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a b s t r a c t

In this paper, a first sample-based formulation of the recently considered population observers, or
ensemble observers, which estimate the state distribution of dynamic populations from measurements
of the output distribution is established. The results presented in this paper yield readily applicable
computational procedures that provide novel avenues to circumvent issues regarding the curse of dimen-
sionality, which all previously developed techniques employing a kernel-based approach are inherently
suffering from. The novel insights that eventually pave the way for all different kinds of sample-based
considerations are in fact deeply rooted in the basic probabilistic framework underlying the problem,
bridging optimal mass transport problems defined on the level of distributions with actual randomized
strategies operating on the level of individual points. The conceptual insights established in this paper not
only yield insight into the underlying mechanisms of sample-based ensemble observers but significantly
advance our understanding of estimation and tracking problems for the class of ensembles of dynamical
systems in general.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The observability problem in systems theory systematically
addresses a task fundamental to numerous scientific fields, partic-
ularly those close to physics, namely the extraction of information
about the state of a dynamical process from knowledge of the
underlying dynamics, and time series data of some less informa-
tive output measurement. The concept of observability together
with the concept of controllability of a linear state-space model
laid the basic foundation of a general theory of (control) systems
(see Kalman, 1960, 1963), which has fundamentally reshaped the
way we think about systems.

The same line of thoughts centered around the questions of
controllability and observability are recently being investigated in
relation to a new class of systems, consisting of populations of
dynamical systems of the same structure with a given distribution
in their states (Brockett, 2007, 2012; Brockett & Khaneja, 2000;
Li, 2011; Li & Khaneja, 2009; Zeng, Ishii, & Allgöwer, 2017; Zeng,
Waldherr, Ebenbauer, & Allgöwer, 2015). While a classical system
can be thought of as a single point particle evolving in state-space
(following the combined effect of a drift and a control vector field),
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for a population comprised of a large number of dynamical system,
the point describing the state of the system would be replaced by
a (probability) distribution of points, as suggested in Fig. 1.

Of course, the idea of considering probability distributions as a
description of the state of a system is not new — in fact it traces
back more than 100 years to the early beginnings of statistical
mechanics, where the occurring probability distribution was al-
ready used both as a model for the state of one uncertain system
or of an actual population of many systems, with a distribution
in initial states. However, it has only recently become clear that
oncewe look closer at the interface of really interactingwith actual
populations of systems, very distinct restrictions start to surface.
This is where the probabilisticmodel splits into two branches, each
with completely different interpretations with regard to what is
being measured, and how we are able to exert control over the
system.

A prime example that illustrates the fundamentally different
interpretation of the probabilistic setup for the situation of popula-
tions of dynamical systems is given by heterogeneous cell popula-
tions, such as cancer cell populations. For example, an important
task for such heterogeneous cell populations is to estimate the
specific distribution in states1 or parameters, as such distribution

1 The state of a single cell is typically described by the set of concentrations of
different molecules or proteins, which are governed by regulatory networks that in
turn can be described by ordinary differential equations.
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Fig. 1. The evolution of the state of a classical system is typically thought of as a
point evolving in state space (left). In the same spirit, the dynamics of a population
of systems is described by distributions of points (right).

Fig. 2. An illustration of population snapshots. In each time step t1, . . . , t4 we have
a snapshot of certain output values of a population. The crucial point is that in
a snapshot, information relating an output value to the individual producing that
output value is completely missing, cf. Zeng et al. (2015).

can often be the key driver for heterogeneous responses to an
external biochemical stimulus, like it is prominently observedwith
cancer, where we often see the survival of subpopulations during
drug treatment. The given data for solving the estimation task are
measurements of only a subset of molecule concentrations, which
furthermore are increasingly being recorded via high-throughput
devices called flow cytometers. By rapidly passing a stream of flu-
orescently labeled cells through a laser and fluorescence detectors,
flow cytometers can easily gather concentration measurements
of a vast number of cells. However, the ability to gather vast
amounts of data comes at a cost. Namely, it is only possible to
measure at the population level, which here, specifically, means
that nothing can be said about an individual cell; it is only that a lot
ofmeasurements are being recorded and then stored in the form of
histograms or other statistics. This circumstance may be described
as a population-level observation, and is illustrated Fig. 2.

While Fig. 2 may give the impression that one is measuring
many output trajectories of individual cells, but without recording
the actual associations between measurements in different time
points, the situation is in fact evenmore cumbersome for the exam-
ple of cell populations. This is becausewe only get tomeasure each
cell once, due to the simple reason that after it is measured, it is
either destroyed or gone. Therefore, themeasurements at different
snapshots may stem from completely different individuals in the
population; they do, however, all stem from the same population.

