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Multifidelity methods are often used to reduce the cost of parameter space exploration, with applications to design

optimization and uncertainty quantification. We present a multifidelity method to construct a reduced-basis

representation of spatially (or temporally) varying solution fields and use it to explore the effect of variation in the

geometry and angle of attack on the pressure coefficient response of a two-dimensional NACA 4412 airfoil in steady,

incompressible flow at Re � 1.52 Million. Two low-fidelity simulations use 1) Euler flow and 2) coarse-mesh

Spalart–Allmaras Reynolds-averaged Navier–Stokes (RANS) with unresolved boundary layers. Each low-fidelity

model is paired with a high-fidelity RANS model, to construct two multifidelity models that approximate the high-

fidelity response associated with a set of parametric realizations. The predictive capacity and efficiency of both

multifidelity models are analyzed and found to perform well for this combination of aerodynamic system and

parameter space. In particular, the bifidelity model based on Euler flow predicts high-fidelity RANS results within

1.6% error at a cost that is 50 times less. Such a cost reduction demonstrates the utility of this method for industrial-

scale design optimization and uncertainty quantification problems.

Nomenclature

Cp = pressure coefficient (this Paper’s quantity of interest)
c = chord length, m
H = high-fidelity solution matrix
HC = column skeleton ofH
Ĥ = approximation of H from bifidelity model
K = total number of low-fidelity model evaluations
L = low-fidelity solution matrix
LC = column skeleton of L
L̂ = approximation ofL from interpolating decomposition
m = maximum camber
n = number of points on airfoil where Cp is sampled
p = location of maximum camber
Re = Reynolds number
r = rank r ≪ K, or number of high-fidelity model

evaluations used to construct bifidelity model
t = maximum thickness
y�i� = ith realization of random input parameters
uH�y�i�� = output data from high-fidelity model corresponding

to ith input
uL�y�i�� = output data from low-fidelity model corresponding

to ith input
α = angle of attack, deg
ϵ = relative error of bifidelity vs high-fidelity models
ϵLvH = relative error of low-fidelity vs high-fidelity models
Λ = coefficientmatrixused in interpolatingdecomposition
k ⋅ k = 2-norm for vectors and matrices

I. Introduction

T HE need to characterize complex aerodynamic systems and
optimize their design becomes more pressing as atmospheric

vehicles push performance boundaries. However, despite advances
over the past five decades in turbulence modeling and computing
power, accurately capturing the dynamics critical to these systems
remains resource intensive. The design space exploration or uncertainty
quantification (UQ) of such systems requires repeated model evalu-
ations, which becomes computationally intractable due to their
excessive cost. For problems with tractable cost, when the design or
uncertainty space is characterized by a large number of parameters, a
large ensemble of model evaluations is needed to thoroughly explore
the high-dimensional parameter space. This may similarly lead to
computational cost that exceeds available resources. Consequently, the
finite time to market for most high-performance aerospace products
constrains simulations’quantityand rigor,which can lead to suboptimal
performance.
Multifidelity modeling** [1] is one approach for reducing the cost

of such studies while maintaining reasonable accuracy. It recognizes
that, in practice, engineers predicting a quantity of interest (QOI)may
offload work to low-fidelity (LF) models that capture trends in a QOI
predicted by high-fidelity (HF) models. LF models are typically
analytic or computational and run quickly but offer only approximate
predictions of the QOI. In aerodynamic applications, LF computa-
tional models may use less-accurate turbulence closures, coarser
spatial discretizations, looser convergence criteria, or a combination
of all three. In contrast, HF models predict the QOI with high
accuracy, but at commensurately high cost. Though HF models
may be empirical [2,3], the present Paper focuses on computer
simulations. The idealmultifidelity scheme combines the strengths of
both LF and HF models, generating a faithful surrogate model of the
HF QOI at substantially reduced cost. Broadly speaking, LF
simulations quickly explore the system’s approximate behavior, and
a tractable number of (carefully selected) HF runs lends the surrogate
model physical accuracy.
Early work in multifidelity modeling was based on the geo-

statistical method of kriging [4], also known as Gaussian process
regression. Kriging, or cokriging in the multivariate case, builds a
Gaussian process approximation of the HF model output from
multiple, less-expensive observations of lower-fidelity models [5].
This hierarchical approach models the HF output as the sum of a
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Gaussian process correction term and linearly scaled LF outputs.
Methods that are based onGaussian process regression require a high
correlation between the QOI of models with different fidelities,
whichmay not necessarily be the case andwhichmay not be cheap to
verify. In addition, rigorous analyses are needed to estimate the
required number of HF samples for a successful multifidelity
Gaussian process regression, and instead practitioners often stop
sampling simply when time or resources are exhausted [6].
Notable applications of cokriging to aerospace applications include
building efficient response surfaces with kriging and cokriging [7],
incorporation of HF measurement uncertainty into the cokriging
framework [8], and using a simplified cokriging covariance matrix
to estimate aerodynamic properties of a RAE 2822 airfoil [9], among
others.
In recent years, significant progress has been made in extending

other well-knownUQ techniques to support multiple model fidelities
as well. One such extension is the multilevel Monte Carlo (MLMC)
method [10,11], which reduces the cost of traditional Monte Carlo
(MC) simulation by exploiting successively smaller differences δ
betweenQOI predictions on increasingly finer grids. As δ diminishes
under refinement, so does its variance, meaning that finer grids
require fewer MC samples. Provided the given black-box solver
produces stable solutions to the QOI on coarse grids,MLMC reduces
the total cost of computing expectations. Recent work further reduces
this cost by using control variates [12,13]. The polynomial chaos
expansion (PCE) [14] is another UQ technique that has benefited
from extension to a multifidelity setting [15–17]. In particular, the
multifidelity PCE approach of Ng et al. [17] constructs a standard
PCE of the LF data and subsequently constructs the PCE of an
additive correction using a small number of LF and HF samples.
The LF PCE and correction PCE are then summed to approximate
the HF model.
Though our discussion has so far focused on UQ, multifidelity

