To Appear:

IEEE Inteligent Vehicles Symposium

(IV), Paris, June 9-12, 2019.

Service Discovery for The Connected Car with Semantic Accessors

Matthew Weber!, Ravi Akella? and Edward A. Lee?

Abstract— Connected cars have the potential to transform
a vehicle from a transportation platform to a platform for
integrating humans with a city. To that end we introduce
semantic accessors (actor based local proxies for remote ser-
vices) as a novel, and powerful discovery mechanism for
connected vehicles that bridges the domains of Internet of
Things (IoT) composition frameworks and the semantic web
of things. The primary components of this approach include
a local semantic repository used for maintaining the vehicle’s
perspective of its real-world context, accessors for querying
and dynamically updating the repository to match evolving
vehicular context information, accessors for services (such as
parking) linked to a service ontology, and a swarmlet controller
responsible for managing the above in accordance with user
input. We demonstrate this semantic accessor architecture with
a prototype Dashboard display that downloads accessors for
new services as they become available and dynamically renders
their self-described user interface components.

I. INTRODUCTION

With global automotive sales on a downward trajectory,
car manufacturers are seeing enormous opportunities in the
areas of electrification, autonomy, vehicle ownership and a
gamut of connected services [1] [2]. Connected cars have
the potential to transform a vehicle from a transportation
platform to a platform for integrating humans with a city.
Traffic lights and signage (static and dynamic) have served
this role in the past, but these are impossible to personalize
and difficult to make sufficiently adaptive and dynamic. Here
is a story from the connected city:

As I am approaching downtown Berkeley, I want
to know more than that it is safe to drive through
the next intersection (a green light), but also that
the garage I intended to park at is full, and that
I can still make my 2PM meeting on time if I
head for an alternate garage and take a tram one
stop. When the battery charge on my car cannot get
me to my destination, I want alternatives, where if
I’'m flexible on timing I can recharge while eating
lunch, or if I'm not, I can swap batteries for a
higher fee. If I'm getting drowsy, I want to know
where to get a good macchiato or a brisk walk
around a pond.

Simple solutions like putting a smartphone into the ve-
hicle’s dashboard miss enormous opportunities. The car
has context that a phone does not, and its solutions can
seamlessly move from one user to another, a feature that
may become increasingly important as personal ownership
of vehicles declines.

We identify and propose solutions to three main challenges
from the vehicle’s perspective in making this vision a reality.
1) Once a driver has established the intention of seeking out
the service (eg. parking), how does the connected vehicle
select the most contextually appropriate service from a
service library? 2) How does the vehicle communicate with
this service, with which it has never before interacted, using

LEECS, UC Berkeley matt .weber@berkeley.edu
2DENSO Int’l America, Inc., ravi_akella@denso-diam.com
3EECS, UC Berkeley eal@berkeley.edu

the correct radio, protocol, and API? 3) How does the vehicle
coordinate its use of the service with on-board sensors or
other similarly discovered services?

We propose a semantic accessor architecture for connected
car integration to address these challenges. This semantic
accessor architecture is a novel combination of semantic
technologies, as commonly used in the Semantic Web, with
the Accessors project, an open source platform for remote
service communication and composition. The primary com-
ponents of this approach include a local semantic repository
used for maintaining the vehicle’s perspective of its real-
world context, accessors for querying and dynamically up-
dating the repository to match evolving vehicular context in-
formation, accessors for services (such as parking) linked to a
core service ontology, and a swarmlet controller responsible
for managing the above in accordance with user input. Our
prototype of this system is available on the iCyPhy repository
(https://github.com/icyphy/accessors) under a BSD license.

In particular this paper’s contributions include:

« An ontology for the accessor and vehicular service
subject domains;

« New semantic accessor components which integrate
semantic technologies with the accessors platform;

o A proof of concept implementation of the semantic
accessor architecture; and

o A self-describing user interface paradigm for accessors
leveraging web components to generate a dynamic
interface.

