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Recent advancements in data-driven process control and performance analysis could provide the
wastewater treatment industry with an opportunity to reduce costs and improve operations. However, big
data in wastewater treatment plants (WWTP) is widely underutilized, due in part to a workforce that lacks
background knowledge of data science required to fully analyze the unique characteristics of WWTP.
Wastewater treatment processes exhibit nonlinear, nonstationary, autocorrelated, and co-correlated
behavior that (i) is very difficult to model using first principals and (ii) must be considered when
implementing data-driven methods. This review provides an overview of data-driven methods of
achieving fault detection, variable prediction, and advanced control of WWTP. We present how big data
has been used in the context of WWTP, and much of the discussion can also be applied to water treatment.
Due to the assumptions inherent in different data-driven modeling approaches (e.g., control charts, sta-
tistical process control, model predictive control, neural networks, transfer functions, fuzzy logic), not all

Monitoring methods are appropriate for every goal or every dataset. Practical guidance is given for matching a desired
goal with a particular methodology along with considerations regarding the assumed data structure.

References for further reading are provided, and an overall analysis framework is presented.
© 2019 Elsevier Ltd. All rights reserved.
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1. Introduction

Municipal wastewater treatment plants (WWTP) continuously
monitor and collect data from unit processes, but the data are often
underutilized. Due to the size and complexity of datasets currently
generated by WWTP and the lack of data science background for
WWTP professionals, it can be challenging to efficiently collect,
manage, and analyze the data (Diebold, 2003; Kadiyala, 2018;
Manyika et al., 2011; Regmi et al., 2018). Despite widespread in-
terest in big data integration at WWTP, most raw data are stored in
their original format for potential future performance analyses with
little consideration to their structure or the organization of the data
repository. To extract information from this “data lake,” multiple
factors need to be considered, including the unique characteristics
of WWTP data and the goals of an individual WWTP. This review
describes different data-driven methods and how they can be used
to address problems specific to WWTP. While reviews exist for
academic applications (Corominas et al., 2018; Hadjimichael et al.,
2016; Olsson, 2012), this review is from an applied perspective;
designed to demystify what methods should be used and under
what circumstances. If operations data were analyzed in real-time
with data-driven tools, WWTP could promptly detect and
respond to process failures, inefficiencies, and abnormalities. Early
correction of these WWTP faults could reduce (i) downtime, (ii)
effluent discharge violation, and (iii) resource consumption such as
energy, chemicals, and labor. Additional applications of big data to
improve WWTP operation include data validation; online moni-
toring of difficult-to-measure variables; predictive maintenance
(Golhar and Dallas, 2016); system and energy optimization; and
tailored water reuse (i.e., producing water of distinct qualities for
different reuse purposes).

Big data integration at WWTP will have the most substantial
impact on process control. WWTP primarily use fixed upper and
lower limits of process variables to monitor and control treatment
processes. These limits are adjusted based on a WWTP operator's
background knowledge of the specific system as well as online and
offline water quality data, but rarely are more advanced methods of
determining process limits (i.e., modeling) used. In part, this is due
to the variability in the sensors that provide the data. Water quality
is monitored in real-time by online digital sensors that transmit a
voltage or current corresponding to an electrochemical reaction or
physical change inside the sensors as they interact with the envi-
ronment (e.g., constituent concentration, flowrate, pressure, level).
To calibrate these sensors, measurements using analog devices or
laboratory analyses are correlated to voltage or current changes
from the sensor. However, solids deposition, biofilm formation, and
precipitates can interfere with the sensor's voltage or current
change and thus with the sensor's measurement accuracy. Offline

analyses to calibrate sensors and monitor process performance is
performed either on- or off-site, and the time required for each
analysis can range from minutes to days, depending on the labo-
ratory equipment and available staff. The resulting datasets often
have missing values, contain outliers, and are sensitive to the
interdependent, nonlinear, and nonstationary nature of WWTP
data (Olsson et al., 2005; Rosen and Lennox, 2001), which makes
WWTP difficult to model mathematically for the purpose of per-
forming process control (Diirrenmatt and Gujer, 2012). Conse-
quently, big data tools can provide an alternative approach (see
Section 3.3.1).

To address the unique features of WWTP processes and the
resulting data, WWTP need access to a labor pool of WWTP pro-
fessionals with backgrounds in data science (Kadiyala, 2018; Sirkia
et al., 2017) and need more practical guidance on full-scale big data
implementation (US EPA, 2014). This paper serves as a WWTP en-
gineer's guide to understanding the advantages and limitations of
applying different data-driven methods for process control and
optimization. We present how big data has been used in the context
of WWTP and review the academic literature that describes state-
of-the-art methods of analyzing WWTP data for advanced control
and process optimization, noting that state-of-the-art in WWTP
does not reflect state-of-the-art in the data sciences. Many more
advanced methodologies have been developed but not yet tested in
the WWTP context. References for further reading for each broad
category of methods are given along with suggestions for methods
that have promise for the water industry. Additionally, much of this
discussion can also be applied to water treatment. Section 2 pro-
vides the reader with an introduction to big data and data-driven
analysis, WWTP, and the prominent data characteristics of WWTP
processes that may impact the results of data analysis. Section 3
follows with analytical methods to improve process control using
examples of real WWTP for the purpose of fault detection, variable
prediction, and advanced automated control (Fig. 1). Some methods
listed in Section 3 have multiple applications; thus, the full
description is provided when the method is first presented. Section
4 concludes with lessons learned from this review of advanced data
analysis at WWTP; outlines the challenges facing modern WWTP as
they integrate data-driven solutions into their operations; and
identifies some existing methodologies that have not yet been
tested with WWTP data.

2. Background
2.1. Big data

The term “big data” encompasses the modern overabundance of
data produced by online and offline analysis, and the innovative
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Fig. 1. The data-driven methods identified in green are examples of methods that have
demonstrated good performance in WWTP for the purpose indicated by the tree di-
agram. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

tools used to analyze the data. Big data can be broadly characterized
by the 5 Vs, which are volume, variety, velocity, veracity, and value
(Golhar and Dallas, 2016; Laney, 2001; Slawecki et al., 2016). Vol-
ume is the physical storage size required to save collected data.
WWTP rarely monitor the total size of the collected data, as storage
is inexpensive relative to the operating budget of a facility. Variety
refers to the different types of data collected, including file type and
data structure. Maintenance notes are considered unstructured, but
measured sensor values are structured because they have a quan-
tifiable/measurable significance and are stored in a separate data-
base. Velocity is the rate of data storage and analysis in real-time.
The computer processing speed (i.e., velocity) to monitor a WWTP
needs to be sufficiently fast; able to collect, sort, clean, analyze, and
interpret data quickly and effectively. Veracity is the quality and
trustworthiness of the data and can be considered a measure of
uncertainty. One data source in WWTP with questionable veracity
is sensing technology. Even with regular maintenance and cali-
bration, sensor measurements drift over time, and the drift may
differ between sensors of the same model exposed to the same
environmental conditions (Haimi et al., 2013; Olsson, 2012;
Vanrolleghem and Lee, 2003). Finally, value is a subjective char-
acterization of data quality referring to (i) the cost of data collection
and storage relative to the value it produces, and (ii) if analyses are
performed to produce information from the data.

The two general steps for extracting information from industrial
processes are data management and data analysis (Gandomi and
Haider, 2015; Labrinidis and Jagadish, 2012). Broadly speaking,
data management includes the acquisition, aggregation, and
cleaning of raw data to prepare it for analysis. Analysis may include
modeling or advanced statistics to make inferences about the
process and can provide site-specific, actionable knowledge. In this
paper, we primarily discuss the second step, approaches to data
analysis, for addressing problems in modern WWTP.

To maximize value in data-driven analysis, engineers need to
engage with statisticians, data scientists, and computers scientists
to develop industry-specific tools. For WWTP, there are few data-
driven tools that are commercially available, and most are
designed as black-box, turnkey solutions with limited insight into
computational details and causal factors. Given the nature of
WWTP, in which an operator receives information from multiple
sources and makes an educated decision, black-box systems are
frequently not trusted by WWTP. Generic data-driven tools also
exist, but the average WWTP engineer lacks the background in data
science to apply these tools to a complex system like WWTP. In

order to produce impactful and accurate results, big data analyses
need to be implemented with WWTP-specific process knowledge
and informed data characterization. In the next section, we provide
a brief introduction to the types of processes in WWTP that are the
focus of this paper.