methods have also proven to be efficient at building surrogate models
for design optimization (DO) and optimization under uncertainty (see
footnote **) [18]. Examples of multifidelity methods applied to DO
include, among others, cokriging via sparse sampling [19], sequential
kriging [20], control variates for optimization under uncertainty [21],
a PCE-based approach for robust optimization [22], and space
mapping [23] applied to transonic airfoil optimization [24].
In addition tomultifidelitymodeling, and of particular relevance to

this Paper, model reduction techniques based on reduced-basis
representations have demonstrated utility in reducing total simulation
cost without adversely affecting accuracy [25–29]. Recent work
provides some insight into why reduced-basis methods are effective,
in that the differential equations used tomodel some physical systems
exhibit exploitable low-rank behavior [30]. A low-rank system is
characterized by the rapid decay of the largest eigenvalues of the
discrete solution. Various UQ schemes leveraging reduced-basis
representations of the PDEs have already experienced success in this
area [15,31–33].
Our present approach combines a multifidelity framework with a

particular reduced-basis representation [32–34], in which each basis
corresponds to a unique realization of the system’s input parameters.
Our technique is relevant to both DO and UQ. Furthermore, it is
nonintrusive, meaning it can be applied to any black-box code.
Additionally, as long as the modeled system remains low rank in the
QOI, themethod’s cost is formally independent of the dimension of the
parameter space. That is, its efficacy does not depend on the number of
design variables nor uncertain parameters the system takes as input,
provided additional parameters do not substantially raise the system
rank.We again emphasize that themodeled systemmust be low rank in
the QOI. As a counterexample, consider a QOI that has parameter-
dependent discontinuities, e.g., shocks that change positionwithMach
number. For such a system, choosing pressure as our QOI is less likely
to lead to a low-rank approximation, and therefore the method as
presented is unlikely to be effective in this situation.
To ground our discussion, we use the present method to quantify

variation in pressure coefficient Cp as a function of geometric
parameters defining a two-dimensional (2D) NACA four-digit series
airfoil at low α on the Cp distribution across its surface. The input

parameters we vary are the maximum camber m, location of
maximum camber p, maximum thickness t, and angle of attack α.
Chord length c is fixed at unity. We choose Cp as our QOI because it
could be used to calculate many performance metrics, including
sectional coefficients of the lift and pitching moment. Our method
uses a single HF and a single LF model and can thus be described as
bifidelity, although it could be extended to more than two fidelities in
a straightforward manner similar to what is done by Narayan et al.
[32]. The HF model is a grid-independent Spalart–Allmaras [35]
Reynolds-averaged Navier–Stokes (RANS) simulation. To explore
the influence of LFmodel choice, we present results based on two LF
models: an Euler flow simulation vs a low-spatial resolution RANS
simulation with unresolved boundary layers (BLs).
Once we have picked our QOI and parameter space, the general

approach of our bifidelity model is as follows. Assumewe determine
the O�1000� realizations that are needed to sufficiently explore the
parameter space of our airfoil system. We run one LF simulation for
each realization and use the output data to identify both a reduced
basis and an interpolation rule mapping the reduced basis back to all
O�1000� LF realizations. Key to our approach is that the bases of
reduced-basis approximation each correspond to specific parametric
realizations of the airfoil geometry. Second, a select few HF
simulations, for example, O�10�, are run for each of these basis-
parametric realizations. The bifidelity model then combines the HF
results with the LF interpolation rule, generating an approximation of
the HF response at all of the other parametric realizations that were
only run with the LF model. If the approximation’s accuracy is
acceptable, the full battery ofO�1000�HFsimulations need not be run.
Substantial cost reductions can be realized on the order of

O�1000∕10� ∼ 100× in this example, assuming the LF cost is
negligible relative to that of theHFmodel. This cost reduction applies
directly to resources spent on design space exploration (e.g., wing
geometry and flow control strategy), characterization of system
response to environmental inputs (e.g., airspeed and angle of attack),
or a combination of both. As long as the LF model sufficiently
captures trends in the system’s response to design variables, it need
not predict system behavior accurately, nor even in an unbiased
manner. Our bifidelity modeling approachmost benefits systems that
have a large parameter space but low-rank behavior of theQOIwithin
this space.
The remainder of the Paper is organized as follows. Section II

specifies the models used (one HF and two LF). Section III outlines
the solution strategy, detailing the flow simulations,mesh generation,
mesh deformation, and cost of LF and HF runs. Section IV presents
results, touching on bifidelity model accuracy and reduction in total
computational cost for our NACA airfoil application. We conclude
in Sec. V with a discussion of results and recommendations for
practitioners.

II. Model Specification

A. Flow Simulation and Domain

Though 2D NACA airfoils command little topical interest, this
family is nonetheless selected for two reasons. First, it is a standard
academic geometry that was thoroughly studied in the 1930s and
1940s, resulting in readily available validation data [36]. Second,
applying the bifidelity approach to a NACA airfoil offers a proving
ground for the method, which can be scaled up to more industrially
relevant aerodynamic systems in future work.
For the present study, we allow �20% uniform random variation

from the NACA 4412 values of maximum camber m � 0.04,
location of maximum camber p � 0.4, and maximum thickness
t � 0.12. As we shall see, this level of variation leads to a coefficient
of variation in Cp greater than 40% at certain airfoil locations.
Chord length is fixed at c � 1 m. The angle of attack is also
sampled randomly and uniformly distributed over the range
α ∈ �0 deg; 6 deg�. Figure 1 helps visualize this geometric variation at
zero angle of attack, and Table 1 summarizes our parameter space.
Although we employ uniform sampling in this study, finding an
optimal sampling strategy to generate the LF snapshots is an
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interesting open research question, even more so when the inputs do

not follow a uniform distribution.
All simulations are incompressible; Euler flow is run in FUN3D

[38], and RANS flow is run in PHASTA, a parallel hierarchic adaptive

stabilized transient analysis computational fluid dynamics code [39].

