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Scaling laws for the thrust production and energetics of self-propelled or fixed-velocity
three-dimensional rigid propulsors undergoing pitching motions are presented. The
scaling relations extend the two-dimensional scaling laws presented in Moored &
Quinn (AIAA J., 2018, pp. 1-15) by accounting for the added mass of a finite-span
propulsor, the downwash/upwash effects from the trailing vortex system of a
propulsor and the elliptical topology of shedding trailing-edge vortices. The novel
three-dimensional scaling laws are validated with self-propelled inviscid simulations
and fixed-velocity experiments over a range of reduced frequencies, Strouhal numbers
and aspect ratios relevant to bio-inspired propulsion. The scaling laws elucidate
the dominant flow physics behind the thrust production and energetics of pitching
bio-propulsors, and they provide guidance for the design of bio-inspired propulsive
systems.
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1. Introduction

Many aquatic animals efficiently propel themselves by oscillating their bodies
and caudal fins in unsteady motions. During self-propelled locomotion, swimmers
reach a cruising condition where there is a balance between the time-averaged
thrust, generated mainly by their caudal fins, and the time-averaged drag incurred by
their bodies (Saadat er al. 2017). By following this idea, numerous studies (Chopra
1976; Read, Hover & Triantafyllou 2003; Dong et al. 2005) have investigated the
performance of heaving and pitching propulsors in isolation instead of the combined
body and propulsor of other studies (Lighthill 1960). For example, Garrick’s theory
(Garrick 1936) extends the small-amplitude theory of Theodorsen (1935) to calculate
the thrust production and power consumption of pitching and heaving two-dimensional
airfoils. Later, this theory was extended to large-amplitude oscillations (Scherer
1968) and to three dimensions with a particular focus on the lunate tail of aquatic
animals (Lighthill 1970; Chopra 1976; Chopra & Kambe 1977). Cheng & Murillo
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(1984), for example, developed an asymptotic analysis for high-aspect-ratio surfaces
oscillating at low frequencies, where the influence of wake vorticity was captured
by generalizing classical lifting line theory (Prandtl 1920). Karpouzian, Spedding &
Cheng (1990) improved upon this asymptotic theory for lunate tails. While these
studies have provided great insights, the identification of the flow mechanisms that
lead to the scaling of the thrust and power of swimmers has been elusive for cases
with propulsors ranging from low to high aspect ratios, motions ranging from small
to large amplitudes and with nonlinearly deforming wakes.

While these previous studies provide exact unsteady theoretical solutions within the
framework of their assumptions, other studies have sought more broadly applicable
semi-empirical models of force production. For example, the dynamics of falling
cards was modelled by considering the circulatory, added mass and viscous forces
acting on them (Pesavento & Wang 2004; Andersen, Pesavento & Wang 2005). This
highlighted the importance of the quasi-steady rotational lift force first discussed by
Munk (1925) and also present in later unsteady theory (Theodorsen 1935; Garrick
1936; McCune & Tavares 1993). In fact, this lift force proportional to the angular
rate of an airfoil, described as virtual camber (Babinsky et al. 2016), is of prime
importance in insect flight (Wang, Birch & Dickinson 2004). Later, the quasi-steady
force model proposed for falling cards was recast as a model for the force production
of flapping wings (Berman & Wang 2007). Others extended this quasi-steady model
with an additional dynamic stall model in order to optimize the energy extraction
potential from a flapping wing device (Bryant, Gomez & Garcia 2013) and for
flapping wing flight (Gomez, Bryant & Garcia 2014). Similarly, the circulatory forces
in the quasi-steady falling card force model have been corrected for aspect ratio
variations by accounting for the influence of the trailing vortex system (Wang et al.
2013). Numerous other quasi-steady models have been proposed for flapping flight
(Traub 2004; Ansari, Zbikowski & Knowles 2006; Wang, Goosen & Van Keulen 2016;
Han, Chang & Han 2017; Moriche, Flores & Garcia-Villalba 2017; Wang, Goosen
& van Keulen 2017). Although most of these models incorporate added mass effects,
they are described as quasi-steady models since they generally do not incorporate
wake-induced effects. As such, these models work well for reduced frequencies of
k =fc/U < 0.2, where f is the flapping frequency, c¢ is the chord length and U is
the free-stream speed. However, oscillatory swimming is characterized by reduced
frequencies of the order of k = O(1) (Webb 2002) where wake-induced effects and
trailing-edge vortex shedding significantly impact the force production.

Several studies have focused on the development of force models or scaling laws
for the thrust and efficiency of aquatic animals, where quasi-steady analyses do not
suffice. Triantafyllou, Triantafyllou & Grosenbaugh (1993) established the importance
of the Strouhal number for aquatic animal propulsion, which has been adopted in
most subsequent works as the main parameter of interest (Quinn, Lauder & Smits
2014a). Green & Smits (2008) characterized the thrust production of low-aspect-ratio
rectangular pitching panels by deriving a scaling relation that links the Strouhal
number, aspect ratio and amplitude of motion. They considered an approach inspired
by Prandtl’s lifting line theory to account for the effects of aspect ratio on the pressure
coefficient (Green & Smits 2008). In contrast, Dewey et al. (2013) and Quinn et al.
(2014b) scaled the thrust forces of pitching panels with the added mass forces. By
considering both circulatory and added mass forces, Floryan ef al. (2017) presented
scaling laws for the thrust and power of heaving or pitching two-dimensional foils.
Similarly, Moored & Quinn (2018) developed scaling laws by considering circulatory
forces, added mass forces and wake-induced nonlinearities that are not accounted for
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in classical linear theory. Both Floryan et al. (2017) and Moored & Quinn (2018)
showed that not only the Strouhal number, but also the reduced frequency are
important for capturing the scaling of the force production and power consumption
of oscillating hydrofoils.

