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Abstract—Biosignals often require high data transmission in
real-time monitoring and visualization. Low-power techniques
are always desirable for designing sustainable wireless sensor
nodes. Signal compression techniques provide a promising
solution in developing low-power wireless sensor nodes as it can
significantly reduce the amount of data transmitted via power-
demanding wireless transmission and thus greatly lower the
energy consumption of sensor nodes. In this study, we develop a
new approach for ECG signal compression on low-power ECG
sensor nodes by leveraging sparse features of ECG signals in
frequency domain. The experimental results show that our
method has better compression performance which achieves the
average compression ratio (CR) of 65.91 with the comparable
RMSE of no more than 5% than the state-of-the-art that can
achieve the CR of around 40 with the same level error rate. The
promising compression performance of the proposed method
provides a feasible solution to achieve ultra-low power
consumption for wireless ECG sensor node design.

Keywords—Signal compression; ECG sensor node; variational
mode decomposition; wireless communication.

I. INTRODUCTION

With the emerging technology of continuous daily
healthcare monitoring via Wireless Body Area Network
(WBAN), techniques of reducing energy consumption of
wireless sensor nodes are highly desirable due to the limited
battery life [1]. ECG signal compression techniques provide a
promising solution for reducing energy consumption, boosting
the battery life, and enabling the continuous daily monitoring
of low-power wireless sensor nodes [2]. Typically, ECG
compression methods utilize the intrinsic features of ECG
signals for eliminating the redundancies and thus compress the
signals for wireless transmission. The intrinsic features can be
obtained via analyzing the waveform features, transforming to
other domains such as discrete cosine transform (DCT) [3] and
discrete wavelet transform (DWT) [4], and extracting
dominant features such as Compressed Sensing (CS) [5] and
neural networks [6]. Generally, the ECG compression methods
used for low-power ECG sensor nodes aim to increase the
compression ratio (CR), which minimizes the required data
size for wireless transmission and thus reduces power
consumption. On the other hand, the compression methods
should achieve an acceptable quality for recovering the
compressed ECG signals and also be efficient in computation
energy consumption and algorithm complexity.

In this study, we propose a new approach for ECG signal
compression for low-power ECG sensor nodes by leveraging
sparse features of ECG signals in frequency domain. Unlike
other compression methods such as CS that use a sensing

978-1-5386-3603-9/18/$31.00 ©2018 IEEE

ECG sensor node
Power management

ECG N Micro
1 sensor contgoller

Wireless
transmission

Compression
algorithm

Wireless module

ECG signals recovering algorithm

S

Data center

Fig. 1 A typical scheme for ECG compression on sensor nodes.

matrix for sparse feature sampling and thus compressing the
ECG signals, our method directly extracts the sparse features
of ECG signals in frequency domain and further compresses
the ECG signals with these pre-extracted sparse features. Since
the number of sparse features is limited, the compression
performance of this method can be significantly improved. In
addition, the lightweight preprocessing and compressing
process of our study enables a relatively low computation
complexity and thus improves the energy efficiency. The
performance is thoroughly evaluated and compared with the
state-of-the-art.

II. PROPOSED ECG COMPRESSION METHOD

A. Framework

The proposed ECG compression method is based on the
scenario as shown in Fig. 1 that the ECG signals are collected
with an ECG sensor node that compresses the monitoring
signals within the node and further transmits the compressed
data wirelessly to the data center where the ECG signals are
reconstructed. The driving concept of our method is that the
ECG signals can be represented by the linear combination of
its dominant features. Therefore, the key point for
compression is to find minimum number of dominant features
of ECG signals while preserve most of the ECG information.
In our method, since the ECG signals are quasi-periodic
between adjacent beats, specific segment of ECG signal is
extracted as the input ECG segment which is the segment
between two subsequent R peaks. The extraction can be
performed by identifying the position of R peak through a
lightweight QRS detection algorithm. The sparse features of
this segment are obtained from frequency domain via
Variational Mode Decomposition (VMD) [8] in the
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Fig. 2 Proposed ECG compression method

initialization of the method and further stored in the sensor
node.