For the RANS simulations, we target a Reynolds number of 1.52

million with respect to the airfoil chord. Bifidelity performancewill be
explored using Euler flow and coarse-mesh RANS as low-fidelity

models and mesh-independent RANS as the high-fidelity model.

RANS simulations use the Spalart–Allmaras turbulence closure [35].
A schematic of the initial computational fluid domain is shown in

Fig. 2. The domain has been fashioned after the work of Diskin et al.

[37] and has streamwise length L � 999 m and vertical height

H � 998 m. These dimensions correspond to Cartesian directions x

and y, respectively, and are large tomitigate far-field boundary effects
on the near-field solution. Fluidmoving in the�x direction enters the
domain from the 180 deg, radius 499 m, circular-arc face. A NACA
0012 airfoil of chord length 1.0 m sits in the middle of the domain,
which will later be deformed to different NACA geometries. Its

leading edge is coincident with the origin. The airfoil has no-slip
boundary conditions applied for the RANS simulations and slip-wall
boundary conditions for the Euler simulations. Fluid exits the domain
on the three outflow faces, one located at x � 500 m, and the others

on the top and bottom angled at 3 deg to the x axis.

B. Mesh Generation

For all runs, we begin by meshing the fluid volume described

previously, surrounding a standard NACA 0012 airfoil at zero angle of
attack. We choose this symmetric geometry instead of a NACA 4412
airfoil in order to replicate the meshing procedure of Diskin et al. [37].
We later deform the symmetric mesh into the NACA 4412-related

configurations. A unique mesh is constructed for each model we
consider in the bifidelity context: fine-grid RANS (fine RANS),
coarse-grid RANS with underresolved boundary layers (coarse

RANS), and Euler flow (Euler). Meshes are shown in Fig. 3, and their
main characteristics are summarized in Table 2 and detailed in the
following. Although Fig. 3 shows 2D renderings of the meshes, 3D

versions compatiblewith our simulation tools are created by extruding
the surface mesh in the spanwise direction and then tetrahedronizing
the resulting one-element-thick volume mesh. Accordingly, the
number of grid points reported inTable 2 is twicewhat itwould be for a

true 2D mesh, but the relative costs of HF and LF models remain
unchanged. Discussion of typical run times and resource consumption
is left to Sec. III.A.
The fine RANS mesh is constructed using the results of Diskin

et al. [37] as a reference. The surfacemesh size h in the flow direction

varies quadratically from 0.0496c at the middle of the airfoil to
0.0004c at the leading and trailing edges, where c is the chord length.
The boundary layer has a stretching ratio of 1.25, and its first point off
the wall is 5 × 10−6 m away. This yields y�min < 1 in all turbulent

regions of the flow. Accordingly, themesh conforms to Spalart’s [40]
guidelines. The fine RANS mesh is refined to within 0.1% error for
the Cp curves, so as to be an order of magnitude less than the 1–4%

validation error of aRANSmodel [41]. Further refinement is possible,
but it would artificially increase the cost reduction afforded by the

Table 1 Parameter space considered in this study;
each parametric realization is drawn from a uniform
distribution (note an additional analysis is performed

for a subset of the full α domain)

Parameter Distribution

m U�0.032; 0.048�
p U�0.32; 0.48�
t U�0.096; 0.144�
α U�0 deg; 6 deg� and U�0 deg; 2 deg�

Fig. 1 NACA 4412 airfoil (solid line) with range of surface coordinates
for�20% randomvariation in parametersm,p, and t. Here, α is fixed at
0 deg, though this study considers α ∈ �0 deg; 6deg� and its subset
α ∈ �0deg; 2deg�.

Fig. 2 Schematic of computational domain with RANS boundary conditions. Wing will be deformed to NACA 4412 and related configurations after
meshing the NACA 0012 configuration following Diskin et al. [37].

Fig. 3 Initial symmetric NACA0012meshes used for fine RANS, coarse RANS, and Euler, from left to right. All meshes will be deformed to NACA4412
and related configurations.
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bifidelity model, and this level of error is sufficient for engineering

purposes. This mesh contains ∼241 thousand grid points and enables
accurate solution of the RANS equations at moderate cost.
The main objective of the two low-fidelity meshes (coarse RANS

and Euler) is to obtain a low-cost approximation of the Cp curves.
Because ourmainmotivation is cost, less importance is placed on grid

refinement. To demonstrate that the bifidelitymodel is able to provide
a useful cost reduction in this particular application, we choose our
LFmodels to have a cost of approximately 0.5% that of the LFmodel.

