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Abstract—Spectral estimation provides key insights into the
frequency domain characteristics of a time series. Naive non-
parametric estimates of the spectral density, such as the peri-
odogram, are inconsistent, and the more advanced lag window
or multitaper estimators are often still too noisy. We propose
an L; penalized quasi-likelihood Whittle framework based on
multitaper spectral estimates which performs semiparametric
spectral estimation for regularly sampled univariate stationary
time series. Qur new approach circumvents the problematic
Gaussianity assumption required by least square approaches
and achieves sparsity for a wide variety of basis functions. We
present an alternating direction method of multipliers (ADMM)
algorithm to efficiently solve the optimization problem, and
develop universal threshold and generalized information criterion
(GIC) strategies for efficient tuning parameter selection that
outperform cross-validation methods. Theoretically, a fast conver-
gence rate for the proposed spectral estimator is established. We
demonstrate the utility of our methodology on simulated series
and to the spectral analysis of electroencephalogram (EEG) data.

Index Terms—Alternating direction method of multipliers
(ADMM) algorithm; basis expansion; multitaper spectral esti-
mates; wavelets.

I. INTRODUCTION

STIMATING the spectral density function (SDF) or
spectrum of a series collected over time is an important
tool in time series analysis and signal processing. It is used
in many fields such as astronomy, cognitive science, earth
sciences, electrical engineering, and finance. Examining the
SDF allows us to explore periodicities in the data (e.g., [1, ch.
10]), provides an alternative way to analyze and estimate the
covariance structure of stationary time series (e.g., [1, ch. 4]),
and can also be used to understand the effect of preprocessing
a time series (e.g., [2]).
There are many nonparametric estimators of the SDF of
a univariate stationary time series. These include the peri-
odogram, direct spectral estimators, lag window and overlap-
ping segment averaging spectral estimators, and multitaper
(MT) spectral estimators. (See [1] for a complete review.)
While many of these estimators are developed to provide
an adequate tradeoff between bias and variance, often these
nonparametric estimates are still too noisy when a stable
estimate of the SDF is required. An alternative strategy is to
use a parametric approach, however model misspecification
caused by considering a limited class of models for the SDF,

S. Tang, P. F. Craigmile, Y. Zhu are with the Department of Statis-
tics, The Ohio State University, Columbus, OH, 43210 USA (e-mail:
tang.723 @osu.edu).

Manuscript received December 12, 2018; revised June 27, 2019.

can compromise estimation (see [l], ch.9, and references
therein).

A popular alternative approach is to consider a semipara-
metric model for the SDF, in which the log SDF is expressed
in terms of a truncated basis expansion, where the number
of basis functions are allowed to increase with the sample
size. The statistical problem then becomes how to enforce
sparsity by selecting the basis functions and estimating the
model parameters so that we adequately estimate the SDF,
but also have computational efficiency as the sample size
is increased. Gao [3] [4], Moulin [5] and Walden et al. [6]
enforce sparsity using a penalized least square (LS) approach
for estimating the log SDF with wavelet soft thresholding.
In terms of computational complexity, wavelet thresholding
methods are typically O(XN), for a time series of N regularly
sampled values.

A number of approaches enforce smoothness of the SDF via
an Lo penalty: Cogburn and Davis [7], Wahba and Wold [8]
and Wahba [9] use penalized LS, and Pawitan and O’Sullivan
[10] uses a penalized Whittle method. To enforce sparsity,
some of these L, methods of smoothing splines also use
model selection, often in combination with cross-validation,
to select the basis functions that are used to model the SDF.
Alternatively, one can implement methods such as [11] to
enforce sparsity on the basis expansion directly. (On a related
topic, smoothness of spectral estimation can also be tuned
with high-resolution approaches introduced in [12], [13] and
using extended frameworks based on so-called beta and tau
divergence families, such as [14]-[18]; see [19] for a general
review of such divergences.)

Our method is also motivated by the need to enforce sparsity
while adequately estimating the SDF. In addition, we seek
computational efficiency as we increase the sample size. We
develop a quasi-likelihood method for estimating SDFs using
a Whittle likelihood [20] based on MT spectral estimates. A
quasi-likelihood function [21] [22, ch. 9] has similar statistical
properties to that of the log likelihood, and can be used for
statistical inference, but does not have to match exactly to
the log of the joint probability density function of the data.
MT estimates [23] [1] provide a good compromise between
bias and variance and can yield more efficient estimates of
the SDF [6]. We demonstrate that the addition of a Whittle
likelihood method [20] improves estimation over traditional
LS approaches.

We use a lasso penalty [24] to enforce sparsity, deriving two
strategies to optimally select the tuning parameter that is key to
obtaining estimates of the SDF with low integrated root mean
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squared error (IRMSE): “universal threshold” and generalized
information criterion (GIC)-based methods. Neither method
compromises on computational or statistical efficiency by
requiring the use of cross-validation to select the tuning param-
eter. Theoretically, we derive the rate of convergence for our
proposed spectral estimator under some technical conditions
on the model sparsity and the MT spectral estimator.

We introduce a computationally efficient method to estimate
the parameters in our model using the alternating direction
method of multipliers (ADMM) algorithm. To reach an e-
optimal solution with a time series of length /N, our method
is O(Ne~') when using wavelet bases and O(N?3 + ¢ 1 N?)
for general bases. Although computationally more challenging,
our method can be applied to SDF estimation using any collec-
tion of basis functions and, as mentioned above, outperforms
LS-based methods such as wavelet thresholding in terms of
estimation quality.

The rest of the paper is organized as follows. Section II
presents models for SDFs in terms of basis methods. In Sec-
tion III, we introduce the multitaper spectral estimator that we
use in our penalized Whittle estimation method in Section IV.
The ADMM algorithm is described in Section V and Section
VI outlines two approaches for tuning parameter selection. We
derive the rate of convergence for the proposed L; penalized
MT-Whittle likelihood estimator in Section VII. Our methods
are evaluated using Monte Carlo simulations in Section VIII
and we perform a spectral analysis of electroencephalogram
(EEG) data in Section IX. We close with some remarks in
Section X. Proofs and further details of the ADMM algorithm
are provided in the Appendix.

