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Abstract

In this paper, a first sample-based formulation of the recently considered population observers, or ensemble observers, which estimate the
state distribution of dynamic populations from measurements of the output distribution is established. The results presented in this paper
yield readily applicable computational procedures that provide novel avenues to circumvent issues regarding the curse of dimensionality,
which all previously developed techniques employing a kernel-based approach are inherently suffering from. The novel insights that
eventually pave the way for all different kinds of sample-based considerations are in fact deeply rooted in the basic probabilistic framework
underlying the problem, bridging optimal mass transport problems defined on the level of distributions with actual randomized strategies
operating on the level of individual points. The conceptual insights established in this paper not only yield insight into the underlying
mechanisms of sample-based ensemble observers but significantly advance our understanding of estimation and tracking problems for the

class of ensembles of dynamical systems in general.
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1 Introduction

The observability problem in systems theory systematically
addresses a task fundamental to numerous scientific fields,
particularly those close to physics, namely the extraction
of information about the state of a dynamical process from
knowledge of the underlying dynamics, and time series data
of some less informative output measurement. The concept
of observability together with the concept of controllability
of a linear state-space model layed the basic foundation of
a general theory of (control) systems (see [1,2]), which has
fundamentally reshaped the way we think about systems.

The same line of thoughts centered around the questions of
controllability and observability are recently being investi-
gated in relation to a new class of systems, consisting of
populations of dynamical systems of the same structure with
a given distribution in their states [3—9]. While a classical
system can be thought of as a single point particle evolving
in state-space (following the combined effect of a drift and
a control vector field), for a population comprised of a large
number of dynamical system, the point describing the state
of the system would be replaced by a (probability) distribu-
tion of points, as suggested in Figure 1.
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Fig. 1. The evolution of the state of a classical system is typically
thought of as a point evolving in state space (left). In the same
spirit, the dynamics of a population of systems is described by
distributions of points (right).

Of course, the idea of considering probability distributions
as a description of the state of a system is not new — in fact
it traces back more than 100 years to the early beginnings of
statistical mechanics, where the occurring probability dis-
tribution was already used both as a model for the state of
one uncertain system or of an actual population of many
systems, with a distribution in initial states. However, it has
only recently become clear that once we look closer at the
interface of really interacting with actual populations of sys-
tems, very distinct restrictions start to surface. This is where
the probabilistic model splits into two branches, each with
completely different interpretations with regard to what is
being measured, and how we are able to exert control over
the system.
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A prime example that illustrates the fundamentally differ-
ent interpration of the probabilistic setup for the situation of
populations of dynamical systems is given by heterogeneous
cell populations, such as cancer cell populations. For exam-
ple, an important task for such heterogeneous cell popula-
tions is to estimate the specific distribution in states ! or pa-
rameters, as such distribution can often be the key driver for
heterogeneous responses to an external biochemical stimu-
lus, like it is prominently observed with cancer, where we
often see the survival of subpopulations during drug treat-
ment. The given data for solving the estimation task are
measurements of only a subset of molecule concentrations,
which furthermore are increasingly being recorded via high-
throughput devices called flow cytometers. By rapidly pass-
ing a stream of fluorescently labeled cells through a laser
and fluorescence detectors, flow cytometers can easily gather
concentration measurements of a vast number of cells. How-
ever, the ability to gather vast amounts of data comes at a
cost. Namely, it is only possible to measure at the popula-
tion level, which here, specifically, means that nothing can
be said about an individual cell; it is only that a lot of mea-
surements are being recorded and then stored in the form of
histograms or other statistics. This circumstance may be de-
scribed as a population-level observation, and is illustrated
Figure 2.
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Fig. 2. An illustration of population snapshots. In each time step
t1,...,ts we have a snapshot of certain output values of a popu-
lation. The crucial point is that in a snapshot, information relating
an output value to the individual producing that output value is
completely missing. Taken from [8].

While Figure 2 may give the impression that one is mea-
suring many output trajectories of individual cells, but with-
out recording the actual associations between measurements
in different time points, the situation is in fact even more
cumbersome for the example of cell populations. This is
because we only get to measure each cell once, due to the
simple reason that after it is measured, it is either destroyed
or gone. Therefore, the measurements at different snapshots
may stem from completely different individuals in the popu-
lation; they do, however, all stem from the same population.

1 The state of a single cell is typically described by the set of con-
centrations of different molecules or proteins, which are governed
by regulatory networks that in turn can be described by ordinary
differential equations.