In practice, the suitability of a given LF model, and therefore the cost
reduction it enables, is problem dependent and can be assessed by
means such as standard validation error or the a posteriori error
estimate derived by Hampton et al. [34] for the resulting bifidelity

model. The LFRANSmesh represents a coarsening of theHFRANS
mesh until this cost threshold is met. The LF Euler mesh is refined
until it no longer satisfies this cost requirement. No claim is made

here regarding the quality of the LF meshes since ultimately the
adequacy of these meshes is determined by howwell they perform in
a bifidelity model, discussed in Sec. IV. The following paragraph

describes the LF meshes in detail.
The coarse RANS mesh differs from its fine counterpart in three

ways. First, the coarse RANS mesh makes no attempt to resolve the
shear layer downstream of the trailing edge. Second, instead of fully
resolving the boundary layer, the coarse mesh has a first point off the

wall at 0.01 m (y�min ∼ 4 × 104) with the same stretching ratio (1.25).
The coarse mesh’s first y� is already well past the defect layer of a
turbulent BL and therefore has no hope of accurately capturing wall

effects since it does not apply a wall model. Third, in contrast to the
fine RANS surface mesh spacing, the coarse mesh maintains a
surface spacing of 0.1c except where curvature refinement brings it
relatively quickly to∼0.004c. Thismesh does not enable a physically

accurate solution, but it contains only ∼9 k elements and runs with
low cost. For simplicity, the Euler mesh is essentially the same as
the fine RANS mesh, but it removes boundary layers and wake

refinement features, as they are both viscous phenomena.
Our final step is to deform the NACA 0012 mesh, created

according to the guidelines of Diskin et al. [39], into a mesh for each
variant of a NACA4412 airfoil inwhichwe are interested. Recall that
a NACA four-digit airfoil is defined by its maximum camber m,
location of maximum camber p, and maximum thickness t. These
parameters are nondimensionalized by the airfoil chord c, which we
take to be unity. The angle of attack α is the final parameter varied by

deforming the mesh, rather than by changing the inflow velocity. For
each parametric realization, we apply a displacement to nodes on the
surface of the NACA 0012 airfoil, represented by the black lines in

Fig. 4. A linear elastic structural solver within PHASTA satisfies the
Dirichlet displacement constraints and deforms the entire mesh in

accordancewith the specified geometric parameters. Positive volumes
on BL elements are preserved by enforcing an inverse relationship
between element volume and stiffness, through a Jacobian-based
stiffening approach [42].

III. Solution Strategy

A. Solution Procedure and Efficiency

Numerical solution of the flow equations proceeds until steady
results are obtained. A converged NACA 0012 flow solution at
α � 0 deg acts as the starting point in PHASTA for each new
combination of geometric parameters to be tested. After deforming
the mesh for each NACA 4412-based geometric realization, we seek
a steady solution to the quantity of interest by running the simulation
at a large time step of Δt � 12 chord flights with first-order time
integration and a single nonlinear iteration per time step. One chord
flight is the transit time defined as the chord length c divided by the
freestream speed. Runs continue until the maximum change in Cp

over the last 240 chord flights is less than 0.01%, which is another
order of magnitude smaller than the 0.1% uncertainty in Cp due to
mesh convergence discussed in Sec. II.B. This typically takes around
100 time steps but depends weakly on the mesh and physical model.
For Euler runs, the deformed geometry is still calculated in

PHASTA, but then the geometry is passed as input to FUN3D.
FUN3D is run with a stopping tolerance of 1 × 10−8 (i.e., conclude
the simulation when the root mean square of the residual of every
solved equation drops below this value). This criterion is typically
met after 250–350 time steps.
When an individual run meets the stopping criterion, Cp

information is extracted from the solution file through a ParaView
script and stored with an identifier linking the run to its specific
realization of geometric parameters. This step can bemade part of the
solver by marking nodes in a preprocessing step for computation
within PHASTA or by directly linking to the ParaView Catalyst
library, which has been shown to give flexible, scalable, and efficient
extraction of almost any quantity of interest [43,44].
The exact points at whichCp is measured are defined relative to the

chord line, meaning data are extracted in a frame in which the airfoil is
rotated back to zero α. Whereas measurements’ x coordinates are
constant across all three meshes and are independent of geometric
variation in the airfoil, their y coordinates depend on both themesh and
airfoil shape. There is a combined total of n � 100 sampling locations
(xj, yj) on the upper and lower surfaces. The values of xj are spaced
quadratically in x [i.e., with positions relative to the chord length of
xj∕c � �2j∕n�2, j � 0; 1; : : : ; n∕2� 1 for even n]. Each yj is
defined by where the upper or lower surface intersects x � xj. We
choose this distribution to place more measurements in areas where
gradients of Cp are large, thereby capturing Cp behavior faithfully
along both the high-curvature leading edge and the main lifting
surfaces of the airfoil.However, the choiceofmeasurement locations is
problem dependent and is ultimately left to the practitioner.
All components that make up a run have now been discussed; a

brief conversation about computational cost is pertinent. As shown in
Table 2, a single Euler run takes 22 s, a coarse RANS run takes 10 s,
and a fine RANS run takes 4980 s (roughly two orders of magnitude
longer). All figures are CPU time quoted running on an Intel Xeon
E5-2650 v3 (Haswell) CPU at 2.30GHz. Jobs are run simultaneously
as they have no interdependence, greatly compressing the time to
obtain results needed for the bifidelity model.