Taken together, these contributions tell an end-to-end
story through which dynamic vehicular context information
is obtained and used for service discovery, the service’s
self-describing user interface is rendered to the vehicle’s
Head Up Display (HUD) or In-Vehicle Infotainment (IVI)
displays (jointly referred as Dashboard), and interaction with
the remote vehicular service is commenced in accordance
to its arbitrary third-party API. By combining semantic
technologies with accessors we have developed a novel, and
powerful discovery mechanism. We begin in Section II with
an overview of semantic technologies and their applications
to automobiles, present our work on integrating seman-
tic technologies with the Accessors project in Section III,
demonstrate the Semantic Accessor Architecture in Section
IV, and conclude in Section V.

II. BACKGROUND AND RELATED WORK

Future connected and autonomous vehicle application
scenarios span a multitude of domains including but not
limited to Intelligent Transportation Systems (ITS), smart
cities, smart ecosystems, Internet of Things, and telecom-
munications. Several competing networking paradigms have
been proposed to realize efficient vehicle to everything
(vehicles, pedestrians, infrastructure, user devices, networks)
applications. A good survey on the state of the art for in-
travehicular connectivity (eg. Control Area Network (CAN))
and extravehicular networking (eg. 5G) can be found in [3]
[4]. The automotive, as part of a rapidly evolving connected

eal
Typewritten Text
To Appear: IEEE Inteligent Vehicles Symposium (IV), Paris, June 9-12, 2019.

society, needs a semantic foundation to deal with hetero-
geneity in standards, communication protocols, data formats,
application contexts and business players.

The semantic web was proposed by Tim Berners-Lee in
2001 as an extension of the World Wide Web that would
link data to its subject matter similarly to how a web
page links to another web page. These relationships can
be expressed in RDF, an abstract model for semantic data
as sentence-like statements about the world in triples of
subject, predicate, object. For example: the sentence "A cow"
(subject) "is a" (predicate) "farm animal" (object), or "The
mall parking lot" (subject) "has the number of free spaces"
(predicate) "45" (object). As hinted at by these examples,
triples can express both abstract information about classes
(cows and farm animals) as well as facts about specific
instances (the mall parking lot) and raw data values (45). A
database designed and optimized for RDF data is known as a
semantic repository or alternatively a triple store. The W3C
SPARQL Protocol and RDF Query Language (SPARQL)
recommendation [5] defines both a protocol and a query
language for performing SQL-like operations on a semantic
repository such as queries, insertions, updates, and deletes.

In this paper we are interested in leveraging the seman-
tic web stack toward facilitating smart thing interaction
with a vehicle. The Semantic Sensor network ontology [6]
and updated Sensors Observations, Samples, and Actuators
(SOSA) ontology [7] codify domain knowledge regarding
the abstract relationships of sensor network entities such
as sensors, actuators, and the phenomena being sensed.
When different semantic applications standardize on such an
ontology, their knowledge bases become compatible in the
sense that information may effortlessly be shared from one
system to another. Pfisterer et al.’s Spitfire project coined
the term "Semantic Web of Things" [8] to describe their
approach in leveraging Linked Open Data [9] for the IoT.
A good survey of progress to date in the Semantic Web of
Things can be found in Barnaghi’s report [10].

Researchers have applied semantic technologies to ve-
hicles, but not to the best of our knowledge toward the
goal of universal connectivity promised by the semantic web
of things. W3C’s Automotive Ontology working group' is
developing shared vocabularies based on web ontologies for
data interoperability in the automotive industry primarily for
the purposes of standardizing vehicle information used for
car rentals and sales. Schema.org now hosts these shared
vocabularies at auto.schema.org as metadata markup for
semantic web search.

