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Abstract—Biosignals often require high data transmission in 
real-time monitoring and visualization. Low-power techniques 
are always desirable for designing sustainable wireless sensor 
nodes. Signal compression techniques provide a promising 
solution in developing low-power wireless sensor nodes as it can 
significantly reduce the amount of data transmitted via power-
demanding wireless transmission and thus greatly lower the 
energy consumption of sensor nodes. In this study, we develop a 
new approach for ECG signal compression on low-power ECG 
sensor nodes by leveraging sparse features of ECG signals in 
frequency domain. The experimental results show that our 
method has better compression performance which achieves the 
average compression ratio (CR) of 65.91 with the comparable 
RMSE of no more than 5% than the state-of-the-art that can 
achieve the CR of around 40 with the same level error rate. The 
promising compression performance of the proposed method 
provides a feasible solution to achieve ultra-low power 
consumption for wireless ECG sensor node design. 
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I. INTRODUCTION 

With the emerging technology of continuous daily 
healthcare monitoring via Wireless Body Area Network 
(WBAN), techniques of reducing energy consumption of 
wireless sensor nodes are highly desirable due to the limited 
battery life [1]. ECG signal compression techniques provide a 
promising solution for reducing energy consumption, boosting 
the battery life, and enabling the continuous daily monitoring 
of low-power wireless sensor nodes [2]. Typically, ECG 
compression methods utilize the intrinsic features of ECG 
signals for eliminating the redundancies and thus compress the 
signals for wireless transmission. The intrinsic features can be 
obtained via analyzing the waveform features, transforming to 
other domains such as discrete cosine transform (DCT) [3] and 
discrete wavelet transform (DWT) [4], and extracting 
dominant features such as Compressed Sensing (CS) [5] and 
neural networks [6]. Generally, the ECG compression methods 
used for low-power ECG sensor nodes aim to increase the 
compression ratio (CR), which minimizes the required data 
size for wireless transmission and thus reduces power 
consumption. On the other hand, the compression methods 
should achieve an acceptable quality for recovering the 
compressed ECG signals and also be efficient in computation 
energy consumption and algorithm complexity. 

In this study, we propose a new approach for ECG signal 
compression for low-power ECG sensor nodes by leveraging 
sparse features of ECG signals in frequency domain. Unlike 
other compression methods such as CS that use a sensing 

 
 

matrix for sparse feature sampling and thus compressing the 
ECG signals, our method directly extracts the sparse features 
of ECG signals in frequency domain and further compresses 
the ECG signals with these pre-extracted sparse features. Since 
the number of sparse features is limited, the compression 
performance of this method can be significantly improved. In 
addition, the lightweight preprocessing and compressing 
process of our study enables a relatively low computation 
complexity and thus improves the energy efficiency. The 
performance is thoroughly evaluated and compared with the 
state-of-the-art. 

II. PROPOSED ECG COMPRESSION METHOD 

A. Framework 

    The proposed ECG compression method is based on the 
scenario as shown in Fig. 1 that the ECG signals are collected 
with an ECG sensor node that compresses the monitoring 
signals within the node and further transmits the compressed 
data wirelessly to the data center where the ECG signals are 
reconstructed. The driving concept of our method is that the 
ECG signals can be represented by the linear combination of 
its dominant features. Therefore, the key point for 
compression is to find minimum number of dominant features 
of ECG signals while preserve most of the ECG information. 
In our method, since the ECG signals are quasi-periodic 
between adjacent beats, specific segment of ECG signal is 
extracted as the input ECG segment which is the segment 
between two subsequent R peaks. The extraction can be 
performed by identifying the position of R peak through a 
lightweight QRS detection algorithm. The sparse features of 
this segment are obtained from frequency domain via 
Variational Mode Decomposition (VMD) [8] in the 
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  Fig. 1   A typical scheme for ECG compression on sensor nodes.  
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initialization of the method and further stored in the sensor 
node.  

For the compression process, ECG signals are divided into 
segments by the subsequent R peaks. As the length of each 
segment is different, the length of the sparse features are 
normalized to the length of each input segment. The input 
ECG segments are further represented by the linear 
combination of the sparse features. Finding the optimal 
coefficients of the sparse features is exactly the compressing 
process in which the input ECG segments are compressed to 
the coefficients. For example, suppose the input ECG segment 
is with length of 300 samples and the number of sparse 
features is five, the input ECG segment will be compressed to 
the five coefficients, which achieves excellent compression 
performance. For the reconstruction process, the coefficients 
are transmitted wirelessly from the ECG sensor node to data 
center for reconstruction with the pre-computed sparse 
features. The detailed procedures of the proposed ECG 
compression method as shown in Fig. 2 are explained in the 
following sections.   

