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Abstract

Ecological interactions are largely determined by adaptive traits deemed "accessory". In
plants, fungi, and bacteria, such traits mainly comprise metabolic pathways that produce or
transform diverse molecules. While accessory metabolic pathways are pervasive, it is often
difficult to identify their genetic bases. Recently, in-depth descriptions of metabolic gene
clusters (MGCs), which encode discrete metabolic pathways, have greatly simplified the
characterization of genotype-phenotype maps, yet questions of how this genome architecture
relates to the evolution of accessory functions remain. Fungi are uniquely positioned to
spearhead investigations into these dynamics because they display gradients in clustering
across pathways and taxa. This review will focus on the role of MGCs as both agents and
consequences of the accessory function evolution that underpins fungal diversification.
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MGCs: repositories of accessory metabolic functions

Accessory metabolic functions underpin ecological adaptation and innovation in plants,
fungi, and bacteria by determining the outcomes of organismal interactions [1]. Chemical
defenses, for example, enable these organisms to overcome competition and resist predation
despite their limited mobility. Nutritionally adaptive metabolic pathways can facilitate the
breakdown of challenging substrates or protect digested resources from competitors. The
accessory metabolites of complex organisms further define the adaptive microbial communities
with which they associate [2]. However, there is a general lack of knowledge about the
individual genes responsible for these phenotypes. This problem has been partially addressed
by investigations at the -omics scale, e.g. inferring and describing networks of accessory genes
whose expression or distributions are associated with ecologically important phenotypes [3,4].

Genome structure provides an alternative window into accessory metabolic functions.
Specifically, accessory metabolisms are frequently encoded by Metabolic Gene Clusters (MGCs)
composed of neighboring, coordinately-expressed genes participating in discrete metabolic
pathways, often accompanied by supportive functions like regulation, transport, and self-
protection from the encoded phenotype [5, 6]. Because genes cluster in response to natural
selection, MGCs are effective proxies of adaptive metabolic functions, and can therefore greatly
accelerate the discovery and characterization of accessory pathways contributing to ecological
phenotypes [7]. Convergent origins and interspecies exchanges of MGCs can also indicate
selection on the accessory functions they encode [8, 9, 10]. Further, the ecology and evolution
of MGCs can be inferred independently of the genetic mechanisms and traits they encode,
enabling large-scale modeling of chemo-diversification processes [11].

One way to identify accessory function-encoding MGCs is by conducting targeted
searches using probabilistic models trained on previously identified clusters. AntiSMASH and
the associated ClusterFinder module are general-purpose tools for mining biosynthetic MGCs
by similarities in gene sequence, cluster composition, and the spatial distributions of protein
family domains in genomes [11, 12]. These tools can be used to identify the genetic basis of real
and predicted natural products [13] and further compare potential chemodiversity across
fungal populations and lineages [14, 15]. Because such programs use models trained on known
pathways/MGCs from a limited set of fungi, bacteria, and plants, “untargeted” cluster
prediction methods that use other evolutionary or ecological criteria for identifying gene
clusters may be needed to uncover new types of metabolism. Some innovative untargeted
approaches include searching for co-location of genes with similar promoter motifs [16], shared
evolutionary histories [17], or linkage shared by unexpectedly divergent species [18, 19, 20].
The prediction of biosynthetic MGCs has been the major focus of genome mining initiatives to
date, though catabolic MGC discovery is poised to follow suit [18].

MGCs interact with the drivers and constraints of accessory function evolution

Genes for accessory functions can arise through vertical gene duplication (VGD-
duplication of a locus within a genome, inherited by offspring), horizontal gene transfer (HGT-
duplication from a locus in one genome to a locus in another)(Figure 1), or de novo gene
evolution [21]. Genes that already perform accessory roles, such as dedicated secondary
metabolism structural genes (Nonribosomal Peptide Synthetases, Polyketide Synthetases, etc.)
may be the main source of novel accessory genes. Truly novel metabolism also emerges
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through duplication of core metabolic genes [22, 23], but it is difficult to distinguish such
accessory genes from the core genes from which they are derived purely based on amino acid
sequence. MGCs are hotspots for VGD and HGT [24]. These closely-related information copying
processes remove the evolutionary constraints that were imposed on the original genes by
genetic networks under natural selection; they facilitate adaptive evolution by allowing
partitioning of ancestral functions (subfunctionalization) or the emergence of novel functions
[25, 26, 27]. HGT of gene modules and MGCs may further impact organismal fitness by copying
environmentally adaptive functions into novel genetic backgrounds [9, 28, 29]. A propensity for
either type of gene duplication can increase an organism’s latent capacity to evolve and
elaborate on accessory functions [30]. HGT of MGCs and multigene modules they contain may
further accelerate adaptation by bypassing fitness valleys (e.g. toxic transitional states)
encountered during stepwise addition of genes to a genome [5, 31].