Several ontology frameworks are being explored for use
in autonomous vehicle technology such as Advanced Driver
Assistance Systems (ADAS) to facilitate self-driving func-
tions involving sensor actuation and control [11]. In [12],
ontological knowledge systems were employed to interoper-
ate with extra-vehicular infrastructure such as IoT devices or
traffic lights to enhance traffic safety and driving experience.
Our proposal is distinguished by our integration of semantic
technologies with the accessors platform, designed to ab-
stract away these communication difficulties. A connected
car can just download an accessor (Section III) for a sensor
or actuator without worrying about the protocol or API the
accessor uses internally.

III. SEMANTIC ACCESSORS

In this section we provide background on existing work in
the Accessors project and present our work on new semantic

Uhttps://www.w3.org/community/gao/

accessors for connected vehicles.

A. The Accessors Platform

An accessor is a downloadable chunk of JavaScript imple-
menting a local proxy for a remote service, first proposed in
[13]. An accessor encapsulates the complexities of commu-
nication with that service (i.e. protocol, network, API, etc.),
exposing to the programmer a uniform actor interface for
sensors, actuators, local machine resources, or remote web
resources. Fig. 2 gives an example of the SemanticReposito-
ryQuery accessor’s external actor interface and Fig. 3 shows
a fragment of its internal JavaScript implementation. In the
typical pattern of accessor usage, a programmer initiates
interaction with the resource represented by an accessor by
providing an input to the local accessor’s input port and
receives a response back from the resource on the accessor’s
output port. Interaction between remote systems can be
locally coordinated by linking the input of an accessor to
the output of another. Such a network of accessors is called
a swarmlet?, an example of which can be seen in Fig. 5.

The accessor platform is intended to be for the IoT what a
web browser is for the internet. In the IoT it is common for
each service to require its own service-specific application,
complicating interaction and composition across services.
But on the web, the browser is a single flexible platform
that is compatible with all kinds of services. For example,
when a user wants to make a web transaction with a bank,
the user can navigate to the bank in their browser and request
a web page that tells the browser what to display and how
to perform the transaction over the internet. The web page
acts as a local proxy for the bank’s remote service.

Like the bank’s transaction web page, an accessor is a
downloaded component which tells the swarmlet how to per-
form a particular interaction with a remote service. Also like
a browser, the same swarmlet can be compatible with many
different remote services: it just downloads and uses each
service’s accessor. This accessor component architecture was
proposed by Brooks et al. in [15] to implement an augmented
reality demo which interacts with multiple remote services.

Similar actor oriented platforms for IoT composition are
in development, notably Calvin [16] and Node Red [17].
Compared to these alternatives, accessors bring deterministic
models of computation from the timing-critical world of
embedded systems [18] and interface theory [19]. Addition-
ally, accessors have a greater focus on dynamic discovered
component behavior via the mutable accessor [15] (see
Section IV-A.3) and, of course, integration with semantic
technologies discussed in this paper.

B. Accessor and Service Ontology

The environment in which accessors and swarmlets exe-
cute is known as an accessor host. As of this writing, the
Accessors project has mature hosts that run on Node.js, in
standard browsers, and in Java using Nashorn (Cape Code),
as well as experimental hosts Cordova and Duktape for mo-
bile and embedded devices respectively. To allow accessors
to be platform independent, these hosts are responsible for
providing native implementations for common environmental
functions and modules. However not every host has the
hardware to support every accessor. A Node.js host running
in an intelligent vehicle may, for example, not support the
cameras module if the vehicle has no cameras. Before a

2The name swarmlet is in reference to the "Swarm at the Edge of the
Cloud" [14]

Automotive/
Host LaneMergeAssist

!
Implements !
' Automotive/
/ AnomalyDetection
Module Service Provider| | ,
/
. i 1y
Requires Has Service I Automotive/
v - Parking

Accesses P
Accessor }—»{ Service }
W™

D "
Automotive/
TrafficLightStatus

Has Subclass

Restaurants

[NAL

Fig. 1: Diagram of accessor and service ontologies.
SemanticRepositoryUpdate

~pW3C s

SemanticYelpSearch

SemanticRepositoryQuery

+smus query SPARQL response

@ ©)
HostCompatibility

searchTermp,

trigger |
semanticObservation accessorName

latitude

longitude, ’

© @

compatible

¥

Fig. 2: Actor interfaces to the accessors developed in this
work

newly discovered accessor can be selected, it is important
to know whether this is the case.

