec)

Years
Compared Worst Case Actual Reduction DyCLINK HitoshilO SourcererCC
2011-2011 49,999,944 258,478 99.48% 836.38 64.00 4.1
2012-2012 5,006,827 7,719 99.85% 14.88 49.00 4.4
2013-2103 35,186,281 280,355 99.2% 392.73 51.00 3.9
2014-2014 19,017,387 123,196 99.35% 230.39 53.00 4.3
2011-2012 38,371,375 12,221 99.97% 49.77 133.00 4.9
2011-2013 93,519,230 45,822 99.95% 193.55 125.00 5.0
2011-2014 70,260,597 10,396 99.99% 70.98 133.00 4.9
2012-2013 30,745,400 32,621 99.89% 68.15 96.00 5.1
2012-2014 21,730,445 31,151 99.86% 63.96 114.00 5.0
2013-2014 58,399,594 460,750 99.21% 653.44 105.00 4.7
Total 422,237,080 1,262,709 99.7% 2574.23 923.00 46.3

can be found in the GitHub page of DYCLINK [1]. While
searching for the best parameter setting for DYCLINK is
out of the scope of this paper, we plan to utilize machine
learning techniques for optimizing DYCLINK in future.

5.1 RQI1: Scalability

To evaluate the scalability of DYCLINK, we measured
its performance when running on these 118 projects. The
key to DYCLINK’s performance is the relative reduction
in subgraph comparisons that result from filtering and link
analysis steps. If we can greatly reduce the number of candi-
date subgraphs to be compared, then DYCLINK will scale,
even on large graphs. Table 2 shows the worst case number
of pairwise comparisons that would be needed by a naive
subgraph matching algorithm, along with the number of
comparisons that were actually necessary to detect the code
relatives. We also show the analysis time for each of Dv-
CLINK, HirosHIiIO, and SOURCERERCC.

DyYCLINK filtered out over 99% of the potential subgraphs
to compare, resulting in a total analysis time of just 43
minutes on an Amazon EC2 “c4.8xlarge” instance. While this
analysis time is significantly longer than the static approach,
and still more than the simion detector, we believe that the
analysis runtime is acceptable given the time complexity to
solve the inexact (sub)graph matching problem.

Because DYCLINK is a dynamic profiling approach, there
is also a time overhead for collecting the traces and gener-
ating the graphs. Our execution tracer implementation is
unoptimized and records every single instruction. An op-
timized version might instead be able to infer and record
instructions that expose program behaviors. To trace these
applications took a total time of just over 2.5 hours com-
pared to a baseline execution time without instrumentation
of approximately 1 minute on an iMac with 8 cores and 32
GB memory; however the instrumentation overhead can vary
significantly with the complexity of the program — one single
subject took 114 minutes to execute, while the remaining
117 required only a total of 43 minutes to execute. We are
confident that the tracing overhead can be significantly re-
duced with some optimizations as demonstrated by other
Java tracing systems, such as JavaSlicer [19].
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Table 3: Code Relatives, Simions and Code Clones
detected by project-year and by tool for DyCLINK,
HitoshilO and SourcererCC.

Years DyCLINK HitoshilO SourcererCC
Compared

2011-2011 103 21 5
2012-2012 49 59 13
2013-2103 116 181 6
2014-2014 66 43 4
2011-2012 3 19 9
2011-2013 0 9 9
2011-2014 0 19 6
2012-2013 7 6 15
2012-2014 3 25 8
2013-2014 81 24 16

Total 428 406 91

5.2 RQ2: Code Relative Detection

We first evaluate the quality of the code relatives detected
by DYCLINK by looking at the number of code relatives
detected in projects across and within each year. For this
evaluation, we ran each tool with its default similarity thresh-
old (0.82 for DYCLINK, 0.85 for HrrosuiIO and 0.7 for
SOURCERERCC), and a minimum code fragment size of 10
lines of code (45 instructions for DYCLINK). Table 3 shows
the number of code relatives detected by DYCLINK as well
as the number of code clones detected by the other two sys-
tems. DYCLINK detected more similar code fragments on
average than the other systems did. Those relatives were
skewed to be almost entirely among projects within the same
year, while the other tools tended to find similar code frag-
ments more evenly distributed among and within the project
years (recall that all projects in the same year performed
the same task). This result is encouraging, as we expect
that there are more code relatives in code that has the same
general purpose than in code that is doing different tasks.