These considerations led us to view these population snapshots
as samples from an output distribution, and to further view the
output distribution as the ‘‘total’’ output of the population. This
idea was then formalized in terms of a novel systems theoretic
setup in which a classical system

ẋ = f (x)
y = h(x),

with f : Rn
→ Rn and h : Rn

→ Rm, is generalized by
setting the initial state to be a random vector x(0) ∼ P0, with a
non-parametric probability distribution P0. This clearly leads to
a probabilistic nature of the output as well, which we describe
in terms of y(t) ∼ Py(t). The practical ensemble observability
problem consists of reconstructing the initial state distribution P0
when given the evolution of the distribution of outputsPy(t), which,
again, is fundamentally different from classical filtering problems
in which the measured data are single realizations of the output
distribution associated to a single uncertain plant.

In Zeng et al. (2015), we first studied the ensemble observability
problem in the linear case, where f (x) = Ax and h(x) = Cx,
both from a theoretical and practical perspective. The investi-
gations of the underlying basic theoretical problem in partic-
ular also revealed a deep connection between such ensemble
observability problems and mathematical tomography problems,
providing crucial insights into the inner systems theoretic mecha-
nisms and, froma practical perspective, also immediately rendered
the problem amenable to computational solutions. The compu-
tational solutions, however, having been very much anchored in
the tomography-based considerations, were inevitably affected
by the curse of dimensionality. While problems in tomography
most prominently take place in lower dimensions, specifically
dimensions two or three, in the ensemble observability setup, such
a restriction is naturally undesirable, as the dimension of the state
space is in general typically higher. In Zeng and Allgöwer (2015),
we already pointed out that in our quest to get better insights about
the initial state distribution, we eventually want to circumvent the
route over distributions, in which the output snapshots are first
mapped into discretized distributions (histograms), from which a
discretized initial state distribution is then to be reconstructed.
Instead, a sample-based approach to the reconstruction problem
was envisioned, which from a pragmatic standpoint seems very
natural as well, as the measurement data is naturally given in
terms of samples of the output in the first place, and not in terms
of the distribution of the output, which is just a mathematical
idealization introduced for the sake of studying the theoretical
problem. In order to establish a sample-based framework, in this
paper we derive a systematic practical procedure that takes the
samples of the output distribution at different time points and
eventually returns a set of points that mimic a set of real samples
from the sought initial state distribution. This idea is realized by
leveraging a novel connection to optimal mass transport prob-
lems (Chen, Georgiou, & Pavon, 2017; Villani, 2008), which is in
fact very fundamental, and leads to novel interesting theoretical
insights, as well as challenging open problems.

The structure of the paper is as follows. In Section 2, we provide
a very brief review of the ensemble observability problem, with
its many different viewpoints and connections to other areas of
mathematics. In particular, wewill discuss an example of a nonlin-
ear observability problem,which already provides some important
hints towards establishing a sample-based approach. This sample-
based approach is then fully established in Section 3, yielding both
sample-based ensemble estimators and observers. All key steps in
the introduction of the sample-based scheme are complemented
by detailed illustrations and examples.

2. The ensemble observability problem

In this section we provide a rapid review of different aspects
of the ensemble observability problem that are most relevant to
the presentation of the novel insights and results put forth of this
paper. In particular, wewill put significant emphasis on the discus-
sion of the relation between the ensemble observability problem
andmathematical tomography problems, established in Zeng et al.
(2015), by which the ensemble observability problem also first
became amenable to comprehensible computational solutions.
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Fig. 3. Illustration of the ensemble observability problem for a two-dimensional
harmonic oscillator with a bimodal initial distribution. The upper right shows
the evolution of the state distribution. The lower left shows the evolution of the
corresponding output distribution, cf. Zeng (2016).

We recall that in the general ensemble observability problem
we ask under which conditions we can reconstruct the initial state
distribution P0 when given the evolution of the distribution of
outputs Py(t), under a finite-dimensional (nonlinear) dynamical
system. Furthermore, we are interested in practical reconstruction
techniques for this problem. In Zeng et al. (2015), we first studied
this problem in the linear case, both froma theoretical andpractical
perspective. To first build some intuition around thewhole concept
of ensemble observability, we consider an example with a two-
dimensional harmonic oscillator

ẋ =
(

0 1
−1 0

)
x, y =

(
1 0

)
x.

with a bimodal initial distribution as depicted in Fig. 3. The mea-
sured output distribution corresponding to the output y = x1 of
the underlying linear system results from a marginalization of the
state distribution over the second coordinate, i.e. from integration
along the x2-direction. Thus, when the system evolves, the state
distribution is subject to both a transportation with the flow,
and a marginalization over the second coordinate, resulting in an
evolution of the output distribution, as suggested in Fig. 3.