To address this problem we developed an accessor on-
tology, a core excerpt® of which is presented in Fig. 1. We
developed scripts that iterate through all known accessor and
host libraries to populate the ontology with individual data
for specific accessors, hosts, and modules. To be consistent
with the principles of Linked Open Data [9], the name of an
accessor in this generated ontology is a URI linking to a file
containing its JavaScript implementation.

The ontology in Fig. 1 shows that an accessor may have
an additional link to the service it accesses. For example, a
parking service accessor ought to access a particular real-
world parking service (an instance of Automotive/Parking)
as the remote resource it proxies. Such a parking service
is linked to its service provider through the Has Service
relationship.

The combined Accessor and Service ontology is a pow-
erful resource for semantic service discovery, and methods
for its effective use are the core proposal of this paper.
We present a scheme for managing these dynamic updates
and service discovery in Section IV-A.1. It is worth noting
these updates can include numeric, string, and other basic
datatypes. It is a common misconception that ontologies
cannot link basic data to concepts.

C. Semantic Accessors

In this research we have developed a new variety of
accessor that interacts with semantic technologies: a semantic

3The full accessor ontology is considerably more complex with concepts
for Accessors, Accessor Interfaces, Inputs, Outputs, Parameters, Modules,
Hosts, Services, and relationships for interface implementation, inheritance,
and contained subaccessors among others. However, as the majority of these
concepts are not related to service discovery, we have omitted them from
Fig. 1.

exports.handleResponse = function (message) {
var writer = N3.Writer ({ prefixes:
{ sosa: ’'http://www.w3.org/ns/sosa/’,
rdf: "http://www.w3.0rg/1999/02/22-rdf-syntax—
ns#’,
xsd: 'http://www.w3.0rg/2001/XMLSchema#’,
schema: ’‘http://schema.org/’

PY)
var obsNode = store.createBlankNode (’
SemanticYelpSearchObservation’);

}

Fig. 3: Partial JavaScript code listing for Semantic YelpSearch

accessor. We illustrate the actor interface of four of these
new accessors in Fig. 2 and elucidate their behavior in this
section.

SemanticRepositoryUpdate and SemanticRepositoryQuery
in Figs 2(a) and 2(b) proxy a SPARQL compatible se-
mantic repository over HTTPS—it is irrelevant whether the
repository runs locally or remotely. A SPARQL delete or
insert command sent to the update port of the Semantic-
RepositoryUpdate will return with the success or failure of
the operation on the accessor’s status output. Similarly a
SPARQL select, construct, ask, or describe query sent to
the SemanticRepositoryQuery accessor will return with the
query results on the accessor’s response output.

Semantic repositories as conventionally used in the Se-
mantic Web are relatively static entities used to maintain in-
formation in abstract domains such as medicine, government,
linguistics, or media. We believe semantic repositories have
enormous potential for use as a dynamic knowledge base
for the immediate real-world context of a vehicle. Encap-
sulating the SPARQL protocol in these accessors integrates
semantic repositories with the Accessor platform, where
SemanticRepository Update and Query can be connected to
other accessors in a swarmlet and used to bring the semantic
repository into a dynamic control loop with sensors and
actuators.

The SemanticYelpSearch and HostCompatability acces-
sors depicted in Figs. 2(c) and 2(d) represent more advanced
semantic capabilities. When HostCompatability receives the
name of an accessor as input, it checks the current state
of the accessor’s ontology (described in Section III-B and
depicted in Fig. 1) to determine whether the host it’s running
on is capable of providing that accessor’s required modules.
When the query is complete, the Boolean answer to the
compatibility question is produced on its output.