Figure 4 shows an exemplary pair of similar code frag-
ments detected by DYCLINK in Code Jam projects. The
two caller methods, calcMaxBet and maxBet, exhibit similar
functionality to maximize bets, so both of them are detected



1 static long calcMaxBet(long budget,
long[] x,int winningThings) {

2

3

4 if (canDo(budget, x, winningThings, mid)) {
5 low = mid;

6 } else { high = mid; }

7

8

}
9
10 static boolean canDo(long budget,
11 longl[] x,int winningThings,long lowestBet) {
long payMoney = O0;

13 for (int i = 0; i < x.length; i++) {
14 if (x[i] < lowestBet) {

15 payMoney += -x[i] + lowestBet;
16

7 3

18 return payMoney <= budget;

19}

(a) The call sequence includes the canDo method
long maxBet (long[] a,int count,long b) {

1

2

3 if (cost(a, count, mid) <= b) {
4 left = mid;

5 } else { right = mid; }

6

I

8

9 long cost(long[] a,int count,long bet) {

10 long result = 0;

11 for (int i = 0; i < count; i++) {
12 result += (bet - alil);

3 3

14 for (int i = count; i < a.length; i++) {
15 if (ali] <= bet) {

16 result += (bet + 1 - al[il]);
17 }

8 %

19 return result;

20 }

(b) The call sequence includes the cost method

Figure 4: An exemplary code relative.

by DYCLINK and HiTosHIIO. However, even though their
subroutines, canDo and cost, have similar behavior to eval-
uate costs, HITOSHIIO cannot detect them as functionally
similar by observing their I/Os. The reason is that their
output values will be hard to detect as similar: while canDo
performs a comparison between the cost and budget and
returns a boolean, cost solely computes the cost and leaves
the comparison for its caller maxBet. This example shows the
difficulty to detect dynamic code similarities by observing
functional I/Os of programs.

We did not conduct a user study as part of this experiment
other than random sampling performed by the authors to
ensure the relatives reported were valid. To judge the sys-
tem accuracy, we investigated specifically its precision in a
software clustering experiment.

Software Community Clustering. To judge the effi-
cacy of DYCLINK in performing software clustering, we
applied a KNN-based classification algorithm to the Google
Code jam projects. Again, our ground truth is that projects
from the same year solving the same problem ought to be in
the same cluster.

We apply the K-Nearest Neighbors (KNN) classification
algorithm to predict the label (project year) for each method
and then validate the prediction result by Leave-One-Out
methodology: each sample (method) plays as a testing sub-
ject exactly once, where all the rest of the samples play
as the training data. The high-level algorithm is shown in
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Data: The similarity computation algorithm SimAlg,
the set of subject methods to be classified
Methods and the number of the neighbors K

Result: The precision of SimAlg

realLabel(Methods);

matrizsim = computeSim(SimAlg, Methods);

succ = 0;

for m in Methods do

neighbors = searchKNN(m, matrizsim, K);
m.predictedLabel = vote(neighbors);
if m.predictedLabel = m.realLabel then
‘ succ = succ + 1;
end

end

precision = succ/Methods.size;

return precision;

Algorithm 2: Procedure of the KNN-based software label
classification algorithm.

Algorithm 2: for each method, we search for the K other
methods that have the greatest similarity to the current one
in the searchKNN step. Each nearest neighbor method can
vote for the current method by its real label in the vote step.
The label voted by the greatest number of neighbor methods
becomes the predicted label of the current method. In the
event of a tie, we side with the neighbors with the highest
sum of similarity scores. Then, we track the precision of the
approach as the total number of correctly labeled methods
divided by the total number of methods.

For observing the efficacy of the systems under single and
multiple neighbors, we set K =1 and K = 5. We also vary
the line of code thresholds used for each code fragment’s
minimum size between {10, 15,20, 30}. Only programs that
pass the threshold setting including LOC and similarity were
considered as neighbors of the current program.

The results of this analysis are shown in Table 4: Dy-
CLINK showed the highest precision among all three tech-
niques when examining code fragments that consisted of at
least ten lines of code. When excluding the smallest frag-
ments (for example, looking only at those with 20 lines of
code or more), the simion detector HITOSHIIO performed
slightly better. The methods being incorrectly categorized by
HiTtosHIIO were mostly less than 20 lines of code. SOURCER-
ERCC did not find sufficient clones that were longer than 30
lines of code to allow for clustering at that level, and hence,
the precision value is not available. Because we use the
project year as the label for each method, it is possible that
some syntactically similar code detected by SOURCERERCC
is not identified as a true positive case.

Figure 5 shows the clustering matrix based on DYCLINK’s
KNN-based classification result with K = 1, LOC = 10.
Each element on both axes of the matrix represents a project
indexed by the abbreviation of the problem set to which
it belongs and the project ID. We sort projects by their
project indices. Only projects that have at least one code
relative with another project are recorded in the matrix. The
color of each cell represents the relevance between the iy,
project and the jsn project (the darker, the higher), where
i and j represent the row and column in the matrix. The
project relevance is the number of code relatives that two
projects share. Each block on the matrix forms a Software
Community, which fits in the problem sets that these projects
aim to solve. These results show that DYCLINK is capable



Table 4: Precision results from KNN classification of the Google Code Jam projects using DyCLINK, Hi-
toshiIlO and SourcererCC, while varying K and the minimum fragment length considered.

