

1 **Metabolic gene clusters, fungal diversity, and the generation of accessory functions**

2 Jason C. Slot^{1*} & Emile Gluck-Thaler^{1#}

4 ¹Department of Plant Pathology, The Ohio State University, Columbus, OH, USA

6 *Corresponding author: slot.1@osu.edu; 481C Kottman Hall, 2021 Coffey Road, Columbus, OH,
7 USA; 1 (614) 688-2122

9 #gluckthaler.1@osu.edu

11 Keywords: supergene; secondary metabolism; biosynthesis; degradation; genome architecture

13 Short title: Gene clusters and the generation of accessory functions

17 **Abstract**

18 Ecological interactions are largely determined by adaptive traits deemed "accessory". In
19 plants, fungi, and bacteria, such traits mainly comprise metabolic pathways that produce or
20 transform diverse molecules. While accessory metabolic pathways are pervasive, it is often
21 difficult to identify their genetic bases. Recently, in-depth descriptions of metabolic gene
22 clusters (MGCs), which encode discrete metabolic pathways, have greatly simplified the
23 characterization of genotype-phenotype maps, yet questions of how this genome architecture
24 relates to the evolution of accessory functions remain. Fungi are uniquely positioned to
25 spearhead investigations into these dynamics because they display gradients in clustering
26 across pathways and taxa. This review will focus on the role of MGCs as both agents and
27 consequences of the accessory function evolution that underpins fungal diversification.

45 **MGCs: repositories of accessory metabolic functions**

46 Accessory metabolic functions underpin ecological adaptation and innovation in plants,
47 fungi, and bacteria by determining the outcomes of organismal interactions [1]. Chemical
48 defenses, for example, enable these organisms to overcome competition and resist predation
49 despite their limited mobility. Nutritionally adaptive metabolic pathways can facilitate the
50 breakdown of challenging substrates or protect digested resources from competitors. The
51 accessory metabolites of complex organisms further define the adaptive microbial communities
52 with which they associate [2]. However, there is a general lack of knowledge about the
53 individual genes responsible for these phenotypes. This problem has been partially addressed
54 by investigations at the -omics scale, e.g. inferring and describing networks of accessory genes
55 whose expression or distributions are associated with ecologically important phenotypes [3,4].

56 Genome structure provides an alternative window into accessory metabolic functions.
57 Specifically, accessory metabolisms are frequently encoded by Metabolic Gene Clusters (MGCs)
58 composed of neighboring, coordinately-expressed genes participating in discrete metabolic
59 pathways, often accompanied by supportive functions like regulation, transport, and self-
60 protection from the encoded phenotype [5, 6]. Because genes cluster in response to natural
61 selection, MGCs are effective proxies of adaptive metabolic functions, and can therefore greatly
62 accelerate the discovery and characterization of accessory pathways contributing to ecological
63 phenotypes [7]. Convergent origins and interspecies exchanges of MGCs can also indicate
64 selection on the accessory functions they encode [8, 9, 10]. Further, the ecology and evolution
65 of MGCs can be inferred independently of the genetic mechanisms and traits they encode,
66 enabling large-scale modeling of chemo-diversification processes [11].

67 One way to identify accessory function-encoding MGCs is by conducting targeted
68 searches using probabilistic models trained on previously identified clusters. AntiSMASH and
69 the associated ClusterFinder module are general-purpose tools for mining biosynthetic MGCs
70 by similarities in gene sequence, cluster composition, and the spatial distributions of protein
71 family domains in genomes [11, 12]. These tools can be used to identify the genetic basis of real
72 and predicted natural products [13] and further compare potential chemodiversity across
73 fungal populations and lineages [14, 15]. Because such programs use models trained on known
74 pathways/MGCs from a limited set of fungi, bacteria, and plants, “untargeted” cluster
75 prediction methods that use other evolutionary or ecological criteria for identifying gene
76 clusters may be needed to uncover new types of metabolism. Some innovative untargeted
77 approaches include searching for co-location of genes with similar promoter motifs [16], shared
78 evolutionary histories [17], or linkage shared by unexpectedly divergent species [18, 19, 20].
79 The prediction of biosynthetic MGCs has been the major focus of genome mining initiatives to
80 date, though catabolic MGC discovery is poised to follow suit [18].

81
82 **MGCs interact with the drivers and constraints of accessory function evolution**

83 Genes for accessory functions can arise through vertical gene duplication (VGD-
84 duplication of a locus within a genome, inherited by offspring), horizontal gene transfer (HGT-
85 duplication from a locus in one genome to a locus in another)(Figure 1), or *de novo* gene
86 evolution [21]. Genes that already perform accessory roles, such as dedicated secondary
87 metabolism structural genes (Nonribosomal Peptide Synthetases, Polyketide Synthetases, etc.)
88 may be the main source of novel accessory genes. Truly novel metabolism also emerges

89 through duplication of core metabolic genes [22, 23], but it is difficult to distinguish such
90 accessory genes from the core genes from which they are derived purely based on amino acid
91 sequence. MGCs are hotspots for VGD and HGT [24]. These closely-related information copying
92 processes remove the evolutionary constraints that were imposed on the original genes by
93 genetic networks under natural selection; they facilitate adaptive evolution by allowing
94 partitioning of ancestral functions (subfunctionalization) or the emergence of novel functions
95 [25, 26, 27]. HGT of gene modules and MGCs may further impact organismal fitness by copying
96 environmentally adaptive functions into novel genetic backgrounds [9, 28, 29]. A propensity for
97 either type of gene duplication can increase an organism's latent capacity to evolve and
98 elaborate on accessory functions [30]. HGT of MGCs and multigene modules they contain may
99 further accelerate adaptation by bypassing fitness valleys (e.g. toxic transitional states)
100 encountered during stepwise addition of genes to a genome [5, 31].