II. BASIS MODELS FOR SDFSs

Let {X; : t € Z} be a univariate real-valued stationary
process collected at sampling interval A > 0. Without loss of
generality assume A = 1. Let y(h) = cov(Xy, X¢tn), h € Z,
denote the (stationary) autocovariance function (ACVF) of
{X.} and assume that the ACVF is absolutely summable:
Sore o |v(h)] < oco. Then the spectral density function
(SDF) S(f) for a frequency |f| < 1/2 exists and is defined
as the Fourier transform pair of the ACVF:

S(f) =Y (e 2In, 1)
h=—o0
/2

with wm:/ e IhS(f)df. Q)
—1/2

The SDF is a non-negative, even, and real-valued function
and decomposes the variance of the time series {X;}: from
(2) with h = 0, var(X;) = jf{j2.9(j)ay: See [1] and [25]
for further properties of the SDF.

Basis methods for the estimation of a SDF typically involve
assuming that the log SDF can be expanded in terms of a set
of p basis functions {¢;(f) : I = 1,...,p} (e.g., [9]). For
each frequency f letting ¢(f) = (¢1(f),...,¢,(f))T and
B=(Bi,-..,Bp)", we suppose that

log S(f) =>_ai1(f)B =" (f)B. 3)
=1

There are a variety of options for families of basis functions
¢(f) that can be used for spectral estimation. For example,
polynomial and Fourier bases can be used to capture global
patterns [26], smoothing splines allow for local and smooth
patterns in the SDF [7], [8], and wavelet bases model local
behaviour, while capturing second order effects such as peaks,
troughs, and cusps [3]-[6]. When the SDF is spatially inho-
mogeneous, spatially adaptive bases, such as wavelets, have
theoretical optimality properties (see, e.g., [27]-[29]). We can
also combine families of basis functions to form dictionaries.

In Section IV we propose our estimator of the coefficient
vector 3, which is based on multitaper spectral estimates of
time series data that we define in the next section. (In Sec-
tion VII we provide assumptions on the basis representation
(3) so that we can asymptotically recover the true log SDF.)

III. MULTITAPER SPECTRAL ESTIMATION

Suppose we observe N observations, X = (Xi,..., Xn)7,
from the stationary process {X:}. Then a multitaper (MT)
or multiple taper spectral estimate [23], is an average of a
number of tapered spectral estimates. Specifically, let {hy; :
k=1,...,K, t = 1,...,N} denote K orthonormal data
tapers; i.e., >, hi,t =1and ), hpthi = 0 for k # k.
Then the standard MT spectral estimator of the SDF 5™ (f),
is the average of the K eigenspectra,

N 1 &
S = 2 D 5N, 4)
k=1

where the kth (k = 1,..., K) eigenspectrum is defined by
S () = 1Jk(H)I?, with

N
Je(f) = Z hu,t Xt exp(—i2m ft).
t=1

Different tapers induce different statistical properties for the
MT estimator. Discrete prolate spheroidal sequences (DPSS)
and sine tapers are most commonly used [1]. DPSS tapers are
designed to reduce the sidelobes in the spectral estimate. They
solve the time-frequency concentration problem in which we
find the time limited sequence which has most of its energy
concentrated in a specified frequency band [1, ch. 8]. We use
the easily calculated sine tapers [30],

po_ (2 WSin (k + 1)mt
BT ANF1 N+1 )’
k=1,....K,t=1,...,N,

which are designed to reduce the smoothing bias, at a com-
promise to sidelobe reduction. For a given K the sine tapers
are concentrated in the frequency band [—W, W] for half
bandwidth W = (K + 1)/(2(N + 1)). As K increases we
lose resolution but decrease the variance of the MT spectral
estimator. Walden [31] demonstrates other classes of tapers,
showing that Welch’s weighted overlapped segment averaging
(WOSA) estimator [32] and lag window estimators can be
reformulated as MT estimators. Walden [31] also shows under
known conditions that MT estimators are consistent if we let
the number of tapers K increase with the sample size N.
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IV. PENALIZED WHITTLE MULTITAPER ESTIMATION

The Whittle likelihood [20] is widely used to approxi-
mate log-likelihoods for stationary and some nonstationary
time series using the naive spectral estimator known as the
periodogram. (See [33] for an introduction to the Whittle
likelihood.) For stationary Gaussian processes, using results
for symmetric Toeplitz matrices (e.g., [34]), the Whittle like-
lihood is asymptotically equal to two times the negative log-
likelihood [33]. For certain non-Gaussian cases the Whittle
likelihood is still a valid approximation [35]. This is be-
cause the Whittle likelihood is equal to the joint asymptotic
distribution of the periodogram, assuming independence of
the spectral estimates over the frequencies that the spectral
estimates are evaluated at [10]. Since the periodogram often
exhibit poor statistical properties such as bias due to leakage
and inconsistency in estimation [1], we develop a Whittle
likelihood based on MT spectral estimates. We explain why
this MT-Whittle likelihood is still reasonable for parameter
estimation.

__Using the series X, we evaluate the MT spectral estimates
SmO(f:) on the set of M = [N/2] —1 non-zero, non-Nyquist
(i.e., not equal to 1/2) Fourier frequencies defined by

{fj:]{[J:L,M}

Choosing a specific basis representation, let ® denote the M x
p design matrix of basis functions evaluated at these Fourier
frequencies with row j = 1,..., M equal to ¢”( fi). The
vector of log SDFs

¢ = (log S(f1),...,log S(fur))"

evaluated at these frequencies is { = ®3, by (3).

(&)

Definition 1. Using MT spectral estimators, a quasi-likelihood
function with expression

M S
Stmt)( £

(@) = Y- { toes() + g |
= (f5)
is called the MT-Whittle likelihood function.