2.2. Water & wastewater treatment

In the US, WWTP receive raw wastewater from sanitary sewer
networks and use multiple unit processes to remove contaminants
until the water meets standards for discharge or reuse as regulated
under the Clean Water Act (Clean Water Act, 1977). Municipal
wastewater treatment begins with physical treatment processes
such as screening and grit trapping to remove large material and
debris from the raw wastewater, followed by biological treatment.
The most common method of biological wastewater treatment is
the conventional activated sludge (CAS) process. Aeration and
recirculation of biologically-active solids (“biosolids” or “solids”)
maintain diverse communities of microorganisms in CAS to
degrade a wide range of organic compounds and nutrients. Clari-
fication (gravity settling) separates treated water from the bio-
solids, followed by disinfection and discharge to the environment.
Depending on the initial quality of the water, advanced treatment
may also be required (e.g., diffusive membrane technology or
advanced oxidation processes) to remove salts or contaminants of
emerging concern (e.g., pharmaceuticals, personal care products,
synthetic organic compounds).

The quantity and quality of water and solids are measured from
the headworks of a facility, through the treatment train, to the final
discharge point (Fig. 2). Some variables are a general measure of the
health of a system, such as pH. Other variables are included in
control loops with pumps, valves, and air blowers to optimize
treatment, such as dissolved oxygen (DO), ammonia (NHZ), and
nitrate (NO3) concentrations. Additional variables indicate the
operating state of a system, such as normal or peak operation in the
event of unexpectedly high influent flow. These variables are cat-
egorical and can be assigned surrogate numerical values such as
0= OFFand 1 =ON, depending on whether a piece of equipment is
in operation. Unit processes can be designed to treat a continuous
flow (e.g., disinfection plug-flow basin) or a batch (e.g., sequencing-
batch reactor). Batch reactors have the additional variable of batch
runtime, as contaminant transformation is time-dependent. A non-
exhaustive list of WWTP variables that produce data of interest to
process control are summarized in Table 1.

2.3. Data considerations

2.3.1. Structure

Data-driven analytical methods are heavily dependent on the
type of data collected. It is important to understand the unique
structure and characteristics of the data used to determine how the
data are organized and utilized (Cormen et al., 2009). Data at
WWTP are acquired from a variety of sources: laboratory analysis,
online sensor measurements, operations and maintenance man-
agement, and customer and technology manufacturer information.
Each source produces data that are structured differently and can
include numerical (sensor readings), categorical (ON or OFF), or
unstructured (notes) variables. Differentiating between numerical
or categorical variables is important for data-driven analysis. For
example, an operator may determine the amount of time during a
batch cycle that an air blower is ON or OFF, which dictates what a
“normal” DO concentration in a reactor should be. If a controller is
used, the speed of a blower can also be adjusted to meet a desired
DO concentration. In this case, there is also a distinction between a
controlled variable (air blower speed) and a variable that responds
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Fig. 2. A generic flow and sensor schematic of a CAS WWTP. S; denotes concentration of aqueous species i and is measured using offline laboratory analysis. Q; denotes the flowrate
of either air, water, or supplemental carbon, which is measured using in-line flowmeters. DO, nitrate (NO3), and ammonia (NHZ) are measured using sensors throughout the CAS
process to evaluate treatment performance, and at some facilities nutrient measurements are used to control the rate of biosolid recycle.

Table 1

Examples of monitored features in WWTP and their associated data collection frequency and data structure.
Feature Frequency Structure Example
Water quality Daily-Monthly-Quarterly Numeric Laboratory analysis: 5-day biochemical oxygen demand, alkalinity, nutrients
Water quality Second-Minute Numeric Temperature, dissolved oxygen, pH, and nutrient concentrations from sensors
Equipment monitoring Second-Minute Categorical Power state, valve position
Equipment monitoring Second-Minute Numeric Operating speed, flowrate, pressure
Operating setpoints Second-Minute Categorical Peak or normal operation for flow through, production or backwash for filters
Operating setpoints Second-Minute Numeric Runtime for batch operations

to the control (DO concentration). By measuring the effect of
explanatory variables (i.e., control variables or other covariates) on
response variables, data-driven methods can be developed to pre-
dict the outcome of a process. However, not all analyses differen-
tiate between explanatory and response. Additionally, not all
explanatory variables directly or measurably affect a process
output, especially in a large process scheme like WWTP. Methods
applied solely to explanatory variables are generally referred to as
unsupervised, meaning that the goal is simply to identify patterns in
the data without any advance knowledge of the relationships being
sought. On the other hand, supervised learning occurs when the
observations are “labelled” by their response values, and the goal is
to characterize the link between the explanatory and response
variables. When a distinction between variable types is required, it
is mentioned in the first instance of the method in Section 3.

2.3.2. Frequency and temporal variability

WWTP data are collected at a variety of time intervals, from
continuous online sensor measurements to quarterly laboratory
results. For example, WWTP monitoring is considered “continuous”
if data are collected at 15-min intervals or less (US EPA, 2015), but
some effluent quality variables are measured only every few
months, such as disinfection byproducts. Traditional data man-
agement segregates data by source, primarily due to the difficulty
of merging data of different frequencies and formats. A common
mathematical approach to handle different data frequencies is to
scale data to a single time interval (Odom et al., 2018). However,
datasets with a very large difference in frequencies cannot use this
method because WWTP data are time-dependent, co-correlated
(i.e., the relationships among variables are related to one another),
and nonlinearly related, making downscaling challenging. Effluent
quality variables may change either suddenly or gradually over
time (Table 2), and they often change nonlinearly in relation to
other process variables, which can make attributing the cause of
change between sampling events difficult.

The monitoring frequency of the treatment process strongly

Table 2
Examples of features with typically slow or rapid changes over time in a WWTP.

Timescale Feature

Slow (days-weeks) Solids retention time (SRT)
Hydraulic retention time (HRT)
Transmembrane pressure (TMP)
Dissolved oxygen (DO)

Nutrient concentrations
Turbidity

Conductivity

Flowrate

Fast (seconds-minutes)

depends on the goal of the analysis and the characteristics of the
process (Venkatasubramanian, 1995). In process control, the data
collection frequency should be sufficiently high to account for in-
strument noise and to track typical irregularities, but not so
frequent that excessive computational power is required for full
analysis. Short-term faults, like a clog in a pipe that can occur on the
order of minutes to hours, require a different monitoring window of
time than long-term faults like an increase in transmembrane
pressure due to biological fouling of a membrane that occurs on the
order of days to weeks (Table 2). Diirrenmatt and Gujer (2012)
recommend a window width of at least three times the length of
time over which the fault occurs to be detected.

2.3.3. Variable characteristics

Many WWTP process variables exhibit unique characteristics
such as time-dependence and nonstationarity (e.g., the strong
diurnal and seasonal swings of ambient temperature), but con-
ventional control strategies rarely account for such relationships
that need to be considered for data-driven fault detection, variable
prediction, or automated control. Stationary variables have con-
stant mean, variance, and covariances, making them predictable
and more easily modeled. Conversely, the means and/or variances
of nonstationary variables change over time. If a variable's mea-
surements are correlated from one time step to the next, the
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variable is said to be dependent over time. WWTP data exhibit
these properties because of the dynamic nature of WWTP pro-
cesses (Fig. 3); a constantly changing influent, batch as opposed to
continuous processes, temperature, internal shifts in microbial
ecology, and process control instability are a few causes of the
nonstationarity and temporal dependence.

Many statistical methods assume data are normally distributed.
A normal distribution is symmetric, unimodal, and bell-shaped and
is characterized by two statistical parameters, its mean and vari-
ance. The multivariate case is additionally characterized by its co-
variances (i.e., the variance between each pair of variables). When
the data are normally distributed, exact inferences can be made
about the mean, variance, and covariances (e.g., confidence in-
tervals, predictions, or hypothesis tests) because the distribution of
the test statistics adhere to proven mathematical theories. When
the assumption of normality is not met, it is more difficult to
identify the distribution of the statistic. Without making assump-
tions about the data's distribution, the uncertainty in the estimate
of interest cannot be accurately inferred.

