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ABSTRACT
Internet-of-Things (IoTs) are becoming more and more popular in
our life. IoT devices are generally designed for sensing or actuation
purposes. However, the current sensing system on IoT devices
lacks the understanding of sensing needs, which diminishes the
sensing flexibility, isolation, and security when multiple sensing
applications need to use sensor resources. In this work, we propose
VirtSense , an ARM TrustZone based virtual sensing system, to
provide each sensing application a virtual sensor instance, which
further enables a safe, flexible and isolated sensing environment
on the IoT devices. Our preliminary results show that VirtSense : 1)
can provide virtual sensor instance for each sensing application so
that the sensing needs of each application will be satisfied without
affecting others; 2) is able to enforce access control policy even
under an untrusted environment.

CCS CONCEPTS
• Computer systems organization → Sensors and actuators;
Sensor networks; • Hardware → Sensor devices and platforms;
Sensor applications and deployments; • Software and its engineer-
ing→Virtualmachines;Virtualworlds software;Embedded
software; • Security and privacy → Access control; Authoriza-
tion;
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1 INTRODUCTION
The number of Internet-of-Things (IoTs) has dramatically increased
in the past few years. Unlike the early stage IoT devices that are
mainly designed as sensor extensions, the current IoT devices are no
longer only for data collecting but are capable of learning, or in other
words, smart sensing [15]. The key transition of the software system
from “sensor extensions" to "smart sensing" is the changeover from
single-tenancy sensing system to multi-tenancy sensing system.We
refer single-tenancy sensing system as the system where only one
application can access the physical sensors, and the multi-tenancy
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sensing system as the system that multiple applications can access
the same sensors simultaneously without interfering with each
other.

The current sensing system on IoT devices inherits the concepts
from mobile systems, Linux-based systems, or embedded systems.
Such migration shows an inefficiency while workloads have been
changed [18, 19] from data collecting to sensing. The sensing ser-
vices on Linux or embedded systems is conceptually analogous to
single-tenancy sensing system because when an application needs
to use sensor resources, it sets up a mutex lock so that other applica-
tions cannot modify it if a different sampling rate is sought. These
sensing mechanisms fail to meet the fundamental requirement of
multi-tenancy sensing system because the simultaneous sensor
access from multiple applications with different sensing rate is pro-
hibited. On the mobile system such as Android, the sensing service
is performed through a max-for-all mechanism. The OS only pro-
vides the data with maximum sampling rate from all applications
although most applications do not need such a sensing granular-
ity. On iOS, the sensor management simply discards the excessive
data when doing a downsampling for different apps. Moreover,
every application only allows having one sensing rate on iOS, so
all threads in a multiple-threaded application are only allowed to
sense at one rate. Although the sensing service from the mobile
system is more advanced than embedded system’s sensing service,
all of the burdens of dealing with excessive sensor data fall on the
applications themselves. Nevertheless, the sensing system should
take over the burdens to achieve the sensing isolation among and
within applications on the multi-tenancy system. Moreover, the
application workloads on mobile devices are different from those
on IoT devices, where IoT devices are mostly used for sensing or
actuating, but mobile devices lean more as user-interactive work-
loads. Hence, optimizing the sensing system on mobile devices is
not an easy implementation.

Another challenge faced by multi-tenancy sensing system is
the enforcement of sensor access control policy. The traditional
access control mechanism on IoT devices inherited from mobile
systems usually seeks for the user’s permission at the time when
an application launches. Under this access control mechanism, if
the state of the device changes while using the application, and
the new state no longer permits the access to certain sensors, the
access control policy will not be able to execute such permission
changes at runtime. Some research work [6] tracks the data flow
to enforce access control policy at runtime. However, these access
control mechanisms rely on the OS boundary of user space and
kernel space. If the OS gets compromised, all these access control
mechanisms can be bypassed.

To remedy the shortcomings of current sensor systems for IoT
devices, we propose VirtSense as illustrated in figure 1, an enclave
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Figure 1: VirtSense Architecture

and virtualization-based framework that meets the real-time de-
mands of multi-tenancy sensing system. The goals of such a system
are to achieve the sensing isolation among different sensing appli-
cations and to enforce the access rules in an untrusted environment.
These goals enable the simultaneous and legit access to sensors
from different applications without affecting each other.

The concept of virtualization helps the sensing system multiplex
the limited physical sensor resources to different sensing applica-
tions through sensing resampling techniques.While software-based
virtualization introduces extra overheads, we balance the trade-offs
between sensing accuracy and data delivery speeds. We expose
such trade-offs as options for developers to choose so that they can
control the granularity of sensor accuracy and data delivery speed.