B. Initialization and Sparse Feature Modeling 
As discussed above, the sparse features of the ECG 

segment are the bases for compression. In order to find these 
sparse features, a sample ECG segment is extracted and 
transmitted to data center for analyzing and creating the sparse 
features in the initialization part. Figure 3 shows a sample ECG 
segment and its frequency spectrum from an ECG signal. 
From the figure, the dominant frequency components of the 
ECG segment are within the frequnecy range of 0-40 Hz. Since 
ECG signals are quasi-periodic, each ECG segments will have 

the similar dominant frequency components. Therefore, the 
frequency feature modeling of one sample ECG segment is 
possible to be applied for all the ECG segments of the ECG 
signal.  

In order to model these dominant frequency features, we 
propose to use VMD to construct the sparse frequency 
components of ECG signals and create the sparse features in 
time domain. VMD is able to flexibly extract specific number 
of frequency components from the frequency spectrum of the 
ECG segment. The extracted frequency components are 
mostly compact around a center frequency, which ensures the 
sparsity of the components.  

The fundamental of VMD is solving the constrained 
variational problem as Eq. (1) [8]: 
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where ku is the kth component and k is its center frequency, f 
is the original signal, that is, the ECG segment in this case. The 
solving process is performed as shown in Fig. 4 in frequency 
domain. Since k is sparse, the original ECG segment  f can be 
represented with a simple summation of all the sparse 

 
Fig. 2   Proposed ECG compression method  

     
Fig. 3  A sample ECG segment and its frequency spectrum 

 
Fig. 4   Algorithm of VMD [8]. ˆku is the kth frequency component and k
is its center frequency. The algorithm outputs K number of sparse frequency 

components ˆku with their time domain signals ku . 



  

components,   1 1 2 2 ... K Kf t u u u      , where each ku , 

1, 2,...k K , has its center frequency k . Each ku is initialized 

as long as the sumation of all the ku  is equal to the original 

signal f and each k is initialized randomly within the 

frequency spectrum of ECG signals. For updating each ku , the 
residual obtained by subtracting other components from f  is 
filtered iteratively with a Wiener filter centered at k which is 

updated by the center gravity of the power spectrum of ku  as 
Eq. (2): 
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With the equality constraint of Eq. (1), the algorithm 
iteratively updates ku and k  until the converging 
requirements are met. Upon convergence, the frequency 
spectrum of the optimal ku is compact with the central 

frequency k . For the ECG segments, since the frequency 
spectrum of ECG segments are analogous, based on the ability 
of extracting sparse frequency components in frequency 
domain, the proposed VMD algorithm is utilized to construct 
the sparse features in frequency domain for ECG compression. 
As shown in Fig. 5(a), several frequency components can be 
extracted from the sample ECG segment and each component,

ku , is compact with a central frequency, k , which indicates 
the sparsity of the frequency components. For ECG signals, 
the correponding time domain waveforms of these frequency 
components are considered as the sparse features, Ii, for 
compressing. The sparsity of the features is a trade-off 

between the CR and the recovering fidelity. In order to 
minimize the number of features for increasing CR with 
acceptable error rate, according to our experiment, the number 
of the features can be selected empirically and five features are 
used in our method. These features are further transmitted to 
the sensor node and stored in the memory. Since the number 
of the features is small, the required memory size is limited 
and the features can be stored in the on-board memory of the 
microcontroller.   