The MT-Whittle likelihood has the same functional form
as the Whittle likelihood based on the periodogram, except
we replace the periodogram by the MT estimator. It can be
easily shown that we obtain the usual Whittle likelihood using
a single K = 1 rectangular taper defined by hy; = 1/ VN
forall t =1,..., N in the MT spectral estimator; the tapered
Whittle likelihood [36] is also a special case.

To see why the MT-Whittle likelihood is a reasonable quasi-
likelihood, we present the following two propositions.

(6)

Proposition 1. [31, Section 3.3] Suppose that {X; : t € Z}
is strictly stationary with all moments existing such that

o0

>

T1yeeesT—1=—00

forl =2.3,..., where cum(Xy,,...,Xy,) denotes the joint
cumulant function of order 1 (see, e.g., [25], sec. 2.3). Also

|CuIn(Xt+T13 s 7Xt+7'l—1 s Xt)| < 00,

for each N, let {hy,:k=1,...,K, t=1,...,N} be a set
of K orthonormal sine or DPSS data tapers. Then
2
gm) S(f)X2K
() —a (A,

where X% i denotes a chisquared random variable (RV) with
2K degrees of freedom.

for0 < f<1/2, as N — oo,

Walden [31] provides a proof of this result in the multivari-
ate case — our result has been simplified to the univariate case.
This proposition tells us that at each frequency f, our MT-
spectral estimators have a valid asymptotic scaled chisquared
distribution that depends on the true underlying SDF.

In general MT-spectral estimators are correlated over fre-
quencies: by tapering we reduce the sidelobes to decrease
the bias, but increase the effective bandwidth of the spectral
estimator, which then increases the correlation. Thomson [23]
showed that with a locally slowly varying spectrum, for
0< f<f <1/2, with f close to f,

Cov{S™(f), S™(f')}

S2(f) e & o]
~ S D hewheae® =D @)

k=11=1 [t=1

However, the next result shows that our MT-Whittle like-

lihood (6) can be reinterpreted as a gamma quasi-likelihood,
which ignores these correlations between frequencies.

Proposition 2. The MT-Whittle likelihood (6) corresponds to a
gamma quasi-likelihood assuming the asymptotic distribution
of Proposition 1 at the Fourier frequencies (5), and assuming
independence between the Fourier frequencies.

The proof is given in Appendix A. In statistical science, it
is common to estimate certain parameters of a model (e.g.,
parameters related to the mean of the distribution, such as
3) using a simplified model compared to the frue statistical
model (see, e.g., [37]). The simplified model is known as
the working model. Proposition 2 tells us that when we write
down a MT-Whittle likelihood using MT spectral estimates, we
define a working model for the spectral estimates, assuming
independence across the Fourier frequencies. An extensive
literature on estimating (3 in this setting (e.g., [37]-[39]) indi-
cates that we can consistently estimate the model parameters
B under this working model, even when independence does
not truly hold. Thus Proposition 2 allows us to introduce
the following penalized quasi-likelihood framework for valid
statistical inference for (3.

We incorporate a Lasso-type penalty with the MT-Whittle
likelihood (6) to enforce sparsity as the number of basis func-
tions, p, increases with sample size N. In Sections VIII and IX,
we let p= M +1 = [N/2], where M is the number of non-
zero, non-Nyquist, Fourier frequencies, although depending on
the form of the penalty, p could actually be larger than N. Our
optimization problem is then

P
min Ly () + > NI, ®)
=1
where \; > 0 denotes the funing parameter for coefficient [3;,
with { = 1,...,p. The penalty > ;_, A;|3] serves the function
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of reducing the noise effect on the coefficient estimates, which
in general shrinks all regression coefficients’ magnitudes. We
let 3 denote the solution to (8), and S(f) = exp(¢’ (f)3)
denote the resulting estimator of the SDF.

Our L penalized method performs simultaneous parameter
estimation and feature selection; e.g., [40]. With some of
the coefficient estimates shrunk exactly to zero, L; penalized
method identifies a small subset of predictors, which is favored
when the true model is considered to be sparse. (See Section
X for a discussion of Lo penalized methods that also carry
out feature selection.)

In the next section an algorithm to solve (8) is presented.
Tuning parameter selection is discussed in Section VI.

V. COMPUTATION: AN ADMM ALGORITHM

Sardy et al. [29] suggested using the interior point algorithm
to optimize a penalized non-Gaussian likelihood incorporating
wavelet bases expansions, and provided the explicit steps of
the algorithm for the Poisson case. No explicit algorithm was
given for the gamma distribution that makes up our MT-
Whittle likelihood or for including other basis functions. We
use instead the alternating direction method of multipliers
(ADMM) algorithm, which is an approach for solving large-
scale nonsmooth convex optimization problems, and was intro-
duced by Glowinski and Marroco [41] and Gabay and Mercier
[42] [see [43] for further review]. The ADMM algorithm
has the advantage that the per-iteration cost is often much
lower than that of the interior point algorithm, which makes
it an attractive choice when solutions of medium accuracy are
sufficient, such as parameter estimation problems.

The ADMM algorithm proceeds by first introducing new
equality constraints to decouple the two terms in the objective
function (8). Specifically, by introducing the equality con-
straints

¢ =®0 and n = 3,

the original problem (8) is equivalent to

)

P
min + A
min L (¢) ; aud

subject to #3 = ¢ and B =7,

where ¢ € RM and i = (1,72,...,m,)7 € RP. The ADMM
algorithm solves the above problem by alternately updating the
primal variables ({,n,3) and the associated dual variables
(u1,us). The (n + 1)-th step of the algorithm is:

BV = @@+ 1) { @ (¢ - u") + ™ - ug |
¢t - arg min {¢ +8™(f;) exp(=¢;)
+5{o7TUNBY — G i),
j=1..., M,
nl(n+1) ST <5z(n+1) + ugf), /;l> Jl=1,...,p;

u§"+1) _ ugn) +@pnth C(n+1);
u(271,+1) _ u(2n) +16(n+1) _ n(nJrl)'

In this algorithm, u;; and wug; denote respectively the j-
th components of u; and uq, p > 0 is a positive penalty
parameter, and ST(x,a) = Sign(z) max(|z| — a,0) denotes
the soft-thresholding function with threshold @ > 0. For any
p > 0, the iterates B(") have been shown to converge to the
global solution of the original optimization problem (8) under
some mild conditions on the objective function [43]. Moreover,
following Boyd et al. [43] the algorithm is terminated when
both the primal and dual residuals are smaller than prespecified
precision parameters. We use a second equality constraint
B = m to avoid the need to solve a lasso problem at each
iteration of the ADMM in the cases that the basis functions are
not orthogonal. A detailed derivation of the ADMM updates
and the stopping criterion are presented in Appendix B.