The assumption of normality does not typically hold in WWTP,
due to boundary limits of variables (i.e., sensor operating range),
process variation, and outliers. In the event of a hardware mal-
function, a contaminated lab sample, or a data entry error, obser-
vations may be missing or abnormal, compromising normality,
analysis power, and reliability of results (Kwak and Kim, 2017). Each
error can potentially bias features that are of interest to model, and
the removal or correction of erroneous values (i.e., data cleaning)
should be a high priority prior to data analysis to limit incorrect
conclusions (Haimi et al., 2013; Kadlec et al., 2009).

Particular attention needs to be paid to how a data-driven
methodology is implemented. In the event that nonlinear and
nonstationary behavior is detected, there are two approaches for
modeling nonstationary behavior: accounting for a known, or
predictable, underlying trend or limiting the window of time over
which a model is trained. Given the difficulty in modeling
nonstationary behavior in WWTP (Fig. 3), relatively short windows
of time (e.g., 3 to 10 days) may be the best option to achieve

Constant Mean & Variance
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approximate stationary and normal behavior.

In addition to simple modifications of existing methods (e.g.,
using short training windows), distribution-free statistical
methods, such as kernel density estimation (KDE) and boot-
strapping, can be applied. KDE estimates a distribution using local
smoothing, allowing practitioners to work around the normality
assumption. However, KDE is very sensitive to the choice of tuning
parameters (Izenman, 2013). Conversely, bootstrapping does not
require any tuning parameters but is more computationally
demanding. From a dataset, observations are randomly drawn with
replacement; the statistic of interest is computed; and then these
two steps are repeated many times to produce a distribution of the
statistic (Efron and Tibshirani, 1994). James et al. (2013) provide a
simple introduction to the bootstrap method.

2.4. Exploratory data analysis

Identifying the structure and characteristics of a dataset requires
familiarity with the source of the data and the process itself. Plot-
ting and visualizing data should be the first step in any analysis, but
no one-size-fits-all approach exists. Observations recorded over
time can be visualized in time series plots (Fig. 3); the strength of
the temporal dependence can be assessed with autocorrelation
function plots; potential outliers can be observed in boxplots; and
the entire distribution can be plotted in a histogram. These plots
work well for monitoring a single variable, but WWTP are often
interested in the relationships among multiple variables. Pairwise
scatterplots, multiple boxplots, functional boxplots, and cross-
correlation function plots are just a few ways additional features
can be assessed; examples of some of these plots can be found in
Pfluger et al. (2018). There are many tests available to assess
multivariate normality, including the Mardia test, Henze-Zirkler
test, Royston test, Doornik-Hansen test, and the E-statistic
(Korkmaz et al., 2014). Unsupervised learning methods for clus-
tering or outlier detection are commonly used to identify structure
in the data (James et al., 2013). Manual data inspection can be time-
intensive, so the inclusion of more advanced statistical tools can
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Fig. 3. Example of stationary and nonstationary process variables in WWTP. Membrane bioreactor (MBR) tank level (top left) is considered a stationary variable with constant mean
and variance while permeate turbidity (top right), permeate conductivity (bottom left), and bioreactor (BR) DO concentration (bottom right) are nonstationary.
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provide rapid insight into the data characteristics.
3. Methods & examples

In this section, we present the current use of process data in
WWTP and a review of recent academic literature demonstrating
the possibilities for advanced, data-driven process control in
WWTP. The focus of this review is on control methods that have
been tested on actual WWTP systems to provide practitioners with
realistic examples. Simulation studies serve a valuable purpose but
do not always represent the WWTP process realistically due to
simplifying assumptions about data characteristics and the pro-
cesses (Corominas et al., 2018). Primarily, data-driven analysis in
WWTP can be used for fault detection, variable prediction, and
automated control. Each requires a different and increasingly
complex data processing, analysis, and control framework. The
data-driven methods are therefore discussed in the context of the
goal of each process control application: fault detection, variable
prediction, or advanced control. We begin with a brief review of
historical methods of process control in WWTP.

3.1. Historical process control

Data-driven process control has historically been sparse in
WWTP, with daily operational decisions considered more of an art
than a science (Metcalf and Eddy, 2013; O'Day, 2004). As early as
the 1920s, statistical tools like histograms and control charts were
used for informal diagnostics. Control during this time relied on
manual adjustments and observations, as digital control was not an
option prior to the 1960s. The cost of computers and instrumen-
tation was high; treatment dynamics were not well understood;
facilities were not designed with additional flexibility; and control
theory was not sufficiently developed (Olsson, 2012). In the 1980s,
affordable computing power facilitated simple first principle
models, although their complexity and lack of reliability made
them poor advisory systems (Olsson et al., 1998). By the early 2000s
the digital revolution reached WWTP, and most WWTP had inte-
grated their own version of direct digital control into process
monitoring in the form of programmable logic controllers (PLC) and
supervisory control and data acquisition (SCADA) systems.

Despite the unique challenges posed by WWTP data, data-
driven system automation and real-time control are integral to
modern WWTP operation. The most common process control
practice is to maintain a set-point (i.e., target value) using online
sensor readings and feedback control. For example, DO concen-
trations can be controlled by adjusting air blower speed (i.e.,
aeration intensity). Rather than operating at a single blower speed,
online measurements provide feedback to the SCADA system that
determines whether blower speed should increase, decrease, or
stay constant relative to a measured value, like DO concentration.
Chemical dosing to enhance contaminant precipitation and addi-
tional carbon for biological processes are other examples of feed-
back control based on in-situ nutrient concentrations. This method
of process control is commonly achieved by a controller with a
variable frequency drive to change operating conditions in a
continuous, smooth, and automated manner.

Establishing target values for process variables is one of the
simplest methods of control and is a widespread practice in WWTP.
This single-variable monitoring paradigm is the foundation for fault
detection at most modern WWTP, in which a measured value is
either within or outside of an operator-specified range. While this
approach has a low false-alarm rate (e.g., if a flow rate measure-
ment is below a set-point, a fault of unknown cause has certainly
occurred somewhere in the system that affects flow rate), it can be
very slow to detect faults, does not forecast future values, and does

not account for correlations among variables. Plant operators must
be available to respond quickly to a system fault to prevent
equipment damage or system failure, putting additional stress on
equipment and staff to reduce a fault's impact on effluent water
quality. Proactive and comprehensive approaches to fault detection
and forecasting are being developed (Capizzi and Masarotto, 2017;
Jiang et al., 2012; Kazor et al., 2016; Odom et al., 2018; Wang and
Jiang, 2009), which could help reduce cost and improve efficiency
of WWTP systems. Some data-driven fault detection methods are
currently being implemented, and the results are discussed in the
next section.

3.2. Fault detection

A multitude of system faults or changes in conditions can cause
process irregularities in WWTP. These include a change in influent
quality (e.g., snowmelt, industrial discharge), an outbreak of mi-
croorganisms that inhibit treatment (e.g., filamentous bacteria,
algae), irregularities or damage to treatment units (e.g., mem-
branes, clarifiers), mechanical failures (e.g., pumps, air blowers), or
sensor failure (e.g., drift, bias, electrical interference). Each type of
fault can alter system performance differently, and it is important
to consider the versatility of an analytical approach (i.e., which
types of faults can be detected) when designing a fault detection
program. For example, if a sensor failure occurs and the sensor's
measurements are included in a control loop, many variables could
be affected. In contrast, if the sensor's measurements are not
included in a control loop, a sensor fault may only affect the
measured sensor variable.

A “fault” is an unintentional deviation of a process characteristic
that limits the process’ ability to achieve its purpose (Isermann,
1984). Typical single-variable faults that occur in WWTP are
easier to diagnose qualitatively and are illustrated in Table 3.
However, multivariate faults can be much more difficult to discern
visually. To detect faults in the dynamic, nonstationary, multivar-
iate data found in WWTP, a quantitative approach, such as statis-
tical process control (SPC), is needed. In SPC, a “fault” is identified
when a consecutive series of observations are flagged as abnormal.