These considerations led us to view these population snap-
shots as samples from an output distribution, and to further
view the output distribution as the “total” output of the pop-
ulation. This idea was then formalized in terms of a novel
systems theoretic setup in which a classical system

i = f(x)
y = h(z),

with f : R® — R" and h : R™ — R™, is generalized by set-
ting the initial state to be a random vector z(0) ~ Py, with
a non-parametric probability distribution Py. This clearly
leads to a probabilistic nature of the output as well, which
we describe in terms of y(t) ~ PPy . The practical ensem-
ble observability problem consists of reconstructing the ini-
tial state distribution Py when given the evolution of the
distribution of outputs P, (), which, again, is fundamentally
different from classical filtering problems in which the mea-
sured data are single realizations of the output distribution
associated to a single uncertain plant.

In [8], we first studied the ensemble observability problem
in the linear case, where f(x) = Az and h(z) = Cu,
both from a theoretical and practical perspective. The in-
vestigations of the underlying basic theoretical problem in
particular also revealed a deep connection between such en-
semble observability problems and mathematical tomogra-
phy problems, providing crucial insights into the inner sys-
tems theoretic mechanisms and, from a practical perspective,
also immediately rendered the problem amenable to com-
putational solutions. The computational solutions, however,
having been very much anchored in the tomography-based
considerations, were inevitably affected by the curse of di-
mensionality. While problems in tomography most promi-
nently take place in lower dimensions, specifically dimen-
sions two or three, in the ensemble observability setup, such
arestriction is naturally undesirable, as the dimension of the
state space is in general typically higher. In [10], we already
pointed out that in our quest to get better insights about the
initial state distribution, we eventually want to circumvent
the route over distributions, in which the output snapshots
are first mapped into discretized distributions (histograms),
from which a discretized initial state distribution is then to
be reconstructed. Instead, a sample-based approach to the
reconstruction problem was envisioned, which from a prag-
matic standpoint seems very natural as well, as the mea-
surement data is naturally given in terms of samples of the
output in the first place, and not in terms of the distribution
of the output, which is just a mathematical idealization in-
troduced for the sake of studying the theoretical problem.
In order to establish a sample-based framework, in this pa-
per we derive a systematic practical procedure that takes the
samples of the output distribution at different time points
and eventually returns a set of points that mimic a set of
real samples from the sought initial state distribution. This
idea is realized by leveraging a novel connection to optimal
mass transport problems [11,12], which is in fact very fun-
damental, and leads to novel interesting theoretical insights,
as well as challenging open problems.



The structure of the paper is as follows. In Section 2, we
provide a very brief review of the ensemble observability
problem, with its many different viewpoints and connections
to other areas of mathematics. In particular, we will discuss
an example of a nonlinear observability problem, which al-
ready provides some important hints towards establishing a
sample-based approach. This sample-based approach is then
fully established in Section 3, yielding both sample-based
ensemble estimators and observers. All key steps in the in-
troduction of the sample-based scheme are complemented
by detailed illustrations and examples.

2 The ensemble observability problem

In this section we provide a rapid review of different aspects
of the ensemble observability problem that are most relevant
to the presentation of the novel insights and results put forth
of this paper. In particular, we will put significant empha-
sis on the discussion of the relation between the ensemble
observability problem and mathematical tomography prob-
lems, established in [8], by which the ensemble observabil-
ity problem also first became amenable to comprehensible
computational solutions.

We recall that in the general ensemble observability problem
we ask under which conditions we can reconstruct the initial
state distribution Py when given the evolution of the dis-
tribution of outputs I ;), under a finite-dimensional (non-
linear) dynamical system. Furthermore, we are interested in
practical reconstruction techniques for this problem. In [8],
we first studied this problem in the linear case, both from a
theoretical and practical perspective. To first build some in-
tuition around the whole concept of ensemble observability,
we consider an example with a two-dimensional harmonic

oscillator
. 01
T = x, Yy = (1 O) x.
—-10

with a bimodal initial distribution as depicted in Figure 3.
The measured output distribution corresponding to the out-
put y = z1 of the underlying linear system results from a
marginalization of the state distribution over the second co-
ordinate, i.e. from integration along the xs-direction. Thus,
when the system evolves, the state distribution is subject to
both a transportation with the flow, and a marginalization
over the second coordinate, resulting in an evolution of the
output distribution, as suggested in Figure 3.