Here, we extend the scaling relations of Moored & Quinn (2018) from two to
three dimensions by varying the aspect ratio of pitching propulsors. Our new scaling
relations are then verified through simulations and experiments. We show that the
core two-dimensional scaling relations presented in Moored & Quinn (2018) can
be modified by combining classical scalings from aerodynamic and hydrodynamic
theory of the added mass and effects of upwash/downwash, and by accounting for the
elliptical shape of trailing-edge vortices. The scaling relations developed in this study
offer a guide to speeding up the design of bio-inspired vehicles, and they provide
insight into the flow physics that drive thrust production, power consumption and
efficient swimming. Importantly, the scaling laws offer a physical rationale for the
origins of force production and power consumption.

The paper is organized in the following manner. Section 2 describes the problem
formulation and variable ranges for the current study. Section 3 describes the
numerical and experimental methods employed. Section 4 describes the previously
derived two-dimensional scaling laws and the newly developed three-dimensional
corrections. Section 5 presents numerical and experimental validation of the scaling
laws. Finally, § 6 describes the limitations and possible extensions of the scaling laws.

2. Problem formulation
2.1. Idealized three-dimensional swimmer

Self-propelled simulations are performed on an idealized swimmer that is a
combination of a virtual body and a three-dimensional propulsor (figure 1a). The
propulsor is represented by a rectangular-planform propulsor that is pitching about
its leading edge. The virtual body is not present in the computational domain, but
its presence is represented as a drag force, D, acting on the propulsor. To determine
the drag force, we used a classic high-Reynolds-number drag law, where drag is
proportional to the square of the swimming speed U:

D=1/2pCpS,U?, (2.1)

where p is the fluid density, Cp is the drag coefficient and S, represents the total
wetted surface area of a swimmer (figure 1b).

2.2. Input parameters

In self-propelled swimming, the time-averaged thrust and drag of a swimmer are
balanced when the swimmer is at a cycle-averaged steady state. The drag coefficient
of the body and the wetted area to propulsor planform area ratio, S,, =S,,/S,, both
affect how thrust and drag are balanced on a swimmer and their combination is
represented by the Lighthill number

Li=CpS,,. 2.2)

The Lighthill number represents the propulsor loading during self-propelled swimming
and is analogous to the wing loading of birds and aircraft. When Li is high there
is high propulsor loading and vice versa. Given constant kinematics and propulsor
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(a) Doublet wake (b)
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FIGURE 1. (Colour online) (a) Illustration of an idealized pitching three-dimensional
swimmer as a combination of a virtual body and propulsor. The doublet wake elements
model vorticity shed from the trailing edge of the propulsor. () Representation of the
wetted surface area and propulsor planform area.

geometries, high-Li swimmers will swim slower than low-Li swimmers. In the current
study, the Lighthill number is varied from 0.05 to 0.15, which covers a range typical
of animal locomotion (Eloy 2013).

The non-dimensional mass of the swimmer, defined as body mass divided by added
mass, m* = m/pS,c, was chosen as 1. In this equation, p and ¢ correspond to the
density of water and the chord length of the foil, respectively. Moored & Quinn (2018)
previously showed that the self-propelled performance of a swimmer was found to
be nearly independent of its non-dimensional mass as long as m* > 1. By using the
lower bound of this range, the simulations then reach their cycle-averaged steady-state
solution with the smallest amount of simulation time. The simulated propulsor has a
chord length of ¢=0.1 m and a NACA 0012 cross-section in accordance with previous
work (Moored & Quinn 2018). Its planform area is defined as S, =sc, where s is the
span length of the propulsor. The aspect ratio for the rectangular propulsor is defined
as A2=s/c, which varies from 1 to 1000 in the current study, where the highest aspect
ratio represents an effectively two-dimensional propulsor.

The propulsor’s kinematic motion is characterized as sinusoidal pitching about the
leading edge where the pitching angle is described by 6(f) =6, sin(2mtft), where f is
pitching frequency, 6, is pitching amplitude and ¢ is time. The pitching amplitude co-
varies with the peak-to-peak amplitude, which can be specified as a non-dimensional
amplitude-to-chord ratio:

A*=A/c. (2.3)

Then the pitching amplitude can be written as
0y =sin"'(A*/2). (2.4)

All of the input parameters used in the current study are reported in table 1. The
frequency, amplitude and aspect ratio ranges are chosen to produce a dataset that
covers the Strouhal number, reduced frequency and aspect ratio ranges that are
typical of biological and bio-inspired propulsion (Sambilay Jr 1990; Saadat et al.
2017). Moreover, the Reynolds number of the experiments is Re = 30000 and the
simulations are effectively at an infinite Reynolds number.