A close inspection of the above ADMM updating scheme
shows that it is ideally suited for our optimization problem
(8) because all the subproblems can be solved efficiently with
any basis expansion of log S(f), especially when wavelet
basis functions are used. First, note that the (-update is a
linear system for general bases and can be solved in linear
time when using wavelets, because ®” & is a diagonal matrix
for a wavelet basis, and all matrix-vector multiplications
involving @ or ®” can be carried out in linear time using
the cascade algorithm (e.g., [44, Section 4]). Second, the (-
update decomposes into M independent univariate optimiza-
tion problems, each of which can be solved efficiently using a
bisection method (Recall that M is the number of Fourier
frequencies used to formulate the MT-Whittle likelihood).
For practical purposes, it is often assumed that the number
of bisection iterations is a constant. Consequently, the per-
iteration cost of the proposed ADMM algorithm is O(M) if
wavelet basis functions are used. For general basis, we perform
one Cholesky factorization of ®”'@® + I, upfront for the 3-
update, which is O(M?3). Given the Cholesky factorization, all
subsequent updates have complexity no greater than O(M?).
Therefore, the per-iteration cost when using general basis
is O(M?). Further acceleration is possible using parallel
computing techniques.

With regard to the rate of convergence, the total number
of ADMM iterations required to reach an e-optimal solu-
tion is O(e~!) [45]. Consequently, the overall computational
complexity for the ADMM algorithm to reach an e-optimal
solution is O(e =1 M) for a wavelet basis, and O(e =1 M2+ M?3)
for a general basis.

VI. TUNING PARAMETER SELECTION

The goodness of fit of the model is determined by the selec-
tion of the tuning parameters Ai, Az, ..., A, in (8). We assume
a common tuning parameter A for non-intercept bases and
A1 = 0 for the intercept 1. Traditional methods of selection
is based on a Gaussian likelihood assumption. Extending to
the non-Gaussian case, Sardy et al. [29] deduced the rules
that a tuning parameter should satisfy with a concave and
differentiable non-Gaussian log-likelihood, but only derived an
explicit solution for the Poisson case when the interior point
algorithm is used. No explicit solution is given for our case.
We develop universal threshold and generalized information
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criterion (GIC) [46] approaches for tuning parameter selection
with a MT-Whittle likelihood.

A. Scale-calibrated Universal Threshold

Although the universal threshold was originally introduced
for wavelet thresholding by Donoho and Johnstone [27] in the
same paper they state that their “results apply equally well
in orthogonal regression”. We extend the idea of a universal
threshold to our penalized MT-Whittle likelihood problem.

Starting with the unpenalized MT-Whittle likelihood with
an orthonormal basis, under the assumptions of Proposi-
tion 2 we show in Appendix C that the maximum quasi-

—~ ~W

likelihood estimator 3 has the asymptotic distribution 3 ~
N(B,I,/K). Next we use a similar argument as the uni-
versal threshold derived by Donoho and Johnstone [27]. Let

~W
£ W B — [ denote the noise component of the unpenalized
MT-Whittle estimate. Since each component of & W, §ZW, are
independent N(0, 1/K) RVs,

P(mlax 1€ > s/l/K\/Zlogp> — 0, asp— oo.

Consulting the ADMM algorithm given in Section V we
note that the tuning parameter only participates in the soft
thresholding step of the algorithm. Choosing a scale-calibrated
universal threshold \*"*"* = \/1/K+/2logp as the tuning
parameter A, the noise components of 3 will be shrunk to
zero with high probability, leaving only those components that
represent the true underlying SDF. This mimics the universal
threshold of [27], but varies in two distinct ways: (i) we
need no estimate of the noise variance: the variance (scale)
is determined by the number of tapers K in the MT spectral
estimator — as K increases this variance decreases; (ii) our
choice of A depends on the initial number of basis functions
p, and not the sample size M as in [27].

B. Generalized information criterion

For the L; penalized MT-Whittle likelihood problem (8), a
generalized information criterion (GIC) finds

~

A= arg min {2K lw(®8,) + cumlpal} (10)
where 3, is the optimizer of L; penalized MT-Whittle likeli-
hood with tuning parameter A. In the penalty term for model
complexity, |py| denotes the number of non-zero elements in
B, and cjy is the penalty parameter.

The Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC) are two special cases of GIC with
cy = 2 and cpy = log M respectively. According to Fan and
Tang [46], AIC has similar performance as cross-validation
and typically overfits the statistical model and BIC only
consistently selects the true model when the dimension of
predictor space is fixed.

When the number of predictors, p, increases exponentially
as the sample size M increases (i.e., log p = O(M") for some
k£ > 0), Fan and Tang [46] suggest the choice of penalty
parameter cy; = (loglog M)(log p).

VII. THEORY

We now derive the rate of convergence for the proposed L
penalized MT-Whittle likelihood estimator. This allows us to
study consistency of spectrum estimation.