The question in the ensemble observability problem for the
specific example is thus whether or not one can reconstruct
the (initial) state distribution from only observing the evo-
lution of the output distribution, shown in the lower left of
Figure 3. Even though one might consider this a quite sys-
tems theoretic perspective on the problem, an answer to this
problem is simply not immediate in this considered setting,
which is a rather remarkable conclusion.

Fig. 3. Illustration of the ensemble observability problem for a
two-dimensional harmonic oscillator with a bimodal initial dis-

tribution. The upper right shows the evolution of the state distri-
bution. The lower left shows the evolution of the corresponding
output distribution. Taken from [13].

Due to the aforementioned reasons, in [8] we took a differ-
ent approach to the problem, which is to simply view and
treat it as a (generic) inverse problem in a measure theoretic
framework. In fact, the output distribution Py is related
to the initial distribution Py in a very basic way, namely
through a pushforward relation

B, (B, == Po((Ce™) 1 (B,)) = /
(CeAt)y=1(By)

po(x) dz.

The values of the output distribution are related to the initial
density through these integrals over these preimages, which
one can think of as a strips due linearity of = — Ce“tx, as
well as the fact that the interesting cases occur only when C'
does not have full column rank. This basic perspective may
be illustrated as in Figure 4. The remaining diffculty is then
due to the fact that we only know the integrals over sets that
stretch to infinity.
initial density po(x)

(Ce‘At)_l(By)

Fig. 4. Illustration of the relation between initial state distribution
and output distribution at a given time. The value Py (By) is
equal to the strip integrals f(CeAt)*l(B )po(a:) dz, cf. [8].

Y

Thus, we may only hope that as time changes, the directions
of the strips, dictated by C'e?, change and that the informa-
tion for different directions can be combined to infer the in-
tegrand pg. This is precisely the same problem as in tomog-
raphy problems, where one wants to obtain a cross-section
of an object by taking radiographs from different angles. Our
study of the ensemble observability problem established a
direct mathematical connection between (ensemble) observ-
ability and tomography problems [8].



Thus, in addition to the original, dynamic viewpoint, there
is this second viewpoint associated to the ensemble observ-
ability problem in which we do not consider the evolution
of the initial state distribution with the flow, but instead, the
evolution of the “measurement directions”, which are dic-
tated by ker C'eA*. For the example of the harmonic oscilla-
tor, the directions at which we take projections of the initial
state distribution, rotate in a uniform counter-clockwise mo-
tion, which is in fact the canonical example of a tomography
problem, by which the reconstructability of the ensemble
observability problem for the harmonic oscillator becomes
very clear. Figure 5 illustrates the duality between the two
different viewpoints.

Fig. 5. Left: The distribution evolves with the flow, undergoing a
rotation about the origin, and the measurement direction is fixed.
Right: The distribution is held fix and we, as a (physical) observer,
rotate around the object with our focus fixed on the center of the
object. The observed densities are exactly the same in the two
different setups.

The quite unexpected connection to tomography that was
revealed in our investigation of the theoretical problem was
effectively leveraged both for theoretical studies, as well as
practical reconstruction schemes. In the former, the proba-
bilistic analogue of the projection slice theorem, the Cramér-
Wold theorem (see Section 3), yielded insightful algebraic
geometric conditions for ensemble observability. In the lat-
ter, the Algebraic Reconstruction Technique from computed
tomography provided a reconstruction method, which, un-
like the previous approaches that treated the dynamic aspect
more as a black box that is used only for forward simulation
purposes, was anchored in a detailed systems theoretic anal-
ysis of the underlying problem; comparative studies in light
of the new tomography-based viewpoint revealed signifi-
cant weaknesses of the previous kernel-based reconstruction
methods. The curse of dimensionality, however, was also not
resolved in this new approach, so that it became apparent
that a purely sample-based approach had to be derived.

To progress towards a sample-based viewpoint, the idea is
to replace the formulations in terms of continuous probabil-
ity distributions by sample-based descriptions. We adopt a
description of the initial state distribution to be sought by
finitely many particles 2(*) with s = 1,..., N, and further-
more assume that a measurement at time ¢ > 0 yields values
yU) with j = 1,..., M, which are samples from the output
distribution at a given time. The pushforward relation for

the continuous distributions then becomes

#{y? € B} #{z € (ho®) ' (By) }
#{yD} #{z} ’

which provides a sample-based description of the relation
between the measured output histograms and the configura-
tion of samples of the initial state distribution.

3 Formulating the ensemble state estimator

So far, we have articulated the need to consider a new type of
approach in the computational ensemble observability prob-
lem, in which the sought state distribution is to be recon-
structed by means of finitely many samples of it. The key
problem in establishing this can be formalized as follows.