2.3. Output parameters

To examine bulk swimming performance, we time-averaged output parameters over
an oscillation cycle, as indicated with an overline (). All mean quantities are taken
after a swimmer has reached steady-state swimming, defined as the time when the


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.334

Downloaded from https://www.cambridge.org/core. Lehigh University, on 03 Jun 2019 at 18:09:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2019.334

Scaling laws for three-dimensional pitching propulsors 1121

Computational input parameters:

AR 1 1.5 2 4 6 8 10 12 1000
A* 0.2 03 04 0.5 06 — — — —
f (Hz) 1 2 — — —_ = = = —
m* — - — —_ - - - —
Li 005 0.1 015 — —_ - = = —
Experimental input parameters:

AR 1 1.5 2 1000 — — - — —
A* 0.2 03 04 0.5 —_ = = = =
f (Hz) 025 05 075 1 125 15 175 2 —
Re 30000 — — — —_ = = = =

Uy ms™) 015 — — — - - =

TABLE 1. Input parameters used in the present study.

net thrust coefficient is Cr ., < 107>, where Cr, = (T — 5)/(1/2,0S1,U2) and T is
the thrust force, calculated by integrating of the pressure forces projected in the —x
direction. Once the mean swimming speed is determined, the reduced frequency and
the Strouhal number are defined as

k = =, St = —=. (25a,b)

In self-propelled swimming, these two variables become outputs since the swimming
speed is unknown a priori. Furthermore, the time-averaged thrust and power
coefficients non-dimensionalized by the added mass forces and added mass power
from small-amplitude theory (Garrick 1936) are defined as

T P

Cr=———, Cp=——.
17 08, f2A P S 2AYT

(2.6a,b)

Here, the power is calculated as the negative inner product of the force vector and
velocity vector of each boundary element. The mean thrust and power may also be
non-dimensionalized by the dynamic pressure:

T P

—, Pdn = ————5- (2.7a,b)
1/208,U 1/208,U

CT,dyn =

The two normalizations are related by simple transformations: Cr 4, = Cr (2 St?) and
CP,dyn =Cp (2 Stz)-

3. Methods
3.1. Numerical methods

To model the forces acting on self-propelled pitching propulsors, we used an unsteady
three-dimensional boundary element method. We assume potential flow, that is,
irrotational, incompressible and inviscid flow governed by Laplace’s equation. There
is a general solution to the governing equation, so the problem is reduced to finding a
distribution of doublet and source elements on the propulsor’s surface and wake that
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satisfy the boundary conditions. An internal Dirichlet boundary condition is imposed
in order to enforce the no-flux condition on the surface of the propulsor at each time
step. The far-field boundary condition, which is that flow perturbations must decay
with distance from the propulsor, is implicitly satisfied by the elementary solutions
of the doublet and source elements. The propulsor and wake surface are discretized
by a finite number of quadrilateral boundary elements. Each element on the body
surface has an associated collocation point located at the element’s centre, just inside
the body where the Dirichlet condition is enforced. An explicit Kutta condition is
enforced at the trailing edge, and at each time step a wake doublet element is shed
with a strength that satisfies Kelvin’s circulation theorem. The wake elements are
advected with the local velocity field by applying the desingularized Biot—Savart law
(Krasny 1986) leading to wake deformation and roll up. The tangential perturbation
velocity over the body is found by a local differentiation of the perturbation potential.
The unsteady Bernoulli equation is then used to calculate the pressure field acting on
the body. Finally, the self-propelled body dynamics is calculated when the streamwise
translational degree of freedom is unconstrained. The body velocity and position are
determined at the current time step through forward differencing and the trapezoidal
rule, respectively:

n

n+1 n Fx
U™ = Ug + 7 AL (3.1
=X+ LUt + Uy At (3.2)

where F7} is the net force acting on the foil in the streamwise direction at
the nth time step, x, is the body position of the foil and Ar is the time step.
Validations of the current self-propelled boundary element method can be found in
appendix A for time-averaged power and velocity. More details and validations of
the three-dimensional unsteady boundary element method can be found in Moored
(2018). Further validations and applications of the solver can be found in Quinn et al.
(2014b), Fish et al. (2016) and Akoz & Moored (2018).

3.2. Experimental methods

To complement the simulations, we measured the forces on rigid pitching airfoils
suspended in a closed-loop water channel (figure 2a; Rolling Hills 1520; test section:
380 mm wide, 450 mm deep, 1520 mm long). An acrylic baffle was installed at the
free surface to minimize surface waves. For all tests, the free-steam speed, U, was
150 mm s~! with fluctuations less than 1.0 %. We tested three NACA 0012 airfoils
with the same chord (100 mm) and three different spans: 100, 150 and 200 mm
(aspect ratio AR =1.0, 1.5 or 2.0). The drive rod was made of carbon fibre and the
airfoil was 3D-printed (Dimension 1200es) with acrylonitrile—butadiene—styrene. We
also used the 200 mm span airfoil to create a two-dimensional control case (/R = 00)
by installing a horizontal splitter plate at the base of the airfoil (figure 2a). In the
two-dimensional case, the gap between the airfoil tips and the baffle/splitter plate
was less than 5 mm. The airfoils were actuated with harmonic pitching motions by
a digital servo motor (Dynamixel MX-64). As with the simulations, the pitch angle
was prescribed to be 6 = 6, sin(2nft). We varied the pitch frequency from 0.25 to
2.0 Hz in increments of 0.25 Hz and the non-dimensional peak-to-peak amplitude
from 0.2 to 0.5 in intervals of 0.1.