The main result is based on an extension to the arguments
used to derive the so-called fast rate for L, penalized methods
(see, e.g., [47], [48]). There are two main challenges for our
estimator. First, typical theoretical results for the L; penal-
ized problem assume independence among samples, whereas
the MT-Whittle likelihood involves sums of dependent RVs.
Moreover, to the best of our knowledge, all existing theory
for L; penalized generalized linear models assumes that the
canonical link is used (see, e.g., [47]). In contrast, we deal with
a situation where the link function is not the canonical link,
which makes the log-partition function dependent on random
quantities. These would make our theoretical analysis more
challenging, and the technical conditions more complicated.

For each j =1,..., M, let

R; = S§™(£,)/S(f;), (1)

where, by Proposition 1, R; — 1 follows the distribution as
X2x/2K — 1 RVs asymptotically. We further impose the
following assumptions.

Assumption (A1) Assume that

log S(f;) = (6(f;),B8°),

for some sparse vector 3° € RP and basis functions ¢(f;)
satisfying ||¢(f)|lec < B for f € [-1/2,1/2] and some
constant B.

Assumption (A2) (Compatibility condition) Let S = {l :
BY # 0} and sp = |S|. Assume that for any v € RP with
[vse[ls < 3[lvslly that

j=1,....M, (12)

M
Ry {esp(eToU) — 0 Tof) 1)

. C _1
> mm{SOHvsﬁ,clMW §||v3||1}, (13)
0

with probability tending to 1 as M — oo for some constants
co>0,¢; >0,0<v< 1 and where R; is defined by (11).

Assumption (A1) is the typical sparsity condition imposed
for theoretical analysis of penalized procedures using sparsity-
inducing penalty, while Assumption (A2) is similar to the so-
called compatibility condition required for one type of theoret-
ical analysis for lasso estimator [48]. Note that since we are
dealing with non-canonical link functions, the compatibility
condition does involve random quantities, which makes it more
difficult to verify in practice.

Theorem 1. Under Assumptions (Al) and (A2) and on the
event that

M
C 1
SO(Rj -1 < FMTE ae
j=1 -
we have that =
~ a0 < S0
5 - 8], < 5eonr 1s)
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for any X\ satisfying

M
2(1> (R — 1) 6(f;)
j=1

2 1
S A< 501M7+§.

oo

In particular, when X\ = 2 ’Z;ﬁl (R; —1)o(f;)|| . we have,
on the event (14), that >
3s M
200 gol| < 3o ,
[Bo -8 < = S -ve| a9
and
sup | log S(f) ~ log S(/)
fel-3.3]
M
3B50
Y ;(RJ Do) an

where log S (f) is the Ly penalized MT-Whittle estimator of
the log SDF.

Some remarks are in order. First, unlike existing theoretical
analysis for L; penalized methods, we do not impose any
independence assumptions on the “sample”: {S(“‘t)( fi)ii =
1,...,M}. In this sense, the above result is a deterministic
result that holds under the event (14). To verify that the event
(14) happens with probability tending to 1, we make the
following heuristic argument. We assume that the 2-norm of
the basis functions is equal to M. Then

1 M
Nivi :E: (Rj —1)o(f5)
1

oo

IN

-1
AT RE o TR

M
Z|¢k(fj)\
=1

IA

max |R;
1<j<M

1 M
1‘\/7M 1??§P;¢%(fj)

= max [R; —1].

1<j<M (18)

Moreover, by Proposition 1, we have that ?; — 1 behaves like
X35 /2K — 1 RVs asymptotically. Making this distributional
assumption for all j =1,..., M, we have

P(lgﬁx |R; — 1| > C'log(M ))

< ZP(|Rj —1| > Clog(M))
j=1
< MlgljéngﬂRj — 1| > C'log(M))
< Mexp(—Clog(M)/4) = M~(©/4=D 5 q,

as M — oo for any constant C' > 4 and M > 2 (The last
inequality uses Lemma 1 of [49]). Thus we conjecture that

asymptotically, maxi<;<M |RJ - 1| =
in combination with (18), we get

Op(log M). and hence

M

1
wrd PR

j=l1s

Do(fy)|| < Op(log(M)).

o0

19)

In view of this, condition (14) holds asymptotically for any
7 > 0. This will lead to the following rate of convergence for
£ and the log SDF:

~ B log(M)
Hﬁ()\)_ﬁoHl _OP<SO \/M )3
S B log(M)
f;}gé] |log S(f) —log S(f)| = O, <80 VAT )

Note that if we further assume that sq is quite small, that is, the
true log SDF has a sparse basis representation, a parametric
rate M~'/2 can be achieved (up to a log factor). This is
in contrast to the slower nonparametric rate for typical one-
dimensional nonparametric regression or density estimation
problems (see, e.g., [50]). In summary, our theory suggests
that by exploring sparsity, if it is indeed present in the signal,
a significant improvement in estimation efficiency can be
achieved using the proposed method.

VIII. SIMULATIONS

We use simulations to evaluate our L; penalized MT-Whittle
method as compared to the commonly used L; penalized LS
method. We also investigate the effect of selecting the tuning
parameter and assess our theoretical rate presented after the
statement of Theorem 1. We use the following processes:

1) AR(2) process: X; = @11 Xi—1 + p1,2X1—2 + € with

P11 =0.97V2, 12 = —0.97%;

2) ARM) process: X; = @21Xi1 + p22Xi2 +
023X¢_3 + w2,4Xy_4 + &4 with g1 = 2.7607, 22 =
—3.8106, w23 = 2.6535, @24 = —0.9238;

3) High-order MA process: X; = 15000 0,64, with Oy =
1, 0, = w/4, and 0; = sin(w (l - 1)/2)/(l — 1) for
1=2,3,...,15000.

Plots of the true SDFs are shown in Figure 1 for each
process. These processes have SDFs that exhibit a range of
local structures that can be hard to estimate using simple
estimators of the SDF. We demonstrate how our estimation
method performs when the innovations {e;} are N(0, 1)
RVs, but also present the same AR(2) process case 1) with
innovations generated by a shifted Exponential distribution
with mean 0 and variance 1 — we want to investigate how
robust our method is to departures from Gaussianity.