B. Bifidelity Model

We construct the bifidelity model by first sampling our parameter
space with a chosen LF model and then supplementing our
approximate knowledge of system behavior with carefully selected
HF runs. The mathematics leverage the rank-revealing QR algorithm
[45,46], following the approach of Doostan et al. [47] and Hampton
et al. [34] In addition to describing the mathematics in this section,
Sec. IV includes figures that illustrate specific steps of the bifidelity
modeling process.
The bifidelity method uses the solution to a cheaper, lower-fidelity

model of the system of interest to identify a reduced basis and an

Table 2 Details of low- and high-fidelity models used

Model Fidelity
Flow

equations
Mesh grid
points

Cost of
one run, s

Cost (% of
fine RANS)

Fine RANS High S-A RANS 240,861 4980 100
Coarse RANS Low S-A RANS 9492 10 0.2008
Euler Low Euler 59,361 22 0.4418

Fig. 4 Deforming a NACA 0012 airfoil (red) to an arbitrary NACA
four-digit airfoil (blue). Point displacements indicated in black.
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interpolation rule for approximating the expensive, high-fidelity
solution as a function of its inputs. Formally defining the parameter

space, consider the set of random geometric and angle of attack
parameters, represented as the random vector

y � �m p t α �T (1)

Each realization of random parameters is denoted by y�i�, where
i � 1; : : : ; K. The values of Cp at n � 100 locations on the airfoil
surface are collected in a solution vector u�y�i�� for each ith
parametric realization. LF and HF solutions are denoted by a
subscript, respectively, uL�y�i�� and uH�y�i��.
The set of K LF solutions is collected into a matrix:

L ≡

2
666664

����
����

����
uL�y�1�� uL�y�2�� · · · uL�y�K������

����
����

3
777775

n×K

(2)

Each columnholds a single LF solutionvector, e.g., pressure on the

airfoil. A practitioner could accommodate two or more QOI by
simply stacking the fields to create larger realization vectors u, with
the understanding that this additional complexity could raise the rank

of the bifidelity approximation. A rank-r interpolating decom-
position (ID) L̂ is constructed, approximating L as the product of
the so-called column skeleton matrix LC and the coefficient

matrix Λ [47],

L ≈ L̂ �

2
6666664

����
����

����
uL�y�i1�� uL�y�i2�� · · · uL�y�ir������

����
����

3
7777775

n×r

�Λij �r×K

� LCΛ (3)

It is important to note that the r ≪ K basis vectors fuL�y�il��grl�1

are some realizations of the LF solution and form a reduced basis for
the approximation of the rest of the LF realizations. The basis
configurations are indexed by (il) instead of (l) because the vectors
chosen for the basis are not necessarily the first r columns ofL, which
would be enumerated (1) through (r). The ID identifies the reduced
basis using the rank revealing QR algorithm, which is explained

in greater mathematical detail in the Appendix. Furthermore, the
decomposition rank r is not fixed; it can be varied depending on the
desired accuracy of the ID. For a given accuracy, systems that are low-

rank in theQOIwill permit the use of a smaller reduced basis and thus
a smaller r.
To compute the bifidelity model, we next obtain high-fidelity

solutions corresponding to the r geometric realizations fy�il�grl�1

deemed important by the LF ID. Again, the QOI from these r high-
fidelity simulations populate a HF column skeleton matrixHC. If the
system is low rank in the QOI, r will be small, and only a handful of

HF simulations will be needed to constructHC. We then reuse the ID
to calculate an approximation Ĥ of K HF solutions,

Ĥ �

2
6666664

����
����

����
uH�y�i1�� uH�y�i2�� · · · uH�y�ir������

����
����

3
7777775

n×r

�Λij �r×K

� HCΛ (4)

In summary, the bifidelity model requires K low-fidelity runs of

which the column snapshots of the QOI are used to identify the r

high-fidelity runs and the coefficient matrix Λ that weights them to
provide the bifidelity prediction of the QOI for all parameter
combinations of interest. The LFmodel’s low cost allows us to obtain
K ≫ r samples.We also requireK ≫ r samples so the ID can recover
the best r bases from the LF model.
Normally, H is unavailable because it requires expensive HF

solutions for all parametric realizations. This high cost is why in
practice we only require r HF model evaluations to construct the
bifidelity model. However, for this problem, we perform not only the
required r but all K HF simulations. While this would not be done
in applications of interest, it is tractable for this NACA airfoil
problem and allows for exact evaluation of bifidelity model
performance. To this end, we will report the relative error of the
bifidelity model

ϵ ≡ kĤ −Hk∕kHk (5)

in the matrix 2-norm after excluding basis configurations. Since Ĥ is
constructed through an interpolating decomposition, the r columns
corresponding to basis configurations are reproduced without error.
Including those columns would artificially reduce the relative error
measure; this effect would grow with increasing r. Because ϵ is
computed with all nonbasis configurations, it can be thought of as a
validation error with the largest sample size possible. As is commonly
done in the statistical regression literature, estimates of ϵ may be
computed with a smaller number of extra HF model evaluations [48].
Finally, we also define the true relative error in the matrix 2-norm
between LF and HF predictions of the QOI as

ϵLvH ≡ kL −Hk∕kHk (6)

IV. Results and Discussion

In this Paper, we simultaneously compare two BF models, and
thus we require two sets of low-fidelity runs. K � 500 runs are
conducted for both Euler (first LF) and coarse RANS (second LF)
models. The ID and corresponding BF model are computed for
r � 1; 2; : : : ; 80 for each choice of LF model. In practice, we only
require r HF model evaluations to construct each of the two BF
models. Though not required for the two BF models, to allow the
exact evaluation of BFmodel performance, we perform not r but all
K HF simulations. As previously described in Sec. III.B, while this
would not be done in applications of interest, it is tractable for this
NACA airfoil problem.
The cost reduction affordedby theBFmodel depends directly on the

rank of the QOI, with lower-rank behavior permitting greater cost
reduction. To assesswhether our system is low rank in itsQOI, singular
values [49] of Cp for our models are plotted in Fig. 5. Rapid singular
value decay suggests that fewer basis configurations, and thus fewer
costlyHFmodel evaluations,will be needed to construct theBFmodel.
We emphasize that, in practice, we do not have access to the entireH
matrix sowedo not know its singular values.We do, however, have the
entire L matrix, which must be low rank if the BF model is to offer
substantial cost reduction over a full battery of HF simulations. Here,
we show singular values of bothL (one for each LFmodel) andH as a
means of illustrating the rank of our chosen models. For all models,