For the compression process, ECG signals are divided into
segments by the subsequent R peaks. As the length of each
segment is different, the length of the sparse features are
normalized to the length of each input segment. The input
ECG segments are further represented by the linear
combination of the sparse features. Finding the optimal
coefficients of the sparse features is exactly the compressing
process in which the input ECG segments are compressed to
the coefficients. For example, suppose the input ECG segment
is with length of 300 samples and the number of sparse
features is five, the input ECG segment will be compressed to
the five coefficients, which achieves excellent compression
performance. For the reconstruction process, the coefficients
are transmitted wirelessly from the ECG sensor node to data
center for reconstruction with the pre-computed sparse
features. The detailed procedures of the proposed ECG
compression method as shown in Fig. 2 are explained in the
following sections.

B. Initialization and Sparse Feature Modeling

As discussed above, the sparse features of the ECG
segment are the bases for compression. In order to find these
sparse features, a sample ECG segment is extracted and
transmitted to data center for analyzing and creating the sparse
features in the initialization part. Figure 3 shows a sample ECG
segment and its frequency spectrum from an ECG signal.
From the figure, the dominant frequency components of the
ECG segment are within the frequnecy range of 0-40 Hz. Since
ECG signals are quasi-periodic, each ECG segments will have
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Fig. 3 A sample ECG segment and its frequency spectrum
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Fig. 4 Algorithm of VMD [8]. i, is the kth frequency component and @
is its center frequency. The algorithm outputs K number of sparse frequency
components #;, with their time domain signals 1, .

the similar dominant frequency components. Therefore, the
frequency feature modeling of one sample ECG segment is
possible to be applied for all the ECG segments of the ECG
signal.

In order to model these dominant frequency features, we
propose to use VMD to construct the sparse frequency
components of ECG signals and create the sparse features in
time domain. VMD is able to flexibly extract specific number
of frequency components from the frequency spectrum of the
ECG segment. The extracted frequency components are
mostly compact around a center frequency, which ensures the
sparsity of the components.

The fundamental of VMD is solving the constrained
variational problem as Eq. (1) [8]:
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where 1, is the kth component and @), is its center frequency, f
is the original signal, that is, the ECG segment in this case. The
solving process is performed as shown in Fig. 4 in frequency
domain. Since , is sparse, the original ECG segment f'can be

min {
Uy,
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s.t.

represented with a simple summation of all the sparse
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Fig.5 Sparse feature modeling. (a) Extraction of sparse
frequency features. (b) The corresponding time domain
waveforms of the features.

components, f(¢) = au, +,u, +...+ au, , where each u, ,
k=1,2,..K , has its center frequency @, . Eachu is initialized
as long as the sumation of all the u;, is equal to the original
signal /" and each @, is initialized randomly within the

frequency spectrum of ECG signals. For updating each u; , the
residual obtained by subtracting other components from f* is
filtered iteratively with a Wiener filter centered at @), which is

updated by the center gravity of the power spectrum of ;. as
Eq. (2):
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With the equality constraint of Eq. (1), the algorithm
iteratively updates wu, and @, until the converging
requirements are met. Upon convergence, the frequency
spectrum of the optimal u, is compact with the central

frequency @, . For the ECG segments, since the frequency

spectrum of ECG segments are analogous, based on the ability
of extracting sparse frequency components in frequency
domain, the proposed VMD algorithm is utilized to construct
the sparse features in frequency domain for ECG compression.
As shown in Fig. 5(a), several frequency components can be
extracted from the sample ECG segment and each component,
u, , is compact with a central frequency, @, , which indicates

the sparsity of the frequency components. For ECG signals,
the correponding time domain waveforms of these frequency
components are considered as the sparse features, [;, for
compressing. The sparsity of the features is a trade-off

between the CR and the recovering fidelity. In order to
minimize the number of features for increasing CR with
acceptable error rate, according to our experiment, the number
of the features can be selected empirically and five features are
used in our method. These features are further transmitted to
the sensor node and stored in the memory. Since the number
of the features is small, the required memory size is limited
and the features can be stored in the on-board memory of the
microcontroller.

C. ECG Compression on Wireless Sensor Node

In the compression part, the ECG signals are preprocessed
with lightweight functions for extracting the input ECG
segments which are further compressed to the coefficients o
of the features /; obtained from the initialization.