We extracted the thrust and efficiency of the airfoils over a range of motions using
angle and force/torque measurements. We measured pitch angle 6 with an absolute
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FIGURE 2. (Colour online) Experimental set-up. (a) The test apparatus was mounted on
the top of the water channel. (b) A servo motor actuated the airfoil using a drive rod.
(c) Four different aspect ratios (AR) were tested.

encoder (US Digital A2K 4096 CPRO) and forces/torques with a six-axis load cell
(ATT MINI 40) — both of which were installed along the drive rod of the airfoil
(figure 2b). The measured pitch angles and forces/torques were synchronized by a
custom circuit, then transmitted (ATI Wireless F/T) to a control PC (Omen 870),
where they were recorded by a custom LabVIEW script (LabVIEW 2017). For each
trial, data were averaged over 20 pitching cycles, with 10 cycles added on either
end to provide a warm-up and cool-down period. Each trial was conducted five
times. The resolutions of the force/torque sensor were sufficient to resolve differences
between the trials: force resolution was £0.01 N in the lateral (y) and streamwise
(x) directions and +0.02 N in the vertical (z) direction, and torque resolution was
4+0.25 N mm about the x axis, y axis and z axis. To measure the force transmitted
from the airfoil to the water, we subtracted forces measured in air (channel drained)
from forces measured in water (channel filled) for all trials. We transformed the
resulting forces from force sensor coordinates into water channel coordinates to get
net thrust (7)) and lift (L). Subtracting forces in air produced a small effect that was
most pronounced at large frequencies: when f =2 Hz and A = 2, the procedure
resulted in <7 % decreases in T and <2 % decreases in L. The power transmitted
to the fluid by the airfoil is P =f fl;ﬁl/f 7.0 dt, where 7, is z-axis torque and 6 is
pitching velocity. Coordinate transformations, phase-averaging and power calculations
were performed with Matlab R2018a.

3.3. Propulsor performance

The combination of the computational input parameters (table 1) leads to 270
three-dimensional, self-propelled simulations with a reduced frequency range of
0.27 < k < 1.35 and a Strouhal number range of 0.1 < St < 0.32. From these
simulations the thrust and power coefficients as defined in (2.6) are calculated.
Figure 3 presents the thrust and power coefficients as functions of the reduced
frequency for Li = 0.15. For a fixed aspect ratio, the thrust coefficient increases
with the reduced frequency until an asymptotic value is reached at around k = 1.
For a fixed reduced frequency, the thrust increases monotonically with aspect ratio,
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FIGURE 3. Coefficient of (a) thrust and (b) power as a function of reduced frequency
from the self-propelled simulations for Li =0.15. The marker colours going from black to
white indicate the A from low to high values, respectively, over the range 1 < AR < 1000.

which has been observed previously (Buchholz & Smits 2008; Green & Smits 2008).
Like the thrust coefficient, the power coefficient generally increases with aspect
ratio at a fixed reduced frequency. For a fixed aspect ratio, the power is relatively
insensitive to changes in the reduced frequency, though it shows a slight minimum at
around k=0.75. Additionally, the other Lighthill number cases show the same trends.
It is clear that the thrust and power of pitching wings vary widely with aspect
ratio. This variation motivates corrections to the two-dimensional core scaling model
developed in Moored & Quinn (2018) that account for variations in aspect ratio.

4. Scaling laws
4.1. Previous two-dimensional scaling relations

Moored & Quinn (2018) introduced scaling relations for the performance of
two-dimensional, self-propelled pitching hydrofoils. They considered both the added
mass and circulatory forces from classical linear theory (Garrick 1936) and developed
a new scaling model by introducing additional nonlinear terms that are not accounted
for in linear theory. For instance, the thrust coefficient defined in (2.6) is proposed
to be proportional to the superposition of three terms:

Cr = ¢+ ¢y + 303,

3F F G 19

ith: ¢, = | — - —(F*+G? 2, 4.1
with: 2 = 15+ e om0 T )<n2k2+4>] “1)

@3 = A%,

where ¢;, ¢; and c¢; are constants, which are determined via regression over the
entire numerical dataset by minimizing the squared residuals, and F and G are the
real and imaginary components of Theodorsen’s lift deficiency function, respectively
(Theodorsen 1935). The first and second terms represented by c¢; and c,¢, are the
added mass and circulatory streamwise forces, respectively, from linear theory while
the third term represented by c;¢; is not accounted for in linear theory. The third
term corresponds to the form drag induced by the effects of vortex shedding at the
trailing edge and it is proportional to the time-varying projected frontal area that
occurs during large-amplitude pitching oscillations.
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FIGURE 4. (Colour online) Schematic showing the components of the two-dimensional
power scaling relation developed in Moored & Quinn (2018).