Problem 1 Given a set of samples drawn from the output
distribution, derive suitable update and correction rules for
the particles of the sample-based ensemble state estimator
so that these converge to a configuration that resembles a
set of samples drawn from the unknown state distribution.

It turns out that the presented sample-based description of
the general pushforward equation in fact already contains
all important ingredients to successfully establish a sample-
based framework. It is noted however, that the exact imple-
mentation is still far from being obvious at this stage and
requires further discussions. Essentially, the key idea that
will enable our sample-based undertaking is in fact all along
encoded in the Cramér-Wold theorem [14], which, in one of
its different most prominent versions, states that if for two
joint distributions all marginals distributions in all direc-
tions are the same, then the joint distributions are the same.
Another way to put it is that a joint distribution is uniquely
determined by its marginals in all different directions.

Theorem 1 (Cramér-Wold Theorem) A distribution of a
random vector X in R™ is uniquely determined by the family
of distributions of (v, X), with v € S*~ 1.

The Cramér-Wold theorem can in fact be easily relaxed to
cases in which marginal distributions are not available in
all directions, but rather only in a smaller set of directions,
which is closely related to the issue of limited angle tomog-
raphy. In [8], we studied the underlying mathematical prob-
lem and were in particular able to provide complete insight
into the connection between the required “minimal” set of
directions and properties of (A, C), which would, analo-
gous to the classical observability of a linear system, de-
termine whether the underlying system is ensemble observ-
able or not. As we will see, most examples of systems that
are ensemble observable will not possess the property that
ker CeA* covers all possible “directions”. A specific exam-
ple illustrating this fact very clearly is a double integrator
(see Section 4).



In light of this particular perspective on the Cramér-Wold
theorem, the idea would thus be to produce samples in R"
so that the projections of the sample points in all available
directions are as close as possible to the corresponding out-
put histograms. The key to achieve this is to use an optimal
transport approach to measure the closeness between the his-
tograms of the projected samples and the output histograms
and to devise a suitable correction strategy that will yield a
matching of the two histograms.

Let us discuss this mathematically in the case that the states
are n-dimensional and for one single output measurement
of the form y = (v, z) with some v € R™. Let the ensem-
ble state estimator consist of N particles Z(*), where N is
(of course) taken to be sufficiently large and suppose that
we have M scalar measurements (v, (7)), where the (/)
are samples from the joint distribution. We then produce a
histogram for these measured samples and also produce a
histogram for the projected estimator states (v, Z(*)) with
the same bins [y,,, y,+1] with p = 1,..., £. The situation is
illustrated in Figure 6.

Fig. 6. This figure shows the sample points from the reference
distribution (black) and the estimator’s initial configuration of its
sample points (red). The histograms of the marginalizations in one
particular direction are illustrated in the back. By choosing the
same bins for the two histograms, we can describe these as two
vectors, whose entries are the (normalized) frequencies.

When the bins of the two histograms are identical, both
histograms can be described by the vectors

qUZ(qf...qf), ?Z(fﬁ’@’)

containing the normalized frequency of projected samples
in the respective ¢ bins. As such, they are probability vec-
tors, i.e. ||¢*]|1 = ||g”||1 = 1. The aforementioned correc-
tion strategy is then given by “morphing” the probability
vector ¢V into the probability vector ¢, i.e. to (optimally)
redistribute the mass in the different bins of ¢V so as to ob-
tain the mass distribution as specified in ¢”. The problem
of transforming one distribution into another by a suitable
transport map is illustrated in Figure 7.

Fig. 7. This figure illustrates the idea of finding a way to trans-
port one distribution into another, or, equivalently, transporting the
associated probability vectors into another.

This is in fact the most basic instance of an optimal mass
transport problem, namely one in a completely finite-
dimensional setting. Here one is seeking for a so-called
transport plan, which in the discrete setting is specified by
a matrix 7' € R**¢ with non-negative entries so that

The intepretation is that the entry 7;; would dictate how
much of the (probability) “mass” a;’ in the jth bin of the his-
togram is to be transported to the 2th bin, so that eventually
q" will be completely transformed into ¢”.