Enclave technology furnishes VirtSensewith a trusted computing
base (TCB), which further guarantees the enforcement of access
control policy. The enclave TCB will maintain its integrity when
the OS gets compromised because of the hardware protection. One
of the design consideration for TCB is to keep its minimal size due
to the extra execution overhead. Hence the balance of how often in
enforcing permission rules should be carefully chosen. If the access
permission is checked too frequently, the overhead is too large;
if the access permission is checked too rarely, it will not provide
access protection. In VirtSense , we allow the developers to choose
how often they want their access rules to be enforced, with respect
to the access request from the applications.

Our implementation of VirtSense uses ARM TrustZone based
devices and prototypes the architecture on Raspberry Pi. Our pre-
liminary results show that VirtSense satisfies multi-tenancy sensing
needs by: 1) Allowing each sensing application control over its
specific set of sensing requirements; 2) the access control policy is
enforced under simulated compromised OS.

2 BACKGROUND
2.1 Sensing System
Most embedded systems and Linux-based OSes only allow one
application to sense at a given rate, while all other applications
have to wait until the one releases the resource if they have dif-
ferent sensing needs. On Android, the sensor manager manages
sensing requests. All the applications send the sensing requests to
the sensor manager through a Binder message, at which the sensor

manager will then obtain the sensor data and distribute it to the
applications. The sensing rate is not guaranteed because the sensor
manager chooses the largest sensing rate from all the applications
and broadcast the data to all sensing applications.

2.2 ARM TrustZone
ARM TrustZone is the enclave technology originally developed by
ARM company. It is implemented on all A-series processes and two
m-series (m23 and m33). ARM TrustZone separates the execution
environment into two - normal world and secure world. The normal
world is the untrusted environment running an untrusted OS. The
secure world is the trusted computing base of TrustZone, which
hosts trusted environment. The context switch between the normal
world and secure world is done through Secure Monitor Call (SMC).
The code that runs in the secure world has higher privilege than the
code in the normal world, and the secure world is able to define the
memory region that can only be accessed by privileged code. These
regions could be regular memory or memory mapped registers
of peripherals. If the code running in the normal world tries to
access the protectedmemory regions, TrustZone throws a hardware
exception.

3 DESIGN OF VIRTSENSE
Our key motivation of VirtSense sensing system on IoT devices is
that the sensing system should take care of the sensing needs from
different sensing applications. These sensing needs are the sensing
requests for periodic sensing at different sampling rate or event-
driven sensing requests. Under the current sensing framework
such as Android or iOS, the burden of taking care of the sensing
difference is on the applications’ side. In other words, the current
sensing framework lacks the understanding of applications’ sensing
needs. Moreover, the current sensor access control mechanisms
purely relies on the isolation and protection from the OS. When an
OS gets compromised by a malicious application containing rootkit,
the access control mechanisms will no longer protect the device.

We provide a sensing framework VirtSense as illustrated in fig-
ure 1 that supports the discrepancy of multiple application sensing
workloads with the emphasis on sensing flexibility, accuracy and
security. In this section, we will discuss the design of the framework.

3.1 Design Goals
To overcome the shortcomings of the current sensing framework
while not diminishing the functionalities of the existing sensing
framework, we set up the following goals for the design of our new
sensing framework.

• Sensing simplicity. Current sensing framework pushes
the sensing burdens to each application. If one application
changes its sampling rate, it might affect all other applica-
tions that are using the same sensing service. Nevertheless,
while dealing with the different sensing requests from differ-
ent applications, the sensing framework needs to manage the
difference of the sampling requests but not the applications
themselves. Due to the hardware resource limitation that
each physical sensor can only have one sampling rate, the
sensing framework should multiplex the physical sensor val-
ues to different sensing events. The sensing system should



provide a high-level abstract for multi-tenancy sensing ap-
plications but not pass this burden to the applications.

• Options for balancing sensing accuracy and sensor data
delivery speed. Downsampling or upsampling are needed
when the sensing framework multiplexes the physical sen-
sor values to each sensing request at their requested sensing
rate. Downsampling or upsampling require data reconstruc-
tion, and different techniques will affect the data accuracy
and the delivering speed because higher accuracy requires
more data to reconstruct the sensing signal, which lowers
the data delivering speed. The abstraction of choosing such
downsampling or upsampling sensing techniques should
be exposed to the application developers so that they can
properly determine the most beneficial downsampling or
upsampling techniques for their applications.