Moored & Quinn (2018) also proposed that the power coefficient defined in (2.6)
is a linear combination of three power terms denoted graphically in figure 4 and
mathematically as

Cr = ¢4+ cs5¢s5 + cods,

Na k*
ith: ¢5s = — , 4.2
with: ¢s X (k*—{—l) (4.2)
¢s = SPk*,

where ¢4, ¢s and ¢4 are arbitrary constants and k* =k/(1 + 4 S¢%). The first term (c4)
is the added mass power from linear theory. The second term (cs¢s) is a power term
that is not present in linear theory and develops from the x-component of velocity
of a pitching propulsor, which is neglected in linear theory due to a small-amplitude
assumption. For large-amplitude motions this velocity does not disappear, leading to
an additional velocity component on the bound vorticity of the propulsor and creating
an additional contribution to the generalized Kutta—Joukowski force also known as
the vortex force (Saffman 1992). The third term (cepg) is also a power term that
is absent in linear theory and develops during large-amplitude motions when the
trailing-edge vortices are no longer planar as assumed in the theory. As a result, the
proximity of the trailing-edge vortices induces a streamwise velocity over the foil and
an additional contribution to the vortex force. In short, the second and third terms are
described as the large-amplitude separating shear layer and vortex proximity power
terms, respectively, and both terms are circulatory in nature. For more details of the
development of the two-dimensional scaling relations, see Moored & Quinn (2018).

4.2. Three-dimensional scaling laws

To scale the thrust and power of unsteady three-dimensional pitching propulsors, we
hypothesize that the two-dimensional core scaling model will need to be modified in
three ways: (1) the added mass forces must account for the added mass of a finite-
span wing, (2) the circulatory forces must account for the downwash/upwash effects
from the tip vortex system of the propulsor and (3) the nonlinear wake terms must
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account for the elliptical topology of shedding trailing-edge vortices when calculating
their induced velocity. Here, we consider these modifications to extend the scaling
relations to three-dimensional flows with propulsors of varying aspect ratio.

4.2.1. Added mass and circulatory modifications

In general, the added mass of an oscillating propulsor is the product of the fluid
density, the planform area and a characteristic length scale of the projected area,
which is commonly the chord length for two-dimensional foils. On the other hand, a
characteristic added mass for arbitrary three-dimensional bodies needs to be defined
by two principal dimensions in the projected area. For a rectangular propulsor, these
principal dimensions are the span, s, and chord, ¢, of the propulsor and an empirical
approximation of the added mass can be written as M>2, « ps’c?/(s + ¢) (Brennen
1982). This can be rearranged in terms of the aspect ratio noting that A = s/c for
a rectangular wing and M22, o psc® such that M0, o« M2D [AR/(AR + 1)]. The added
mass thrust and power are both proportional to the added mass of the propulsor, so
we expect them to scale with the same aspect ratio modification as the added mass
itself.

A finite-span pitching wing will shed a series of vortex rings into its wake
(Buchholz & Smits 2008; Green & Smits 2008; King, Kumar & Green 2018), which
will lead to time-varying upwash and downwash over the wing due to trailing-edge
and tip vortices. Classical unsteady linear theory (Garrick 1936) does not account for
the upwash or downwash from the tip vortices, but Prandtl’s finite wing theory does,
at least in steady flows (Prandtl 1920). We hypothesize that tip vortices would also
modify the effective angle of attack of an unsteady pitching wing, and therefore that
Prandtl’s finite wing theory could offer a modification for the unsteady circulatory
forces. Following finite wing theory for elliptical wings, the three-dimensional lift
coefficient, C;”, and consequently the circulatory power, should be proportional to
C° x C2P[ AR/ (AR +2)], where CiP is the lift coefficient from a two-dimensional foil.
Since the circulatory thrust forces of a pitching wing are the projection of this lift
force in the streamwise direction, we also expect the circulatory thrust forces to scale
as G o« CP[AR/(AR + 2)]. Given that an unsteady propulsor sheds tip vortices of
alternating sign, one might expect that the circulatory correction would be dependent
upon the reduced frequency; however, it was determined that a steady-flow scaling
was sufficient as shown in § 5.

4.2.2. Modification of two-dimensional scaling laws

These classical corrections from aerodynamic and hydrodynamic theory can be
applied to the circulatory and added mass terms of the two-dimensional core scaling
model as follows:

AR AR
Cr=c <1R+1> + (/R—{—Z) + ¢3¢, 4.3)

R MR R
Cr=cy </.‘R+1> + ¢5¢s </R+2>+C6¢6 <1_‘R—|—2>' 4.4)

Here, the c¢; and ¢, terms represent added mass forces, so they were modified with
the added mass correction ([A&/(AR + 1)]). In contrast, the ¢, ¢5 and ¢4 terms
represent circulatory forces, so they were modified with the circulatory correction
([R/(AR + 2)]). The c; term represents form drag and is therefore unmodified;
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it represents neither circulatory nor added mass forces. Dividing by the added mass
correction reveals a more compact form of the three-dimensional scaling:

Cr = c1 +ad; + s,
R+1 R+1 AR+1
where: C; = Cr ( ) . Gy = () . 93=¢3 < );

MR AR+2 AR
4.5)
Ci = ca+ s + codys
. AR+1 / AR+1 , AR+1
where: C; = CP< v ) . Ps=¢s </R+2> . s =6 </R+2>
(4.6)

The adjusted scalings now model the three-dimensional propulsor added mass and the
downwash and upwash imposed by the wake, but they do not factor in the topology
of the shedding vortex system. To account for this three-dimensionality, we propose
a further refinement based on the known elliptical shape of vortex rings in the wake,
which we introduce in the next section.