The question in the ensemble observability problem for the
specific example is thus whether or not one can reconstruct the
(initial) state distribution from only observing the evolution of the
output distribution, shown in the lower left of Fig. 3. Even though
one might consider this a quite systems theoretic perspective on
the problem, an answer to this problem is simply not immediate in
this considered setting, which is a rather remarkable conclusion.

Due to the aforementioned reasons, in Zeng et al. (2015) we
took a different approach to the problem, which is to simply view
and treat it as a (generic) inverse problem in a measure theoretic
framework. In fact, the output distribution Py(t) is related to the
initial distribution P0 in a very basic way, namely through a push-
forward relation

Py(t)(By) := P0((CeAt )−1(By)) =
∫
(CeAt )−1(By)

p0(x) dx.

The values of the output distribution are related to the initial
density through these integrals over these preimages, which one
can think of as a strips due linearity of x ↦→ CeAtx, as well as the
fact that the interesting cases occur only when C does not have full
column rank. This basic perspective may be illustrated as in Fig. 4.
The remaining difficulty is then due to the fact that we only know
the integrals over sets that stretch to infinity.

Thus, we may only hope that as time changes, the directions of
the strips, dictated by CeAt , change and that the information for dif-
ferent directions can be combined to infer the integrand p0. This is
precisely the sameproblemas in tomography problems,where one

Fig. 4. Illustration of the relation between initial state distribution and output
distribution at a given time. The value Py(t)(By) is equal to the strip integrals∫
(CeAt )−1(By)

p0(x) dx, cf. Zeng et al. (2015).

Fig. 5. Left: The distribution evolves with the flow, undergoing a rotation about
the origin, and the measurement direction is fixed. Right: The distribution is held
fix and we, as a (physical) observer, rotate around the object with our focus fixed
on the center of the object. The observed densities are exactly the same in the two
different setups.

wants to obtain a cross-section of an object by taking radiographs
from different angles. Our study of the ensemble observability
problem established a direct mathematical connection between
(ensemble) observability and tomography problems (Zeng et al.,
2015).

Thus, in addition to the original, dynamic viewpoint, there is
this second viewpoint associated to the ensemble observability
problem in which we do not consider the evolution of the initial
state distribution with the flow, but instead, the evolution of the
‘‘measurement directions’’, which are dictated by ker CeAt . For the
example of the harmonic oscillator, the directions at which we
take projections of the initial state distribution, rotate in a uniform
counter-clockwise motion, which is in fact the canonical example
of a tomography problem, by which the reconstructability of the
ensemble observability problem for the harmonic oscillator be-
comes very clear. Fig. 5 illustrates the duality between the two
different viewpoints.

The quite unexpected connection to tomography that was re-
vealed in our investigation of the theoretical problem was effec-
tively leveraged both for theoretical studies, as well as practical
reconstruction schemes. In the former, the probabilistic analogue
of the projection slice theorem, the Cramér–Wold theorem (see
Section 3), yielded insightful algebraic geometric conditions for
ensemble observability. In the latter, the Algebraic Reconstruction
Technique from computed tomography provided a reconstruction
method, which, unlike the previous approaches that treated the
dynamic aspect more as a black box that is used only for forward
simulation purposes, was anchored in a detailed systems theoretic
analysis of the underlying problem; comparative studies in light of
the new tomography-based viewpoint revealed significant weak-
nesses of the previous kernel-based reconstruction methods. The
curse of dimensionality, however,was also not resolved in this new
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approach, so that it became apparent that a purely sample-based
approach had to be derived.

To progress towards a sample-based viewpoint, the idea is to re-
place the formulations in terms of continuous probability distribu-
tions by sample-based descriptions. We adopt a description of the
initial state distribution to be sought by finitely many particles x(i)
with i = 1, . . . ,N , and furthermore assume that ameasurement at
time t ≥ 0 yields values y(j) with j = 1, . . . ,M , which are samples
from the output distribution at a given time. The pushforward
relation for the continuous distributions then becomes
#{y(j) ∈ By}

#{y(j)}
=

#{x(i) ∈ (h ◦Φt )−1(By) }
#{x(i)}

,

whichprovides a sample-baseddescription of the relation between
the measured output histograms and the configuration of samples
of the initial state distribution.

3. Formulating the ensemble state estimator

So far, we have articulated the need to consider a new type of
approach in the computational ensemble observability problem, in
which the sought state distribution is to be reconstructed bymeans
of finitely many samples of it. The key problem in establishing this
can be formalized as follows.

Problem1. Given a set of samples drawn from the output distribu-
tion, derive suitable update and correction rules for the particles of
the sample-based ensemble state estimator so that these converge
to a configuration that resembles a set of samples drawn from the
unknown state distribution.