We use the decibel-scale integrated root mean squared error
(IRMSE) to measure how well we estimate the true SDF. For
M = [N/2] — 1 non-zero, non-Nyquist frequencies, letting
S(f;) denote any estimate of the SDF at Fourier frequency
f;j, the IRMSE is

1/2

1 & 2
Z{lOloglo [;) —101logy S(f;)

J:1
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Fig. 1. Plots of the SDF for three processes on the decibel scale (dB).

We present the IRMSE averaged over 1000 realizations of each
process.

In preliminary simulations we used a range of different
basis function representations to model each SDF: orthogo-
nal polynomial bases, Fourier bases, B-spline bases, wavelet
bases, as well as some mixed dictionary bases. We found
that a wavelet basis based on the discrete wavelet transform
with the LA(8) wavelet filter had good performance across
all the experimental conditions, where LA(8) represents the
Daubechies least asymmetric wavelet of width 8 (see [51] for
details). Following Walden et al. [6] we fit our models to
mirrored data of frequencies on [0, 1) to capture the evenness
and periodic nature of the spectrum, but only summarize on
the M frequencies between zero and the Nyquist frequency.

Figure 2 shows simulation results for the three processes
(one for each panel) comparing our Ly penalized MT-Whittle
method (black circles) to an L; penalized LS approach (gray
triangles). The first three panels are for Gaussian process,
the last panel is for the non-Gaussian process. In each case,
N = 2048, we use K = 10 sine tapers for the MT spectral
estimate, and we start with the maximum number of basis
functions, p = M +1 = 1024, including the intercept. We also
show the effect of changing the method to select the tuning
parameter. While we advocate choosing between the universal
threshold (Univer.) and the GIC methods, we also compared
to cases in which we used cross-validation (CV) to select
the tuning parameter, or we did not penalize with a tuning
parameter (None). We also calculated the tuning parameter
that corresponds to the smallest possible IRMSE — in practice
this value of the IRMSE is not known, but gives us a way
to see how close our method is to the optimal value. In each
figure the best IRMSEs for each method (least squares, gray;
MT-Whittle, black) are denoted by the horizontal dashed lines.
In terms of the uncertainty, the height of the symbols are larger
than 95% bootstrap confidence intervals for each IRMSE.

Some results are coherent across the three processes. Us-
ing cross-validation to select the tuning parameters does not
perform well compared to the universal and GIC methods,
although it performs significantly better than using no penal-
ization. For the AR processes, the L; penalized MT-Whittle
outperforms L; penalized LS by between 4.4-6.0% in terms
of the IRMSE. There was little difference between these two
estimators for the MA process. By process, there were slight
differences between the IRMSE values using the universal
threshold and GIC to select the tuning parameter, however

both methods yielded IRMSEs that were competitive with
the best value possible. Also, for the non-Gaussian AR(2)
example, all methods performed similarly with respect to one
another. The right panel of Figure 2 shows that all penalized
approaches have slightly increased IRMSE values when non-
Gaussian noise is used, but that our method still outperforms
the other approaches. This suggests that our L; MT-Whittle
method is robust to non-Gaussianity.

As suggested by a referee, to further summarize how well
our method performs, Figure 3 compares for each time series
process, our L penalized MT-Whittle to a raw MT spectral
estimate. In each panel, we display the simulation of length
N = 2048 that yields the median IRMSE. The solid black
line denotes the L, penalized MT-Whittle estimate we obtain
using the universal threshold with K = 10 data tapers. The
gray line denotes our raw MT spectral estimate (again with
K = 10) and the thin black line denotes the true SDF in
each case. Although we slightly underestimate the spectral
peaks using the L; method, our method better captures the
general spectral features of each process relative to the raw
MT estimate. The underestimation of the peaks reduces as [NV
increases — since our estimation method is semiparametric, as
N increases, p increases and we are better able to capture finer
spectral features with more basis function (see also [6]).

We carried out an additional set of simulations that varied
the number of sine tapers K for the MT-Whittle calculation —
the results are omitted. Our simulations demonstrate that there
is a quadratic relationship between the bias of our spectral
estimator and K, and the IRMSE and K. We also learned that
for very large values of K that the IRMSE for the L; penalized
least squares method approached that of L; penalized MT-
Whittle. This is not surprising since by Proposition 1, as
K — oo, the distribution of log MT spectral estimate is better
approximated by a normal distribution (e.g., [9]). Our selected
value of K = 10 tapers provided a good compromise between
balancing the bias and variance of the estimated SDF for these
simulated processes. Also, using the L; penalized MT-Whittle
outperformed the L; penalized Whittle based on the untapered
periodogram.

A. Validating the empirical theoretical rate

In this section we empirically verify the conjectured rate
in (19) by simulation using the four different time series
processes defined above. Based on 1000 simulations we cal-
culated the ratio comparing ”Z;Vil(R] = 1)¢>(fj)H /N M
with log(M) for a wide range of M values. This ratio should
be bounded as we increase M. Figure 4 shows the median
(solid line), 2.5th percentile (lower dashed line), and 97.5th
percentile (upper dashed line) for this ratio, and demonstrates
that our empirical rate indeed matches closely with the con-
jectured theoretical rate.

IX. SPECTRAL ANALYSIS OF EEG SIGNALS

Electroencephalogram (EEG) signals are often used to
monitor brain activity and diagnose disease such as epileptic
seizures. We analyze two channels of EEG data collected
from the left and right front cortex of one male rat. (The
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Fig. 3. A comparison of spectral estimates for the different four processes. For each process, the thick black line is the L; penalized MT-Whittle estimates,
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data is presented in [52], and was downloaded from http:
/Iwww.vis.caltech.edu/~rodri.) Quiroga et al. [53] argue that,
genetically, analyzing these series is relevant to the study of
human epilepsy. Each channel contains 1000 voltages recorded
in units of microvolts (mV) collected at a sampling rate of 200
Hz. Time series plots of the left and right channels are shown
in the panels (a) and (b) of Figure 5, and hint at strong spectral
features in the two series.