Fig. 5 Normalized singular values of the data matrices L (one for each
LF model) and H. Two sets of singular values are given for each,
corresponding to the full and restricted α domains.
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we see that the normalized singular value magnitude drops by three

orders of magnitude by index 10 and then decays more slowly,
dropping another three orders ofmagnitude by index 70. This behavior
is not truly low rank, but wewill see later that it is low-rank enough to

produce BF models with a useful ratio of cost reduction to accuracy.
Concluding our discussion of Fig. 5, two sets of singular values are

shown for each model: one corresponds to all 500 realizations with

α ∈ �0 deg; 6 deg�, and one corresponds to the subset of 168 runs
satisfying α ∈ �0 deg; 2 deg�. These will be referred to as the full and
restricted α domains, respectively. For the remainder of this Paper, we

consider both as ameans of varying the solution rank.However as can
be seen, the change in singular valuemagnitude betweenα domains is

relatively small, meaning some high-rank behavior persists due to the
other input parameters defining airfoil shape.
We now turn to the visualization of the BF modeling process

shown in Fig. 6. This example uses the coarse RANS LF model with

the full α domain. We choose r � 10 for clarity of presentation and
emphasize that a rank-10 BF model requires only ten realizations of

theHFmodel. Subfigure a corresponds to Eq. (3), showing the full set
of aggregate LF data L and highlighting the Cp curves associated

with the basis vectors in LC identified by the ID. Subfigure b
demonstrates rerunning the LF basis configurations with the HF

model and compares the Cp curves in LC and HC. Here, we draw
attention to the large discrepancies between LFandHFmodel results.
Subfigure c corresponds to Eq. (4), wherein the BF model Ĥ is

constructed from the HF column skeletonHC and the LF coefficient
matrix Λ. Finally, subfigure d evaluates the BF model accuracy by

plotting standardCp curves obtained from the LF,HF, andBFmodels
for three representative parametric realizations.
Note that data in Figs. 6a–6c are plotted against the normalized

airfoil surface location, which shows variability in aggregate data

near the leading edge more clearly than a standard mapping of x∕c to
Cp. This location on airfoil is calculated as the normalized stream-

wise distance from the airfoil’s trailing edge. Moving clockwise
around the airfoil is interpreted as the positive direction, so positive

values of location on airfoil correspond to the pressure surface, while
negative values correspond to the suction surface.
We also visualize the BF modeling process for the remaining

combinations of LFmodel and α domain. Figure 7 corresponds to the

Euler LFmodel and full α domain. Figure 8 corresponds to the coarse
RANS LF model and restricted α domain. Lastly, Fig. 9 corresponds

to the Euler LF model and restricted α domain.
There are two main conclusions to be drawn from Figs. 6–9. First,

subfigures b show the large discrepancy between LF and HF
predictions of Cp. Because we have access toH (due to the low cost
of the HF system), as well as the LF model-specific L matrices, we
can compute the relative error ϵLvH between all LF and HF

predictions usingEq. (6). For the coarseRANSLFmodel, the full and
restricted α domain cases have ϵLvH � 41.9% and ϵLvH � 34.4%,
respectively. For the Euler LF model, these values drop to ϵLvH �
18.2% and ϵLvH � 16.7%, respectively. Furthermore, the two LF
models predict very differentCp curves from one another, which can

be seen by comparing Fig. 6 to Fig. 7 and also Fig. 8 to Fig. 9. Despite
these differences in LF model predictions, subfigures d
in Figs. 6–9 demonstrate that their BF results are visually indistin-
guishable from HF results, at least for the three representative

parametric realizations shown. This is the first indication that as long
as the LF model captures the correct trends in the QOI under
parametric variation, the absolute accuracy of the LF QOI prediction
at any single parametric realization is inconsequential to the BF

model’s accuracy.
To formalize this assessment of BF model accuracy, we now

consider the true relative error metric ϵ defined in Eq. (5). Figure 10
plots ϵ as a function ofmodel rank r for BFmodels constructed from
different LF models and for different choices of the α domain.
Figure 10 also includes the relative error (defined analogously to

ϵLvH) of the best rank-r approximation of H computed via
computed via the singular value decomposition (SVD) algorithm
[49] and independently of the LF model. Henceforth, we will refer
to this error as the optimal relative error. It is a benchmark for

evaluating BF accuracy, but it is not to be confused with the best
possible accuracy of the BF model. There is no guarantee, nor even
expectation, that any of the r bases identified by the best rank-r
approximation to H will be physical, in that their Cp curves

correspond to some NACA airfoil within our parameter space.
Optimal relative errors in Fig. 10 that continue to drop by orders of
magnitudewith increasing rank imply that our NACA airfoil system is
receptive to low-rank approximation, insofar as the prediction ofCp is

Fig. 6 Bifidelity model with rank r � 10 and α ∈ �0 deg; 6deg� for coarse RANS LF and fine RANS HF models. Relative error of the bifidelity
model is 1.97%.
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concerned. This is consistent with our previous discussion of the
models’ singular value structure (Fig. 5).
The BF relative errors ϵ reported in Fig. 10 constitute a marked

improvementover the15–40%errors ϵLvH of eachLFmodel alone.Note
that ϵ drops below 1% for ranks between r � 7 and r � 21, with the
exact behavior depending on LF model and α domain. For large r, the
BF model accuracy plateaus at between 0.1 and 0.3% error. This error

cannot be improved beyond a certain level due to discrepancies between

the LF and HF models. For small r < 10, our method identifies a

sufficiently good parametric basis fy�il�grl�1 and coefficient matrix Λ
such that theBFmodel’s relative error iswithin an order ofmagnitude of

the optimal relative error. As r increases, however, the BF model is not

able to maintain this gap due to discrepancies between LF and HF

models. In short, the LF model captures major trends in the HF model

well, but as we include more nuanced behavior by increasing r, the
inaccuracies of our LF model cause the BF model accuracy to plateau.
An equally important aspect of theBFmodel is its potential for cost

savings. To rigorously assess this, we define cost savings as the cost

Fig. 8 Bifidelity model with rank r � 10 and α ∈ �0deg; 2 deg� for coarse RANS LF and fine RANS HF models. Relative error of the bifidelity model
is 0.94%.