It turns out that the presented sample-based description of the
general pushforward equation in fact already contains all impor-
tant ingredients to successfully establish a sample-based frame-
work. It is noted however, that the exact implementation is still
far from being obvious at this stage and requires further dis-
cussions. Essentially, the key idea that will enable our sample-
based undertaking is in fact all along encoded in the Cramér–Wold
theorem (Cramér &Wold, 1936), which, in one of its differentmost
prominent versions, states that if for two joint distributions all
marginals distributions in all directions are the same, then the joint
distributions are the same. Another way to put it is that a joint
distribution is uniquely determined by itsmarginals in all different
directions.

Theorem 1 (Cramér–Wold Theorem). A distribution of a random
vector X in Rn is uniquely determined by the family of distributions
of ⟨v, X⟩, with v ∈ Sn−1.

The Cramér–Wold theorem can in fact be easily relaxed to
cases in which marginal distributions are not available in all di-
rections, but rather only in a smaller set of directions, which is
closely related to the issue of limited angle tomography. In Zeng
et al. (2015), we studied the underlying mathematical problem
and were in particular able to provide complete insight into the
connection between the required ‘‘minimal’’ set of directions and
properties of (A, C), which would, analogous to the classical ob-
servability of a linear system, determine whether the underlying
system is ensemble observable or not. As we will see, most ex-
amples of systems that are ensemble observable will not possess
the property that ker CeAt covers all possible ‘‘directions’’. A specific
example illustrating this fact very clearly is a double integrator (see
Section 4).

In light of this particular perspective on the Cramér–Wold the-
orem, the idea would thus be to produce samples in Rn so that the
projections of the sample points in all available directions are as
close as possible to the corresponding output histograms. The key

Fig. 6. This figure shows the sample points from the reference distribution (blue)
and the estimator’s initial configuration of its sample points (red). The histograms
of the marginalizations in one particular direction are illustrated in the back. By
choosing the same bins for the two histograms, we can describe these as two
vectors, whose entries are the (normalized) frequencies. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. This figure illustrates the idea of finding a way to transport one distribution
into another, or, equivalently, transporting the associated probability vectors into
another.

to achieve this is to use an optimal transport approach to measure
the closeness between the histogramsof the projected samples and
the output histograms and to devise a suitable correction strategy
that will yield a matching of the two histograms.

Let us discuss this mathematically in the case that the states are
n-dimensional and for one single output measurement of the form
y = ⟨v, x⟩with some v ∈ Rn. Let the ensemble state estimator con-
sist ofN particles x̂(i), whereN is (of course) taken to be sufficiently
large and suppose that we have M scalar measurements ⟨v, x(j)⟩,
where the x(j) are samples from the joint distribution. We then
produce a histogram for thesemeasured samples and also produce
a histogram for the projected estimator states ⟨v, x̂(i)⟩ with the
same bins [yµ, yµ+1]withµ = 1, . . . , ℓ. The situation is illustrated
in Fig. 6.

When the bins of the two histograms are identical, both his-
tograms can be described by the vectors

qv
=

(
qv
1 . . . qv

ℓ

)
, q̂v

=
(̂
qv
1 . . . q̂v

ℓ

)
containing the normalized frequency of projected samples in the
respective ℓ bins. As such, they are probability vectors, i.e. ∥qv

∥1 =

∥̂qv
∥1 = 1. The aforementioned correction strategy is then givenby

‘‘morphing’’ the probability vector q̂v into the probability vector qv ,
i.e. to (optimally) redistribute themass in the different bins of q̂v so
as to obtain themass distribution as specified in qv . The problem of
transforming one distribution into another by a suitable transport
map is illustrated in Fig. 7.

This is in fact the most basic instance of an optimal mass
transport problem, namely one in a completely finite-dimensional
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Fig. 8. This figure shows a visualization of the transport plan, with the intensity in
a pixel corresponding to the magnitude of the corresponding entry in the transport
plan matrix (gray scale), as well as the two marginal distributions (red and blue).
The red and blue dashed lines indicate how the transport plan is related to the
two corresponding marginal distributions. The dotted blue line is the result of
reflecting the blue dashed line about the diagonal line, and highlights the position
towards which the mass highlighted by the red dashed line is to be transported,
as summarized by the white arrow between the two corresponding bins. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

setting. Here one is seeking for a so-called transport plan, which in
the discrete setting is specified by a matrix T ∈ Rℓ×ℓ with non-
negative entries so that

ℓ∑
i=1

Tij = q̂v
j ,

ℓ∑
j=1

Tij = qv
i .

