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Abstract 17 

Ecological interactions are largely determined by adaptive traits deemed "accessory". In 18 
plants, fungi, and bacteria, such traits mainly comprise metabolic pathways that produce or 19 
transform diverse molecules. While accessory metabolic pathways are pervasive, it is often 20 
difficult to identify their genetic bases. Recently, in-depth descriptions of metabolic gene 21 
clusters (MGCs), which encode discrete metabolic pathways, have greatly simplified the 22 
characterization of genotype-phenotype maps, yet questions of how this genome architecture 23 
relates to the evolution of accessory functions remain. Fungi are uniquely positioned to 24 
spearhead investigations into these dynamics because they display gradients in clustering 25 
across pathways and taxa. This review will focus on the role of MGCs as both agents and 26 
consequences of the accessory function evolution that underpins fungal diversification. 27 
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MGCs: repositories of accessory metabolic functions 45 
Accessory metabolic functions underpin ecological adaptation and innovation in plants, 46 

fungi, and bacteria by determining the outcomes of organismal interactions [1]. Chemical 47 
defenses, for example, enable these organisms to overcome competition and resist predation 48 
despite their limited mobility. Nutritionally adaptive metabolic pathways can facilitate the 49 
breakdown of challenging substrates or protect digested resources from competitors. The 50 
accessory metabolites of complex organisms further define the adaptive microbial communities 51 
with which they associate [2]. However, there is a general lack of knowledge about the 52 
individual genes responsible for these phenotypes. This problem has been partially addressed 53 
by investigations at the -omics scale, e.g. inferring and describing networks of accessory genes 54 
whose expression or distributions are associated with ecologically important phenotypes [3,4]. 55 

Genome structure provides an alternative window into accessory metabolic functions. 56 
Specifically, accessory metabolisms are frequently encoded by Metabolic Gene Clusters (MGCs) 57 
composed of neighboring, coordinately-expressed genes participating in discrete metabolic 58 
pathways, often accompanied by supportive functions like regulation, transport, and self-59 
protection from the encoded phenotype [5, 6]. Because genes cluster in response to natural 60 
selection, MGCs are effective proxies of adaptive metabolic functions, and can therefore greatly 61 
accelerate the discovery and characterization of accessory pathways contributing to ecological 62 
phenotypes [7]. Convergent origins and interspecies exchanges of MGCs can also indicate 63 
selection on the accessory functions they encode [8, 9, 10]. Further, the ecology and evolution 64 
of MGCs can be inferred independently of the genetic mechanisms and traits they encode, 65 
enabling large-scale modeling of chemo-diversification processes [11].  66 

One way to identify accessory function-encoding MGCs is by conducting targeted 67 
searches using probabilistic models trained on previously identified clusters. AntiSMASH and 68 
the associated ClusterFinder module are general-purpose tools for mining biosynthetic MGCs 69 
by similarities in gene sequence, cluster composition, and the spatial distributions of protein 70 
family domains in genomes [11, 12]. These tools can be used to identify the genetic basis of real 71 
and predicted natural products [13] and further compare potential chemodiversity across 72 
fungal populations and lineages [14, 15]. Because such programs use models trained on known 73 
pathways/MGCs from a limited set of fungi, bacteria, and plants, “untargeted” cluster 74 
prediction methods that use other evolutionary or ecological criteria for identifying gene 75 
clusters may be needed to uncover new types of metabolism. Some innovative untargeted 76 
approaches include searching for co-location of genes with similar promoter motifs [16], shared 77 
evolutionary histories [17], or linkage shared by unexpectedly divergent species [18, 19, 20]. 78 
The prediction of biosynthetic MGCs has been the major focus of genome mining initiatives to 79 
date, though catabolic MGC discovery is poised to follow suit [18]. 80 
 81 
MGCs interact with the drivers and constraints of accessory function evolution 82 