The aforementioned optimality is incorporated into this
framework by additionally considering the cost functional

4 4
T=> li—jlTy.
i=1 j=1

From a physical perspective, this is a very reasonable choice
as it favors transport plans that realize the transportation of
one mass distribution into another in the most economical
way. But this particular choice also leads to additional nice
mathematical features, such as the fact that in this case the
dual problem is a linear program involving only ¢ optimiza-
tion variables instead of £? variables. This is commonly re-
ferred to as the Kantorovich-Rubenstein duality. An even
faster way to (approximately) solve this particular case of
an optimal mass transport problem for large problem sizes
(i.e. for large numbers of bins ¢) is through the so-called
method of Sinkhorn iterations [15].

Having solved the optimal transport problem, we obtain the
transport plan T' for mapping the two vectors containing the
frequencies in the different bins, as illustrated in Figure 8.

In the last step, this transport plan obtained from solving the
optimal transport problem on the level of population vectors
needs to be converted into a correction scheme on the level
of the original particles. This is described in the following:

(1) For all () of the ensemble state estimator find the
number g of the bin in which (v, Z()) is contained in.



Fig. 8. This figure shows a visualization of the transport plan,
with the intensity in a pixel corresponding to the magnitude of the
corresponding entry in the transport plan matrix (gray scale), as
well as the two marginal distributions (red and black). The red and
black dashed lines indicate how the transport plan is related to the
two corresponding marginal distributions. The dotted black line is
the result of reflecting the black dashed line about the diagonal line,
and highlights the position towards which the mass highlighted
by the red dashed line is to be transported, as summarized by the
white arrow between the two corresponding bins.

(2) The entries of the uth row of the matrix T are treated
as transition probabilities for z(*) to be moved from
{x e R" 1y, < (v,z) < yu41} to another bin.

(3) The actual transition of Z(¥) from the uth bin to an-
other, say the vth, bin is realized by translating it in
the direction of v € R"™, i.e.

v

=) ()
T T+ A ,
[[o]|?

with a suitable displacement A € R. This yields

[

) = (0,20) + A,
ol

(0,29 4+ X

To ensure a certain “regularity” of the resulting set of
samples, the exact displacement is also randomized,
allowing the corrected particle to lie anywhere in the
vth bin with equal probability. More specifically, we
choose A = —(v, () 4+ X, where X is a random vari-
able with a uniform distribution on [y, ¥y, 11].

The algorithm for correcting the state distribution with re-
spect to the marginal distributions in one direction given by
y = (v, x) is summarized below.

Algorithm 1 Ensemble state estimator: One correction step
1: Compute the normalized frequencies of the samples
{(v,2}izq, o and {(v, 200}, x with respect
to the bins [y, y,+1), where = 1,..., ¢, yielding the
probability vectors ¢¥ and ¢”, respectively.
2: Compute the transport plan 7' € R**¢ for gV ~ V.
3: Implement the transport plan on the level particles.

Figure 9 illustrates a situation, in which the estimator state
has been corrected with respect to the highlighted direction,
but admits a large deviation with respect to a different di-
rection. Clearly, the above described plan will have to be

Fig. 9. This figure illustrates the situation in which the presented
correction scheme has been carried out with respect to the high-
lighted direction. The illustrated marginal distribution of the esti-
mator particles matches the marginal distribution of the particles
from the actual initial state distribution. Note that the marginal
distributions in other directions, e.g. that orthogonal to the high-
lighted one, are clearly not matched, which will eventually have
to be addressed in further iteration steps.

repeated for sufficiently many directions v € R™. Figure 10
illustrates the correction scheme for two consecutive correc-
tion steps. Note how in this particular case, with only two
simple iterations, we are already able to achieve a quite ac-
ceptable reconstruction. The iteration over all different di-
rections v itself can be iterated several times, similarly to
the procedure in the Algebraic Reconstruction Technique in
computed tomography. The intuitive idea is that by doing so,
we expect to eventually end up with a configuration of par-
ticles 2(¥) whose projections along all given directions are
at once in accordance with the actual data. By virtue of the
Cramér-Wold theorem, in the idealized case that N — oo,
as well as / — oo, and that all (a sufficient set of) direc-
tions are available, we would end up with a perfect approx-
imation of the joint distribution by means of samples of the
distribution. We stress, however, that this does not really
qualify as a rigorous argument for the presented algorithm.
One possible approach for a detailed convergence analysis
is through the inherent connection to the classical Kaczmarz
method [16], which can in fact be seen as a special case of
the novel population-based scheme presented in this paper.