The interpretation is that the entry Tij would dictate how much of
the (probability) ‘‘mass’’ q̂v

j in the jth bin of the histogram is to be
transported to the ith bin, so that eventually q̂v will be completely
transformed into qv .

The aforementioned optimality is incorporated into this frame-
work by additionally considering the cost functional

J =
ℓ∑

i=1

ℓ∑
j=1

|i− j| Tij.

From a physical perspective, this is a very reasonable choice as
it favors transport plans that realize the transportation of one
mass distribution into another in the most economical way. But
this particular choice also leads to additional nice mathematical
features, such as the fact that in this case the dual problem is
a linear program involving only ℓ optimization variables instead
of ℓ2 variables. This is commonly referred to as the Kantorovich–
Rubenstein duality. An even faster way to (approximately) solve
this particular case of an optimal mass transport problem for large
problem sizes (i.e. for large numbers of bins ℓ) is through the so-
called method of Sinkhorn iterations (Cuturi, 2013).

Having solved the optimal transport problem, we obtain the
transport plan T for mapping the two vectors containing the fre-
quencies in the different bins, as illustrated in Fig. 8.

In the last step, this transport plan obtained from solving the
optimal transport problemon the level of population vectors needs
to be converted into a correction scheme on the level of the original
particles. This is described in the following:

(1) For all x̂(i) of the ensemble state estimator find the number
µ of the bin in which ⟨v, x̂(i)⟩ is contained in.

(2) The entries of the µth row of the matrix T are treated as
transition probabilities for x(i) to be moved from {x ∈ Rn

:

yµ ≤ ⟨v, x⟩ ≤ yµ+1} to another bin.

Fig. 9. This figure illustrates the situation in which the presented correction
scheme has been carried out with respect to the highlighted direction. The il-
lustrated marginal distribution of the estimator particles matches the marginal
distribution of the particles from the actual initial state distribution. Note that the
marginal distributions in other directions, e.g. that orthogonal to the highlighted
one, are clearly not matched, which will eventually have to be addressed in further
iteration steps.

(3) The actual transition of x̂(i) from the µth bin to another, say
the νth, bin is realized by translating it in the direction of
v ∈ Rn, i.e.

x̂(i) ← x̂(i) + λ
v

∥v∥2
,

with a suitable displacement λ ∈ R. This yields

⟨v, x̂(i) + λ
v

∥v∥2
⟩ = ⟨v, x̂(i)⟩ + λ.

To ensure a certain ‘‘regularity’’ of the resulting set of sam-
ples, the exact displacement is also randomized, allow-
ing the corrected particle to lie anywhere in the νth bin
with equal probability. More specifically, we choose λ =
−⟨v, x̂(i)⟩ + λ̃, where λ̃ is a random variable with a uniform
distribution on [yν, yν+1].

The algorithm for correcting the state distribution with respect
to the marginal distributions in one direction given by y = ⟨v, x⟩
is summarized below.

Algorithm 1 Ensemble state estimator: One correction step
1: Compute the normalized frequencies of the samples
{⟨v, x(i)⟩}i=1,...,M and {⟨v, x̂(j)}j=1,...,N with respect to the
bins [yµ, yµ+1], where µ = 1, . . . , ℓ, yielding the probability
vectors qv and q̂v , respectively.

2: Compute the transport plan T ∈ Rℓ×ℓ for q̂v ⇝ qv .
3: Implement the transport plan on the level particles.

Fig. 9 illustrates a situation, in which the estimator state has
been corrected with respect to the highlighted direction, but ad-
mits a large deviation with respect to a different direction. Clearly,
the above described plan will have to be repeated for sufficiently
many directions v ∈ Rn. Fig. 10 illustrates the correction scheme
for two consecutive correction steps. Note how in this particu-
lar case, with only two simple iterations, we are already able to
achieve a quite acceptable reconstruction. The iteration over all
different directions v itself can be iterated several times, similarly
to the procedure in the Algebraic Reconstruction Technique in
computed tomography. The intuitive idea is that by doing so,
we expect to eventually end up with a configuration of particles
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Fig. 10. First row: The actual initial distribution (blue) and a prior estimate (red) are illustrated on the left. The right plot shows the histogram of the projections of the two
distributions along the highlighted direction in the left plot. Middle row: The ensemble estimator’s state is updated so that themarginals of the projections in the highlighted
direction match. Last row: Illustration of a second update of the ensemble estimator’s state associated to a different direction. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

x̂(i) whose projections along all given directions are at once in
accordance with the actual data. By virtue of the Cramér–Wold
theorem, in the idealized case that N → ∞, as well as ℓ → ∞,
and that all (a sufficient set of) directions are available, we would
end up with a perfect approximation of the joint distribution by
means of samples of the distribution. We stress, however, that this
does not really qualify as a rigorous argument for the presented
algorithm. One possible approach for a detailed convergence anal-
ysis is through the inherent connection to the classical Kaczmarz
method (Strohmer & Vershynin, 2009), which can in fact be seen
as a special case of the novel population-based scheme presented
in this paper.