Genes for accessory functions can arise through vertical gene duplication (VGD-83 
duplication of a locus within a genome, inherited by offspring), horizontal gene transfer (HGT-84 
duplication from a locus in one genome to a locus in another)(Figure 1), or de novo gene 85 
evolution [21]. Genes that already perform accessory roles, such as dedicated secondary 86 
metabolism structural genes (Nonribosomal Peptide Synthetases, Polyketide Synthetases, etc.) 87 
may be the main source of novel accessory genes. Truly novel metabolism also emerges 88 
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through duplication of core metabolic genes [22, 23], but it is difficult to distinguish such 89 
accessory genes from the core genes from which they are derived purely based on amino acid 90 
sequence. MGCs are hotspots for VGD and HGT [24]. These closely-related information copying 91 
processes remove the evolutionary constraints that were imposed on the original genes by 92 
genetic networks under natural selection; they facilitate adaptive evolution by allowing 93 
partitioning of ancestral functions (subfunctionalization) or the emergence of novel functions 94 
[25, 26, 27]. HGT of gene modules and MGCs may further impact organismal fitness by copying 95 
environmentally adaptive functions into novel genetic backgrounds [9, 28, 29]. A propensity for 96 
either type of gene duplication can increase an organism’s latent capacity to evolve and 97 
elaborate on accessory functions [30]. HGT of MGCs and multigene modules they contain may 98 
further accelerate adaptation by bypassing fitness valleys (e.g. toxic transitional states) 99 
encountered during stepwise addition of genes to a genome [5, 31].   100 
 101 
Linkage, specialization, and the generation of adaptive accessory functions  102 

MGCs provide a framework for testing outstanding hypotheses in evolutionary biology 103 
concerning the origins of adaptive phenotypes. For example, enzyme activity by default is 104 
promiscuous, which furnishes important variation for evolution of accessory functions, but 105 
carries the burden of pathway inefficiency and the potential for toxic interference among 106 
pathways [32]. Specialization, in contrast, entails functional optimization and metabolic 107 
efficiency, but decreases the overall evolutionary potential of the specialized genes [32]. MGCs 108 
may mediate some of these trade-offs by enabling coordination of enzyme function and 109 
regulation, reducing their interference with other metabolic processes, while still maintaining 110 
promiscuous functions [8]. By decreasing the fitness costs of functionally linked accessory 111 
genes, clustering preserves adaptive gene combinations and facilitates their joint incorporation 112 
into new phenotypic contexts, accelerating the emergence of accessory function [33]. 113 
Differential rates of degeneration and loss among protein functional classes within MGCs lend 114 
further insight into the process of adaptive specialization. Recent studies have demonstrated 115 
that enzymes are preferentially lost from MGCs while regulators and transporters are 116 
selectively retained [34, 35], suggesting specialization could result in enzymatic "dead ends", 117 
and that continued innovation requires a regular replenishment of enzymes from conserved or 118 
promiscuous functions. The ability to generate and preserve functional linkages in gene clusters 119 
would thus impact an organism's ability to generate and incorporate accessory diversity (i.e. its 120 
evolvability)[36]. 121 
 122 
Variation in clustering provides insight into the mechanisms generating accessory functions 123 

Fungi are uniquely positioned to elucidate the mechanisms generating accessory 124 
functions and MGC diversity because their known genomic diversity captures variation in 125 
clustering across metabolic pathways and across lineages in ways that bacteria, with highly 126 
clustered genomes, and plants, with few clusters in their genomes, do not (Figure 1). 127 
Specifically, there are significant differences in clustering rates between the two filamentous 128 
fungal subphyla, Pezizomycotina and Agaricomycotina. While hundreds of MGCs have been 129 
identified in Pezizomycotina, there are only five Agaricomycotina pathways deposited in the 130 
MIBiG database v1.4 (mibig.secondarymetabolites.org/repository.html), and only a few more 131 
can be found in the literature (Table 1). The MGCs identified in Pezizomycotina fungi further 132 
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differ in compositional complexity and the metabolism encoded compared to those identified 133 
in Agaricomycotina (Table 1). Known or predicted Agaricomycotina clusters are small, and 134 
contain recently duplicated genes, compared to those in Pezizomycotina, which cover a large 135 
range of sizes and are compositionally more diverse [37]. Additionally, Agaricomycete 136 
biosynthetic pathways employ parallel processes at specific metabolic steps and in the classes 137 
of compounds produced [38]. These distinctions suggest accessory metabolism and MGCs in 138 
Agaricomycotina have commonalities with those of plants [39], while the genomic structure of 139 
accessory metabolism in Pezizomycotina is more similar to bacteria [11]. This overlap 140 
complicates assumptions about cluster evolution, where tandem duplications provide a neutral 141 
evolutionary mechanism for cluster formation in eukaryotes, and the tendency for genes to be 142 
transcribed in operons offers a regulatory mechanism selecting for clustering in bacteria. By 143 
providing a range of compositional complexity, but with limited operon-like transcription, the 144 
spectrum of fungal gene clustering forces attention to other evolutionary mechanisms driving 145 
gene clustering.  146 