Min Fragment | K=1 | K=5
Size | DyCLINK HitoshilO SourcererCC | DyCLINK HitoshilO SourcererCC
10 0.94 0.81 0.35 0.91 0.77 0.34
15 0.94 0.86 0.48 0.92 0.86 0.45
20 0.87 0.95 0.55 0.90 0.95 0.45
30 0.92 0.91 N/A 0.91 0.91 N/A
Software Community based on Code Relatives code. Thus, we plan to distill and integrate the advantages
" of DYCLINK and SOURCERERCC to devise a new approach
for detecting similar code fragments more effectively with
better efficiency.
- 6. CONCLUSIONS
" - Determining when two code fragments are “similar” is a
subjective and complex problem. We have distilled the prob-
- lem of detecting behaviorally similar code fragments into a
=" subgraph isomorphism problem based on dynamic depen-
- dency graphs that capture instruction-level behavior. To
3 feasibly analyze the hundreds of millions of potential match-
— i ing subgraphs, we have devised a novel link-analysis based
algorithm, LinkSub, which greatly reduces the number of
pairwise comparisons needed to detect code relatives, and
. then efficiently compares them using PageRank. DYCLINK

Figure 5: The software community based on code
relatives detected by DyCLINK. The darker color in
a cell represents a higher number of code relatives
shared by two projects.

of detecting programs with similar behavior and then cluster
them for further usage such as code search.

5.3 Discussion

Through this evaluation, we have shown that DYCLINK is
an effective tool for detecting similar code fragments. There
are several potential limitations to our experiments, however.
Even though we may have manually come to the conclusion
that two code fragments are code relatives and assuming that
we are internally valid in that conclusion, two developers’
definitions of “similarly behaving” code may differ. We believe
that we have limited the potential for this bias through
our study design: we purposely selected a suite of projects
that are known to be likely to contain similarly behaving
code, because they were performing the same overall task.
Hence, when we conclude that DYCLINK is effective at
finding behaviorally similar code, we come to this conclusion
both from our internal review and also from the external
construction, that by definition, the code ought to behave
similarly (at least on some scale).

However, this selectivity comes at a cost: the projects
that we selected might be too homogeneous overall, and not
sufficiently representative of software in general. We could
bolster our claims by performing a broader study on, for
instance, large open-source projects from GitHub. We could
construct a user study to help establish a ground truth for
what “similar code” really is.

Dynamic analysis and static analysis have their own oppor-
tunities and obstacles in detecting different types of similar
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detects behaviorally similar code better than previous ap-
proaches, and has reasonable runtime overhead. We have
released DYCLINK under an MIT license on GitHub [1]. A
tutorial regarding how to use DYCLINK can be found in §8.

One key limitation of our approach is from its dynamic na-
ture: because it relies on program execution traces to detect
code relatives, it is only applicable to situations where the
subject code can be executed. In addition to being executable
at all, there must be valid inputs that are representative of a
program’s normal behavior to expose its typical use cases and
generate representative traces. In our previous work [48], we
applied applications’ existing test suites for this purpose, but
recognize that test suites may not be truly representative of
application usage. Alternatively, automated input generation
tools [16,43] could be used to drive the application. We plan
to experiment with input generation techniques, allowing us
to apply DYCLINK to larger scale systems than studied in
this paper. Furthermore, we plan to construct a benchmark
suitable for use for dynamic code similarity detection. This
benchmark would contain not only workloads and scripts to
compile and run each application, but also a human-judged
ground-truth of program similarity, analogous to the static
code clone benchmark, BigCloneBench [49].

We also plan to study additional applications of our link-
analysis based graph comparison algorithm. For example,
we plan to explore the possibility to apply DYCLINK to
support software development tasks related to behavior, such
as (semi)automatic API generation and code search.
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8. ARTIFACT DESCRIPTION

‘We provide a tutorial to replay the result of Table 3. A
virtual machine (VM) containing DYCLINK and all required
software can be accessed from DYCLINK’s Github page [1].
Users can first read §8.7 to check the VM’s limitation. We
conducted our experiments on an iMac with 8 cores and
32 GB memory to construct graphs (§8.4) and Amazon ec2
“c4.8xlarge” instances to match graphs (§8.5).

8.1 Required Software Suites

If the user chooses to use our VM, this step can be skipped.
The user needs to install JDK 7 [20] to execute our exper-
iments on DYCLINK. DYCLINK is a Maven project [40].
If the user wants to re-compile DYCLINK, the installation
of Maven is required. DyCLINK needs a database system
and GUI to store/query the detected code relatives. We
use MySQL and MySQL Workbench. For downloading and
installing them, the user can check MySQL’s website [42].
For setting up the database, the user can find more details in
dycl_home/scripts/db_setup, where dycl_home represents
the home directory of DYCLINK.