Fig. 7 Bifidelity model with rank r � 10 and α ∈ �0deg; 6 deg� for Euler LF and Fine RANSHFmodels. Relative error of the bifidelity model is 1.56%.
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of a full battery ofKHF runs (each one beingCHF) divided by the cost

CBF of the BFmodel. The latter is equal to the total cost ofK LF runs

(each one beingCLF) and rHF runs of the basis configurations, giving

cost savings � KCHF

CBF

� KCHF

KCLF � rCHF

(7)

whereCLF andCHF are the costs of individual LF and HF runs found

in Table 2.We report cost savings in units of× (read “times”). That is,

a cost savings of 10×means that the computational cost to construct

Hwith a HF model by brute force is 10 times greater than the cost to

construct Ĥ using the bifidelity framework. Table 3 shows cost

savings as a function of BF model rank. The two sets of columns

correspond to the full and restricted α domains and thus have different

values of K � 500 and K � 168, respectively. There is little

difference between the Euler and coarse RANS columns for a given α
domain because for both LF models CLF ≪ CHF. Finally, the row

labeled LF Model Only corresponds to r � 0, where a BF model is

not constructed at all.

BF model performance is a combination of accuracy and cost

savings. Bothmust be sufficiently high for the BFmodel to be useful,

but while the former increases with r, the latter decreases. We

highlight this inherent performance tradeoff with three examples

taken from Fig. 10 and Table 3. First, the rank-30 BF model for the

restricted α domain constructed from the Euler LF model attains

0.21%error at a cost savings of 6×. Second, the rank-20BFmodel for

the full α domain constructed from the Euler LFmodel attains 0.58%

error at a cost savings of 25×. Third, the rank-10BFmodel for the full

α domain constructed from the coarse RANS LF model attains 2.0%

error at a cost savings of 50×. Despite these performance tradeoffs,

our BF model predicts the pressure coefficient Cp at a cost that is

often more than one order of magnitude cheaper than a full suite of

HF simulations.

From Fig. 10, we conclude that each of the BF models provides a

solution to the full design space that has less than 1% error while

expending resources comparable to running only a small subset of

7–21 HF runs. This reduces the total simulation cost vs a full suite of

168–500HF runs by about 20×. Practically, these accuracies arewell

Fig. 10 Relative error vs rank for the two bifidelity models and the best rank-r approximations of the HF (fine RANS) data.

Fig. 9 Bifidelity model with rank r � 10 and α ∈ �0 deg; 2deg� for Euler LF and fine RANS HF models. Relative error of the bifidelity model
is 0.55%.

Table 3 Cost savings,Eq. (7), basedon the full (K � 500 runs)
and restricted (K � 168 runs) α domains

α ∈ �0 deg; 6 deg� α ∈ �0 deg; 2 deg�
Rank Euler Coarse RANS Euler Coarse RANS

10 49.78× 49.90× 16.73× 16.77×
20 24.89× 24.94× 8.36× 8.38×
30 16.59× 16.63× 5.58× 5.59×
LF model only 224.3× 498× 224.3× 498×
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within the 1–4% validation error of RANS models applied to the
comparable case of a 2D NACA 0012 airfoil at α � 0 deg and
Re � 6 Million [41]. Thus, our bifidelity model is more than
adequate for design space exploration of this physical system to
within modeling error.
In UQ, practitioners seek to determine how uncertainty in system

inputs influences system outputs. The nonintrusive approach to this
question treats the simulation as a black box, first sampling the output
for many realizations of the uncertain input parameters and then
computing statistics to describe the output distribution. The main
advantage of the nonintrusive approach is not having to modify
existing simulation code. Our bifidelity model reduces the cost of the
first step in nonintrusive UQ: mapping sampled input parameters to
systemoutputs. Though the parameter range used in this study ismuch
larger than the uncertainties a practitioner would usually encounter,
Fig. 11 nonetheless highlights our bifidelity model’s applicability to
UQ by computing statistics of the Cp distribution computed from the
LF, HF, and BF models at each location on the airfoil where data are
sampled. Aswe have seen in Figs. 5 and 10, a smaller parameter space
may reduce the rank of the system, meaning that in a true UQ
application and for a fixed total computational cost, the accuracy of the
BF model may be much higher.
In Fig. 11, themean ofCp is plotted alongside regions representing

twice the standard deviation�2σ from the mean. Subfigures a–b and
c–d correspond to the full and restricted α domains, respectively.
Subfigures a and c and b and d correspond to the coarse RANS and
Euler LF models. Furthermore, the combinations of LF model and α
domain in subfigures a–d are the same as those in Figs. 6–9. In each
subfigure, statistics are shown for the LF model’s L, the HF model’s
H, and the rank-10 BF model’s Ĥ based on that LF model. In each
case, the difference between the statistics of the LF and HFmodels is
substantial, whereas the BF and HF models’ mean and�2σ regions
are visually indistinguishable. Also note that in subfigures a and b the
coefficient of variation in Cp is greater than 40% at certain airfoil
locations. Because theBFmodel accurately predicts individual pressure
curves, its excellent prediction of Cp statistics is not particularly
surprising due to statistical moments being integral quantities. Thus, the
utility of our bifidelity model extends to accurately predicting statistics
of the QOI at substantially reduced cost.