3.1 The dynamic case

Up to now, we have described the correction scheme for the
“static case” associated with the Cramér-Wold viewpoint.
Regarding the dynamic state estimation problem for ensem-
bles, the role of the linear and scalar y = (v, z) is taken by
the nonlinear mapping y = (h o ®;)(z), which, in the very
relevant linear case, specializes to y = CeAtz. While the
case of linear systems can be carried over from the static
analysis in a rather straightforward fashion, the general case
of nonlinear systems requires some further discussion.
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Fig. 10. First row: The actual initial distribution (black) and a
prior estimate (red) are illustrated on the left. The right plot shows
the histogram of the projections of the two distributions along the
highlighted direction in the left plot. Middle row: The ensemble
estimator’s state is updated so that the marginals of the projections
in the highlighted direction match. Last row: Illustration of a
second update of the ensemble estimator’s state associated to a
different direction.

The main obstruction in the nonlinear case is in the last
step of implementing the correction strategy on the level of
particles, in particular the displacement of particles from one
(nonlinear) “bin” {z € R™ : y,,, < (ho ®¢)(z) < Ym41}
to another one. Now instead of directly operating on the
particles used for approximating the initial state distribution,
we can first propagate these using ®; and then implement
the correction strategy for the resulting particles at time ¢.
Here we still need one additional assumption in general,
namely that the output mapping h is such that a displacement
of particles from one partition {x € R™ : y,,, < h(z) <
Ym+1} to another can be readily implemented. After the
correction step on the level of forward propagated particles,
we apply the reverse flow. Thus, a simple remedy by which
the correction with respect to the output mapping y = (h o
®,)(x) is circumvented is given by splitting up what in the
linear case can be naturally implemented in a single step into
two steps. A detailed illustration of one correction step in
the nonlinear case is shown in Figure 11, where the resulting
action of the unfolded correction procedure is also clearly
displayed

To summarize, in the above described unfolded correction
procedure, we transport the state distribution of the estimator
forward to a given measurement time, compare its output
distribution with the measured output distribution at hand,
and then implement the correction at that given measurement
time. Then, after the transport plan has been implemented,
the state distribution is transported backwards to the initial
time. For linear systems, we can of course directly apply
the correction in one simple step by means of the simpler
relation y = Ce?tx.

3.2 On the architecture of the ensemble state estimator

At this point, we would like to draw some attention to the
particular hierarchical architecture of this correction-based
(particle) state estimator. The correction is essentially im-
plemented by means of a two-layer feedback: First, the mis-
match between the outputs of the estimator and of the actual
system is evaluated on the population level, from which a
correction on the population level is computed. In particu-
lar, at this stage, no attention is paid to individual systems
but only the totality of individual systems. The correction in
the next step on the other hand has to be actually realized by
implementing it on the level of the individual particles. In
particular, it cannot be fully implemented on the population
level, i.e. by completely broadcasting an instruction to the
systems in the ensemble. Rather, different individual sys-
tems in the population will be required to receive different
instructions (in this case it is based on the bins they are lo-
cated in). To summarize, though our presented scheme does
not operate entirely on a population-level, it is also not a
completely individual feedback. Rather it constitutes a quite
simple to implement, yet very powerful hybrid, given by a
two-layer structure, which we may refer to as a population-
level feedback.

4 The ensemble observer

In the previous section, we presented a novel particle-based
approach for estimating the initial state distribution of an
ensemble from output samples. As for any such state esti-
mation problem, we assumed to have all the measurements
at different times stored and available to us at once. Another
type of state reconstruction scheme is in a more dynamic
spirit, in which the system’s state is to be estimated online,
i.e. at each time instant, the estimated state is updated based
on the measurement received at that time point, or, more
generally, from past measurements received up to that time
point. From a more mathematical point of view, the problem
considered in this section is the estimation of p,,(;) from past
output measurements py (), with 7 < ¢, which, when for-
mulated in these more theoretical terms, we recognize to be
analogous to a classical filtering problem. So far, approaches
to implement such a filtering approach have not yielded any
fruits.



Fig. 11. Top left: The initial state distribution (black) and the
estimated initial state distribution (red) before any correction step
has been applied. Top right: The two distributions after being
transported with the nonlinear oscillator to a given time point, as
well as the level sets of the output measurement. Lower right:
Correction step using optimal mass transport. Lower left: The
transported corrected distribution, as well as the transported level
sets.

4.1 Discussion of related approaches

To illustrate particular difficulties that were encountered in
the aforementioned approaches, we shall highlight two ap-
proaches that one would rather naturally consider in this con-
text. The first approach would consider a partial differential
equation describing the evolution of the estimated state dis-
tribution. It is well-known that the original ensemble system
can be described by a linear partial differential equation, the
Liouville equation [7], given by

%p(t,l‘) = —div(p(t, z) f(x)),

where p(t,-) denotes the state density at time ¢. The output
distribution results from the state distribution by a marginal-
ization along ker C, i.e.