101 **Linkage, specialization, and the generation of adaptive accessory functions**

102 MGCs provide a framework for testing outstanding hypotheses in evolutionary biology
103 concerning the origins of adaptive phenotypes. For example, enzyme activity by default is
104 promiscuous, which furnishes important variation for evolution of accessory functions, but
105 carries the burden of pathway inefficiency and the potential for toxic interference among
106 pathways [32]. Specialization, in contrast, entails functional optimization and metabolic
107 efficiency, but decreases the overall evolutionary potential of the specialized genes [32]. MGCs
108 may mediate some of these trade-offs by enabling coordination of enzyme function and
109 regulation, reducing their interference with other metabolic processes, while still maintaining
110 promiscuous functions [8]. By decreasing the fitness costs of functionally linked accessory
111 genes, clustering preserves adaptive gene combinations and facilitates their joint incorporation
112 into new phenotypic contexts, accelerating the emergence of accessory function [33].
113 Differential rates of degeneration and loss among protein functional classes within MGCs lend
114 further insight into the process of adaptive specialization. Recent studies have demonstrated
115 that enzymes are preferentially lost from MGCs while regulators and transporters are
116 selectively retained [34, 35], suggesting specialization could result in enzymatic "dead ends",
117 and that continued innovation requires a regular replenishment of enzymes from conserved or
118 promiscuous functions. The ability to generate and preserve functional linkages in gene clusters
119 would thus impact an organism's ability to generate and incorporate accessory diversity (i.e. its
120 evolvability)[36].
121

122 **Variation in clustering provides insight into the mechanisms generating accessory functions**

123 Fungi are uniquely positioned to elucidate the mechanisms generating accessory
124 functions and MGC diversity because their known genomic diversity captures variation in
125 clustering across metabolic pathways and across lineages in ways that bacteria, with highly
126 clustered genomes, and plants, with few clusters in their genomes, do not (Figure 1).
127 Specifically, there are significant differences in clustering rates between the two filamentous
128 fungal subphyla, Pezizomycotina and Agaricomycotina. While hundreds of MGCs have been
129 identified in Pezizomycotina, there are only five Agaricomycotina pathways deposited in the
130 MIBiG database v1.4 (mibig.secondarymetabolites.org/repository.html), and only a few more
131 can be found in the literature (Table 1). The MGCs identified in Pezizomycotina fungi further

133 differ in compositional complexity and the metabolism encoded compared to those identified
134 in Agaricomycotina (Table 1). Known or predicted Agaricomycotina clusters are small, and
135 contain recently duplicated genes, compared to those in Pezizomycotina, which cover a large
136 range of sizes and are compositionally more diverse [37]. Additionally, Agaricomycete
137 biosynthetic pathways employ parallel processes at specific metabolic steps and in the classes
138 of compounds produced [38]. These distinctions suggest accessory metabolism and MGCs in
139 Agaricomycotina have commonalities with those of plants [39], while the genomic structure of
140 accessory metabolism in Pezizomycotina is more similar to bacteria [11]. This overlap
141 complicates assumptions about cluster evolution, where tandem duplications provide a neutral
142 evolutionary mechanism for cluster formation in eukaryotes, and the tendency for genes to be
143 transcribed in operons offers a regulatory mechanism selecting for clustering in bacteria. By
144 providing a range of compositional complexity, but with limited operon-like transcription, the
145 spectrum of fungal gene clustering forces attention to other evolutionary mechanisms driving
146 gene clustering.

147 To illustrate these trends (Figure 1), certain cluster-encoded metabolisms, such as those
148 based on highly modular nonribosomal peptide synthetase enzymes, along with numerous
149 supporting enzymes, transporters and regulators, are largely restricted to morphologically
150 simple fungi and bacteria [37, 40]. For example, Pezizomycotina have an average of ~10 NRPS
151 containing clusters per genome versus 1.2 in Agaricomycotina. Interestingly, mushroom-
152 forming fungi still produce non-protein peptide metabolites with ribosomally generated
153 oligopeptides encoded in high copy number MSDIN genes, whose products diversify through
154 simple coding mutations [41]. Terpenoid biosynthesis, where biologically meaningful diversity
155 can be readily generated through small modifications and high enzyme promiscuity, so far also
156 seems to be over-represented in morphologically complex fungi and plants [37, 42]. The
157 difference in genome architecture among fungi is especially pronounced in phenolic
158 degradation. While putative phenolic degradation clusters are diverse and complex across
159 Pezizomycotina [18], in Agaricomycotina, most such clustering is the result of tandem
160 duplications and few putative clusters contain more than a single gene family [43].
161 Disentangling the roles of species-specific metabolism and lineage-based differences in genome
162 evolution mechanisms will become more feasible with greater genome sampling and ecological
163 knowledge of fungi.

164

165 **Life history traits and genome architecture theory predict a clustering gradient across fungi**

166 It is not entirely clear whether the absolute numbers of clusters identified in the
167 respective lineages reflect differences in propensity to cluster, or if different cluster
168 compositions in Agaricomycotina leave them less likely to be detected using biased models and
169 methods. Nonetheless, the variation we observe is predicted from complex interactions
170 between migration, recombination rates, and selection [44], which differ between fungal
171 subphyla as a result of contrasting reproductive strategies, generation times, and ecological
172 lifestyles. Under strong selection and sufficient gene flow, clustered architectures are favored,
173 because they prevent the influx of maladaptive alleles and preserve the fitness of locally
174 adapted genotypes [44]. For example, when genes participate in the same specialized pathway,
175 clusters reduce recombination between differently optimized enzymes that would be
176 detrimental to their cooperation in metabolic transformations.