V. Conclusions

This Paper applies a reduced-basis multifidelity model to explore

the parameter space of a 2-D NACA 4412 airfoil subject to variation

in geometric parameters and angle of attack. The goal is to avoid a full

battery of high-fidelity simulations, which is not practical at scale for

high-complexity aerodynamic systems. The approach is to use a low-

fidelity model to generate an approximation of the high-fidelity (HF)

solutions when supplemented by a small number of carefully chosen

HF runs. The low-fidelity (LF) samples are used to identify a reduced

basis along with an interpolation rule to generate an approximation of

HF solutions corresponding to arbitrary realizations of the airfoil

geometry. Because one LF and oneHFmodel are used to construct the

approximation ofHF solutions, ourmultifidelitymodel is technically a

bifidelity model, although it would be straightforward to extend to

more than two fidelities [32].
For theBFmodel tobe successful, itmust predict theHF resultswith

high accuracy while substantially reducing the total computational

cost. Success is predicated upon the physical system being low rank in

the quantity of interest (QOI). Furthermore, the LF system must

respond in a qualitatively similar way to the HF system, at least within

the parameter space considered for the QOI. The LF models used in

this study are Euler flow and coarse-meshReynolds-averagedNavier–

Stokes (RANS), whereas the HF model is fine-mesh RANS that

predicts Cp curves within 0.1% error. This gives one order of

magnitude separation from the validation error of RANS models

applied to the comparable case of a 2D NACA 0012 airfoil at

α � 0 deg and Re � 6 Million [41].
We also consider two angle of attack ranges as a means of varying

the size of the parameter space. In both cases, the LF system is low

rank enough for theBFmodel to be successful. By low rank,wemean

that the LF system’s largest singular values decay rapidly as in Fig. 5.

Accordingly, we expect any reasonable approximation in a reduced

basis, including the employed BF model, to be accurate. Because the

restricted α-domain singular values decay slightly more rapidly than

their full α-domain counterparts, we expect their low-rank approxi-

mations to perform slightly better. Lack of large differences in the

singular values between α domains is attributed to significant

complexity remaining in the other NACA airfoil parameters.

Fig. 11 Statistics of Cp computed for the LF, HF, and rank-10 BF models, for different combinations of the α domain and LF model.
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Our numerical examples illustrate that the BF model predicts Cp

along the airfoil with less than 1% error at a cost that is roughly 20×
less than a full suite of HF simulations. This is well within the 1–4%
RANS validation error [41] mentioned previously. Practically, our
BF model is thus more than adequate for design space exploration of
this NACA airfoil system to within modeling error. The BF model
also predicts statistics of Cp (mean and standard deviation) at each
point along the airfoil that are visually indistinguishable from the HF
results. Though not particularly surprising due to its high accuracy
when predicting individual configurations, we show that our model is
equally applicable to uncertainty quantification by predicting statistics
of the QOI at substantially reduced cost.
In practice, there are twoways thatwe envision assessing the quality

of the BF approximation. A standard approach would be to employ
widely used statistical tools such as validation error computedbasedon
additional HF samples of nonbasis configurations. This is commonly
done in the statistical regression literature [48]. In practice, this means
picking a handful of configurations either at random or based on
maximal parametric distance in the Euclidean norm to the basis
configurations, running them through the HF model, and computing
the relative error of the BFmodel from this small sample of additional
runs. If the practitioner seeks an optimal design, it would be natural
to check points near the optimal configuration predicted by the
bifidelity model. Additionally, the recent work of Hampton et al. [34]
develops an a posteriori bound on the error of the BF approximation
presented here.
Ultimately, three major factors influence bifidelity model

performance. First, the QOI must be low rank within the parameter
space. Evenwithin the same physical system, differentQOImayhave
different ranks, and different LFmodels may bemore appropriate for
predicting different QOI. Second, rank depends on the parameter
space. Generally, the larger the parameter space, themore complicated
the behavior of the QOI will be, and the higher its rank will climb.
Third, the cost savings depends on the fraction of configurations for
which the QOI is estimated by the bifidelity model rather than directly
run through the HFmodel. In terms of Eq. (7), the larger theK and the
smaller the r, the higher the cost savings. Such an analysis is strongly
problem dependent, hinging on both the number of realizations
required to sufficiently explore the parameter space and the rank of the
QOIon that space. The bifidelity approach is thusmost usefulwhen the
parameter space is large enough to require largeK, but the response is
low rank, and a LF model is still able to capture relevant trends.

Appendix: The Rank-Revealing QR Algorithm

The ID, L ≈ L̂ � LCΛ, is constructed using the rank-revealing
QRalgorithm. In particular, the rank-r approximation L̂ toL ∈ Rn×K

is obtained using column-pivoted (truncated) QR factorization,

LP ≈Q�R11 R12�
� QR11�I R†

11R12� (A1)

where Q ∈ Rn×r has r orthogonal columns, R11 ∈ Rr×r is upper
triangular, R12 ∈ Rr×K−r, P ∈ RK×K is a permutation matrix, and †

denotes the (e.g., Moore–Penrose) pseudoinverse. It is straight-
forward to show that QR11 is equal to the column skeleton LC, and
the indices of columns from L that actually comprise LC can be
identified from the permutation matrix P. Finally, the coefficient
matrixΛ is equal to �I R†

11R12�PT . The inquisitive reader is directed
to the works of Gu and Eisenstat [45] and Cheng et al. [46] for a
thorough discussion of how the rank-revealing QR algorithm
computes this factorization.
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