To illustrate these trends (Figure 1), certain cluster-encoded metabolisms, such as those 147 
based on highly modular nonribosomal peptide synthetase enzymes, along with numerous 148 
supporting enzymes, transporters and regulators, are largely restricted to morphologically 149 
simple fungi and bacteria [37, 40]. For example, Pezizomycotina have an average of ~10 NRPS 150 
containing clusters per genome versus 1.2 in Agaricomycotina. Interestingly, mushroom-151 
forming fungi still produce non-protein peptide metabolites with ribosomally generated 152 
oligopeptides encoded in high copy number MSDIN genes, whose products diversify through 153 
simple coding mutations [41]. Terpenoid biosynthesis, where biologically meaningful diversity 154 
can be readily generated through small modifications and high enzyme promiscuity, so far also 155 
seems to be over-represented in morphologically complex fungi and plants [37, 42]. The 156 
difference in genome architecture among fungi is especially pronounced in phenolic 157 
degradation. While putative phenolic degradation clusters are diverse and complex across 158 
Pezizomycotina [18], in Agaricomycotina, most such clustering is the result of tandem 159 
duplications and few putative clusters contain more than a single gene family [43]. 160 
Disentangling the roles of species-specific metabolism and lineage-based differences in genome 161 
evolution mechanisms will become more feasible with greater genome sampling and ecological 162 
knowledge of fungi.  163 
 164 
Life history traits and genome architecture theory predict a clustering gradient across fungi 165 

It is not entirely clear whether the absolute numbers of clusters identified in the 166 
respective lineages reflect differences in propensity to cluster, or if different cluster 167 
compositions in Agaricomycotina leave them less likely to be detected using biased models and 168 
methods. Nonetheless, the variation we observe is predicted from complex interactions 169 
between migration, recombination rates, and selection [44], which differ between fungal 170 
subphyla as a result of contrasting reproductive strategies, generation times, and ecological 171 
lifestyles. Under strong selection and sufficient gene flow, clustered architectures are favored, 172 
because they prevent the influx of maladaptive alleles and preserve the fitness of locally 173 
adapted genotypes [44]. For example, when genes participate in the same specialized pathway, 174 
clusters reduce recombination between differently optimized enzymes that would be 175 
detrimental to their cooperation in metabolic transformations.  176 
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The mating strategies of individual organisms may strongly influence genome 177 
architecture, the rates of VGD and HGT, and the diversity of accessory functions (Figure 1). For 178 
example, many bacteria and fungi participate in large "pan-genomes" containing far greater 179 
diversity than can be contained in a single individual. Sharing in pan-genomes is facilitated by 180 
mobile elements and unequal recombination mechanisms, and gives access to diverse gene 181 
families, gene combinations, and sequence variants. In these types of populations, clusters are 182 
more prevalent and they enable the parallel diversification of accessory functions across 183 
numerous genomes under diverse environmental selection. In this way, pan-genomes result in 184 
varied assortments of discrete pathways in individual genomes. By contrast, fungi and plants 185 
that participate in smaller pan-genomes, will have more limited access to gene variants and 186 
variable gene combinations, resulting in a smaller number of highly branched and parallel 187 
pathways within individual lineages. Pathways in these organisms are constrained to evolve 188 
primarily through VGD and intragenomic mutation. Differences in the types of metabolic 189 
diversity and in the composition of MGCs found across bacteria, fungi, and plants are consistent 190 
with these processes, but specific tests remain to be done. 191 