177 The mating strategies of individual organisms may strongly influence genome
178 architecture, the rates of VGD and HGT, and the diversity of accessory functions (Figure 1). For
179 example, many bacteria and fungi participate in large "pan-genomes" containing far greater
180 diversity than can be contained in a single individual. Sharing in pan-genomes is facilitated by
181 mobile elements and unequal recombination mechanisms, and gives access to diverse gene
182 families, gene combinations, and sequence variants. In these types of populations, clusters are
183 more prevalent and they enable the parallel diversification of accessory functions across
184 numerous genomes under diverse environmental selection. In this way, pan-genomes result in
185 varied assortments of discrete pathways in individual genomes. By contrast, fungi and plants
186 that participate in smaller pan-genomes, will have more limited access to gene variants and
187 variable gene combinations, resulting in a smaller number of highly branched and parallel
188 pathways within individual lineages. Pathways in these organisms are constrained to evolve
189 primarily through VGD and intragenomic mutation. Differences in the types of metabolic
190 diversity and in the composition of MGCs found across bacteria, fungi, and plants are consistent
191 with these processes, but specific tests remain to be done.

192 Ecology is similarly seen as a driver of reproductive strategies that impact selection on
193 genome architecture (Figure 2). Tree-decaying Agaricomycotina often have large, long-lived
194 somatic biomasses with rare, periodic meiotic sexual reproduction. In contrast, the typically
195 small units of rapidly sporulating Pezizomycotina commonly engage in clonal reproduction and
196 self-fertilization, in addition to sexual reproduction. Pervasive, non-meiotic recombination
197 (including parasexuality) in Pezizomycotina [45], similar to bacteria, may explain their
198 substantial pan-genomes and elevated gene flow between populations and across species
199 barriers. The increased proclivity for parasexuality may also favor non-homologous
200 recombination and structural rearrangements of large linkage blocks (even entire
201 chromosomes) that repress recombination. Repression of recombination frees nascent gene
202 clusters to accumulate transposed genes and to drift while becoming selected as a block,
203 effectively acting as a superallele in a population's pan-genome [46, 47]. Indeed, a number of
204 recent studies have confirmed the existence of "idiomorphic" MGC loci in Pezizomycotina fungi,
205 where variably distributed MGCs occupy the same genomic region in different individuals [14,
206 48, 49, 50, 51]. Supernumerary (dispensible) chromosomes are an extreme example of
207 parasexual/horizontal inheritance of co-adapted blocks of accessory functions. HGT of
208 supernumerary chromosomes in *Fusarium* has been shown to enable infection of a new host by
209 conferring multiple adaptive functions [52]. Decreased propensity for genomic rearrangements
210 and constraints on gene flow in Agaricomycotina due to sexual recombination may relax the
211 drive to cluster in this lineage compared with Pezizomycotina, as decreased population-level
212 rates of small-scale genomic rearrangements are also associated with decreased rates of
213 clustering [53]. Intriguingly, ecological selection for self-mating appears to drive formation of
214 mating locus clusters, which relaxes some evolutionary constraints imposed on predominantly
215 sexual populations [54, 55].

216 One line of evidence supporting the hypothesis that the spectrum of lifestyles and
217 reproductive strategies of fungi impacts patterns of metabolic diversification is the rate of MGC
218 horizontal duplication. It is notable that to date, while large HGTs of MGCs are more commonly
219 inferred in Pezizomycotina (commensurate with higher HGT in general [24]), the only published
220 case of MGC HGT in Agaricomycotina involves dung-decay mushrooms. Dung fungi are driven to

221 inbreed and reproduce more rapidly due to the patchiness and ephemeral nature of this
222 resource [56]. The case of HGT of the psilocybin cluster among dung-decay fungi [10], contrasts
223 with the other evolutionarily well-characterized Agaricomycotina MGC for luciferin, which
224 evolves through concerted VGD and loss [57]. However, these hypotheses need to be rigorously
225 tested.

226 Competition among osmotrophs is thought to be the main driver of the diversification of
227 accessory pathways [58]. Interestingly the genomes of fungus-like oomycetes (stramenopiles)
228 are structured more similarly to plants, with extensive tandem gene duplication, but few gene
229 clusters and little accessory metabolism [59, 60]. While oomycetes are similar to fungi in
230 physiology, and their range of ecological roles, they differ by having a dominant diploid stage of
231 their life-cycles, suggesting reproductive strategies as well as nutritional mode are important in
232 genome architecture.

233

234 **A single gene family illustrates different evolutionary processes among fungal lineages**

235 Different patterns of accessory enzyme diversification in Pezizomycotina and
236 Agaricomycotina exemplify the interplay between accessory functions and gene clustering. For
237 example, phylogenetic analysis supports the emergence of single-domain MT-33 N-
238 methyltransferases by partial duplication of bifunctional ergothioneine synthases in both
239 lineages [61]. These enzymes alternately participate in ergotamine toxin (Pezizomycotina) and
240 methylated tryptophan biosynthesis (Agaricomycotina). Across Agaricomycotina, there have
241 been many recent origins of these enzymes by VGD, and the only observed ancient paralog has
242 itself been subject to ongoing loss. Furthermore, there are no indications that these accessory
243 paralogs are in MGCs or horizontally transferred in Agaricomycotina. In Pezizomycotina, by
244 contrast, while these N-methyltransferases perform a similar function N-methylating indole
245 alkaloids, they have rarely emerged by VGD, and they appear to disperse by HGT as part of
246 complex MGCs [61, 62]. In short, these novel enzymes appear constrained to evolve simple
247 peripheral functions through VGD in isolated lineages of Agaricomycotina, but participate in
248 complex clustered pathways that are shared across species through HGT in Pezizomycotina.