C. ECG Compression on Wireless Sensor Node 
In the compression part, the ECG signals are preprocessed 

with lightweight functions for extracting the input ECG 
segments which are further compressed to the coefficients αi 
of the features Ii obtained from the initialization. 
     1) Preprocessing. As shown in Fig. 2, in the sensor node, 
the ECG sensor produces the input ECG signals which are 
processed with a lightweight peak detector [9] to locate the 
position of R peaks. Then the segments between subsequent 
peaks are extracted to obtain each input ECG segment, Y, for 
compressing. In order to represent an input ECG segment Y 
with the linear combination of features Ii, the length of the 
features Ii and that of the input ECG segment Y must be equal. 
Therefore, the length of each segment, L, is also obtained for 
normalizing the length of features as L. The length 
normalization can be easily performed with a computationally 
inexpensive linear interpolation technique. 
    2) ECG Segments Compression. As discussed in Section II-
B, since the features extracted have a linear relationship with 
the sample ECG segments, it is reasonable to obtain an optimal 
linear combination of the features for representing the input 
ECG segments. For an input ECG segment as shown in Fig. 3, 
the optimal approximation with linear combination of the 
features for representing the input ECG segment can be 
obtained by solving Eq. (3): 
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where i is the coefficient of the features Ii; M is the total 
number of  features. As the number of features M is much 
smaller than the length of Y, Eq. (3) is a typical 
underdetermined system. In order to minimizing the 
computation cost, the least square method is selected. 

  
     (a)            (b)   
Fig. 5 Sparse feature modeling. (a) Extraction of sparse 
frequency features. (b) The corresponding time domain 
waveforms of the features. 

  
(a)                    (b) 

Fig. 6   The reconstruction of ECG segments (a) The input ECG 
segments with different length (b) The corresponding recovered input 
ECG segments with different coefficients of the same features.



  

Therefore, the optimal coefficients are obtained with the least 
square solution equation as Eq. (4): 

1( )T TI I I Y           (4) 

where 1 2{ , ,..., }MI I I I , 1 2{ , ,..., }M    . Since M is 
small, the computation of Eq. (4) can be well controlled, and 
computation complexity is extensively reduced compared to 
other optimal searching methods. With these optimal 
coefficients, the input ECG segment can be reconstructed with 
the features stored in the data center. The compression results, 
which need to be transmitted wirelessly, only include the bit 
stream of the coefficients and the length of the input ECG 
segment, which are only M+1 numbers.  

D. ECG Reconstruction in Data Center 

After receiving the data from the sensor node, the ECG 
segments can be reconstructed by the linear combinations of 
the features Ii in the data center as Eq. (5): 
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where Y’ is the reconstructed input ECG segment. Figure 6 
shows the different ECG segments recovered by the same 
features. With the reconstruction of the subsequent input ECG 
segments, the input ECG signals can be recovered by 
connecting all the reconstructed input ECG segments. Part of 
the input ECG signals recovered with the features are shown 
in Fig. 7.  

III. EXPERIMENT AND RESULTS 

    For the purpose of comparing the performance with the 
state-of-the-art, the proposed method is simulated and 
validated using the ECG signals from MIT-BIH arrhythmia 
database [7] which is widely used for compression 
performance evaluation and comparison in literature. The 
compression performance of the compression method 
depends on the compression ratio, CR = No/Nc, where No and 
Nc are the number of original signal bits and compressed 
signal bits, and the recovering fidelity which can be measured 
by the root-mean-square error (RMSE) [2].  

    In the validation, the ECG signal recordings selected in our 
simulations include Record 101, 102, 103, 111, 112, 113, and 
117. Table 1 is the performance comparison between our 
method and other ECG compression methods for sensor 
nodes as well as our previous study [11]. With Record 117, 
our proposed method achieves the highest CR of 84.78 with 
the RMSE of 2.96%. The average CR is 65.91, which shows 
a much better compression performance than the state of the 
art and our previous study with the comparable RMSE of no 
more than 5%.   

IV. CONCLUSION  

In this study, we propose a new approach for ECG signal 
compression for low-power wireless ECG sensor nodes by 
leveraging sparse features of ECG signals in frequency 
domain. The simulation results show that our method has 
much better compression performance which shows the high 
feasibility for ultra-low power wireless sensor node design.  
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   Fig. 7   Sample result of reconstructed input ECG signal. 

    TABLE I   COMPARISON OF ECG COMPRESSION PERFORMANCE

Methods ECG record 
No. 

CR RMSE 

Proposed #101 69.44 3.77% 
Proposed #102 59.44 6.90% 
Proposed #103 62.25 3.94% 
Proposed #111 61.69 6.15% 

Proposed #112 51.12 2.38% 

Proposed #113 72.63 6.66% 

Proposed #117 84.78 2.96% 
Proposed Average 65.91 4.68% 
      [2] Average 27.50 5.00% 
     [10] Average 13.79 4.20% 
     [11] Average 42.8 4.82% 