Ecology is similarly seen as a driver of reproductive strategies that impact selection on 192 
genome architecture (Figure 2). Tree-decaying Agaricomycotina often have large, long-lived 193 
somatic biomasses with rare, periodic meiotic sexual reproduction. In contrast, the typically 194 
small units of rapidly sporulating Pezizomycotina commonly engage in clonal reproduction and 195 
self-fertilization, in addition to sexual reproduction. Pervasive, non-meiotic recombination 196 
(including parasexuality) in Pezizomycotina [45], similar to bacteria, may explain their 197 
substantial pan-genomes and elevated gene flow between populations and across species 198 
barriers. The increased proclivity for parasexuality may also favor non-homologous 199 
recombination and structural rearrangements of large linkage blocks (even entire 200 
chromosomes) that repress recombination. Repression of recombination frees nascent gene 201 
clusters to accumulate transposed genes and to drift while becoming selected as a block, 202 
effectively acting as a superallele in a population's pan-genome [46, 47]. Indeed, a number of 203 
recent studies have confirmed the existence of "idiomorphic" MGC loci in Pezizomycotina fungi, 204 
where variably distributed MGCs occupy the same genomic region in different individuals [14, 205 
48, 49, 50, 51]. Supernumerary (dispensible) chromosomes are an extreme example of 206 
parasexual/horizontal inheritance of co-adapted blocks of accessory functions. HGT of 207 
supernumerary chromosomes in Fusarium has been shown to enable infection of a new host by 208 
confering multiple adaptive functions [52].  Decreased propensity for genomic rearrangements 209 
and constraints on gene flow in Agariciomycotina due to sexual recombination may relax the 210 
drive to cluster in this lineage compared with Pezizomycotina, as decreased population-level 211 
rates of small-scale genomic rearrangements are also associated with decreased rates of 212 
clustering [53]. Intriguingly, ecological selection for self-mating appears to drive formation of 213 
mating locus clusters, which relaxes some evolutionary constraints imposed on predominantly 214 
sexual populations [54, 55]. 215 

One line of evidence supporting the hypothesis that the spectrum of lifestyles and 216 
reproductive strategies of fungi impacts patterns of metabolic diversification is the rate of MGC 217 
horizontal duplication. It is notable that to date, while large HGTs of MGCs are more commonly 218 
inferred in Pezizomycotina (commensurate with higher HGT in general [24]), the only published 219 
case of MGC HGT in Agaricomycotina involves dung-decay mushrooms. Dung fungi are driven to 220 
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inbreed and reproduce more rapidly due to the patchiness and ephemeral nature of this 221 
resource [56]. The case of HGT of the psilocybin cluster among dung-decay fungi [10], contrasts 222 
with the other evolutionarily well-characterized Agaricomycotina MGC for luciferin, which 223 
evolves through concerted VGD and loss [57]. However, these hypotheses need to be rigorously 224 
tested.  225 
 Competition among osmotrophs is thought to be the main driver of the diversification of 226 
accessory pathways [58]. Interestingly the genomes of fungus-like oomycetes (stramenopiles) 227 
are structured more similarly to plants, with extensive tandem gene duplication, but few gene 228 
clusters and little accessory metabolism [59, 60]. While oomycetes are similar to fungi in 229 
physiology, and their range of ecological roles, they differ by having a dominant diploid stage of 230 
their life-cycles, suggesting reproductive strategies as well as nutritional mode are important in 231 
genome architecture. 232 
 233 
A single gene family illustrates different evolutionary processes among fungal lineages  234 

Different patterns of accessory enzyme diversification in Pezizomycotina and 235 
Agaricomycotina exemplify the interplay between accessory functions and gene clustering. For 236 
example, phylogenetic analysis supports the emergence of single-domain MT-33 N-237 
methyltransferases by partial duplication of bifunctional ergothioneine synthases in both 238 
lineages [61]. These enzymes alternately participate in ergotamine toxin (Pezizomycotina) and 239 
methylated tryptophan biosynthesis (Agaricomycotina). Across Agaricomycotina, there have 240 
been many recent origins of these enzymes by VGD, and the only observed ancient paralog has 241 
itself been subject to ongoing loss. Furthermore, there are no indications that these accessory 242 
paralogs are in MGCs or horizontally transferred in Agaricomycotina. In Pezizomycotina, by 243 
contrast, while these N-methyltransferases perform a similar function N-methylating indole 244 
alkaloids, they have rarely emerged by VGD, and they appear to disperse by HGT as part of 245 
complex MGCs [61, 62]. In short, these novel enzymes appear constrained to evolve simple 246 
peripheral functions through VGD in isolated lineages of Agaricomycotina, but participate in 247 
complex clustered pathways that are shared across species through HGT in Pezizomycotina.  248 
 249 
MGC distributions imply ecological functions  250 