4.2.3. Elliptical vortex ring modifications

The ¢s and c¢¢ terms in the power scaling relation can be further modified to
fully account for three-dimensionality. Referring to the development of these terms
in Moored & Quinn (2018), they rely on balancing the cross-stream component
of the velocity induced at the trailing edge by a shedding trailing-edge vortex
and the cross-stream component of the velocity induced by the bound vortex with
circulation I,. This enforces the Kutta condition at the trailing edge and determines
a scaling for the additional bound circulation, Iy = I, — Iy, where I} is the bound
circulation from the quasi-steady motion of the wing alone, while the additional bound
circulation is the bound circulation induced by the influence of the wake. Moreover,
the additional bound circulation is important to the scaling of both the ¢s and cg
terms. The two-dimensional scaling model assumes that the shedding trailing-edge
vortex is two-dimensional, that is, it is a line vortex that extends to infinity. In a
three-dimensional flow, the shedding vortex is essentially half of a full vortex ring
and is elliptical in shape (figure 5), where the major axis of the ellipse is the span
length of the propulsor. The elliptical topology of shedding trailing-edge vortices has
been observed in experimental (Von Ellenrieder, Parker & Soria 2003; Buchholz &
Smits 2006) and numerical (Zhu et al. 2002; Blondeaux et al. 2005; Dong, Mittal
& Najjar 2006) studies of oscillating finite-span wings and hydrofoils as well as in
biological studies (Drucker & Lauder 1999). This difference in the topology of the
shedding trailing-edge vortex between two and three dimensions alters the magnitude
of the induced velocity at the trailing edge.

By calculating the velocity induced at the trailing edge of the propulsor midspan
by the shedding half-ellipse trailing-edge vortex (see appendix A for details), a new
scaling relation for the additional bound circulation is

. yk* 1 E(my)
I o c*6 , where: y == |[E(m) + ——— . 4.7

Here, m; and m, are elliptic moduli where m, =1 — 442kk* and m, = /1 — 1/(4AR%kk*),
E is the complete elliptic integral of the second kind and 6 is the pitching rate of the
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FIGURE 5. (Colour online) Sectional cut A-A is at the symmetry plane of the wing.
(a) Cross-sectional view of elliptical vortex ring shedding behind a rectangular propulsor.
(b) Side view of elliptical vortex ring that shows the distance from the vortex core to the
trailing edge at the midspan of the propulsor.

propulsor. Additionally, the vortex proximity term not only uses the additional bound
circulation, but also the streamwise component of the velocity induced at the trailing
edge by a shedding trailing-edge vortex. For a shedding half-ellipse vortex, this
induced velocity scales as u;,q o< c20fSty /[U(1 + 4 S*)]. Consequently, the modified
power scaling for the separating shear layer term, cs¢pZ, and the vortex proximity
term, ce¢p¢, will be

St yk* AR+1 AR+1
2 d o¢f =S~k . 4.8a,b
P =7 <1+yk*) <sz+2> and ¢ y(ﬂ%—i—Z) (4.84,)

Now, the full three-dimensional power scaling relation becomes
C;k) =c4+ C5¢;k + C6¢; (49)

in its compact form.
The scaling relations can also be written in terms of the thrust and power
coefficients normalized by dynamic pressure as

G g = (€1 + 2005 + 305)2 8P, (4.10)
Chayn = (Ca + c5¢% + c9p)2 SP2, (4.11)

where C;dyn =Cram[(AR+1)/AR] and C}‘,,dyn = Cpaul(AT+1)/AR]. Note that the three-
dimensional modifications applied to the two-dimensional core scaling model did not
introduce any new terms. A summary of the scaling relations is provided in table 2.

5. Validation of three-dimensional scaling relations

Figure 6 presents numerical and experimental data for the modified dynamic
pressure-based thrust and power coefficients. Both coefficients are graphed against
the scaling relations proposed in (4.10) and (4.11). Note that the experimental
measurements are acquired at fixed-velocity conditions and they have a reduced
frequency range of 0.16 < k< 1.33 and a Strouhal number range of 0.03 < St < 0.45.
When either the numerical or experimental data are graphed against the scaling
relations, the data can be seen to collapse well to a line of slope one for both
the thrust and power. In fact, the numerical data are within 5% of the scaling
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T=pC:S,fPA R/(R+ 1]
P=pC;S,fPAULR/(R+ 1]
Cr=c1+d; +c3¢;
Ch =ca+ 55 + cody
¢F=[3F/2+ F/7*k* — G/2nk — (F* + GO)(1 /7K + /DR + 1)/ (R +2)
¢y =A"[(R+ 1)/ AR]
¢t = (S /)y k" /(yk* + DI(ARA+ 1)/ (R +2)
b =SPky (R+1)/(R+2)
y = 1/2[E(my) + E(my) / (B/4kk*)]
my = /1 — 4 Rkk*
my = \/T— 1/ AARK)
k* =k/(1 4 45%)
Numerical: ¢; =2.83 ¢, =—-3.21 ¢3=—-0.59 ¢, =5.03 ¢5=17.34 ¢ =06.65
Experimental: ¢; =3.91 ¢;=—10.90 ¢3=-0.97 ¢4, =7.02 ¢s =—64.31 ¢, =75.97