249

250 **MGC distributions imply ecological functions**

251 The ecological impact of accessory functions in microorganisms can be difficult to
252 discern because species may be opportunistic on the substrate of their isolation, and the genes
253 encoding these functions are often unknown [63]. Equally confounding, sub-populations of a
254 species may be specialized for alternative cryptic niches. MGCs can help disentangle the
255 importance of specific functions for ecological fitness because they enable the rapid
256 identification of genes and gene families of interest contributing to specific phenotypes. For
257 example, the biased distribution and HGT of clustered genes involved in psilocybin production
258 among dung- and insect- associated fungi, coupled with the known effects of psilocybin on
259 serotonin-receptors, led to speculation that this tryptamine alkaloid reduces mycophagy by
260 insects by interfering with neural signaling. Subsequent detection of psilocybin (by a likely a
261 convergent psilocybin pathway) in cicada parasitizing fungi provided additional evidence that
262 this compound is selected for its effects on insects [64]. Similarly, the identification of a MGC
263 found previously in pathogens of woody plants enabled a reverse ecology approach to
264 discovering new hosts for several grass pathogens [7]. And finally, targeted and untargeted

265 searches for MGCs have further revealed previously unexplored dimensions of accessory
266 function evolution and led to the proposal of their ecological associations [18].
267

268 **Summary**

269 Accessory functions are the essence of ecological adaptation and innovation, yet they
270 often resist characterization. Genome architecture-focused approaches, such as MGC mining
271 and characterization, promise a relatively straightforward path to cut through genomic noise
272 and decipher ecological relationships in parallel with molecular functions [63, 65]. Although
273 MGCs are observed across all major Kingdoms of life, the diversity of fungal mating strategies
274 and lifestyles is likely responsible for generating fungal-specific variation in clustering rates,
275 positioning fungi and their MGCs as model systems for linking specific ecological, demographic,
276 and genetic processes with the generation of accessory metabolic functions (Figure 2). In
277 particular, elucidating the relative impact of vertical and horizontal gene family expansion (VGD
278 and HGT) on different strategies for metabolic diversification should greatly improve our ability
279 to explain how, when, and why accessory functions evolve.
280

281 **Figure Legends**

282
283 *Figure 1: The spectrum of accessory metabolic compartmentalization and diversification.*
284 Bacteria, Ascomycetes, Basidiomycetes, and Plants (shown as silhouettes) capture gradients in
285 accessory metabolic diversification and the storage of accessory metabolic functions within and
286 across individuals. Moving from left to right, pan-genomes become progressively closed (i.e.,
287 less variable among individuals), genomic architectures feature fewer metabolic gene clusters
288 encoding accessory functions, and individual genomes transition from encoding many different
289 specialized accessory pathways to few highly diversified pathways. The major candidate
290 mechanisms contributing to the gradients are shown below, and are expected to manifest to
291 different degrees in each of the depicted lineages.
292

293 *Figure 2: The eco-evolutionary dynamics of genome architecture.* Ecological selection is the
294 overarching force shaping the evolution of accessory functions, acting through evolutionary
295 processes operating at multiple scales, as discussed in the text. Ecological selection pressures
296 determine the most adaptive population dynamics, including mating/reproduction strategies,
297 optimal effective population size (N_E), and migration rates. In turn, the spectra of these
298 population dynamics determine the mechanisms of genome evolution and metabolic
299 diversification that are ultimately available for generating adaptive variation. Recombination
300 mechanisms and streamlining vary across different life-history strategies and result in the types
301 of evolvability favored and the size of pan-genomes (Figure 1). These drivers simultaneously
302 favor different modes of metabolic diversification such as the combination of gene functions in
303 novel pathways, and their differential optimization/specialization. Contrasting patterns of
304 genome architecture (e.g., gene clustering vs. gene family expansion) are tangible outcomes of
305 interactions among these processes (Figure 1), but they may also feed back on and influence
306 the impact of the main evolutionary drivers. For example, gene clustering favors HGT and
307 pathway specialization, which can mitigate competition and increase access to resources.
308

309 **Acknowledgements**

310 This work was supported by the National Science Foundation (DEB-1638999, JCS) and the Fonds
311 de Recherche du Québec-Nature et Technologies (EG-T).

312

313 **The authors declare no conflict of interest.**

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353 **References**

354 [1] Raguso, Robert A., et al. "The raison d'être of chemical ecology." *Ecology* 96.3 (2015): 617-630.

355 [2] Huang AC, Jiang T, Liu YX, Bai YC, Reed J, Qu B, Goossens A, Nützmann HW, Bai Y, Osbourn A. A specialized metabolic network selectively modulates *Arabidopsis* root microbiota. *Science*. 2019 May 10;364(6440):eaau6389. ••This comprehensive study links plant MGC function and diversity with functional ecological consequences.

356 [3] Cary JW, Entwistle S, Satterlee T, Mack BM, Gilbert MK, Chang PK, Scharfenstein L, Yin Y, Calvo AM. The Transcriptional Regulator Hbx1 Affects the Expression of Thousands of Genes in the Aflatoxin-Producing Fungus *Aspergillus flavus*. *G3: Genes, Genomes, Genetics*. 2019 Jan 1;9(1):167-78.

357 [4] Nielsen JC, Prigent S, Grijseels S, Workman M, Ji B, Nielsen J. Comparative Transcriptome Analysis Shows Conserved Metabolic Regulation during Production of Secondary Metabolites in Filamentous Fungi. *mSystems*. 2019 Apr 30;4(2):e00012-19.

358 [5] Keller NP. Translating biosynthetic gene clusters into fungal armor and weaponry. *Nature chemical biology*. 2015 Sep;11(9):671.

359 [6] Kjærboelling I, Vesth T, Andersen MR. Resistance Gene-Directed Genome Mining of 50 *Aspergillus* species. *mSystems*. 2019 Aug 27;4(4):e00085-19. ••This manuscript combines guilt-by-association gene cluster detection with the concept that MGCs encode self-protection mechanisms.