Olsson and Newell (1999) suggested data collection frequency
be chosen to be at least one-fifth of the length of time over which
the event of interest occurs. The distinction between normal (in-
control or IC) and abnormal (out-of-control or OC) observations is
determined by a statistical hypothesis test. Hypothesis tests are
used to quantify the likelihood that an individual observation from
a dataset is consistent with observations collected under IC con-
ditions. IC observations are usually used to “train” an SPC model,
which is a type of supervised learning because the initial data are
known to be IC. Many SPC methods exist, but few have been
implemented in WWTP. The following is a discussion of different
SPC methods used in WWTP to determine if a significant change or
fault has occurred.

3.2.1. Control charts

Control charts are useful tools to determine, at a glance, if a
process is IC. The most popular statistical control chart was outlined
by Walter Shewhart of Bell Labs. The Shewhart control chart uses
upper and lower control limits (UCL and LCL) for a process variable
or statistic by adding or subtracting k standard deviations from the
variable's mean, with k=3 being the industry standard (NIST/
SEMATECH, 2003; Shewhart, 1926). If an observation is above the
UCL (or conversely below the LCL), a statistically significant change
has most likely occurred. Shewhart control charts employed at
WWTP are typically constructed with a 3- or 5-day arithmetic
moving average for variables designed to be stationary such as
solids retention time (SRT) in a bioreactor or percent water
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Table 3

Abnormal patterns in univariate WWTP data that could indicate a fault and potential causes of the fault pattern. Adapted from Capizzi

and Masarotto (2017).

Pattern Cause

Isolated Power spike, air bubble on sensor, spike of contaminant in influent

Sustained Change in operational status, mechanical performance variation, sensor recalibration
Transient State change, sensor malfunction, cycle fluctuation

L

Drift Sensor or mechanical device degradation, biological shift, fluid flow restriction

-

recovery of a membrane treatment unit. Additionally, control
charts can be used in WWTP analytical labs for quality control (e.g.,
a sensor's measurements of a standard solution over time) (Rice
et al., 2017) or other variables that change slowly (Table 2). How-
ever, the Shewhart method of calculating control limits is only valid
for a variable that is normally distributed and whose observations
are independent and stationary (Montgomery, 2009).

Updating the UCL and LCL to adapt to changing conditions using
methods such as exponentially weighted moving average (EWMA)
can account for some nonstationarity found in WWTP data (Wold,
1994). The Shewhart control chart assumes the process is station-
ary and weighs all past observations equally, ignoring trends
(Montgomery, 2009). The EWMA gives more weight to the most
recent observations, adapting to some process variation (NIST/
SEMATECH, 2003) and is frequently used as a data smoothing
technique (Berthouex and Box, 1996; Mina and Verde, 2007). The
EWMA accounts for both the most recent observation and past
behavior by multiplying the most recent observation by a forgetting
factor (0.05 <A <0.25) and the geometric moving average by 1 — A
(Hunter, 1986; Montgomery, 2009; Roberts, 1959). However, the
EWMA is not a good measure to distinguish between IC and OC for
every WWTP process. Like many data-driven performance moni-
toring methods, the EWMA control limits are heavily impacted by
outliers (Rosen et al., 2003). In both panels of Fig. 4, the assimilation
of OC observations immediately widens the range of values that are
considered IC. Thus, control chart limits should only be updated
with IC observations, as explored by Corominas et al. (2011).
Additionally, some sensors have a lower operating limit, which
invalidates the standard EWMA LCL (Fig. 4a). In this case, a turbidity
sensor outputs a current between 4 and 20 mA which is converted
to turbidity units (NTUs) using a calibrated linear regression. Here,
4 mA correlates to 0.04 NTU. When the turbidity is below this
threshold, the sensor continues to output 4 mA, which truncates
the distribution of the turbidity data and invalidates the LCL. For
small datasets (e.g., fewer than two variables in the case of flow and
pressure of a water distribution system), univariate EWMA has
shown to be better at detecting faults than multivariate EWMA
(MEWMA) (Jung et al., 2013). However, most WWTP process vari-
ables violate the assumptions required for the Shewhart's or the
EWMA control chart (Berthouex, 1989), resulting in a high per-
centage of false alarms, making them poor choices for fault detec-
tion. For larger datasets (e.g., monitoring more than 2 process
variables), multivariate control charts can reduce a complicated
dataset to a single measurement reflecting the “health” of the
WWTP.

Monitoring multivariate processes (as opposed to individual

variable monitoring) with a control chart method may provide
WWTP operators with a better sense of the overall state of oper-
ating conditions (Schraa et al., 2006). Multivariate process statistics
such as MEWMA (Lowry et al., 1992), multivariate cumulative sum
(MCUSUM) (Crosier, 1988), and Hotelling's T? (Hotelling, 1947) can
be used to examine the mean and dispersion of multiple variables
but have rarely been implemented in industrial process monitoring
due to the complex matrix algebra required (NIST/SEMATECH,
2003). MEWMA and MCUSUM have been shown to be good at
detecting small changes in the mean, compared to Hotelling's T2,
but can have a high false-alarm rate (Alves et al., 2013). However,
the assumption of multivariate normality is also required for these
methods, and as mentioned previously, this is rarely observed in
WWTP. A nonparametric approach, such as bootstrapping, may
yield better results for a multivariate control chart in WWTP
(Phaladiganon et al., 2011).

3.2.2. Principal component analysis

A widely used statistical method for monitoring multiple vari-
ables simultaneously is to capture the relationships among linear
combinations of variables rather than the variables themselves by
principal component analysis (PCA) (Jackson, 1991). PCA identifies
independent, linear combinations of variables (principal compo-
nents or PCs) by effectively calculating lines-of-best-fit through a
dataset (Wise and Gallagher, 1996). PCs account for as much vari-
ation as possible (given the assumption of linearity) and can,
therefore, reduce the number of model variables and eliminate
noise and redundancy. For example, unsupervised PCA is frequently
used to reduce the number of predictor (input) variables for mul-
tiple regression models (discussed further in Section 3.3.3)
(Wallace et al., 2016; Wang et al., 2017) and can be used to identify
“clusters” of related microbiological sample properties (Jatowiecki
et al., 2016).

To use PCA for supervised, data-driven analysis, a “training”
dataset that represents IC conditions is used to calculate the PC,
then “testing” data are transformed into the model subspace
(defined by the PC). If the overall distance from a new observation
to the PCA-model is above a desired control limit (similar to the
control chart methodology described above), then the new obser-
vation is considered abnormal and is a possible indication of a
process fault. The benefit of performing PCA prior to calculating the
control statistic (e.g., squared prediction error (SPE), Hotelling's T2,
etc.) is the reduction in false alarms due to the reduction in noise
and removal of dependence among the features.

PCA has many applications in WWTP, from direct fault detection
(King et al., 2006) to data reconstruction (Lee et al., 2006a; Schraa
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Fig. 4. EWMA control chart for (a) turbidity (clarity) sensor measurements of treated water and (b) SRT in an activated sldge wastewater treatment system. Orange lines are the
EWMA UCL, green lines are the EWMA LCL, blue dots are measured values that fall within the control limits, and red diamonds are measured values that fall outside of the control
limits. Both control limits were calculated using the previous 15 observations and a forgetting factor (1) of 0.25. Sensor measurements for turbidity were recorded every minute, and
SRT values are calculated daily. Both (a) and (b) demonstrate the power of outliers to dramatically change EWMA control limits. In (a), due to noise, natural process variation, and
the range of the sensor (i.e., a sensor that communicates via a 4—20 mA current output has a lower (4 mA) and upper (20 mA) limit), many individual observations fall above the
UCL, which, in this case, does not necessarily indicate a fault. In (b), the LCL detects the decline in SRT and responds to the change by widening the control range as the trend
continues. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

et al., 2006). For dynamic WWTP data, variations of PCA are often
used, with adaptive PCA being the most common (Baggiani and
Marsili-Libelli, 2009; Kazor et al., 2016; Lee and Vanrolleghem,
2004; Rosen and Lennox, 2001). Adaptive PCA updates the model
based on a “rolling window” of training observations. The training
window is set to n observations, and as time passes, the oldest
observations are removed from the training dataset, and new ob-
servations are added to maintain a constant number of observa-
tions. The rolling training window can thereby account for
temporal nonstationarity found in WWTP (i.e.,, conditions that
change over time). However, if the training window is too large,
faults could be ignored (Baggiani and Marsili-Libelli, 2009). If the
training window is too small, normal observations could be flagged
as faults (Rosen and Lennox, 2001). Given the type of process
changes that a WWTP needs to detect, exploratory data analysis
(Section 2.4) should be used to identify the shortest training win-
dow that achieves the desired true-detection rate. Some argue that
the underlying correlation structure should not change with time,
and therefore the rolling window concept defeats the purpose of
PCA (Mina and Verde, 2007). This assumption may be valid for
simulated WWTP data, but is unlikely for real WWTP data and is
demonstrated by the improved performance of adaptive PCA as
opposed to conventional PCA (Kazor et al., 2016).