The HostCompatability accessor works by querying this
ontology for the list of modules supported by the current host
and compares them against the list of modules required by
the given accessor. Some services may be known in advance
and hence statically encoded into the ontology before deploy-
ment, but others may be dynamically discovered (for exam-
ple, nearby Restaurant services via SemanticYelpSearch) and
inserted into the ontology with SemanticRepositoryUpdate.

The SemanticYelpSearch accessor is an example of a
general class of semantic sensor accessors. These accessors
produce as output semantic observations in the form of
Turtle syntax ontologies. The name "semantic sensor" is
not an accident: the output ontology uses concepts from
the W3C SOSA* ontology for sensor observations. Seman-
ticYelpSearch takes a location and search topic as input and
when triggered, interacts with the Yelp API to produce as

4SOSA is a rethinking of the classic Semantic Sensor Network ontology.

Dshboar

A~ Static Core
- Ontology

), [

Accessor Platform

Swarmlet

Semantic Repository

ST spaRaL;

-‘.
GraphDB

Fig. 4: Elements of the Semantic Accessor Architecture.

output a semantic observation of nearby local businesses.

Since the Yelp API does not use a semantic representation
for its results, SemanticYelpSearch uses the N3 library
to translate Yelp results into schema.org’s LocalBusiness
ontology. In fact, the ease of encapsulating an arbitrary
non-semantic APl with an accessor to translate its results
into a semantic output is one of the chief advantages of
semantic sensor accessors. Mapping data to standard SOSA
and schema.org ontologies facilitates automatic integration
of data obtained from a semantic sensor accessor with any
other SOSA and schema.org compatible ontologies, such as
the service ontology described in Section III-B and depicted
in Fig. 1.

IV. SEMANTIC ACCESSOR ARCHITECTURE

In this section we present an architecture for semantic
accessors that enables semantic service discovery and a
dynamic user interface for service interaction. The main
system components of this approach are diagrammed in
Fig. 4, and the swarmlet controller that coordinates these
components is given in Fig. 5. The controller has four
interconnected parts: the semantic repository maintenance
swarmlet, which manages information about the world; a
service selection user dialogue, which determines user intent
for service interaction; a mutable controller for web compo-
nent accessors, which downloads and sets up communication
with the selected service; and an accessor for the dynamic
user interface itself. As shown in Fig. 4, the controller and
semantic repository run locally on the vehicle and display a
user interface on the vehicular dashboard. SemanticSensor
accessors in the controller proxy remote services in the
cloud such as Yelp, and also nearby fog resources such as
traffic lights and roadside units. When service discovery is
complete, the user can interact with cloud and fog resources
(eg., paying for parking) through UIComponent accessors
(Section IV-A.3).

A. Swarmlet Controller

We address the aspects of the swarmlet controller’ de-
picted in Fig. 5.

SFor clarity of presentation, this diagram omits slots for multiple se-
mantic sensors, multiple service selection dialogues, multiple downloaded
accessors, and the message routing system which ensures in-swarmlet
communication is directed to the correct slot.

1) Semantic Repository Maintenance: Knowledge in the
vehicle’s local semantic repository comes from two sources:
the static core ontology initialized into the repository with
basic information about service concepts (or universally
relevant services) and the contextually relevant dynamic
ontology provided by SemanticSensor accessors. Directed
by user interest from the dashboard, the semantic repository
maintenance swarmlet periodically acquires new location-
specific information from semantic sensors (such as Semanti-
cYelpSearch) and writes the data into the dynamic ontology.
This use of a semantic repository is analogous to a streaming
database like Apache Kafka or AWS Kinesis but comes with
the advantages discussed at length in sections II and III.