TABLE 2. Summary of scaling relations with coefficients that are numerically and
experimentally determined.

predictions while the experimental data are within £24 % of the scaling predictions
based on their deviation from the reference lines. For comparison, the previous
two-dimensional numerical data (Moored & Quinn 2018) had a broader range of
variables and predicted the thrust and power to within +6.5% and +5.6 % for their
full-scale thrust and power, respectively, which is quite similar to the current study.
As expected the experimental data collapse is not as good as the numerical collapse,
presumably due to viscous effects that are not accounted for in the numerical solutions
nor the scaling relations. Regardless, the collapse of the data to a line of slope one
confirms that the newly proposed three-dimensional scaling relations capture the
dominant flow physics for self-propelled or fixed-velocity pitching wings across a
wide range of k, St and A42. Moreover, an alternative geometric approach to assessing
the collapse of data to three-dimensional planes can be used to show that the
collapse of data is independent of the values of the constants c¢;—cs (see appendix C).
However, the coefficients are necessary to produce a predictive scaling model, and
they are determined via regression by minimizing the squared residuals over the
numerical or experimental data. In fact, each dataset has different coefficients that
best fit the data (table 2). This suggests that the coefficients depend on Reynolds
number, which differs between the experiments (Re =30000) and the simulations (Re
effectively infinite). Moreover, the c¢s coefficient switches sign in the experimental
data, meaning it represents power extraction, whereas the other coefficients represent
power consumption. This is likely due to a viscosity-driven phase shift between the
lift term scaled by c¢s and the velocity of the hydrofoil that is not captured in the
inviscid numerics. In contrast, the added mass thrust and power terms are positive in
both experiments and simulations, as expected based on physical grounds.

We can determine the importance of each scaling modification by considering their
effects in isolation. If only the three-dimensional added mass correction is used in
the scaling relations, the numerical data are within 40 % and +25 % of the thrust
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FIGURE 6. Dynamic pressure-based thrust and power coefficients plotted as functions of
their proposed scaling relations. (a,b) Numerical data with the coefficients ¢; =2.83, ¢, =
—3.214, ¢; = —0.5904, ¢4 =5.033, ¢5 = 17.34 and cq = 6.645. (c,d) Experimental data
with the coefficients ¢; =3.908, ¢; = —10.9, ¢3 = —0.9746, ¢, =7.024, ¢s = —64.31 and
Ce = 75.97.

and power predictions, respectively, while the experimental data are within £50%
and +45 % of the thrust and power predictions, respectively. If the added mass and
circulatory corrections are used, the numerical data are within 5% and +15 % for
the thrust and power predictions, respectively, while the experimental data are within
435 % of both scaling predictions. Finally, when all three corrections are used, then
the best agreement is recovered where the numerical data are within +5 % of both
predictions while the experimental data are within £24 % of both predictions, as stated
previously. This deeper analysis shows that by applying only the added mass and
circulatory corrections, a majority of the relevant flow physics can be captured, but
further refinement is possible by considering the elliptical topology of the shedding
trailing-edge vortices.

6. Model limitations

The current study presents an extension to the two-dimensional scaling laws
presented in Moored & Quinn (2018) by accounting for variations in the aspect
ratio of propulsors. The developed model is unsteady in nature in that it accounts for
added mass and wake-induced effects. The model is comprised of terms from classical
linear theory, terms introduced to account for the nonlinearities of large-amplitude
motions and deforming wakes and, importantly, circulatory and added mass corrections
to account for upwash/downwash, changes in added mass with aspect ratio and
the elliptical topology of shedding vortices. The scaling laws have shown good
collapse for a wide range of parameters. The pitching amplitude is varied in the
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range 5.7° < 6y < 17.5°, which is beyond the limits of small-amplitude motion. In
previous work the two-dimensional version of the scaling laws was shown to collapse
data for pitch amplitudes up to 22° (Moored & Quinn 2018). Even though the
linear theory terms are formulated for small angles, the nonlinear terms are not,
and it is expected that the scaling laws will be valid until large pitch angles as
long as leading-edge separation is minimal. However, ongoing work suggests that
leading-edge separation may be accounted for in the form of a drag term since it is
developed from the low pressure of the shedding vortex street acting on the projected
frontal area of the foil. In the current study the reduced frequency varies in the range
0.16 < k < 1.33, the Strouhal number in the range 0.03 < St < 0.45 and the aspect
ratio in the range 1 < AR < 1000, covering a wide range of the typical values for
biological propulsion. Currently, the three-dimensional scaling laws do not account for
combined heaving and pitching motions, planform and cross-section shape variations
besides changes in the aspect ratio, flexibility, intermittent motions or changes in the
pitching axis. However, all of these limitations in the scaling laws are currently being
addressed.