Dy (9) = / p(t, z)dS.
Cr=y

We denote the mapping p(t, -) = py () by C. In the spirit of
the classical Luenberger observer [17], having one part sim-
ulating the system and another part correcting based on the
incoming output measurements as its basic design principle,
it is indeed natural to consider an observer described by

o R R
7P @) = =div(p(t ) f () + LBy = Py,

where py, ;) = Cp(t, -). Defining e(t, z) := p(t, ) — p(t, x)
as the estimation error, in the approach based on partial
differential equations, the problem boils down to designing
the (linear) operator £ so that the error dynamics

1o} .
et @) = —div(e(t, 2)f(2)) + (£Ce)(t, )

is asymptotically stable. However, due to the fact that the
action of C is a rather unique one, not falling into any
well-studied category of operators in the theory of infinite-
dimensional systems theory [18], a general solution to this
stabilization problem remains out of reach.

Another natural idea that circumvents the infinite-dimensional
setting is to first discretize the state space, e.g. by ap-
proximating the considered probability density functions
by piecewise constant functions, and then to reformulate
the system dynamics for these finite-dimensional approx-
imations. However, in trying to do so, we will at some
point encounter a rather fundamental problem associated
to this idea, which can be already seen for a simple linear
oscillator. If the discretization of the state space is not tai-
lored to the specific vector field at hand, say, we choose a
simple discretization into pixels in R?, then the resulting
discretized linear system will no longer admit the mass
preserving property. This is because in implementing this
discretization scheme, we inevitably have to truncate the
discretization of the state space to some region of interest,
of which the boundaries will suffer from leakage of mass,
but will not provide mass from outside, the outside part
being truncated. Thus, for an observer based on this idea
of discretization, the part that simulates the system will not
be able to reproduce the actual system behavior. In fact,
the state generated by the simulation part will naturally
converge to zero as the incoming flow inevitably has to be
truncated, and the general trend will thus be that the whole
mass will eventually leak out at the boundaries.

4.2 Towards sample-based population observers

Using the new insights from our first sample-based imple-
mentation of an ensemble state estimator, we are already
able to formulate a new sample-based (online) ensemble ob-
server. Recalling the filtering formulation introduced in the
beginning of this section, where the problem is to estimate
Da(t) from past output measurements Dy(r)> with 7 < t, the
key to producing online estimates of the state distribution
lies in the equation

(ho®r)(x(t)) = y(7)

relating the state of a (single) nonlinear system at time ¢
with its output measurement at an earlier time point 7 < .
This basic relation shows that the estimation of the current
ensemble state distribution from past output distributions
7 < t is inherently dual to the estimation of the ensemble
initial state distribution from the generated output distribu-
tions (forward in time).



Combining this with our insights from the previous section, a
sample-based population observer can be realized as follows.

Algorithm 2 Sample-based population observer

1: Given some time t; > 0, and an earlier time t;_q, we
apply the flow ®; _,, , to the particles of the prior

estimate P~ to obtain a first estimate of P~ ..
z(tr—1) @(tr)

2: For various different 7 < ¢, we apply the correction
scheme described in the previous section with the sole
modification of replacing ®; with &, _,, .

4.2.1 Practical implementation for a double integrator

In this subsection, we illustrate a practical implementation
of sample-based population observers in more detail. For
this purpose, we consider the system

@:(3(1)):5, yz(l O)m,

which is a simple double integrator. Here we can directly
compute CeAt = (1 t) , allowing us for the specific exam-

ple of a double integrator to write down the relation between
angle o of ker Ce/* and time ¢ explicitly as

tan(a) = =t & «a=arctan(t). (1)

This simple reading relation shows that unlike in the example
of a harmonic oscillator, the maximal spread of achievable
angles is inherently restricted to the range of ¢ — arctan(t).
Moreover, the explicit relation allows us to choose the time
points of measurement in such a way that the correspond-
ing set of angles is uniformly distributed, which in turn is
expected to yield better results for the reconstruction.