To avoid endless maintenance of stale data in the Semanti-
cRepository,® a SPARQL delete command also runs periodi-
cally to delete old semantic observations. A semantic repos-
itory that supports the GeoSPARQL standard for geographic
data (like GraphDB) can also be set up with a SPARQL
delete command to periodically delete old observations by
geofencing and deleting observations spatially located far
from the vicinity of the vehicle.

2) Service Selection Dialogue: With the semantic reposi-
tory kept fresh with contextually relevant data, the controller
is ready to respond to user requests for service discovery.
In response to a service topic from the user interface (eg.
parking services), the service selection dialogue finds rele-
vant host-compatible services using the SemanticReposito-
ryQuery and HostCompatability accessors respectively. We
developed a prototype user interface for the resulting IVI
display, shown in Fig. 6. The point isn’t to recreate Yelp or
Google Maps, but to present the user a fusion of contextual
information from the repository they couldn’t get from any
individual cloud service.

3) Mutable Controller and Dynamic User Interface: Once
a service is identified by the service selection dialogue, its
accessor is downloaded by the mutable controller and sent to
a mutable accessor. A mutable accessor is a special higher-
order accessor, presented in [15], which can be thought of as
an open hole in the swarmlet that fills itself with the accessor
code it receives on its "accessor" input. In this way the
downloaded accessor is reified (i.e. made real and plugged
into the model) in place of the mutable, as shown in Fig. 7.

This particular mutable accessor requires that the accessor
it reifies for a connected car service implement the UICom-
ponent accessor interface. Upon reification in a mutable, a
UIComponent produces a definition for an interactive user
interface component on its UIComponent output in the form
of a web component’, which will be rendered as part of the
user interface. In this way a UIComponent is self-describing!

Our prototype of the dynamic user interface is a React.js
app®. The prototype communicates with the swarmlet con-
troller over web socket. Web apps have been rendered in
IVIs (for example, using application frameworks provided
by Automotive Grade Linux (AGL)). When the React app
receives a web component from the mutable controller, the
component is rendered as an interactive card, as shown in
Fig. 8 for a parking component. User interaction with such

6Plus, it is against the terms of Yelp’s API usage to store their data for
more than 24 hours and "build another Yelp". The same is likely true with
other service providers.

7Web components are a newly released standard for creating encap-
sulated bundles of HTML, CSS, and JavaScript, which are reusable
as interface components across web apps. For more information see:
https://www.webcomponents.org/introduction.

8Built off the Black Dashboard React template by Creative Tim (MIT
Licensed)

[> SPARQL DELETE

p spara seiec i W3~ g [T

esesee LTE

;% ICYPHY Map Satellite

SPARQL

SPARQL

rinterface

IVI Interaction

7 %

NAME PRICE DISTANCE

MLK Student
Union Garage

DeCal_Parking

SoCal_Parking

Fig. 6: Screen capture of our user interface for a parking selection dialogue. Parking options are displayed in both a Google
maps component and a table sorted by price or distance. Selecting a marker in the map or a row of the table triggers the
mutable controller to download the accessor for that particular parking service. Marker locations and distance are dynamically

generated from the semantic repository.

a card is directed back to the mutable controller and the
Mutable’s userInput port, providing the reified accessor (and
the service it proxies) the opportunity to respond to user
interface events. The reified accessor may update the Ul
component in the React app by producing an output over
componentUpdate.

For example when a parking service is selected from the
parking dialogue in Fig. 6, the selected parking accessor
is downloaded and reified in the mutable. It produces the
parking web component shown in Fig. 8 on its UIComponent
output. When the parking component is first rendered in the
React app, it doesn’t know about the current status of parking

spots so it initiates communication back to the mutable
controller and the refied parking accessor’s userlnput port.
The parking accessor communicates with the parking service
it proxies to obtain this information and sends it back to the
instantiated component via the componentUpdate output. The
parking component receives the data and renders the current
parking information. Similar to the parking component we
also prototyped a video component intended to show a clear
view of traffic from an intersection when the driver’s view
is obstructed, and a restaurant menu component for ordering
from a fictional restaurant.