3.1. The dynamic case

Up to now, we have described the correction scheme for the
‘‘static case’’ associated with the Cramér–Wold viewpoint. Regard-
ing the dynamic state estimation problem for ensembles, the role

of the linear and scalar y = ⟨v, x⟩ is takenby thenonlinearmapping
y = (h◦Φt )(x), which, in the very relevant linear case, specializes to
y = CeAtx.While the case of linear systems can be carried over from
the static analysis in a rather straightforward fashion, the general
case of nonlinear systems requires some further discussion.

The main obstruction in the nonlinear case is in the last step of
implementing the correction strategy on the level of particles, in
particular the displacement of particles from one (nonlinear) ‘‘bin’’
{x ∈ Rn

: ym ≤ (h ◦ Φt )(x) ≤ ym+1} to another one. Now instead
of directly operating on the particles used for approximating the
initial state distribution, we can first propagate these using Φt and
then implement the correction strategy for the resulting particles
at time t . Here we still need one additional assumption in general,
namely that the output mapping h is such that a displacement of
particles from one partition {x ∈ Rn

: ym ≤ h(x) ≤ ym+1} to an-
other can be readily implemented. After the correction step on the
level of forward propagated particles, we apply the reverse flow.
Thus, a simple remedy by which the correction with respect to the



172 S. Zeng / Automatica 101 (2019) 166–174

Fig. 11. Top left: The initial state distribution (blue) and the estimated initial state distribution (red) before any correction step has been applied. Top right: The two
distributions after being transported with the nonlinear oscillator to a given time point, as well as the level sets of the output measurement. Lower right: Correction step
using optimal mass transport. Lower left: The transported corrected distribution, as well as the transported level sets. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

outputmapping y = (h◦Φt )(x) is circumvented is given by splitting
upwhat in the linear case can be naturally implemented in a single
step into two steps. A detailed illustration of one correction step in
the nonlinear case is shown in Fig. 11, where the resulting action
of the unfolded correction procedure is also clearly displayed

To summarize, in the above described unfolded correction pro-
cedure,we transport the state distribution of the estimator forward
to a givenmeasurement time, compare its output distributionwith
the measured output distribution at hand, and then implement
the correction at that given measurement time. Then, after the
transport plan has been implemented, the state distribution is
transported backwards to the initial time. For linear systems, we
can of course directly apply the correction in one simple step by
means of the simpler relation y = CeAtx.

3.2. On the architecture of the ensemble state estimator

At this point, we would like to draw some attention to the
particular hierarchical architecture of this correction-based (par-
ticle) state estimator. The correction is essentially implemented
by means of a two-layer feedback: First, the mismatch between
the outputs of the estimator and of the actual system is evaluated
on the population level, from which a correction on the population
level is computed. In particular, at this stage, no attention is paid to
individual systems but only the totality of individual systems. The
correction in the next step on the other hand has to be actually re-
alized by implementing it on the level of the individual particles. In
particular, it cannot be fully implemented on the population level,
i.e. by completely broadcasting an instruction to the systems in the
ensemble. Rather, different individual systems in the population
will be required to receive different instructions (in this case it is
based on the bins they are located in). To summarize, though our

presented scheme does not operate entirely on a population-level,
it is also not a completely individual feedback. Rather it constitutes
a quite simple to implement, yet very powerful hybrid, given by a
two-layer structure, which we may refer to as a population-level
feedback.

4. The ensemble observer

In the previous section, we presented a novel particle-based ap-
proach for estimating the initial state distribution of an ensemble
from output samples. As for any such state estimation problem, we
assumed to have all the measurements at different times stored
and available to us at once. Another type of state reconstruction
scheme is in a more dynamic spirit, in which the system’s state is
to be estimated online, i.e. at each time instant, the estimated state
is updated based on the measurement received at that time point,
or, more generally, from past measurements received up to that
time point. From a more mathematical point of view, the problem
considered in this section is the estimation of px(t) from past output
measurements py(τ ), with τ ≤ t , which, when formulated in these
more theoretical terms, we recognize to be analogous to a classical
filtering problem. So far, approaches to implement such a filtering
approach have not yielded any fruits.