Dynamic PCA is another common modification to PCA for fault
detection in WWTP (Lee et al., 2006a; Lee et al., 2006b; Mina and
Verde, 2007). The dynamic extension accounts for autocorrelation
among variables by lagging observations (i.e., shifting a dataset
back by a given timestep and including the lagged values as new
variables) (Kruger et al., 2004; Ku et al., 1995). For most WWTP
applications, a lag of a single timestep is sufficient to account for
how previous conditions affect current performance. However, if
the process is cyclical (i.e., processes occur as a function of runtime,
and the system returns to its initial state by the end of the cycle),
then the lag should be the size of the cycle itself (Kazor et al., 2016).

Cyclical (i.e., batch) operations may also require a unique
modification called multiway analysis (Smilde et al., 2005). Multi-
way PCA unfolds a dataset indexed in three-dimensions (e.g., cycle
runtime, batch, monitored variables) to a long, two-dimensional
array by combining two of the three-dimensions (e.g., cycle run-
time and monitored variables) that can be analyzed with traditional

SPC methods like PCA (Fig. 5) (Lee and Vanrolleghem, 2004,
MacGregor et al., 1994; MacGregor and Kourti, 1995; Nomikos and
MacGregor, 1994; Yoo et al.,, 2004). In WWTP, this approach is
particularly useful for sequencing-batch reactors (SBR) (Villez,
2007). The new two-dimensional dataset can account for vari-
ability in the monitored variables across batches and variables
measured at different temporal frequencies.

The major drawback of PCA, and many other SPC methods like
partial least squares for WWTP, is the assumption that process
variables are linearly related to each other. To account for the
nonlinear components of WWTP, data can first be mapped into a
higher-dimensional, nonlinear space where observations are more
likely to be linear (Haykin, 1999). One such nonlinear PCA method is
kernel PCA (KPCA). Kernel methods avoid computationally-
intensive nonlinear optimization, and different nonlinearities can
be captured using different kernel functions. Popular kernels are
the polynomial, Gaussian, and sigmoid, but the most commonly
used is the Gaussian because its associated parameter provides
precise tuning of the model fit (Izenman, 2013; Nguyen and
Golinval, 2010). KPCA has shown slightly better performance in
simulated WWTP (Lee et al., 2004; Xiao et al., 2017); however,
Kazor et al. (2016) found limited improvement in KPCA over PCA for
fault detection in a decentralized WWTP; and Lee et al. (2006c¢) saw
similar limited improvement for the performance of anaerobic
filters.

3.2.3. Partial least squares

Similar to PCA, partial least squares (PLS) identifies independent
linear combinations of the measured variables, and outliers can be
identified with T? and SPE statistics (Chen et al., 2016). Unlike PCA,
PLS differentiates between input variables (e.g., initial water qual-
ity, operational information) and output variables (e.g., effluent
water quality) and performs dimension reduction on each set of
variables separately (Hoskuldsson, 1996). PLS is an example of su-
pervised dimension reduction; PLS only monitors output variables
that are affected by the input variables, whereas PCA is used to
monitor all variables in the process simultaneously. If an observa-
tion is abnormal but does not impact the final water quality, PLS
will not flag the process as OC, but PCA will (Chiang et al., 2001;
Nomikos and MacGregor, 1995). Hence, PLS is more frequently used
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Fig. 5. Visual representation of how multiway PCA unfolds a three-dimensional array into a two-dimensional matrix that can be analyzed with PCA. This particular configuration is
considered “batch-wise” because the length of the batch is fixed. Another multiway unfolding could be “time-wise” if runtime is the same for each batch, and batches and variables

are merged.

in variable prediction than in fault detection.

In complex systems, fault detection may improve by dividing
the process into units. Multiblock PLS (MB-PLS) subsets input var-
iables into logical subsystems (e.g., primary sedimentation, aera-
tion basin) prior to analysis (Wangen and Kowalski, 1989).
Experimentally, MB-PLS does not improve prediction compared to
the standard PLS; however, the results may be easier to interpret for
fault diagnosis (Choi and Lee, 2005).

3.2.4. Neural networks

Conventional mechanistic models use complex formulas that
are connected in mathematically simple ways (i.e., mass balance
formulations to describe the sum of all unit processes). In contrast,
neural networks (NN) use simple mathematical expressions that
have complex relationships in which process inputs are nonlinearly
linked to outputs without prior knowledge of an underlying
mechanism (Dreyfus, 2005; Nielsen, 2015; Olsson and Newell,
1999). Process inputs and outputs are connected by “neurons”
that are organized in layers (Fig. 6). A neuron in the input layer
distributes an actual process input variable to neurons in the first
hidden layer. Neurons in a hidden layer normalize and weigh
multiple inputs, transform the value with an activation function,
and produce a normalized output signal. NN can have one or
multiple hidden layers, connected by input transformations and
output signals. The output layer is a weighted sum of the final
hidden layer's output signal.

In contrast to linear statistical models (e.g., multiple regression,
PCA, PLS), NN model parameters do not have the same interpret-
ability (i.e., no physical, chemical, or biological significance). To
identify the parameters of each neuron in a NN model, learning
algorithms are needed. Due to the extensive intricacies of the
different learning algorithms for NN development, this paper will
focus on the two types of NN training: supervised or unsupervised.

Supervised training requires data to be labelled in such a way
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Fig. 6. A generic neural network structure. NN can contain multiple hidden layers with
different numbers of neurons in each layer, and one hidden layer is shown here.

that inputs and outputs are defined. There are many different
learning algorithms for fitting a supervised NN, and each requires
an iterative process in which parameters are estimated based on a
large historical dataset (Dreyfus, 2005). One of the most common is
the back-propagation learning algorithm that starts by randomly
assigning parameter values, calculating an estimated output, and
minimizing the error between the estimated and the actual output,
node by node and layer by layer, starting with the hidden layer
directly connected to the output. Hundreds of iterations must be
performed to determine the best network for a particular dataset,
requiring a substantial amount of computing power (Wei, 2013).
Hence, it is valuable to minimize the number of variables used to
construct the model.

Unsupervised training of a NN uses data that are unlabeled (i.e.,
the model is supplied with defined inputs but no outputs) and uses
fundamentally different learning algorithms than the error-
correction method in supervised training. Unsupervised NN act
best as classifiers for pattern recognition. In fault detection, unsu-
pervised NN can be trained to model a process by estimating the
values of inputs and comparing the estimation to the actual values,
also known as an auto-encoder NN (ANN). Xiao et al. (2017) used
ANNs with “bottleneck” layers (i.e., the middle, hidden layer con-
tains fewer nodes than the preceding or succeeding layers), which
force the NN to effectively capture the principal components of the
data to detect faults at a WWTP. SPE was calculated from the dif-
ference between actual and estimated values, and similar to PCA, an
SPE threshold was calculated to determine if the process was IC or
OC. Xiao et al. (2017) concluded that ANN-based fault detection was
more sensitive to changes than conventional PCA. Additionally,
Xiao et al. (2017) compared “deep” and “shallow” ANN. Until
recently, training NN with many layers and nodes (“deep” NN) was
not computationally efficient (Hinton et al, 2006). However,
“shallow” NN are generally unable to capture highly-nonlinear
systems. In this case, there was no conclusive evidence that the
deep ANN performed better than the shallow ANN.