> Mutable Accessor (realization)
>
RN

Ty

Accessor P
(realization) p

Fig. 7: A mutable’s behavior can change during the lifetime
of a swarmlet

Parking Component

Parking at Downtown Lot
$5.00
Payment Information: XXKX-XXXX-XXXX-1234

seLecr FLOOR 208e NuMBER

L
c
P
x
v
v

Proceed to Checkout

Fig. 8: Prototype implementation of a user interface web
component for an example parking service. This web com-
ponent, and our other prototype components were built with
React.

V. CONCLUSION

From traffic infrastructure that helps you make the light
from a mile away and avoid an accident, to restaurants that let
you order before you arrive and save you a parking spot, the
future holds exciting possibilities for connected cars. But for
these capabilities to be fully realized, vehicles must acquire
dynamic knowledge of their world. They must learn about
connected services in the environment, how the services
relate to each other, and how to interface with a service’s
intelligent capabilities. We proposed Semantic Accessors as
a fusion of the technologies of the Semantic Web with the
IoT interaction of the Accessors project. We presented an
ontology for accessors and vehicular services that enables
the HostCompatability accessor to enhance swarmlets with
the power of semantics and semantic sensors like Semantic-
YelpSearch to bring the flexibility and composition potential
of accessors to bear on semantic repositories. The Semantic
Accessor Architecture we prototyped alongside a dynamic
user interface for Dashboard displays demonstrates how
these components can be combined to build flexible and
contextually intelligent applications.

In future work, we intend to investigate logical and ma-
chine learning inference to enhance the knowledge stored
in a semantic repository. For example, a faulty street address
for a restaurant might be identified by inferring a discrepancy
between the advertised geolocation, street address, and ge-
olocation where the vehicle actually parks. It would also be
interesting to enhance the semantic repository maintenance
swarmlet with mutable slots for discovered semantic sensors.
In this way, a semantic repository might accumulate data
sources as it progressively infers newly relevant sensors.
And finally, enhancing our dynamic interface prototype with
security and authentication methods from Kim’s locally
centralized, globally distributed authentication agents is a
prudent avenue for future investigation [20].

ACKNOWLEDGEMENTS

The work in this paper was supported in part by the
National Science Foundation (NSF), award #CNS-1836601
(Reconciling Safety with the Internet) and the iCyPhy Re-
search Center (Industrial Cyber-Physical Systems, supported
by Avast, Camozzi Industries, DENSO International Amer-
ica, Inc., Ford, Siemens, and Toyota.

REFERENCES

[1] Springer India-New Delhi, “Automotive revolution & perspective
towards 2030,” Auto Tech Review, vol. 5, no. 4, pp. 20-25, Apr 2016

[2] P. Bansal and K. M. Kockelman, “Forecasting americans long-
term adoption of connected and autonomous vehicle technologies,”
Transportation Research Part A: Policy and Practice, vol. 95, pp. 49
- 63,2017

[3] J. E. Siegel, D. C. Erb, and S. E. Sarma, “A survey of the connected
vehicle landscape—architectures, enabling technologies, applications,
and development areas,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 19, no. 8, pp. 2391-2406, Aug 2018.

[4] S. Mumtaz, K. M. S. Huq, M. 1. Ashraf, J. Rodriguez, V. Monteiro,
and C. Politis, “Cognitive vehicular communication for 5g,” IEEE
Communications Magazine, vol. 53, no. 7, pp. 109-117, July 2015.