4.1. Discussion of related approaches

To illustrate particular difficulties that were encountered in the
aforementioned approaches, we shall highlight two approaches
that one would rather naturally consider in this context. The first
approach would consider a partial differential equation describing
the evolution of the estimated state distribution. It is well-known
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that the original ensemble system can be described by a linear par-
tial differential equation, the Liouville equation (Brockett, 2012),
given by
∂

∂t
p(t, x) = −div(p(t, x)f (x)),

where p(t, ·) denotes the state density at time t . The output dis-
tribution results from the state distribution by a marginalization
along ker C , i.e.

py(t)(y) =
∫
Cx=y

p(t, x) dS.

We denote the mapping p(t, ·) ↦→ py(t) by C. In the spirit of the
classical Luenberger observer (Luenberger, 1971), having one part
simulating the system and another part implementing corrections
based on the incoming output measurements as its basic design
principle, it is indeed natural to consider an observer described by
∂

∂t
p̂(t, x) = −div(̂p(t, x)f (x))+ L[̂py(t) − py(t)],

where p̂y(t) = Ĉp(t, ·). Defining e(t, x) := p̂(t, x) − p(t, x) as
the estimation error, in the approach based on partial differential
equations, the problem boils down to designing the (linear) oper-
ator L so that the error dynamics
∂

∂t
e(t, x) = −div(e(t, x)f (x))+ (LCe)(t, x)

is asymptotically stable. However, due to the fact that the action of
C is a rather unique one, not falling into any well-studied category
of operators in the theory of infinite-dimensional systems the-
ory (Curtain & Zwart, 1995), a general solution to this stabilization
problem remains out of reach.

Another natural idea that circumvents the infinite-dimensional
setting is to first discretize the state space, e.g. by approximating
the considered probability density functions by piecewise constant
functions, and then to reformulate the system dynamics for these
finite-dimensional approximations. However, in trying to do so,
we will at some point encounter a rather fundamental problem
associated to this idea,which canbe already seen for a simple linear
oscillator. If the discretization of the state space is not tailored to
the specific vector field at hand, say, we choose a simple discretiza-
tion into pixels in R2, then the resulting discretized linear system
will no longer admit the mass preserving property. This is because
in implementing this discretization scheme, we inevitably have to
truncate the discretization of the state space to some region of
interest, of which the boundaries will suffer from leakage of mass,
but will not provide mass from outside, the outside part being
truncated. Thus, for an observer based on this idea of discretization,
the part that simulates the system will not be able to reproduce
the actual system behavior. In fact, the state generated by the
simulation part will naturally converge to zero as the incoming
flow inevitably has to be truncated, and the general trend will thus
be that the whole mass will eventually leak out at the boundaries.

4.2. Towards sample-based population observers

Using the new insights from our first sample-based imple-
mentation of an ensemble state estimator, we are already able
to formulate a new sample-based (online) ensemble observer.
Recalling the filtering formulation introduced in the beginning of
this section,where the problem is to estimate px(t) frompast output
measurements py(τ ), with τ ≤ t , the key to producing online
estimates of the state distribution lies in the equation

(h ◦Φτ−t )(x(t)) = y(τ )

relating the state of a (single) nonlinear system at time t with its
output measurement at an earlier time point τ ≤ t . This basic

relation shows that the estimation of the current ensemble state
distribution frompast output distributions τ ≤ t is inherently dual
to the estimation of the ensemble initial state distribution from the
generated output distributions (forward in time).

Combining this with our insights from the previous section, a
sample-based population observer can be realized as follows.

Algorithm 2 Sample-based population observer
1: Given some time tk ≥ 0, and an earlier time tk−1, we apply

the flowΦtk−tk−1 to the particles of the prior estimate P̂x(tk−1) to
obtain a first estimate of P̂x(tk).

2: For various different τ ≤ tk, we apply the correction scheme
described in the previous section with the sole modification of
replacing Φt with Φτ−tk .

4.2.1. Practical implementation for a double integrator
In this subsection, we illustrate a practical implementation of

sample-based population observers in more detail. For this pur-
pose, we consider the system

ẋ =
(
0 1
0 0

)
x, y =

(
1 0

)
x,

which is a simple double integrator. Here we can directly compute
CeAt =

(
1 t

)
, allowing us for the specific example of a double

integrator to write down the relation between angle α of ker CeAt
and time t explicitly as

tan(α) =
x2(t)
x1(t)

= t ⇔ α = arctan(t). (1)

This simple reading relation shows that unlike in the example of
a harmonic oscillator, the maximal spread of achievable angles is
inherently restricted to the range of t ↦→ arctan(t). Moreover,
the explicit relation allows us to choose the time points of mea-
surement in such a way that the corresponding set of angles is
uniformly distributed, which in turn is expected to yield better
results for the reconstruction.