3.3. Variable prediction

SPC can be used to assess if a system is IC or OC, but this is a
generic measure of product water quality and system health. To
predict what a variable value should be under given conditions,
model-based control could be used. Model predictive control (MPC)
compares mechanistic model predictions to actual process mea-
surements. Then, deviations from the model are identified as faults.
The model can be derived from theory (i.e., fluid dynamics, mi-
crobial kinetics) or empirical trends (i.e., data-driven) and can be
used to approximate additional process variables. In lieu of directly
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monitoring the variable of interest, a link may be found among
variables. In this way, a software sensor or “soft sensor” (also
referred to as inferential sensors, virtual online analyzers, or
observer-based sensors) can be developed for the online moni-
toring of variables that are too time-consuming or expensive to
consistently monitor with lab-based analyses (Chéruy, 1997; Kadlec
et al,, 2009). Many different approaches to variable prediction have
been proposed, and here we review the most commonly observed
in literature.

3.3.1. Activated sludge models

Some water quality variables can be adequately predicted with
calibrated, first-principal models. The activated sludge model no. 1
(ASM1) is the most widely used deterministic model for biological
carbon and nitrogen removal in WWTP (Henze et al., 1987). ASM1
was developed in 1985 by compiling novel research about the ki-
netic behavior and mechanisms of the CAS process. Subsequent CAS
models (e.g., ASM2 and ASM2d) have additional parameters that
account for fermentation, enhanced biological phosphorus
removal, and chemical phosphorus removal (Gujer et al., 1999;
Henze et al., 1999, 1995). Models based on first principals also exist
for clarifiers/settlers, but due to a lack of a mathematical relation-
ship between floc characteristics and settleability, they are still
limited to process design and research purposes (Metcalf and Eddy,
2013; Olsson, 2012). Uncertainty in the model inputs and the
simplified mathematical framework fundamentally limits the ac-
curacy of the model. However, in many cases, pilot- or full-scale
calibration can account for some of the error in the ASM (Metcalf
and Eddy, 2013). Additional sources of error are model parameter
estimates. Not all unit processes share a common set of state var-
iables (i.e., variables that indicate the operating conditions of a
process as opposed to variables that measure a constituent in the
water), and linking models with variable estimates can lead to
substantial error in the plant-wide model (Volcke et al., 2006). For
example, ASM and secondary clarifier models are frequently
coupled, but the models differ in how total suspended solids (TSS)
concentration is calculated and incorporated.

Without calibration and only parameter estimates, the ASM may
produce results that are only accurate within an order of magni-
tude, illustrating the variability of WWTP (Gujer, 2011). Olsson and
Newell (1999) considered other sources of error for model pre-
dictions, including inaccurate or incorrect calibration, non-ideal
process behavior, and lump-sum parameter assumptions. For
these reasons, MPC with the ASM is rarely used in full-scale bio-
logical WWTP operations for variable prediction or fault detection.

To standardize control strategy testing at biological WWTP, a
simulation benchmark was developed from the ASM1 (Henze et al.,
1987) under EU COST Actions 682 and 624 (Alex et al., 1999;
Jeppsson and Pons, 2004; Spanjers et al., 1998). The Benchmark
Simulation Model No.1 (BSM1) includes a mathematical model of a
five-reactor CAS treatment system followed by a clarifier (Fig. 2),
ASM-specific parameters from literature, and simulated influent
datasets for different weather events (Copp, 2002). The newest
version, BSM2, incorporates extensions proposed in recent litera-
ture: a longer simulation study timeframe, inclusion of temporally
dynamic parameters, and more realistic sensor behavior and failure
(Jeppsson et al., 2007; Nopens et al., 2010; Rosen et al., 2004).

There are hundreds of proposed control strategies for the BSM,
but simulation benchmarks do not yet exist for all common
wastewater treatment technologies. While simulation studies are
important to understand the potential behaviors of control strate-
gies, the actual dynamics of a WWTP are nearly impossible to
reproduce artificially. This is most evident when control strategies
perform well on BSM but cannot be replicated with real WWTP
data (Sin et al., 2006). Oppong et al. (2013) compared simulated

datasets from the BSM models to real industrial WWTP data using
anaerobic digestion in an attempt to develop a soft sensor. How-
ever, the variable of interest (volatile solids concentration) had
substantially different co-correlation structure, both in magnitude
and direction, among the simulated and actual process variables.
The difference was attributed to infrequent sampling and a stable
process with little change, but it is also possible that the BSM is
inadequate for MPC in this case.

3.3.2. Transfer function models

Transfer function models are a general class of models that
describe the relationship between an input and output of a linear
system using a mathematical function. When the system is not too
complex (i.e., the number of output parameters is <2), transfer
functions can be a good approximation for dynamic systems (Box
et al., 1994). Univariate autoregressive integrated moving average
(ARIMA) models are a special case of transfer function models that
do not depend on the input variables and are widely used for linear
time series forecasting (Chen et al., 2007). The autoregressive (AR)
portion predicts values that are mathematically related to the
previous time-step(s) (i.e., lag). The moving average (MA) predicts
values that are mathematically related to the error of the past time-
steps. The integrated (I) portion of the ARIMA model indicates that
the difference between observations (one or more) is modeled
instead of the observation itself, and this step can remove some of
the nonstationarity present in the data.

The primary application of ARIMA models in WWTP is to predict
an effluent variable. Park and Koo (2015) showed that an ARIMA
model can be used to predict effluent turbidity of a sedimentation
basin. Berthouex and Box (1996) and West et al. (2002) successfully
used an ARIMA model to predict effluent 5-day biochemical oxygen
demand (BODs5) of a WWTP. However, the ARIMA model's inte-
gration step is often insufficient to account for WWTP data non-
stationarity in the long-term (West et al., 2002). As the prediction
horizon increases, the accuracy of ARIMA models declines sub-
stantially; unable to account for nonlinear behavior in WWTP
(Dellana and West, 2009).

3.3.3. Multiple regression

Multiple regression is an extension of a simple, linear regres-
sion, using multiple independent variables (X;, i=1, 2, ..., k) to
model a single dependent variable, Y, via Y=0¢ + X7 + ... +
BiXk+e. The model parameters are commonly estimated by ordi-
nary least squares, and more information about multiple regression
model fitting can be found in Sheather (2009). When all indepen-
dent variables are standardized (i.e., zero mean and unit variance),
the strength of an input variable's impact on the output variable is
directly proportional to the magnitude of fj, giving tangible
meaning to the model parameters. Categorical information can also
be integrated by the use of dummy variables (D;, i=1, 2, ..., k),
which take on binary values (e.g., if a blower is ON, then D;=1; if
OFF, then D;=0). However, problems can arise when fitting a
multiple regression model if the explanatory variables are exactly
linearly related (multicollinearity), are highly variable, or are
autocorrelated (Miah, 2016) as in WWTP.

Ebrahimi et al. (2017) used multiple regression models to pre-
dict various water quality variables like phosphorus, nitrogen, and
TSS concentrations in a full-scale wastewater treatment plant with
reasonable results (r?=0.71—0.87, meaning the model explains
71—-87% of total variation in the dependent variable), but they did
not demonstrate sufficient accuracy for stand-alone fault detection.
However, multiple regression techniques may have applications in
soft sensor and empirical model development.

PLS regression is a combination of PLS and multiple regression
and can be used to predict the output variables from the input
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(Abdi, 2003). Because of this property, PLS is commonly used for
industrial soft sensors and water quality variables in WWTP, such
as chemical oxygen demand (COD), TSS, nitrate, and oil and grease
concentrations (Langergraber et al., 2003; Qin et al., 2012). The use
of nonlinear mapping with PLS (kernel PLS or KPLS) also shows
promise for methane production from a full-scale anaerobic filter
(Lee et al., 2006¢) and COD, total nitrogen, and cyanide concen-
tration in CAS (Woo et al., 2009). In these cases, KPLS performed
better than conventional PLS, which demonstrates the importance
of accounting for nonlinearities for some data-driven applications.