In the supplement of [54] an Lo penalized multivariate
Whittle likelihood based on the periodogram is used to es-
timate the SDF. Using spline bases, and focusing on estimates
of the SDF between 0 and 30 Hz, they discover spectral peaks
at around 9 and 18 Hz which indicate a “local synchronization
of neurons in both hemispheres of the frontal cortex”.

Using our L; penalized MT-Whittle approach, we estimate
the SDFs for the left and right channels separately. The MT-
Whittle approach will counteract the bias due to leakage and
mitigate the inconsistency of a periodogram-based approach.
Compared with spline bases, we model the log SDF using a
wavelet basis to better capture sharp peaks and other possible
local features in the SDF. Additionally, the L; penalty enforces
sparsity, keeping only relevant features in the estimated SDF.

Panels (c) and (d) of Figure 5 display, respectively, the SDF
estimates for the left and right channels using our approach.
(We mean padded the series to a length of N = 1024, prior to
spectral estimation.) In each panel the solid line denotes the
estimated SDF when we use the universal threshold method
and the dashed line shows the estimate with the GIC method.
In our estimates, we use MT-spectral estimates with K = 5
sine tapers, and we construct our wavelet basis using the LA(8)
wavelet filter. Our SDF estimates for both channels contain
several sharp turning points, and include features not depicted
by the spline models of [54]. In terms of the tuning parameter
selection, the universal-threshold- and GIC-based estimates are
fairly similar to one another (the estimated SDFs are more
similar for the left channel). This indicates that both methods
are able to capture the interesting local features in the SDFs.

For the left channel, we estimate prominent spikes at 9 Hz
and 16 Hz as well as a noticeable elbow around 5 Hz. There
is more energy in the SDF estimates for the right channel,
compared to the left. In the right channel, we pick up a strong
broadband structure: the right channel presents clustered power
between 5 Hz and 10 Hz, as well as a summit at 9 Hz, and a
crest between 13 to 14 Hz.
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In conclusion our L; penalized MT-Whittle method is useful
in revealing spike-wave discharges for EEG signals observed
in the frontal cortex for the male rat under study. It would be
interesting in the future to see how these methods apply to the
spectral analysis of multiple EEG channels in different study
populations.

X. DISCUSSION

In this article we presented a L; penalized quasi-likelihood
framework based on MT spectral estimates using a basis
representation to model the SDF of a stationary time series.
Our methodology allows the number of basis functions to
increase with sample size, and through enforcing sparsity,
our [, penalized MT-Whittle estimator performs better or
as good as previous methods for estimating the SDF. Our
method extends to the application of broader classes of ba-
sis functions and their mixtures, beyond those traditionally
used with wavelet thresholding. Simulations demonstrate a
clear advantage of using the GIC and calibrated universal

threshold over cross-validation for tuning parameter selection,
with a significant reduction in IRMSE. Computationally, the
calibrated universal threshold is data-invariant (it only relies
on the number of tapers K) whereas the calculation of GIC
is data-dependent. However both methods are more efficient
than using cross-validation. The proposed ADMM algorithm
accelerates when parallel computing and orthogonal bases,
such as the Daubechies class of wavelets, are employed.

There are a number of extensions that we are considering.
In [6], the authors also vary the number of initial basis
functions, p, that are chosen before they perform the L,
penalization using least squares. We found in simulation
studies that preselecting p can slightly reduce the IRMSE,
but the problem is that the optimal choice of p depends on
the underlying statistical process — it is not known how to
select p for a given process. This idea is related to more
general methods that can be used to simultaneously select and
estimate the coefficients of the basis expansion. For example,
using a truncated lasso approach proposed by Shen et al. [55]
could lead to further reductions in IRMSE, but this requires
developing a general approach to selecting the truncation
parameters in the algorithm. Another extension is linked to the
automatic relevance determination approach reformulated by
[11], where a local minimum can be attained while achieving
sparsity by solving a series of reweighted L; problems.

Some recent studies on inference for L; penalized methods
in general settings (not specifically estimating SDFs) are
summarized by Dezeure et al. [56]. Potentially, de-sparsifying
the lasso and multi sample-splitting approaches can be applied
to construct confidence intervals for our L; penalized MT-
Whittle estimator, but the correlation between frequencies
and the splitting strategy would need to be considered more
carefully. We also note that the inference approach taken by
Zhang [57] does not apply to our situation since their L
penalty term is based on the total variation distance.

We are also investigating methods for multivariate SDF
estimation. Penalized basis expansions for multivariate SDF
estimation typically involve spline basis functions, such as
Whittle-based estimation for the cross-spectrum [58], as well
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as penalized least squares [59] and penalized Whittle methods
[54] based on a Cholesky decomposition. The extension of our
L, penalized MT-Whittle approach to enforce sparsity in the
estimation of multivariate SDFs would be beneficial.

APPENDIX A
PROOF OF PROPOSITION 2

We can rewrite the asymptotic distribution of Z; =
Smo(f) (G = 1,...,M) stated in Proposition 1 as
Gamma(K, S(f;)/K), a parametrization of the gamma typ-
ically used in generalized linear models (see, e.g., [22, ch.
8]). Here Gamma(v, u/v) denotes a gamma RV with mean
u, shape parameter v, and variance u2/v. This asymptotic
probability density function evaluated at Z; = z; is

LK1 Py
7 Iuarﬁﬂke”<‘afVK)

The proposition follows by assuming independence between
the MT-spectral estimates over frequencies: the resulting
quasi-likelihood, as required, is

M KK M
Zlogp(zj) = M log (K + (K —-1) Zlogzj
j=1 j=1

- Kzl [1og5(fj) +

= constant — K Iy (®08).