Since unlike in the classical Kalman filter for linear systems,
the availability of measurements at different time points
7 < tis crucial for population observers, further discussions
on the available measurements for the correction step with
regard to computational effort and memory are required. It
is a quite natural idea to first restrict the time points at which
output data is available to t — Ty < 7 < t, where Ty de-
notes the horizon length and [t — Ty, t] is called the mov-
ing horizon. Of course, when practically implementing such
a moving horizon scheme, we also need to further assume
that the measurement times are discrete. In this example,
the specific horizon length Ty = 3 was chosen so as to
guarantee a sufficiently large spread of available directions
for each correction step. Note that by defining 7/ := 7 — ¢,
which takes values in the interval [—T}y, 0], we see that the
directions are dictated by ker CeA™ | where 7/ € [—TH,0],
which result from transporting ker C' forward in time in the
interval [0, Ty]. Due to the simple relation between angles

and times established in (1), the range of available angles
would be 0° to arctan(3) & 71.56°. In order to facilitate a
wider spread, a longer horizon would need to be provided.
For example, in order to have a spread of 85°, it would al-
ready require a horizon length of Ty = 11.43.

Within the measurement horizon, the output distributions of
the actual ensemble are of course not measured continu-
ously, but at discrete time points. In the example, the times
at which measurements of the output distributions are avail-
able are tp, =t — 0.1k, where k£ = 1,...,30. Out of these
30 measurement times only 10 are actually utilized by in-
corporating the measurement data for the correction steps
at each prediction step. Of course, one could in fact in-
crease the number of time points used for the reconstruction
at each time step, and also increase the number of correc-
tion steps performed at each prediction step. This would,
however, result in an increased computational load at each
prediction step. We note that in the implementation of this
example, the 10 time points are chosen randomly from the
above measurement times in such a way that the distribution
of corresponding angles would be as uniform as possible.
More specifically, due to the nonlinear relation o = tan(t),
choosing random times ¢; from a uniform distribution de-
fined over {¢;} would not result in a uniform distribution
of the corresponding «y,. Instead, one has to sample with
respect to a specific (discrete) distribution ¢; ~ P, which
guarantees that the distribution for oy, = tan(ty) is (close
to) a uniform distribution. The detailed discussion of these
issues, while of great practical importance, is beyond of the
scope of this paper. In summary, with the above described
procedure we obtain a quite satisfactory method for solving
the continuous ensemble observability problem in an on-line
fashion.

Figure 12 illustrates a resulting tracking process using the
proposed method for an ensemble of double integrators.

15 ¢
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Fig. 12. Three successive predictions at ¢ = 0.5,1.0, 1.5 (distin-
guished by transparency), each of which is computed from 10 time
points in the measurement horizon with Ty = 3.



5 Conclusions and Outlook

In the present paper, a first sample-based treatment of the
estimation and observation problems associated to the re-
cently emerging class of ensembles of dynamical systems
was presented in an introductory manner. The sample-based
approach completely circumvents the route over parameter-
izing the unknown nonparametric probability distribution,
which is common to all previous approaches and a crucial
aspect, as it inherently limits all previously considered al-
gorithms to problem setups in which the state-space is low-
dimensional.

The starting point for establishing a sample-based approach
is the premise of strictly using a set of points in state space
as a means to describe / track a distribution rather than to use
other approximations such as histograms or more general
kernel functions. The main challenge then was to devise an
iterative strategy that operates by manipulations on the set
of points which would eventually result in the convergence
of the set of points to a configuration that could very well
be a set of samples from the distribution of interest. From a
conceptual point of view, a main result of this paper is the
demonstration that optimal mass transport problems, as well
as the classical Cramér-Wold device, when viewed through
the lens of statitics, constitute crucial links in the endeavor
to derive sample-based population observers.

A key feature of the correction scheme is the interesting two-
layer structure that promotes a very basic and simple im-
plementation: The corrective measures for the set of points
is computed in a global fashion, based on population-level
mismatches, but is eventually implemented on the level of
individual particles by feeding population-level data to the
individual particles, which compute their own correction by
implementing a simple randomized strategy. As a prototype
model for the more general scheme portrayed in a two-
dimensional state-space, we may consider the system

cos(a(t))

&(t) = (cos(a(t)) sin(a(t)))(ret(t) — x(t)),

sin(a(t))

where again the reference signal of the individual systems
Zret(t) is obtained from population-level considerations and
could differ for different systems in the population. Another
interesting open problem in this regard is to derive opti-
mal sequences of angles, possibly formulated in a stochastic
framework, that yield a fast convergence for arbitrary con-
figurations of sample points.

Lastly, while the problem formulation in this paper considers
populations of dynamical systems, the particle-based tools in
this paper might also be of use to particle filtering techniques
for inferring the state of a single nonlinear system.
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