• Sensor access security. All the existing sensor access con-
trol mechanisms, such as asking users for permissions when
launching an app and use data-flow to track the access con-
trol, rely on the security of user space and kernel space
boundary. While designing the new sensing framework, we
aim at the access security of sensors even if the OS is com-
promised (i.e. a broken of user and kernel space). The access
control policy needs to be independent of applications but
only controls the behaviors how an application accesses the
sensory data. Furthermore, the access control should have
the capability of dynamically adjusting sensor access permis-
sion while using the device rather than only asking for the
permission at the application launching time. For example,
an access control rule can reject the microphone sensing
request if the device is in a secret conference room, while
approving it if the device is outside a conference room.

• Scalability. The sensing framework needs to have a proper
level of scalability. When new software or hardware sensors
are added to the system, the new sensing framework is able to
integrate them to the existing systemwith the sensors’ driver
modules without overhauling the whole sensing system.

3.2 Design Principles
To achieve the goals explained in section 3.1, we present Virt-
Sense sensing framework that virtualizes physical sensors based on
enclave technology. While designing VirtSense , we set forth two
essential principles VirtSense needs to follow with.

3.2.1 Principle of Various Sensing Workloads. Every sensing
application has its own requirements of sensingwork. The examples
of the sensing workloads can be different sensing rate for periodical
sensing or different event-driven sensing requests. The various
sensing workloads also indicate that different applications need
to share the limited physical sensing resources. VirtSense needs to
understand the discrepancies among all the sampling requests and
satisfy these needs.

Embracing sensor virtualization in VirtSense . Virtualization over-
rides the hardware resource limitations by allowing a software
management to multiplex the hardware resources for each vir-
tual instance, which allows applications to request one or more
instances for the resources while each instance is independent and
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Figure 2: VirtSense Overview

does not interfere with each other. Specifically speaking, the virtual
sensor instance in VirtSense refers to an instance for a physical
sensor or a combination of multiple physical sensors (e.g. software
sensors). Each application no longer needs to be “penalized" while
other applications require different sensing requests. For example,
when application A requests a periodic sampling with sampling
rate of 60 Hz while application B requests a periodic sampling with
100 Hz and application C requests an event-driven sampling, the
application A, B and C themselves do not need to comprehend the
difference of other applications since VirtSense is responsible for
multiplexing the physical sensor resources. Meanwhile, each appli-
cation can also choose the sensing accuracy for their instances. By
virtualizing the physical sensors, VirtSense is committed to provide
applications sensing simplicity, scalability and the options
for sensing accuracy.

3.2.2 Principle of Untrusted OS Execution Runtime. Due to the
large size and various functionalities of the OS, OS can get com-
promised through malicious kernel extensions or rootkits. Hence,
the compromised OS have the abilities to bypass all the security
protection mechanism. Under VirtSense , it must ensure the confi-
dentiality and integrity of its code especially access control code,
which implies that the code is executed under a possible compro-
mised OS environment. Enclave technology provides a protection
infrastructure to allow VirtSense to run securely under an untrusted
environment.

Embracing enclave in VirtSense . Enclave provides a hardware
level protection for the confidentiality of essential memory-mapped
peripherals. Using the enclave protection can guarantee the re-
quired safety policy to be enforced regardless of the health status
of the OS. The enclave will throw a hardware exception if the mali-
cious OS tries to access the protected memory regions including
those memory-mapped registers for peripherals without passing
through the access control policy. Differing from the traditional
OS protection boundary for the access control of all sensors, Virt-
Sense adopted enclave for the access for the sake of an enhanced
security, which provides the system an improved sensor access
security. Enclave in VirtSense provides a minimal yet sufficient
trusted computing base. The access for sensors from the OS outside
the enclave is prohibited, and the only method to use the sensor
resources from the OS is to send an access petition to TCB in the
enclave. This protection layer makes sure the sensor access policy
inside TCB is enforced regardless of the security status of the OS.



4 VIRTSENSE PROTOTYPE
We prototype VirtSense with four key components that are sensing
service interface, enclave proxy, secure apps, and virtualization
management as shown in figure 2. These four parts provide a secure
interface and sensing service for the applications in the normal
world.

4.1 Threat Model
Under VirtSense framework, we assume that the applications in
the normal world are not trusted. These applications could be in-
tentionally malicious and compromise the whole OS. They can
be downloaded and installed from any third party manufacturers
while the applications and execution runtime inside secure world
are secure and trusted. The secure world applications need to be
conducted extra scrutinizing by an authorized party.