360 [7] Thynne E, Mead OL, Chooi YH, McDonald MC, Solomon PS. Acquisition and loss of secondary metabolites shaped the evolutionary path of three emerging phytopathogens of wheat. *Genome biology and evolution*. 2019 Feb 21;11(3):890-905.

361 [8] Gluck-Thaler E, Vijayakumar V, Slot JC. Fungal adaptation to plant defences through convergent assembly of metabolic modules. *Molecular ecology*. 2018 Dec;27(24):5120-36.

362 [9] Ocaña-Pallarès E, Najle SR, Scazzocchio C, Ruiz-Trillo I. Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway. *PLoS genetics*. 2019 Feb 21;15(2):e1007986. •This study revisits the first convincing case of complete fungal gene cluster HGT, the nitrate assimilation cluster, and finds there was a more complex history of transfers involving additional, distant eukaryotic lineages.

363 [10] Reynolds HT, Vijayakumar V, Gluck-Thaler E, Korotkin HB, Matheny PB, Slot JC. Horizontal gene cluster transfer increased hallucinogenic mushroom diversity. *Evolution Letters*. 2018 Apr;2(2):88-101.

364 [11] Cimermancic P, Medema MH, Claesen J, Kurita K, Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. *Cell*. 2014 Jul 17;158(2):412-21.

365 [12] Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. *Nucleic acids research*. 2019 Apr 29.

366 [13] Theobald S, Vesth TC, Rendsvig JK, Nielsen KF, Riley R, de Abreu LM, Salamov A, Frisvad JC, Larsen TO, Andersen MR, Hoof JB. Uncovering secondary metabolite evolution and

396 biosynthesis using gene cluster networks and genetic dereplication. *Scientific reports.*
397 2018 Dec 18;8(1):17957.

398 [14] Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F,
399 Goldman GH, Rokas A. Drivers of genetic diversity in secondary metabolic gene clusters
400 within a fungal species. *PLoS biology.* 2017 Nov 17;15(11):e2003583.

401 [15] Olarte RA, Menke J, Zhang Y, Sullivan S, Slot JC, Huang Y, Badalamenti JP, Quandt AC,
402 Spatafora JW, Bushley KE. Chromosome rearrangements shape the diversification of
403 secondary metabolism in the cyclosporin producing fungus *Tolypocladium inflatum*.
404 *BMC genomics.* 2019 Dec;20(1):120.

405 [16] Wolf T, Shelest V, Nath N, Shelest E. CASSIS and SMIPS: promoter-based prediction of
406 secondary metabolite gene clusters in eukaryotic genomes. *Bioinformatics.* 2015 Dec
407 9;32(8):1138-43.

408 [17] Slot JC. Fungal gene cluster diversity and evolution. In *Advances in genetics* 2017 Jan 1
409 (Vol. 100, pp. 141-178). Academic Press.

410 [18] Gluck-Thaler E, Slot JC. Specialized plant biochemistry drives gene clustering in fungi. *The
411 ISME journal.* 2018 Jul;12(7):1694. ••This study systematically reveals a wealth of
412 previously undescribed catabolic MGCs in fungal genomes through untargeted MGC
413 prediction.

414 [19] Winter S, Jahn K, Wehner S, Kuchenbecker L, Marz M, Stoye J, Böcker S. Finding
415 approximate gene clusters with Gecko 3. *Nucleic acids research.* 2016 Sep
416 26;44(20):9600-10.

417 [20] de Jonge R, Ebert MK, Huitt-Roebl CR, Pal P, Suttle JC, Spanner RE, Neubauer JD, Jurick
418 WM, Stott KA, Secor GA, Thomma BP. Gene cluster conservation provides insight into
419 cercosporin biosynthesis and extends production to the genus *Colletotrichum*.
420 *Proceedings of the National Academy of Sciences.* 2018 Jun 12;115(24):E5459-66. •This
421 study demonstrates the utility of using both targeted and untargeted approaches to
422 describing functionally-relevant MGC content by using shared synteny to help extend
423 the boundaries of the cercosporin biosynthetic gene cluster.

424 [21] Vakirlis N, Hebert AS, Opulente DA, Achaz G, Hittinger CT, Fischer G, Coon JJ, Lafontaine I.
425 A molecular portrait of *de novo* genes in yeasts. *Molecular biology and evolution.* 2017
426 Dec 6;35(3):631-45. ••This study develops a robust pipeline for predicting *de novo*
427 genes and finds that transitions from non-coding to coding DNA occur frequently in
428 recombination hotspots.

429 [22] Huang R, O'Donnell AJ, Barboline JJ, Barkman TJ. Convergent evolution of caffeine in
430 plants by co-option of exapted ancestral enzymes. *Proceedings of the National
431 Academy of Sciences.* 2016 Sep 20;113(38):10613-8.

432 [23] Copley SD. Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the
433 patchwork approach. *Trends in biochemical sciences.* 2000 Jun 1;25(6):261-5.

434 [24] Wisecaver JH, Slot JC, Rokas A. The evolution of fungal metabolic pathways. *PLoS genetics.*
435 2014 Dec 4;10(12):e1004816.

436 [25] Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A, Maere S, Verstrepen KJ.
437 Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms
438 underlying evolutionary innovation through gene duplication. *PLoS biology.* 2012 Dec
439 11;10(12):e1001446.

440 [26] Lynch M, O'Hely M, Walsh B, Force A. The probability of preservation of a newly arisen
441 gene duplicate. *Genetics*. 2001 Dec 1;159(4):1789-804.

442 [27] Wapinski I, Pfeffer A, Friedman N, Regev A. Natural history and evolutionary principles of
443 gene duplication in fungi. *Nature*. 2007 Sep;449(7158):54.