The ecological impact of accessory functions in microorganisms can be difficult to 251 
discern because species may be opportunistic on the substrate of their isolation, and the genes 252 
encoding these functions are often unknown [63]. Equally confounding, sub-populations of a 253 
species may be specialized for alternative cryptic niches. MGCs can help disentangle the 254 
importance of specific functions for ecological fitness because they enable the rapid 255 
identification of genes and gene families of interest contributing to specific phenotypes. For 256 
example, the biased distribution and HGT of clustered genes involved in psilocybin production 257 
among dung- and insect- associated fungi, coupled with the known effects of psilocybin on 258 
serotonin-receptors, led to speculation that this tryptamine alkaloid reduces mycophagy by 259 
insects by interfering with neural signaling. Subsequent detection of psilocybin (by a likely a 260 
convergent psilocybin pathway) in cicada parasitizing fungi provided additional evidence that 261 
this compound is selected for its effects on insects [64]. Similarly, the identification of a MGC 262 
found previously in pathogens of woody plants enabled a reverse ecology approach to 263 
discovering new hosts for several grass pathogens [7]. And finally, targeted and untargeted 264 
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searches for MGCs have further revealed previously unexplored dimensions of accessory 265 
function evolution and led to the proposal of their ecological associations [18].  266 
 267 
Summary 268 

Accessory functions are the essence of ecological adaptation and innovation, yet they 269 
often resist characterization. Genome architecture-focused approaches, such as MGC mining 270 
and characterization, promise a relatively straightforward path to cut through genomic noise 271 
and decipher ecological relationships in parallel with molecular functions [63, 65]. Although 272 
MGCs are observed across all major Kingdoms of life, the diversity of fungal mating strategies 273 
and lifestyles is likely responsible for generating fungal-specific variation in clustering rates, 274 
positioning fungi and their MGCs as model systems for linking specific ecological, demographic, 275 
and genetic processes with the generation of accessory metabolic functions (Figure 2). In 276 
particular, elucidating the relative impact of vertical and horizontal gene family expansion (VGD 277 
and HGT) on different strategies for metabolic diversification should greatly improve our ability 278 
to explain how, when, and why accessory functions evolve.  279 
 280 
Figure Legends 281 
 282 
Figure 1: The spectrum of accessory metabolic compartmentalization and diversification. 283 
Bacteria, Ascomycetes, Basidiomycetes, and Plants (shown as silhouettes) capture gradients in 284 
accessory metabolic diversification and the storage of accessory metabolic functions within and 285 
across individuals. Moving from left to right, pan-genomes become progressively closed (i.e., 286 
less variable among individuals), genomic architectures feature fewer metabolic gene clusters 287 
encoding accessory functions, and individual genomes transition from encoding many different 288 
specialized accessory pathways to few highly diversified pathways. The major candidate 289 
mechanisms contributing to the gradients are shown below, and are expected to manifest to 290 
different degrees in each of the depicted lineages.  291 
 292 
Figure 2: The eco-evolutionary dynamics of genome architecture. Ecological selection is the 293 
overarching force shaping the evolution of accessory functions, acting through evolutionary 294 
processes operating at multiple scales, as discussed in the text. Ecological selection pressures 295 
determine the most adaptive population dynamics, including mating/reproduction strategies, 296 
optimal effective population size (NE), and migration rates. In turn, the spectra of these 297 
population dynamics determine the mechanisms of genome evolution and metabolic 298 
diversification that are ultimately available for generating adaptive variation. Recombination 299 
mechanisms and streamlining vary across different life-history strategies and result in the types 300 
of evolvability favored and the size of pan-genomes (Figure 1). These drivers simultaneously 301 
favor different modes of metabolic diversification such as the combination of gene functions in 302 
novel pathways, and their differential optimization/specialization. Contrasting patterns of 303 
genome architecture (e.g., gene clustering vs. gene family expansion) are tangible outcomes of 304 
interactions among these processes (Figure 1), but they may also feed back on and influence 305 
the impact of the main evolutionary drivers. For example, gene clustering favors HGT and 306 
pathway specialization, which can mitigate competition and increase access to resources.  307 
 308 
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