Linkage, specialization, and the generation of adaptive accessory functions

MGCs provide a framework for testing outstanding hypotheses in evolutionary biology
concerning the origins of adaptive phenotypes. For example, enzyme activity by default is
promiscuous, which furnishes important variation for evolution of accessory functions, but
carries the burden of pathway inefficiency and the potential for toxic interference among
pathways [32]. Specialization, in contrast, entails functional optimization and metabolic
efficiency, but decreases the overall evolutionary potential of the specialized genes [32]. MGCs
may mediate some of these trade-offs by enabling coordination of enzyme function and
regulation, reducing their interference with other metabolic processes, while still maintaining
promiscuous functions [8]. By decreasing the fitness costs of functionally linked accessory
genes, clustering preserves adaptive gene combinations and facilitates their joint incorporation
into new phenotypic contexts, accelerating the emergence of accessory function [33].
Differential rates of degeneration and loss among protein functional classes within MGCs lend
further insight into the process of adaptive specialization. Recent studies have demonstrated
that enzymes are preferentially lost from MGCs while regulators and transporters are
selectively retained [34, 35], suggesting specialization could result in enzymatic "dead ends",
and that continued innovation requires a regular replenishment of enzymes from conserved or
promiscuous functions. The ability to generate and preserve functional linkages in gene clusters
would thus impact an organism's ability to generate and incorporate accessory diversity (i.e. its
evolvability)[36].

Variation in clustering provides insight into the mechanisms generating accessory functions
Fungi are uniquely positioned to elucidate the mechanisms generating accessory
functions and MGC diversity because their known genomic diversity captures variation in
clustering across metabolic pathways and across lineages in ways that bacteria, with highly
clustered genomes, and plants, with few clusters in their genomes, do not (Figure 1).
Specifically, there are significant differences in clustering rates between the two filamentous
fungal subphyla, Pezizomycotina and Agaricomycotina. While hundreds of MGCs have been
identified in Pezizomycotina, there are only five Agaricomycotina pathways deposited in the
MIBiG database v1.4 (mibig.secondarymetabolites.org/repository.html), and only a few more
can be found in the literature (Table 1). The MGCs identified in Pezizomycotina fungi further
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differ in compositional complexity and the metabolism encoded compared to those identified
in Agaricomycotina (Table 1). Known or predicted Agaricomycotina clusters are small, and
contain recently duplicated genes, compared to those in Pezizomycotina, which cover a large
range of sizes and are compositionally more diverse [37]. Additionally, Agaricomycete
biosynthetic pathways employ parallel processes at specific metabolic steps and in the classes
of compounds produced [38]. These distinctions suggest accessory metabolism and MGCs in
Agaricomycotina have commonalities with those of plants [39], while the genomic structure of
accessory metabolism in Pezizomycotina is more similar to bacteria [11]. This overlap
complicates assumptions about cluster evolution, where tandem duplications provide a neutral
evolutionary mechanism for cluster formation in eukaryotes, and the tendency for genes to be
transcribed in operons offers a regulatory mechanism selecting for clustering in bacteria. By
providing a range of compositional complexity, but with limited operon-like transcription, the
spectrum of fungal gene clustering forces attention to other evolutionary mechanisms driving
gene clustering.

To illustrate these trends (Figure 1), certain cluster-encoded metabolisms, such as those
based on highly modular nonribosomal peptide synthetase enzymes, along with numerous
supporting enzymes, transporters and regulators, are largely restricted to morphologically
simple fungi and bacteria [37, 40]. For example, Pezizomycotina have an average of ~10 NRPS
containing clusters per genome versus 1.2 in Agaricomycotina. Interestingly, mushroom-
forming fungi still produce non-protein peptide metabolites with ribosomally generated
oligopeptides encoded in high copy number MSDIN genes, whose products diversify through
simple coding mutations [41]. Terpenoid biosynthesis, where biologically meaningful diversity
can be readily generated through small modifications and high enzyme promiscuity, so far also
seems to be over-represented in morphologically complex fungi and plants [37, 42]. The
difference in genome architecture among fungi is especially pronounced in phenolic
degradation. While putative phenolic degradation clusters are diverse and complex across
Pezizomycotina [18], in Agaricomycotina, most such clustering is the result of tandem
duplications and few putative clusters contain more than a single gene family [43].
Disentangling the roles of species-specific metabolism and lineage-based differences in genome
evolution mechanisms will become more feasible with greater genome sampling and ecological
knowledge of fungi.