3.3.4. Neural networks

Supervised NN have been used to predict raw wastewater flow
from online rainfall data and historical influent data (Wei, 2013).
Yang et al. (2008) reconstructed COD concentration from UV-254
and pH measurements using a back-propagation NN. Omer Faruk
(2009) used a hybrid NN-ARIMA to predict boron and DO concen-
trations and water temperature of a river over time. While the
ARIMA model performed very poorly (r? = 0.23—0.55), the hybrid
model performed only slightly better (r> = 0.79—0.83) than the NN
model (r? = 0.77—0.81). NN-ARIMA hybridization has been a pop-
ular research topic because, in theory, both linear and nonlinear
behavior could be described with the resulting model
(Venkatasubramanian, 1995). However, few case studies exist that
demonstrate a significant improvement of a hybrid model over a
NN model (Chen et al., 2007).

A NN hybrid model was successfully used by Lee et al. (2008) to
predict COD, total nitrogen, and total phosphorus concentrations in
the effluent of small CAS WWTP from conductivity, temperature,
pH, DO, oxidation-reduction potential (ORP), and turbidity. Input
and output variables were lagged to account for dynamic process
variation, combined with a transfer function model (auto-regres-
sive representations with exogenous inputs or ARX). Lee et al.'s
(2008) approach showed good results for variable prediction
(r> = 0.92—0.95) and is promising for soft sensor development.

Lee et al. (2002) also used a hybrid NN structure for prediction of
WWTP effluent quality. In principle, the hybridization of mecha-
nistic and NN models bridges the gap between first principal and
statistical approaches. The NN was placed in parallel and in series
with the ASM1 model to estimate the model error or input pa-
rameters, respectively. The parallel hybrid NN model performed
well at predicting effluent variables (e.g., cyanide r? = 0.93—0.96),
but the series hybrid NN model did not perform better than the NN
alone, indicating that there exists some error for which the ASM1
model itself does not account.

Models to determine sorption kinetics and the capacity of car-
bon to adsorb contaminants can also be mapped by NN. Vasanth
Kumar et al. (2008) trained an NN model with batch experi-
mental data under various conditions to predict equilibrium con-
centrations after the uptake of dye by powdered activated carbon
(PAC). The resulting predictions were nearly perfect (r%=0.96).
However, hundreds of data points were needed to calibrate the
model prior to the predictions; there was not significant variation
among the input variables; only a single contaminant was used;
and separate testing data was not used to verify results. Given the
complexity of biological treatment modeling, generating a carbon
adsorption isotherm for PAC treatment is very well understood,
computationally straightforward, and accurate for design purposes.
Unless NN can demonstrate the ability to account for large varia-
tions in initial water quality (of which the current isotherm para-
digm cannot), use of the traditional adsorption isotherm models
will continue to be used. A potential application that has not yet
been explored is for the generation of isotherm models for micro-
pollutants (e.g., per- and polyfluoroalkyl substances) in the pres-
ence of bulk organic carbon.

3.4. Advanced control

The goal of WWTP optimization is to achieve the desired
effluent quality with fewer inputs (i.e., chemicals, energy,
manpower). Future WWTP will also need to be able to adjust their
effluent quality to meet new demands without risk of disturbance.
As water resources dwindle and demand increases in urban cen-
ters, customizable water quality based on need and time of year
(known as “tailored” water) has become an attractive option
(Vuono et al., 2013). Using historical data and system knowledge, a
function can be developed to minimize cost or energy while
maintaining effluent quality in order to identify the best set of
setpoints and control decisions. This is a fundamentally different
approach than heuristically adjusting variable setpoints and
observing the system's response. Various methods to achieve data-
driven control (“advanced or automated control”) are discussed in
this section. However, advanced control is still in its infancy for
WWTP, and few full-scale demonstrations or installations exist.

3.4.1. Model predictive control

MPC uses a mechanistic model of a process to predict a process
variable accounting for the physical constraints of a system's actual
process variable measurements (Richalet et al., 1978). The model
predicts future process behavior over a time interval (known as the
prediction horizon), and predictions are compared to online mea-
surements to determine if a change has occurred (Fig. 7). MPC is
less common in WWTP because most individual WWTP processes,
especially biological processes, are too complex to develop suffi-
ciently accurate first principal models (Section 3.3.1) for advanced
control purposes due to their deviation from ideal, steady-state
conditions (Patton et al., 2000). Furthermore, the computing po-
wer required to handle the nonlinearities has not been well
documented.

MPC in WWTP takes on many forms, but all must address
WWTP data's nonlinear behavior. Nonlinear models are computa-
tionally intensive to solve, and accounting for too many non-
linearities can substantially slow a controller's response. A less
computationally intensive option is to use piecewise linear MPC in
which multiple linear models approximate a nonlinear model
(Ocampo-Martinez, 2010; Olsson and Newell, 1999). Another
method is to update or adapt linear model parameters to fit current
operating conditions (Zhang and Zhang, 2006). Adaptive MPC
controllers have been shown to perform better than conventional
PID controllers for nonlinear processes; however, strong non-
linearities are still better handled by alternative control approaches
such as NN (Hermansson and Syafiie, 2015).
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Fig. 7. Simplified example of MPC. At time =0 (the intersection of the axes), the
measured variable's setpoint is increased. The mechanistic model and a function
describing the energy consumption of the control mechanism are used to identify the
optimum control response to reach the new setpoint over a given time interval (i.e.,
prediction horizon).
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MPC has been implemented for dynamically simplistic WWTP
unit processes, such as membrane-based treatment, that can be
controlled by a single variable. Membrane systems can be easily
modeled using known relationships of fluid flow, mass transfer, and
thermodynamics. Bartman et al. (2009) derived such a model to
control a valve on a pilot-scale reverse osmosis (RO) membrane
treatment system. The reject (concentrate) flowrate was controlled
by the dynamic, nonlinear, lumped-parameter model and was
validated with experimental data. In general, the system performed
better when controlled by the dynamic model as opposed to a
traditional controller.

Not all WWTP unit processes are fit for MPC simply because
accurate analytical models do not yet exist, and the number of
possible inputs makes real-time control computationally unrea-
sonable. Attempts have been made in the literature to adapt MPC
for WWTP, including CAS and membrane systems, but more
research is needed to develop realistic and system-specific models
before MPC can be implemented as a control strategy in full-scale
WWTP. Alternatively, non-deterministic, nonlinear, data-driven
models are an option for MPC of activated sludge systems (i.e., NN).

3.4.2. Neural networks

As discussed in Section 3.3.4, each parameter and layer in an NN
model adds an additional degree of flexibility that can address the
problem of nonlinear model fitting. However, a large number of NN
model parameters can risk overfitting to noise in the data rather
than the process itself and can unnecessarily increase computation.
The computational power required to use an NN model for control
applications is not well documented, and most studies in WWTP
literature utilize only a few water quality variables to predict a
single value (i.e., soft sensor development). The availability of
reliable and plentiful online sensor data can also be a major
constraint. More research is needed with constructing larger
WWTP NN before the practicality of NN control strategies in WWTP
can be assessed. To begin, WWTP NN model development should
be performed incrementally, so that an unexpected and unman-
ageable amount of computational power is not required to achieve
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simple goals.

One proposed method of using NN in nonlinear dynamic pro-
cess control is to adjust the NN structure (i.e., number of hidden
neurons) and parameters (i.e., node weights) during the training
phase, also referred to as an unsupervised, self-organizing NN. At
each node, an optimization function determines if the node should
be deleted, kept the same, or split into two, and the node param-
eters are adjusted accordingly. Post-training, self-organizing NN
have been shown to perform better (i.e., lower computation time
and testing error) than NN where the structure is fixed (i.e., number
of nodes) (Han et al., 2010). Han and Qiao (2014) used a self-
organizing NN to model aeration and recirculation (i.e.,, DO and
nitrate concentration) and a multiple-objective controller to opti-
mize control of a pilot-scale CAS system. However, the authors did
not compare system performance to a conventional controller,
making it difficult to justify implementation for the purpose of DO
and nitrate concentration control, given computational re-
quirements for real-time control of a larger system.