444 [28] Kominek J, Doering DT, Opulente DA, Shen XX, Zhou X, DeVirgilio J, Hulfachor AB,
445 Groenewald M, Mcgee MA, Karlen SD, Kurtzman CP. Eukaryotic acquisition of a
446 bacterial operon. *Cell*. 2019 Mar 7;176(6):1356-66. ••Although early speculated as an
447 explanation for fungal gene clusters, this is the first convincing example of whole
448 operon HGT from bacteria to fungi.

449 [29] Milner DS, Attah V, Cook E, Maguire F, Savory FR, Morrison M, Müller CA, Foster PG,
450 Talbot NJ, Leonard G, Richards TA. Environment-dependent fitness gains can be driven
451 by horizontal gene transfer of transporter-encoding genes. *Proceedings of the National
452 Academy of Sciences*. 2019 Mar 19;116(12):5613-22. ••The consequences of HGT are
453 often unknown. This study is one of the few to demonstrate how acquiring novel genes
454 can alter organismal fitness.

455 [30] Wagner A. Gene duplications, robustness and evolutionary innovations. *Bioessays*. 2008
456 Apr;30(4):367-73.

457 [31] Lawrence JG, Roth JR. Selfish operons: horizontal transfer may drive the evolution of gene
458 clusters. *Genetics*. 1996 Aug 1;143(4):1843-6

459 [32] Copley SD. Shining a light on enzyme promiscuity. *Current opinion in structural biology*.
460 2017 Dec 1;47:167-75.

461 [33] Del Carratore F, Zych K, Cummings M, Takano E, Medema MH, Breitling R. Computational
462 identification of co-evolving multi-gene modules in microbial biosynthetic gene
463 clusters. *Communications Biology*. 2019 Feb 28;2(1):83. ••This study is the first to
464 develop tools for specifically identifying conserved gene modules within MGCs, setting
465 the stage for advancing our understanding of how modular, combinatorial processes
466 shape MGC evolution.

467 [34] Reynolds HT, Slot JC, Divon HH, Lysøe E, Proctor RH, Brown DW. Differential retention of
468 gene functions in a secondary metabolite cluster. *Molecular biology and evolution*.
469 2017 Apr 28;34(8):2002-15. •This study points to a pattern of selective retention of the
470 supporting genes (regulators and transporters) of metabolic gene clusters that are
471 highly prone to loss.

472 [35] Campbell MA, Staats M, van Kan JA, Rokas A, Slot JC. Repeated loss of an anciently
473 horizontally transferred gene cluster in *Botrytis*. *Mycologia*. 2013 Sep 1;105(5):1126-34.

474 [36] Pepper JW. The evolution of evolvability in genetic linkage patterns. *Biosystems*. 2003
475 May 1;69(2-3):115-26.

476 [37] Rokas A, Wisecaver JH, Lind AL. The birth, evolution and death of metabolic gene clusters
477 in fungi. *Nature Reviews Microbiology*. 2018 Sep 7:1.

478 [38] Wick J, Heine D, Lackner G, Misiek M, Tauber J, Jagusch H, Hertweck C, Hoffmeister D. A
479 fivefold parallelized biosynthetic process secures chlorination of *Armillaria mellea*
480 (honey mushroom) toxins. *Appl. Environ. Microbiol.*. 2016 Feb 15;82(4):1196-204.

481 [39] Wisecaver JH, Borowsky AT, Tzin V, Jander G, Kliebenstein DJ, Rokas A. A global
482 coexpression network approach for connecting genes to specialized metabolic
483 pathways in plants. *The Plant Cell*. 2017 May 1;29(5):944-59. •• The authors of this

484 study found that few networks of co-expressed genes correspond to predicted MGCs in
485 plant genomes, suggesting rates of clustering within this lineage are even lower than
486 previously thought.

487 [40] Medema MH, Cimermancic P, Sali A, Takano E, Fischbach MA. A systematic computational
488 analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis.
489 *PLoS computational biology*. 2014 Dec 4;10(12):e1004016.

490 [41] Luo H, Hong SY, Sgambelluri RM, Angelos E, Li X, Walton JD. Peptide macrocyclization
491 catalyzed by a prolyl oligopeptidase involved in α -amanitin biosynthesis. *Chemistry &*
492 *biology*. 2014 Dec 18;21(12):1610-7.

493 [42] Quin MB, Flynn CM, Schmidt-Dannert C. Traversing the fungal terpenome. *Natural*
494 *product reports*. 2014;31(10):1449-73.

495 [43] Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R,
496 Spatafora JW, Yadav JS, Aerts A. The Paleozoic origin of enzymatic lignin decomposition
497 reconstructed from 31 fungal genomes. *Science*. 2012 Jun 29;336(6089):1715-9.

498 [44] Yeaman S, Whitlock MC. The genetic architecture of adaptation under migration-selection
499 balance. *Evolution: International Journal of Organic Evolution*. 2011 Jul;65(7):1897-911.

500 [45] Barcellos FG, Hungria M, Pizzirani-Kleiner AA. Limited vegetative compatibility as a cause
501 of somatic recombination in *Trichoderma pseudokoningii*. *Brazilian Journal of*
502 *Microbiology*. 2011 Dec;42(4):1625-37.

503 [46] Fouché S, Badet T, Oggeneffuss U, Plissonneau C, Francisco CS, Croll D. Stress-driven
504 transposable element de-repression dynamics in a fungal pathogen. *bioRxiv*. 2019 Jan
505 1:633693.

506 [47] Grandaubert J, Dutheil JY, Stukenbrock EH. The genomic determinants of adaptive
507 evolution in a fungal pathogen. *Evolution Letters*. 2019 Jun;3(3):299-312.