[51 S. Harris, A. Seaborne, and E. Prud’hommeaux, “SPARQL 1.1 Query
Language,” Mar. 2013

[6] M. Compton, P. Barnaghi, L. Bermudez, R. Garcia-Castro, O. Corcho,
S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, V. Huang,
K. Janowicz, W. D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri,
H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, and
K. Taylor, “The SSN ontology of the W3c semantic sensor network
incubator group,” Web Semantics: Science, Services and Agents on
the World Wide Web, vol. 17, pp. 25-32, Dec. 2012

[71 K. Janowicz, A. Haller, S. J. D. Cox, D. L. Phuoc, and M. Lefrancois,
“SOSA: A Lightweight Ontology for Sensors, Observations, Samples,
and Actuators,” arXiv:1805.09979 [cs], May 2018, arXiv: 1805.09979

[8] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong,
H. Hasemann, A. Kroller, M. Pagel, M. Hauswirth, M. Karnstedt,
M. Leggieri, A. Passant, and R. Richardson, “SPITFIRE: toward a
semantic web of things,” IEEE Communications Magazine, vol. 49,
no. 11, pp. 40-48, Nov. 2011

[9] T. Berners-Lee, “Linked Data - Design Issues,” July 2006

[10] P. M. Barnaghi, W. Wang, C. A. Henson, and K. L. Taylor, “Semantics
for the internet of things: Early progress and back to the future,” Int.
J. Semantic Web Inf. Syst., vol. 8, pp. 1-21, 2012.

[11] A. Armand, D. Filliat, and J. Ibafiez-Guzman, “Ontology-Based
Context Awareness for Driving Assistance Systems,” in IEEE
Intelligent Vehicles Symposium (IV), Dearborn, United States, June
2014, pp. 1-6

[12] S. Fernandez, R. Hadfi, T. Ito, I. Marsa-Maestre, and J. R. Velasco,
“Ontology-based architecture for intelligent transportation systems
using a traffic sensor network,” Sensors, vol. 16, no. 8, 2016

[13] E. Latronico, E. Lee, M. Lohstroh, C. Shaver, A. Wasicek, M. Weber,
and others, “A Vision of Swarmlets,” Internet Computing, IEEE,
vol. 19, no. 2, pp. 20-28, 2015

[14] E. A. Lee, B. Hartmann, J. Kubiatowicz, T. Simunic Rosing,
J. Wawrzynek, D. Wessel, J. Rabaey, K. Pister, A. Sangiovanni-
Vincentelli, S. A. Seshia, D. Blaauw, P. Dutta, K. Fu, C. Guestrin,
B. Taskar, R. Jafari, D. Jones, V. Kumar, R. Mangharam, G. J.
Pappas, R. M. Murray, and A. Rowe, “The Swarm at the Edge of the
Cloud,” IEEE Design & Test, vol. 31, no. 3, pp. 8-20, June 2014

[15] C. Brooks, C. Jerad, H. Kim, E. A. Lee, M. Lohstroh, V. Nouvelletz,
B. Osyk, and M. Weber, “A Component Architecture for the Internet
of Things,” Proceedings of the IEEE, vol. 106, no. 9, pp. 1527-1542,
Sept. 2018

[16] P. Persson and O. Angelsmark, “Calvin — Merging Cloud and IoT,”
Procedia Computer Science, vol. 52, pp. 210-217, 2015

[17] N. K. Giang, M. Blackstock, R. Lea, and V. C. Leung, “Developing
IoT applications in the Fog: A Distributed Dataflow approach,” in
2015 5th International Conference on the Internet of Things (10T).
Seoul, South Korea: IEEE, Oct. 2015, pp. 155-162

[18] C. Jerad and E. A. Lee, “Deterministic Timing for the Industrial
Internet of Things,” in 2018 IEEE International Conference on
Industrial Internet (ICII). Seattle, WA, USA: IEEE, Oct. 2018, pp.
13-22

[19] M. Lohstroh and E. A. Lee, “An interface theory for the internet
of things,” in Software Engineering and Formal Methods. Springer,
2015, pp. 20-34

[20] H. Kim and E. A. Lee, “Authentication and Authorization for the
Internet of Things,” IT Professional, vol. 19, no. 5, pp. 27-33, 2017