Life history traits and genome architecture theory predict a clustering gradient across fungi

It is not entirely clear whether the absolute numbers of clusters identified in the
respective lineages reflect differences in propensity to cluster, or if different cluster
compositions in Agaricomycotina leave them less likely to be detected using biased models and
methods. Nonetheless, the variation we observe is predicted from complex interactions
between migration, recombination rates, and selection [44], which differ between fungal
subphyla as a result of contrasting reproductive strategies, generation times, and ecological
lifestyles. Under strong selection and sufficient gene flow, clustered architectures are favored,
because they prevent the influx of maladaptive alleles and preserve the fitness of locally
adapted genotypes [44]. For example, when genes participate in the same specialized pathway,
clusters reduce recombination between differently optimized enzymes that would be
detrimental to their cooperation in metabolic transformations.
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The mating strategies of individual organisms may strongly influence genome
architecture, the rates of VGD and HGT, and the diversity of accessory functions (Figure 1). For
example, many bacteria and fungi participate in large "pan-genomes" containing far greater
diversity than can be contained in a single individual. Sharing in pan-genomes is facilitated by
mobile elements and unequal recombination mechanisms, and gives access to diverse gene
families, gene combinations, and sequence variants. In these types of populations, clusters are
more prevalent and they enable the parallel diversification of accessory functions across
numerous genomes under diverse environmental selection. In this way, pan-genomes result in
varied assortments of discrete pathways in individual genomes. By contrast, fungi and plants
that participate in smaller pan-genomes, will have more limited access to gene variants and
variable gene combinations, resulting in a smaller number of highly branched and parallel
pathways within individual lineages. Pathways in these organisms are constrained to evolve
primarily through VGD and intragenomic mutation. Differences in the types of metabolic
diversity and in the composition of MGCs found across bacteria, fungi, and plants are consistent
with these processes, but specific tests remain to be done.

Ecology is similarly seen as a driver of reproductive strategies that impact selection on
genome architecture (Figure 2). Tree-decaying Agaricomycotina often have large, long-lived
somatic biomasses with rare, periodic meiotic sexual reproduction. In contrast, the typically
small units of rapidly sporulating Pezizomycotina commonly engage in clonal reproduction and
self-fertilization, in addition to sexual reproduction. Pervasive, non-meiotic recombination
(including parasexuality) in Pezizomycotina [45], similar to bacteria, may explain their
substantial pan-genomes and elevated gene flow between populations and across species
barriers. The increased proclivity for parasexuality may also favor non-homologous
recombination and structural rearrangements of large linkage blocks (even entire
chromosomes) that repress recombination. Repression of recombination frees nascent gene
clusters to accumulate transposed genes and to drift while becoming selected as a block,
effectively acting as a superallele in a population's pan-genome [46, 47]. Indeed, a number of
recent studies have confirmed the existence of "idiomorphic" MGC loci in Pezizomycotina fungi,
where variably distributed MGCs occupy the same genomic region in different individuals [14,
48, 49, 50, 51]. Supernumerary (dispensible) chromosomes are an extreme example of
parasexual/horizontal inheritance of co-adapted blocks of accessory functions. HGT of
supernumerary chromosomes in Fusarium has been shown to enable infection of a new host by
confering multiple adaptive functions [52]. Decreased propensity for genomic rearrangements
and constraints on gene flow in Agariciomycotina due to sexual recombination may relax the
drive to cluster in this lineage compared with Pezizomycotina, as decreased population-level
rates of small-scale genomic rearrangements are also associated with decreased rates of
clustering [53]. Intriguingly, ecological selection for self-mating appears to drive formation of
mating locus clusters, which relaxes some evolutionary constraints imposed on predominantly
sexual populations [54, 55].

One line of evidence supporting the hypothesis that the spectrum of lifestyles and
reproductive strategies of fungi impacts patterns of metabolic diversification is the rate of MGC
horizontal duplication. It is notable that to date, while large HGTs of MGCs are more commonly
inferred in Pezizomycotina (commensurate with higher HGT in general [24]), the only published
case of MGC HGT in Agaricomycotina involves dung-decay mushrooms. Dung fungi are driven to
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inbreed and reproduce more rapidly due to the patchiness and ephemeral nature of this
resource [56]. The case of HGT of the psilocybin cluster among dung-decay fungi [10], contrasts
with the other evolutionarily well-characterized Agaricomycotina MGC for luciferin, which
evolves through concerted VGD and loss [57]. However, these hypotheses need to be rigorously
tested.

Competition among osmotrophs is thought to be the main driver of the diversification of
accessory pathways [58]. Interestingly the genomes of fungus-like oomycetes (stramenopiles)
are structured more similarly to plants, with extensive tandem gene duplication, but few gene
clusters and little accessory metabolism [59, 60]. While oomycetes are similar to fungi in
physiology, and their range of ecological roles, they differ by having a dominant diploid stage of
their life-cycles, suggesting reproductive strategies as well as nutritional mode are important in
genome architecture.