1) Preprocessing. As shown in Fig. 2, in the sensor node,
the ECG sensor produces the input ECG signals which are
processed with a lightweight peak detector [9] to locate the
position of R peaks. Then the segments between subsequent
peaks are extracted to obtain each input ECG segment, Y, for
compressing. In order to represent an input ECG segment Y
with the linear combination of features [;, the length of the
features /; and that of the input ECG segment Y must be equal.
Therefore, the length of each segment, L, is also obtained for
normalizing the length of features as L. The length
normalization can be easily performed with a computationally
inexpensive linear interpolation technique.

2) ECG Segments Compression. As discussed in Section II-
B, since the features extracted have a linear relationship with
the sample ECG segments, it is reasonable to obtain an optimal
linear combination of the features for representing the input
ECG segments. For an input ECG segment as shown in Fig. 3,
the optimal approximation with linear combination of the
features for representing the input ECG segment can be
obtained by solving Eq. (3):

M
min|| Y- ) .l 3
in | le al 3

where ¢; is the coefficient of the features [; M is the total

number of features. As the number of features M is much
smaller than the length of Y, Eq. (3) is a typical
underdetermined system. In order to minimizing the
computation cost, the least square method is selected.
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Fig. 6  The reconstruction of ECG segments (a) The input ECG

segments with different length (b) The corresponding recovered input
ECG segments with different coefficients of the same features.



Therefore, the optimal coefficients are obtained with the least
square solution equation as Eq. (4):

a=1"1"1"Y (4)
where [ ={I},1,,...1,,} , a={0q,0,,...a,} . Since M is
small, the computation of Eq. (4) can be well controlled, and
computation complexity is extensively reduced compared to
other optimal searching methods. With these optimal
coefficients, the input ECG segment can be reconstructed with
the features stored in the data center. The compression results,
which need to be transmitted wirelessly, only include the bit
stream of the coefficients and the length of the input ECG
segment, which are only M+ numbers.

D. ECG Reconstruction in Data Center

After receiving the data from the sensor node, the ECG
segments can be reconstructed by the linear combinations of
the features /; in the data center as Eq. (5):

Y'= faili )
i=1

where Y’ is the reconstructed input ECG segment. Figure 6
shows the different ECG segments recovered by the same
features. With the reconstruction of the subsequent input ECG
segments, the input ECG signals can be recovered by
connecting all the reconstructed input ECG segments. Part of
the input ECG signals recovered with the features are shown
in Fig. 7.

III. EXPERIMENT AND RESULTS

For the purpose of comparing the performance with the
state-of-the-art, the proposed method is simulated and
validated using the ECG signals from MIT-BIH arrhythmia
database [7] which is widely used for compression
performance evaluation and comparison in literature. The
compression performance of the compression method
depends on the compression ratio, CR = N,/N,, where N, and
N, are the number of original signal bits and compressed
signal bits, and the recovering fidelity which can be measured
by the root-mean-square error (RMSE) [2].

In the validation, the ECG signal recordings selected in our
simulations include Record 101, 102, 103, 111, 112, 113, and
117. Table 1 is the performance comparison between our
method and other ECG compression methods for sensor
nodes as well as our previous study [11]. With Record 117,
our proposed method achieves the highest CR of 84.78 with
the RMSE of 2.96%. The average CR is 65.91, which shows
a much better compression performance than the state of the
art and our previous study with the comparable RMSE of no
more than 5%.

IV. CONCLUSION

In this study, we propose a new approach for ECG signal
compression for low-power wireless ECG sensor nodes by
leveraging sparse features of ECG signals in frequency
domain. The simulation results show that our method has
much better compression performance which shows the high
feasibility for ultra-low power wireless sensor node design.
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Fig. 7 Sample result of reconstructed input ECG signal.

TABLEI COMPARISON OF ECG COMPRESSION PERFORMANCE

Methods ECG record CR RMSE
No.
Proposed #101 69.44 3.77%
Proposed #102 59.44 6.90%
Proposed #103 62.25 3.94%
Proposed #111 61.69 6.15%
Proposed #112 51.12 2.38%
Proposed #113 72.63 6.66%
Proposed #117 84.78 2.96%
Proposed Average 65.91 4.68%
[2] Average 27.50 5.00%
[10] Average 13.79 4.20%
[11] Average 42.8 4.82%
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