508 [48] Gibbons JG, Salichos L, Slot JC, Rinker DC, McGary KL, King JG, Klich MA, Tabb DL,
509 McDonald WH, Rokas A. The evolutionary imprint of domestication on genome
510 variation and function of the filamentous fungus *Aspergillus oryzae*. *Current Biology*.
511 2012 Aug 7;22(15):1403-9.

512 [49] Plissonneau C, Hartmann FE, Croll D. Pan-genome analyses of the wheat pathogen
513 *Zymoseptoria tritici* reveal the structural basis of a highly plastic eukaryotic genome.
514 *BMC biology*. 2018 Dec;16(1):5. •This study found that accessory genes in a highly
515 sexual fungus tend to be organized into clusters.

516 [50] Uka V, Moore GG, Arroyo-Manzanares N, Nebija D, De Saeger SM, Diana Di Mavungu J.
517 Secondary metabolite dereplication and phylogenetic analysis identify various
518 emerging mycotoxins and reveal the high intra-species diversity in *Aspergillus flavus*.
519 *Frontiers in microbiology*. 2019;10:667.

520 [51] Wollenberg RD, Sondergaard TE, Nielsen MR, Knutsson S, Pedersen TB, Westphal KR,
521 Wimmer R, Gardiner DM, Sørensen JL. There it is! *Fusarium pseudograminearum* did
522 not lose the fusaristatin gene cluster after all. *Fungal biology*. 2019 Jan 1;123(1):10-7.

523 [52] van Dam P, Fokkens L, Ayukawa Y, van der Gragt M, Ter Horst A, Brankovics B, Houterman
524 PM, Arie T, Rep M. A mobile pathogenicity chromosome in *Fusarium oxysporum* for
525 infection of multiple cucurbit species. *Scientific reports*. 2017 Aug 22;7(1):9042.

526 [53] Yeaman S. Genomic rearrangements and the evolution of clusters of locally adaptive loci.
527 *Proceedings of the National Academy of Sciences*. 2013 May 7;110(19):E1743-51.

528 [54] Branco S, Carpentier F, de la Vega RC, Badouin H, Snirc A, Le Prieur S, Coelho MA, de
529 Vienne DM, Hartmann FE, Begerow D, Hood ME. Multiple convergent supergene
530 evolution events in mating-type chromosomes. *Nature communications*. 2018 May
531 21;9(1):2000.

532 [55] Sun S, Coelho MA, Heitman J, Nowrousian M. Convergent evolution of linked mating-type
533 loci in basidiomycetes: an ancient fusion event that has stood the test of time. *BioRxiv*.
534 2019 Jan 1:626911.

535 [56] James TY. Why mushrooms have evolved to be so promiscuous: Insights from
536 evolutionary and ecological patterns. *Fungal biology reviews*. 2015 Dec 1;29(3-4):167-
537 78.

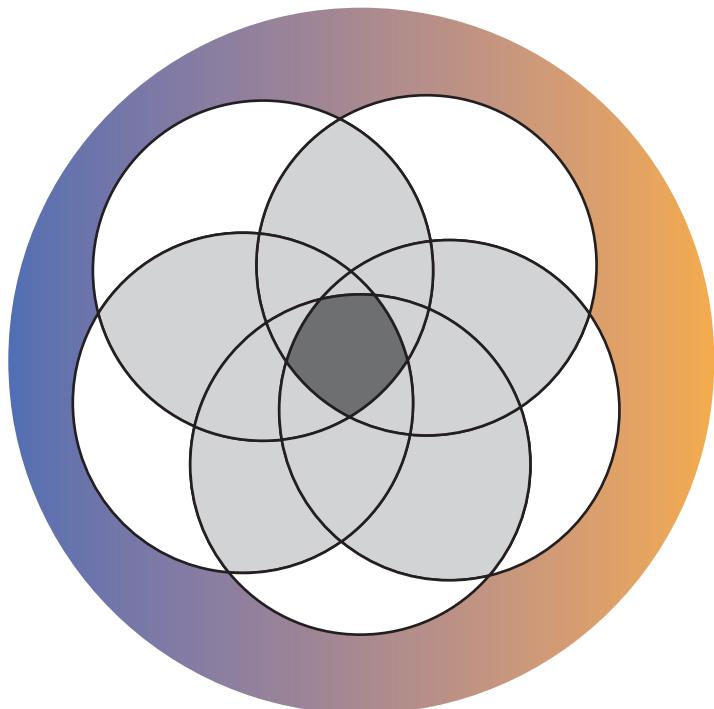
538 [57] Kotlobay AA, Sarkisyan KS, Mokrushina YA, Marcket-Houben M, Serebrovskaya EO, Markina
539 NM, Somermeyer LG, Gorokhovatsky AY, Vvedensky A, Purtov KV, Petushkov VN.
540 Genetically encodable bioluminescent system from fungi. *Proceedings of the National
541 Academy of Sciences*. 2018 Dec 11;115(50):12728-32.

542 [58] Richards TA, Talbot NJ. Horizontal gene transfer in osmotrophs: playing with public goods.
543 *Nature Reviews Microbiology*. 2013 Oct;11(10):720.

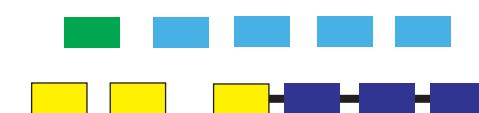
544 [59] McGowan J, Byrne KP, Fitzpatrick DA. Comparative Analysis of Oomycete Genome
545 Evolution Using the Oomycete Gene Order Browser (OGOB). *Genome biology and
546 evolution*. 2018 Dec 11;11(1):189-206.

547 [60] Judelson HS. Metabolic diversity and novelties in the oomycetes. *Annual review of
548 microbiology*. 2017 Sep 8;71:21-39.