8.2 Virtual Machine

We set up the credential with “dyclink” as the username
and “Qwerty123” as the password for our VM. The home
of DYCLINK is /home/dyclink/dyclink_fse/dyclink. For
starting MySQL, the user can use the command sudo ser-
vice mysql start. The credential for MySQL is “root” as
the username and “qwerty” as the password.

8.3 System Configuration

Before using DYCLINK, the user needs to change to the
home directory of DYCLINK. The user first uses the com-
mand ./scripts/dyclink_setup.sh to create all required
directories for executing DYCLINK. DYCLINK has mul-
tiple parameters to specify in the configuration file: con-
fig/mib_config.json. For reproducing the experimental
results, the user can simply use the this configuration file.

8.4 Dynamic Instruction Graph Construction

We put our codebases for the experiments under code-
base/bin. The user will find 4 directories from “R5P1Y11”
to “R5P1Y14”. These 4 directories contain all Google Code
Jam projects we used in the paper from 2011 to 2014.

Before executing the projects in a single year, the user
needs to specify the graph directory for the graphDir field
in the configuration file. This is to tell DYCLINK where to
dump all graphs. For example, the user sets graphDir to
graphs/2011 for storing graphs of the projects in 2011. We
have created subdirectories for each year under graphs.

We prepare a script to automatically execute all projects
in a single year: ./scripts/exp_const.sh $yearDir. For
example, the user can execute all projects in 2011 by the
command ./scripts/exp_const.sh R6P1Y11l. Most years
can be completed between 0.5 to 3 hours on the VM, but
2013 may cost 20+ hours and need more memory.

The cache directory records cumulative information for
constructing graphs. If users fail any year, they need to first
clean the cache directory and reset threadMethodIdxRecord
in the configuration file to be empty, and re-run every year.
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8.5 (Sub)graph Similarity Computation

Because we compute the similarity between each graph
within and between years, there will be totally 10 compar-
isons. For storing the detected code relatives in the database,
the user needs to specify the URL and the username in the
configuration file.

For computing similarities between graphs in the same year,
the user can issue ./scripts/dyclink_sim.sh -iginit -
target graphs/$year, where $year is between {2011,2014}.
For different years, the command is . /scripts/dyclink_sim.sh
-iginit -target graphs/$yl -test graphs/$y2, where
$y1 and $y2 are between {2011,2014}. DYCLINK will then
prompt for user’s decision to store the results in the database
The user needs to answer “true”.

On the VM, we suggest the user to detect code relatives
for 2011 — 2012, 2011 — 2014, 2012 — 2012 and 2012 — 2014,
if we exclude the projects in 2013. The other 6 comparisons
may take 204 hours to complete on the VM.

8.6 Result Analysis

For analyzing code relatives for a comparison, the user
needs to retrieve the comparison ID from the dyclink database.
The user first queries all comparisons by the SQL command
as Figure 6 shows via MySQL Workbench, and then checks
the ID for the comparison. 1ibl and 1ib2 show the years
(codebases) in a comparison. If the values for 1ib1l and 1ib2
are different such as 2011 — 2012, this comparison contains
the code relatives between different years. If the values are
the same such as 2012 — 2012, this comparison is within the
same year. Figure 6 checks the comparison ID (299) for code
relatives within 2012 (2012 — 2012).

SCHEMAS 0 (]

Q 1e
v & dyclink 2
v 1 Tables
» E comp_table
>
B Views

7 Stored Procedures

¥ A 82 @B ¢ Q1
SELECT comp id, libl, lib2, timestamp
FROM comp_table;

result_table2
Result Set Filter © Edit g8 Eb Eb Exportimport

# compid libl ib2

B Functions timestamp

Figure 6: The exemplary Ul of MySQL Workbench
to check the comparison ID.

For computing the number of code relatives, the user can
use the command ./scripts/dyclink_query.sh $compId
$insts $sim -f with 4 parameters. The $compId represents
the comparison ID. The $insts represents the minimum size
of code relatives with 45 as the default value. The $sim rep-
resents the similarity threshold with 0.82 as the default value.
The flag -f filters out simple utility methods in our codebases.
An exemplary command for the 2012 — 2012 comparison
with $compId = 299 is ./scripts/dyclink_query.sh 299
45 0.82 -f.

8.7 Potential Problems

The major potential problem is the performance and mem-
ory of VM. Some experiments regarding 2013 may cost too
much time and need more memory than the VM has. If the
OutOfMemoryError occurs, the user can increase the memory
for the VM and sets -Xmx for JVM in the corresponding
commands under the scripts directory. For completing all
experiments in our paper, we suggest to run DYCLINK on
a real machine.
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