NN controllers are also being designed to detect nonlinear time-
varying data features that indicate the end of a reaction, such as
ORP in CAS (Fig. 8). Luccarini et al. (2010) used an NN program to
control and optimize biological nitrogen removal for a pilot-scale
SBR. The end of denitrification (i.e., a biological process to remove
nitrate) could not be detected well due to a 50% historical
completion rate at the pilot facility. The end of nitrification is
difficult to detect because of noise and the small change in the
rising ORP and DO. The lack of detection, in this case, demonstrates
a common drawback of many data-driven systems—the desired
performance must be demonstrated consistently.

3.4.3. Transfer function models

Transfer function models can be used for MPC and optimization
in addition to variable prediction discussed in Section 3.3.2. O'Brian
et al. (2011) demonstrated the ability of a first-order, six variable
ARX MPC to optimize energy consumption by reducing aeration by
25% at a full-scale CAS WWTP, compared to the facility's original
PLC-based control strategy. However, in this case, providing
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Fig. 8. Illustration of repeating patterns of ORP and pH data in parallel reactors of a batch activated sludge system. The ORP elbow, nitrate apex and knee, and ammonia valley
indicate the completion of different stages in biological nitrogen removal. Adopted from Dubber and Gray (2011).
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aeration based on influent organic loading is not a novel concept,
and much of the improvement can be attributed to a poorly cali-
brated or performing controller.

3.4.4. Fuzzy logic

In diagnosing process upsets, multiple WWTP operators may
logically reach different conclusions regarding the cause of a
problem. Unlike computers, human decision-making is not always
logical, and choices are not always binary (i.e., true or false). Fuzzy
logic mimics the attributes of human reasoning by “blurring” the
inputs and rules to allow for “partial” truth. To achieve this, fuzzy
logic uses linguistic variables in place of numerical variables, de-
fines relationships among variables (“clustering”) with IF-THEN
statements that allow for different degrees of truth, and charac-
terizes the relationships by fuzzy algorithms. The seminal paper
describing fuzzy logic by Zadeh (1973) is recommended for readers
interested in more details on fuzzy model structure.

The classic rule development approach for fuzzy models is to
write IF-THEN relationships explicitly, which is time-consuming for
both computer scientists and WWTP operators. This process can be
simplified by using an NN to map operator observations into fuzzy
rules. Enbutsu et al. (1993) re-structured the traditional NN model
with fuzzy neurons in the input and output layers to model PAC
dosing and established rules that were more accurate than those
derived from interviews with water treatment operators.

Taw-Hwan et al. (1997) also used a hybrid fuzzy model-NN
approach, but calculated PAC-dosing rate with a fuzzy model un-
der normal conditions and used an NN model when abnormalities
were detected (i.e., turbidity >30 NTU). Jar-tests were used to
collect data to build both the fuzzy model and NN model, which
predicted PAC-dosing rate very accurately during a one-year field
test at a full-scale water treatment plant.

Yoo et al. (2003) used PCA combined with fuzzy clustering and a
fuzzy model to predict COD removal from a full-scale industrial
WWTP. PCA was used to reduce the complexity of the fuzzy model
as well as to reduce co-linearity. Results were able to generally
predict COD removal but could not be used for direct control,
demonstrating that not all combinations of data-driven solutions
are always effective.

Bello et al. (2014) used fuzzy clustering to define rules for a
multi-input, multi-output coagulant-dosing system in a water
treatment plant. The pH predictions were calculated from previous
pH values and flowrates of three coagulants and coagulant-aids. In
this case, fuzzy MPC performed slightly better than a nonlinear
model approximated by linearization. If conditions were to change
substantially over time (i.e., if the model parameters needed to
adapt over time), fuzzy models may be a practical alternative to
nonlinear MPC.

4. Conclusions and recommendations

The future of data-driven and big data analytics in WWTP (and
water treatment) is in improving process control to reduce energy
demand, ensure effluent water quality, and prevent system failure.
To achieve this, WWTP need to incorporate data-driven fault
detection, variable prediction, and automation into their current
process control paradigms. Despite a large body of literature on
many data-driven process control methods in WWTP, there is no
consensus on a singular “best” approach. For fault detection and
diagnosis, WWTP need to understand past and present behavior in
terms of IC or OC.” Control charts are good for monitoring single
variables that are measured daily to monthly and do not contain a
lot of noise (e.g., laboratory analysis, SRT). To evaluate multiple
variables for fault detection and diagnosis, PCA is good for use with
composite samples because it does not distinguish between input

and output variables like PLS. To use big data in wastewater treat-
ment to predict future performance, the monitored variable(s)
must have a high sample frequency and number of historical ob-
servations, but do not need to be linearly related or parametrically
distributed.

A small, decentralized facility may experience so much opera-
tional variability that MPC is not effective; thus, SPC may be
implemented to detect faults and reduce the number or length of
time on-site operations staff must be present. For a large, central-
ized facility with the buffering capacity to operate at quasi-steady-
state (compared to the decentralized case), MPC may be useful for
reducing chemical inputs and energy optimization. An additional
consideration is the development of tools to optimize operations at
the unit process scale (e.g., aeration basin with recycling, mem-
brane bioreactor) in addition to the plant-wide scale. Different
tasks will employ different problem-solving methodologies.
Models that reveal more mechanistic information to assist with
diagnosis tend to have poor fault detection accuracy in highly
nonlinear systems. Hence, a hybrid method combining model and
statistical process control may be a superior problem-solving
approach. Each approach will come at a computational cost,
which is rarely reported in the literature; with the major limiting
factor being the quality and quantity of data generated by WWTP.

To develop high-quality and accurate big data tools for waste-
water treatment industry data scientists, computer scientists, and
engineers must continue to collaborate to maximize data's poten-
tial. The effectiveness of many state-of-the-art data science tools
have not yet been tested in WWTP. Random forests, support vector
machines, and reinforcement learning have the potential to
accommodate many of the features of WWTP data, but they still
require large training datasets to fit and must produce reliable re-
sults (Kusiak et al., 2013; Verma et al., 2013). With WWTP opera-
tions, transparency in methodology is one of the keys to adoption,
so some advanced methodologies may continue to be eschewed in
favor of simpler but interpretable methodologies.

In summary, WWTP looking to integrate data-driven control
should:

—_

. Define the scope of the problem and desired goals.

2. Identify which variables are currently being monitored (or
should be monitored) to effectively capture the scope of the
problem.

3. Use plotting tools to investigate the characteristics of each var-
iable as well as the relationships between variables.

4, Based on the features observed in the data and analysis goals,
identify the appropriate method to implement. Recommenda-
tions for further reading on each broad category of methods are
given throughout the text.

5. Fit the models and assess their validity. Visualize results to
ensure that the conclusions are logical and realistic.

6. Share the results with other WWTP via industry-specific pub-

lications and conferences to develop mainstream, data-driven

process control tools for WWTP.
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Acronyms

ANN Auto-Encoder NN

AR Autoregressive

ARIMA  Autoregressive integrated moving average
ARX Auto-regressive representations with exogenous inputs
ASM Activated sludge model

BODs 5-day biochemical oxygen demand

BSM Benchmark simulation model

CAS Conventional activated sludge

COD Chemical oxygen demand

DO Dissolved oxygen

EWMA  Exponentially weighted moving average
IC In-control

KDE Kernel Density Estimation

KPCA Kernel PCA

LCL Lower control limits

MCUSUM Multivariate Cumulative Sum

MA Moving average

MB-PLS  Multiblock PLS

MEWMA Multivariate EWMA

MPC Model predictive control

NHZ Ammonia

NN Neural networks

NO3 Nitrate

NTU Nephelometric Turbidity Unit

ocC Out-of-control

ORP Oxidation-reduction potential

PAC Powder activated carbon

PCA Principal component analysis

PLC Programmable logic controllers

PLS Partial least squares

SBR Sequencing batch reactors

SCADA Supervisory control and data acquisition
SPC Statistical process control

SPE Squared prediction error

SRT Solids retention time

TSS Total suspended solids

UCL Upper control limits

WWTP  Wastewater treatment plant
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