S(Z}j)]

APPENDIX B
DETAILS OF THE COMPUTATIONAL ALGORITHM

Following Boyd et al. [43], the augmented Lagrangian can
be written as

p
lA(ﬂaCanaula’uQ) = ZW(C) + Z/\l|77l|
=1

+ @8 - ¢+l
+ 28— ntwl?

where p > 0 is the penalty parameter. Note that the conver-
gence is guaranteed for any positive p, although a carefully
chosen p that balance the convergence of the primal and dual
residuals often leads to faster convergence.

Minimizing the augmented Lagrangian over the primal and
the dual variables, we obtain the ADMM updates as follows

AU = (@T@ + 1) H@" (¢ — ui”) + (n™ — uy”)
gj(.”H) = arg min {Cj + S (f;) exp(—¢;)

4 n n
+ §{¢’T(fj)ﬁ( ¢+ Ugj)}2},
j=1,...,M,;

n n )\
i =T (80l 2.

ugnJrl) _ ugn) + ((I,ﬁ(nJrl) _ C(nJrl));
PP ) 4 (050 e

where, recall that ST(z,a) = Sign(z) max(|z| — a,0) is the
soft-thresholding function with threshold a > 0.

To obtain ( j(-nﬂ), we take the partial derivative of
lA(ﬁ(n+1),C,n("),ugn),ué")) with respect to ¢; and set to
zero, which leads to a score equation

PG = 8™ (e + 1= p(¢T (1B +ul) =0,
which can be solved efficiently using the bisection method.
The solution ensures a global minimum since the second
derivative of lA(,B("+1), ¢, n™), ugn), uén)) with respect to (;
is p+ §(mt)(fj)e—4j, which is positive for all (; € R for any
p > 0.

Following the optimality conditions and stopping criteria in
[43], we define the primal residual

S _ P Bt _ ¢FN a0t — ¢t
pri —\I 71("+1) - 5("+1)—77(”+1) ’

and the dual residual

T (n+1) (n)
n+1 (I) —
s£(iua1 )= P <I> (=I) (,,Cl(nJrl) _ f,(m)
= —p @7 =)+ "+ = )]

We terminate the algorithm when both residuals are smaller
than some prespecified precisions; more specifically, let

epri: /§71+peabs

& o 280+ 8],

16+ ™11, .
6dual _ \/ﬁeabs _|_€relpH(1,Tugn) _|_,u(2”)

where ¢ > 0 is an absolute tolerance and € > 0 is a
relative tolerance. The stopping criterion is then set to be
||s$) 2 < e and [|s{")]|2 < €4 In our studies, setting both
tolerances to 10~* provided a reasonable balance between fast
convergence of the optimization and satisfactory estimation

accuracy.

I+

APPENDIX C
DERIVATION OF THE ASYMPTOTIC DISTRIBUTION OF THE
MAXIMUM QUASI-LIKELIHOOD ESTIMATOR

This derivation relies on writing our asymptotic distribution
for the MT-spectral estimators as a generalized linear model
(GLM) as given in [22A]. Based on Proposition 1, the asymp-
totic density of Z; = S™V(f;) evaluated at z; in exponential

family form is
) = e { 220 0}

with 9 = —1/pu; = —=1/5(f;), als) = 1/v = 1/K, b(9) =
—log(—v) = log S(f;), and c(z;,5) = K log(Kz;)—log z; —
logI'(K). Then, as var(Z;) = b"(9)a(s) = V(n)a(s) =
u? /v, the variance function is V(1) = p?. Assuming asymp-
totic independence over frequencies, the Fisher Information
for the GLM can be computed as

I18)=2" W,
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where W = diag(ws, ..., wp) with
1 B 1
2 2
Vipa(s)(g'(ny)”  m3(1/K)(1/py)

since our model assumes the link function g(p) = logp, so
that ¢’(u) = 1/p. Thus, with an orthonormal basis,

IB)=K®'Iy,®=KI,,

wj; =

and under suitable regularity conditions (see, e.g., [22, ap-
pendix A]), as M — oo,

B" —i NL(B.IB)™).
with COV(BW) =IB)'=1I,/K.

APPENDIX D
PROOF OF THEOREM 1

For simplicity, we omit the dependence of B (M) on A. Then
R M
Beargmin_ {(8-8"To(s;) +
j=1

Rjexp(~(8 = 8)To(f;)) } + A8l

since log S(f;) = ¢ (f;)B° for each j. Hence,
M

ST(B =BT o(f;) + Ry exp(—(B - 8% T o(£;)) + AllBlh

Jj=1

M

< DRI (20)

Let 6 = E — (Y. Rearranging terms in (20), we obtain that
M

Ry {exp(=37 o(f;)) + 8" o(f;) — 1}

<.
Il
—

M
< 0TSSR =1 6(f5) ¢+ B — AlBll,
j=1

which, together with the fact that

oo

implies that

M
>R {exp(=8T o)) +37o(f) ~ 1}

A
<

(1311 + 218 — 21811 )
(1Bs = B8 I + 1Bl

+ 21881 — 201Bs s — 201Bsll)
(315 — B3I — 1Bsell) = 2 (30slhs — 1selh )

N> o

IN
| >

Note that the LHS is nognegative, bAecause e” > x+1 for any
x € R. Tt follows that ||ds||1 < 3||ds||. By Assumption (A2),
we have that

. [eco, = _1,%
Mmln{SOH(SSH%,clM“f z|5s|1}
0

Y ~ ~ 3~
< 5 (3185 = 18sells) < 185l

Hence, on the event that

M
2
§C1M7+% >A=2|% (R = Do(f)||
j=1 -
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30\ — B9 < OAS0.
|50 =87, < 5enz @

Letting A = 2 szj\il(Rj - 1)¢(fj)H , we have on event

M
STR - Do(fy)| <3'aME Y
j=1

that
M
3)\80 380
ol < = =1 ;
|| ||1 — 2COM COM ;(‘RJ )(b(f]) I
and
sup | log S(f) —log S(/)|
fel=3%.31
< sup [(B=8To(N < B =Blhlle(f)lloo
fel=3%.31
M
3BSQ
This completes the proof.
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