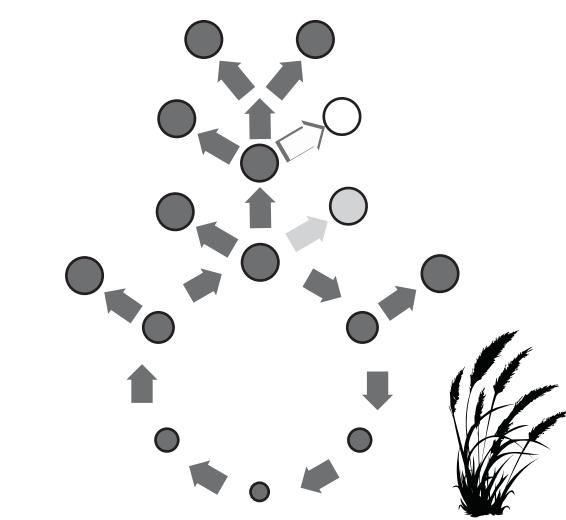
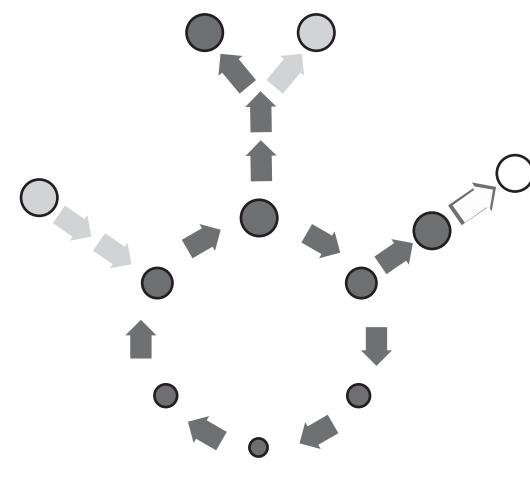
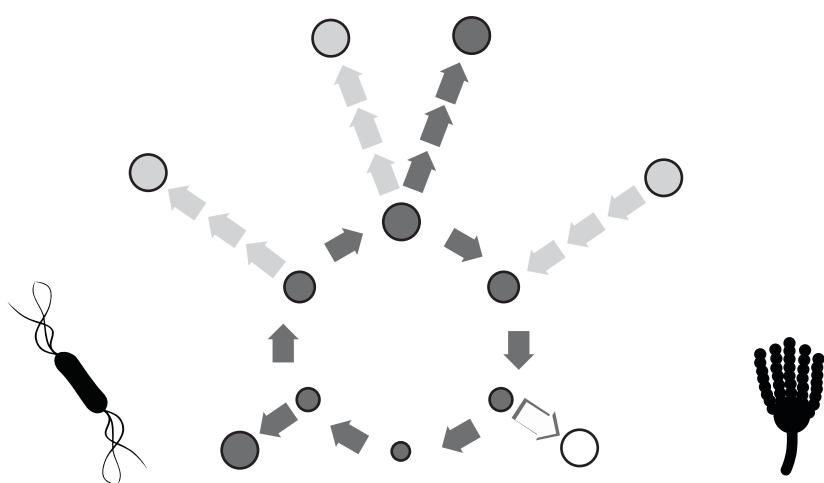
549 [61] Blei F, Fricke J, Wick J, Slot JC, Hoffmeister D. Iterative L-Tryptophan Methylation in
550 Psilocybe Evolved by Subdomain Duplication. *ChemBioChem*. 2018 Oct 18;19(20):2160-
551 6.


552 [62] Marcket-Houben M, Gabaldón T. Horizontal acquisition of toxic alkaloid synthesis in a clade
553 of plant associated fungi. *Fungal Genetics and Biology*. 2016 Jan 1;86:71-80.

554 [63] Levy A, Gonzalez IS, Mittelviefhaus M, Clingenpeel S, Paredes SH, Miao J, Wang K,
555 Devescovi G, Stillman K, Monteiro F, Alvarez BR. Genomic features of bacterial
556 adaptation to plants. *Nature genetics*. 2018 Jan;50(1):138.


557 [64] Boyce GR, Gluck-Thaler E, Slot JC, Stajich JE, Davis WJ, James TY, Cooley JR, Panaccione
558 DG, Eilenberg J, Henrik H, Macias AM. Psychoactive plant-and mushroom-associated
559 alkaloids from two behavior modifying cicada pathogens. *Fungal Ecology*. 2019 Oct
560 1;41:147-64.

561 [65] Melnyk RA, Hossain SS, Haney CH. Convergent gain and loss of genomic islands drive
562 lifestyle changes in plant-associated *Pseudomonas*. *The ISME journal*. 2019 Feb 20:1.




Pan-genome partitioning

Genomic architecture

Accessory metabolism

Mechanisms

Natural Selection

Horizontal Gene Transfer

Vertical Gene Duplication

Meiotic Sex

Non-meiotic Sex

ECOLOGY

predation

resource abundance

POPULATION DYNAMICS

N_E

competition

mating/reproductive
strategies

GENOME EVOLUTION

pan-genome

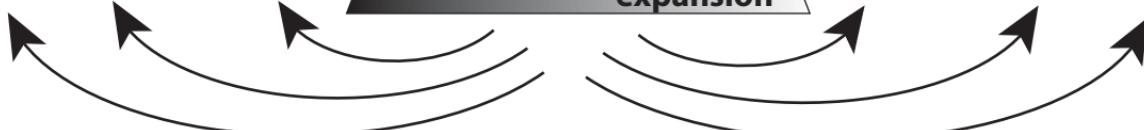
streamlining

recombination

evolvability

GENOME ARCHITECTURE

combinatorial
specialization


multifunction
promiscuity

migration rate

METABOLIC DIVERSIFICATION

resource distribution

clustering \leftrightarrow gene family
expansion