A single gene family illustrates different evolutionary processes among fungal lineages
Different patterns of accessory enzyme diversification in Pezizomycotina and
Agaricomycotina exemplify the interplay between accessory functions and gene clustering. For
example, phylogenetic analysis supports the emergence of single-domain MT-33 N-
methyltransferases by partial duplication of bifunctional ergothioneine synthases in both
lineages [61]. These enzymes alternately participate in ergotamine toxin (Pezizomycotina) and
methylated tryptophan biosynthesis (Agaricomycotina). Across Agaricomycotina, there have
been many recent origins of these enzymes by VGD, and the only observed ancient paralog has
itself been subject to ongoing loss. Furthermore, there are no indications that these accessory
paralogs are in MGCs or horizontally transferred in Agaricomycotina. In Pezizomycotina, by
contrast, while these N-methyltransferases perform a similar function N-methylating indole
alkaloids, they have rarely emerged by VGD, and they appear to disperse by HGT as part of
complex MGCs [61, 62]. In short, these novel enzymes appear constrained to evolve simple
peripheral functions through VGD in isolated lineages of Agaricomycotina, but participate in
complex clustered pathways that are shared across species through HGT in Pezizomycotina.

MGC distributions imply ecological functions

The ecological impact of accessory functions in microorganisms can be difficult to
discern because species may be opportunistic on the substrate of their isolation, and the genes
encoding these functions are often unknown [63]. Equally confounding, sub-populations of a
species may be specialized for alternative cryptic niches. MGCs can help disentangle the
importance of specific functions for ecological fitness because they enable the rapid
identification of genes and gene families of interest contributing to specific phenotypes. For
example, the biased distribution and HGT of clustered genes involved in psilocybin production
among dung- and insect- associated fungi, coupled with the known effects of psilocybin on
serotonin-receptors, led to speculation that this tryptamine alkaloid reduces mycophagy by
insects by interfering with neural signaling. Subsequent detection of psilocybin (by a likely a
convergent psilocybin pathway) in cicada parasitizing fungi provided additional evidence that
this compound is selected for its effects on insects [64]. Similarly, the identification of a MGC
found previously in pathogens of woody plants enabled a reverse ecology approach to
discovering new hosts for several grass pathogens [7]. And finally, targeted and untargeted
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searches for MGCs have further revealed previously unexplored dimensions of accessory
function evolution and led to the proposal of their ecological associations [18].

Summary

Accessory functions are the essence of ecological adaptation and innovation, yet they
often resist characterization. Genome architecture-focused approaches, such as MGC mining
and characterization, promise a relatively straightforward path to cut through genomic noise
and decipher ecological relationships in parallel with molecular functions [63, 65]. Although
MGCs are observed across all major Kingdoms of life, the diversity of fungal mating strategies
and lifestyles is likely responsible for generating fungal-specific variation in clustering rates,
positioning fungi and their MGCs as model systems for linking specific ecological, demographic,
and genetic processes with the generation of accessory metabolic functions (Figure 2). In
particular, elucidating the relative impact of vertical and horizontal gene family expansion (VGD
and HGT) on different strategies for metabolic diversification should greatly improve our ability
to explain how, when, and why accessory functions evolve.

Figure Legends

Figure 1: The spectrum of accessory metabolic compartmentalization and diversification.
Bacteria, Ascomycetes, Basidiomycetes, and Plants (shown as silhouettes) capture gradients in
accessory metabolic diversification and the storage of accessory metabolic functions within and
across individuals. Moving from left to right, pan-genomes become progressively closed (i.e.,
less variable among individuals), genomic architectures feature fewer metabolic gene clusters
encoding accessory functions, and individual genomes transition from encoding many different
specialized accessory pathways to few highly diversified pathways. The major candidate
mechanisms contributing to the gradients are shown below, and are expected to manifest to
different degrees in each of the depicted lineages.

Figure 2: The eco-evolutionary dynamics of genome architecture. Ecological selection is the
overarching force shaping the evolution of accessory functions, acting through evolutionary
processes operating at multiple scales, as discussed in the text. Ecological selection pressures
determine the most adaptive population dynamics, including mating/reproduction strategies,
optimal effective population size (Ng), and migration rates. In turn, the spectra of these
population dynamics determine the mechanisms of genome evolution and metabolic
diversification that are ultimately available for generating adaptive variation. Recombination
mechanisms and streamlining vary across different life-history strategies and result in the types
of evolvability favored and the size of pan-genomes (Figure 1). These drivers simultaneously
favor different modes of metabolic diversification such as the combination of gene functions in
novel pathways, and their differential optimization/specialization. Contrasting patterns of
genome architecture (e.g., gene clustering vs. gene family expansion) are tangible outcomes of
interactions among these processes (Figure 1), but they may also feed back on and influence
the impact of the main evolutionary drivers. For example, gene clustering favors HGT and
pathway specialization, which can mitigate competition and increase access to resources.
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