Sensing service interface. Sensing service interface provides the
interface APIs to applications for sensing instances creation and
the sensing rate and accuracy manipulation. To keep a proper high-
level abstraction, sensing service interface is the only exposure
point between the applications and VirtSense service. It also plays a
role of load balancer of VirtSense , which determines how to deliver
the sensor values to each application with minimal overhead. For
example, if all applications sample at 60 Hz, the sensing service
interface will only create one instance for all the applications even
if every application requires a virtual sensing instance.

Enclave Proxy. Enclave Proxy communicates with the secure
world inside the enclave. It batches and sends the sensing requests
from the normal world applications to the enclave server in the
secure world through SMC driver. Moreover, the sensor data sent
from secure world are also received by the enclave proxy that
further delivers to sensing service interface and applications.

Enclave Server. Enclave server is the communication midpoint
between the normal world and the secure world, residing in the
secure world. Enclave server processes the sensing request batches
from the normal world applications and send them to the virtu-
alization management. It also packs up the sensor data updated
from the virtualization management and delivers them back to the
applications in the normal world. Enclave proxy and enclave server
are the two communication endpoints that bridge the sensing re-
quests sent from the normal world and the sensor data delivered
back from the secure world.

Secure Apps. Secure apps, which are the key components of
access control mechanism, are pre-installed by the users. They are
used to control the access from normal world applications to sensors.
All the sensor access requests need to be sent to secure apps through
virtualization management for access authenticity check. Secure
apps can contain rules defined by the users to restrict the access of
sensors. For example, a rule can be depicted as when the device is
within a certain room, the speaker cannot sense the environment by
the applications. If the decision is more complicated to make than
using rules, a pre-trained neural network can be integrated with
the secure apps. Moreover, because secure apps have no restrictions
to access the protected sensors, the pre-trained neural network is
capable of being further trained while using the device. The sensor
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Figure 3: Example of resampling methods. Physical sensor
value updated at t, t+p and t+2p, where p is the physical sen-
sor sampling rate. tD is the desired sensing time for a virtual
sampling request, and VD is the returned value marked in a
grey box from VirtSense .

access request from normal world applications can only be granted
if all secure apps approve such access.

Virtualizationmanagement. Virtualizationmanagement enforces
the access policies from secure apps and dynamically chooses the
sensing sampling rate set for the real physical sensors to satisfy the
sensing requests from the normal world applications. virtualization
management receives the sensing requests through enclave server,
and it checks whether it has violated the access rules from either of
the secure apps. If the access request is permitted, the virtualization
management will change the sensing sampling rate if necessary
and send sensor data back to enclave server when they are updated.
The details of the virtual sensing algorithms and APIs provided to
the developers will be introduced in section 4.2.

4.2 Sensing Virtualization Algorithm
The algorithm of VirtSense virtualization management is to provide
each sensing instance a resampled sensor value calculated based on
the physical sensor value. As we discussed in the previous section,
VirtSense allows both event-driven sensing and periodic sensing.
In VirtSense , each application is permitted to create one or more
sensing instance. For different sensing instance, the application
developers can specify a resampling method to satisfy the sens-
ing needs. VirtSense sets the maximum sensing rate among the
sampling requests by all the applications as the sampling rate for
the physical sensor. Figure 3 shows a demonstration of different
sensing resampling techniques. All the raw data for the resampling
are pre-processed by the sensor’s firmware.

Fast resampling. Fast resampling method returns the closest
available sensor value at the requested sampling time. This method
provides sensor resampling values at with a low accuracy but high
speed. When the application developer chooses this method, Virt-
Sense will deliver the sensing value at the highest priority regarding
the other two resampling methods.

Moderate resampling. Moderate resampling uses a linear approx-
imation strategy to resample the sensor values. This method will
provide a more accurate sensor resampling value than fast resam-
pling method while the calculation and delivering speed will be
slower than that. VirtSense assigns moderate resampling a medium
priority while delivering the sampling values to the applications.
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Slow resampling. Slow resampling is supposed to provide the
most accurate resampled data. These sample data recovering tech-
niques are high-order approximation with least square estimation
or [2, 9, 10]. Using these methods will be given the lowest prior-
ity hence lowest delivering speed while delivering the data to the
applications.

4.3 Sensor Security and Access Control
All the access to the sensors is restricted by the secure world. The
secure world prohibits the direct access to the sensors from the
normal world OS. But rather, the normal world applications need
to send the access request to TCB residing in the secure world. In
VirtSense , we implement secure apps as the safety rule checkers to
check the validity of the access request. When enclave server re-
ceives the batched access requests from the enclave proxy, it passes
the requests to secure apps through virtualization management, and
then the secure apps will determine whether the access is allowed.
Because the context switch between the normal world and the se-
cure world is expensive, secure apps cannot track the information
flow of how sensor data objects are used such as TaintDroid [6].