Since unlike in the classical Kalman filter for linear systems,
the availability of measurements at different time points τ ≤
t is crucial for population observers, further discussions on the
available measurements for the correction step with regard to
computational effort andmemory are required. It is a quite natural
idea to first restrict the timepoints atwhich output data is available
to t − TH ≤ τ ≤ t, where TH denotes the horizon length and
[t−TH , t] is called themoving horizon. Of course, when practically
implementing such a moving horizon scheme, we also need to
further assume that the measurement times are discrete. In this
example, the specific horizon length TH = 3 was chosen so as
to guarantee a sufficiently large spread of available directions for
each correction step. Note that by defining τ ′ := τ − t , which
takes values in the interval [−TH , 0], we see that the directions
are dictated by ker CeAτ ′ , where τ ′ ∈ [−TH , 0], which result from
transporting ker C forward in time in the interval [0, TH ]. Due to
the simple relation between angles and times established in (1),
the range of available angles would be 0◦ to arctan(3) ≈ 71.56◦. In
order to facilitate a wider spread, a longer horizon would need to
be provided. For example, in order to have a spread of 85◦, it would
already require a horizon length of TH = 11.43.

Within the measurement horizon, the output distributions of
the actual ensemble are of course not measured continuously,
but at discrete time points. In the example, the times at which
measurements of the output distributions are available are tk =
t−0.1k,where k = 1, . . . , 30. Out of these 30measurement times
only 10 are actually utilized by incorporating the measurement
data for the correction steps at each prediction step. Of course,
one could in fact increase the number of time points used for the
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Fig. 12. Three successive predictions at t = 0.5, 1.0, 1.5 (distinguished by trans-
parency), each of which is computed from 10 time points in the measurement
horizon with TH = 3.

reconstruction at each time step, and also increase the number of
correction steps performed at each prediction step. This would,
however, result in an increased computational load at each predic-
tion step. We note that in the implementation of this example, the
10 time points are chosen randomly from the above measurement
times in such a way that the distribution of corresponding angles
would be as uniform as possible. More specifically, due to the
nonlinear relation α = tan(t), choosing random times tk from
a uniform distribution defined over {tk} would not result in a
uniform distribution of the corresponding αk. Instead, one has to
sample with respect to a specific (discrete) distribution tk ∼ Pt ,
which guarantees that the distribution for αk = tan(tk) is (close
to) a uniform distribution. The detailed discussion of these issues,
while of great practical importance, is beyond of the scope of this
paper. In summary, with the above described procedure we obtain
a quite satisfactory method for solving the continuous ensemble
observability problem in an on-line fashion.

Fig. 12 illustrates a resulting tracking process using the pro-
posed method for an ensemble of double integrators.

5. Conclusions and outlook

In the present paper, a first sample-based treatment of the
estimation and observation problems associated with the recently
emerging class of ensembles of dynamical systems was presented
in an introductory manner. The sample-based approach com-
pletely circumvents the route over parameterizing the unknown
nonparametric probability distribution, which is common to all
previous approaches and a crucial aspect, as it inherently limits all
previously considered algorithms to problem setups in which the
state-space is low-dimensional.

The starting point for establishing a sample-based approach is
the premise of strictly using a set of points in state space as ameans
to describe/track a distribution rather than to use other approxi-
mations such as histograms or more general kernel functions. The
main challenge then was to devise an iterative strategy that oper-
ates by manipulations on the set of points which would eventually
result in the convergence of the set of points to a configuration that
could verywell be a set of samples from the distribution of interest.
From a conceptual point of view, a main result of this paper is
the demonstration that optimal mass transport problems, as well
as the classical Cramér–Wold device, when viewed through the
lens of statistics, constitute crucial links in the endeavor to derive
sample-based population observers.

A key feature of the correction scheme is the interesting two-
layer structure that promotes a very basic and simple implemen-
tation: The corrective measures for the set of points is computed
in a global fashion, based on population-level mismatches, but
is eventually implemented on the level of individual particles by
feeding population-level data to the individual particles, which
compute their own correction by implementing a simple random-
ized strategy. As a prototype model for the more general scheme
portrayed in a two-dimensional state-space, we may consider the
system

ẋ(t) =
(
cos(α(t))
sin(α(t))

)
(cos(α(t)) sin(α(t)))(xref(t)− x(t)),

where again the reference signal of the individual systems xref(t)
is obtained from population-level considerations and could differ
for different systems in the population. Another interesting open
problem in this regard is to derive optimal sequences of angles,
possibly formulated in a stochastic framework, that yield a fast
convergence for arbitrary configurations of sample points.

Lastly, while the problem formulation in this paper considers
populations of dynamical systems, the particle-based tools in this
paper might also be of use to particle filtering techniques for
inferring the state of a single nonlinear system.
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