5 EVALUATION
5.1 Experiment Setup
Our experiment uses Raspberry Pi 3 as the platform. It is one of the
cheapest ARM A-series development board. We use Open-Portable
Trusted Execution Environment (OP-TEE)1 for the software setup.
OP-TEE is an ARM TrustZone enabled prototype operating system.
OP-TEE uses Linaro Linux in the normal world and Rich OS in the
secure world based on GlobalPlatform TEE Client API. We also
generate simulated sensor data at different sensing rate. Because
the secure world runtime of OP-TEE does not have inter-process
communication based on the message queue, we use a secure-world
applications shared storage file to emulate the inter-process com-
munication.

To evaluate our preliminary implementation, we launch three
periodic sampling applications with sampling rate at 10Hz, 30Hz
and 50Hz, and several other malicious applications with various
sampling rate. We also provide a secure app that contains the rule
to only allow sensor access if they are sampled at 10Hz, 30Hz or
50Hz. To compensate for the overhead introduced by the system,
1https://www.op-tee.org/

the real sampling rate is adjusted to its expected values. Wemeasure
the average sampling received for each application as shown in
figure 4.

5.2 Preliminary Results
Overhead. Our results show that the overhead introduced by Virt-

Sense is 16ms on average. The overhead is calculated by two clocks.
The first clock starts before calling into secure world and ends up
with exiting from the secure world. The second clock measures
the overhead introduced by the access control applications inside
the secure world. By further breaking down the overhead, roughly
0.18 ms comes from the context switch between the normal world
and the secure world, and the rest comes from the enforcement of
security rules by security apps. The current security rule enforce-
ment communicates to sensor virtualization management through
a shared secure file, and it can be further optimized through a more
efficient inter-process communication such as message queuing.

Multi-tenancy sensing virtualization. In order to test how physi-
cal sensing rate could possibly affect virtual sensing rate, we run
three sensing applications requiring 10Hz, 30Hz and 50Hz sensing
rate at the same time with different physical sensor rate as shown in
figure 4. We let the applications run for about ten seconds and cal-
culate the average sampling rate. The average sampling rate shows
that when the desired sampling rate is low, the more accurate the
frequency it receives the data at the expected rate.

Security analysis. We install a secure app that restricts the access
of all the sensing requests except with sensing rate 10Hz, 30Hz or
50Hz. The secure app successfully blocked the sensing requests
not specified by the rule. Our implementation of VirtSense does not
provide protection against DDoS attack because each request must
be scrutinized by secure apps. In this case, DDoS attack mainly
refers to spoofing the sensors or tampering the actuators from
software level. If we carefully develop a secure app that restricts a
certain number of access requests in a unit time, it could be robust
to DDoS attack as well.

5.3 Future Work
VirtSense provides virtualization of sensors, while in reality, sensors
are also associated with actuators. Hence, a possible future work is
to explore how we can relate actuation and sensing together as a
virtual control system.

6 RELATEDWORK
Enclave technology has been widely deployed in all kinds of dif-
ferent systems recent years. For example, Intel SGX is for secure
machine learning [17, 22, 23], Docker container [3], distributed
system [11, 25] and and database system [5, 21].

Sensor virtualization has been explored in the domain of IoT
networks [4, 8]. Senaas [1] uses event-driven sensor virtualization
technology to provide interface for IoT clouds. SenseWrap [7] and
Kim el. [14] designs a network middleware to provide cloud-based
IoT virtualization. Furthermore, Islam el. [12] designed virtualiza-
tion approach for wireless sensor networks. Ko el. [15] proposed a
virtualization of sensor network management on mobile devices.



Some other work designed sensor or actuator virtualization frame-
work on specific areas, such as smart camera [13, 24]. However,
unlike VirtSense , none of the above work focuses on the sensor
virtualization on single node. PROTC [20] uses ARM TrustZone to
protect drone’s safety. SeCloak [16] uses ARM TrustZone to ensure
an actuation control on mobile device. Unlike the prior work, Virt-
Sense uses enclave to achieve a secure virtualization environment
for sensors.

7 CONCLUSION
We proposed a new sensing architecture VirtSense based on virtual-
ization and enclave to satisfy the needs of multi-tenancy sensing
applications. Through our preliminary results, we show that Virt-
Sense provides both secure and flexing sensing system.
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