7. Conclusion

In this work novel scaling laws of the thrust production and power consumption of
pitching bio-propulsors are developed by extending the two-dimensional core scaling
model presented in Moored & Quinn (2018) to account for three-dimensionality in
the form of aspect ratio variations. This is accomplished by considering the added
mass of a finite-span propulsor, the upwash/downwash effects on a propulsor from its
trailing vortex system and the influence of elliptical vortex rings shed at the trailing
edge. Both self-propelled numerical simulations and fixed-velocity experimental
measurements confirm that the proposed scalings can be used to predict thrust and
power. The established scaling relationships elucidate the dominant flow physics
behind the force production and energetics of pitching bio-propulsors and can be
used to accelerate the design of bio-inspired devices.
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Appendix A. Validation
A.1. Numerical validation

In order to validate the accuracy of the self-propelled boundary element method
simulations, self-propelled experiments were performed in the same closed-loop water
channel as the fixed-velocity experiments (figure 2a; Rolling Hills 1520; test section:
380 mm wide, 450 mm deep, 1520 mm long). Figure 7(a,b) shows the experimental
apparatus, which consists of a NACA 0012 rectangular wing with an aspect ratio of
two submerged in the centre of the tunnel and pitched sinusoidally about its leading
edge by a digital servo motor (Dynamixel MX-64). The experiments were performed
over a range of frequencies 0.5 <f <4 Hz and with three non-dimensional amplitudes
of A* =0.219, 0.313 and 0.466. The wing and actuation mechanism are mounted
onto frictionless air bushings (Newway air bearings) that float on 0.75” stainless steel
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FIGURE 7. (Colour online) (a,b) Self-propelled experimental apparatus. Time-averaged (c)
swimming speed and (d) power as functions of pitching frequency. Numerical boundary
element method solutions are denoted with solid lines while experimental measurements
are denoted by triangle markers. The line and marker colour, changing from black to
white, corresponds to different amplitudes of motion going from the lowest to highest
values, respectively.

rails oriented in the streamwise direction. The velocity of the water tunnel is tuned
until the wing is neither moving upstream nor downstream over several flapping
cycles. The tunnel velocity then represents the self-propelled swimming speed for a
given set of kinematic parameters. The pitching moment and the time-varying pitch
angle were measured directly from the internal voltage and current sensors (used
with a calibration curve to determine torque) as well as the position sensors of the
Dynamixel MX-64 servo motor.

Numerically, a rectangular wing of /R =2 with a NACA 0012 profile and pitching
about its leading edge was simulated in self-propelled swimming as described in § 3.
One difference between this validation and the simulations for the main portion of
the current study is that a boundary layer solver is used to calculate the drag on the
wing instead of an imposed drag force from a virtual body. The viscous boundary
layer solver uses the outer potential flow to calculate the skin friction drag using
a von Kdrmidn momentum integral approach. The coupled boundary layer solver
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is extensively detailed and validated in previous work (Moored 2018). The drag
associated with an actuating rod is estimated by using the drag coefficient—-Reynolds
number relationship for cylinders in uniform flow to impose an additional drag
force beyond the skin friction of the wing in the simulations (Munson, Young &
Okiishi 1990). The top and the bottom surfaces of the propulsor are discretized into
20 spanwise and 40 chordwise elements for a total of 3200 body elements. The
computation is discretized into 50 time steps per oscillation cycle and run for a total
of 20 cycles. All of the doublet wake elements are lumped into a set of elements
once they have advected far enough downstream to change the forces by less than
1% in order to restrict the growth of the problem size in time.

Figure 7(c,d) presents the time-averaged swimming speed and power as functions
of the frequency. The colours of the lines and markers represent the amplitude of
motion with the smallest to the largest amplitudes mapped from black to white,
respectively. The solid lines represent the numerical solutions, while the triangle
markers represent the experiments. As the frequency of motion increases, the
swimming speed and power consumption both increase as expected. The simulations
show excellent agreement with the experiments for the self-propelled swimming speed
using the two lowest amplitudes. At the highest amplitude of motion the simulations
modestly overpredict the swimming speed. This discrepancy is likely occurring due to
leading-edge separation in the experiments, which is not modelled in the simulations
and is well known to occur for high pitch amplitudes (Das, Shukla & Govardhan
2016). The simulations show excellent agreement with the experiments for the power
consumption over all of the amplitudes examined. The simulations only slightly
underpredict the power at the highest frequencies. Overall, the experiments act as a
further validation of the boundary element method simulations presented in this work.

A.2. Experimental validation

We validated the accuracy of our set-up by comparing our force/torque data to data
from a previous study in a similarly sized closed-loop water channel at Princeton
University (Floryan et al. 2017). As in our study, the previous study measured forces
and torques on rigid pitching airfoils. Our measured time-averaged thrust and power
coefficients agree very well with the published values (figure 8a). To make a fair
comparison, we matched all possible experimental conditions. First, we recreated a
rigid airfoil with the same geometry: a teardrop cross-section, an 80 mm chord, a
maximum thickness of 8 mm and an aspect ratio of 3.5 (Floryan et al. 2017). To
minimize differences in vibrational noise, we used the same distance between the
bottom of the force sensor and the top edge of the airfoil (2.5 cm). We used a
horizontal splitter plate to match the depth of the Princeton channel (300 mm) and
used the same free-stream velocity, 60 mm s~!' (a chord-based Reynolds number of
4780). We recreated three of the reported pitch amplitudes, 6, =5°, 9° and 13°, over
a range of frequencies. Each individual trial was performed 7 times with 30 total
cycles: 5 cycles for a warm-up period, 20 cycles for data acquisition and 5 cycles for
a cooling period. To increase the signal-to-noise ratio at low frequencies (f < 0.5 Hz),
we applied a second-order Butterworth filter (6f cutoff frequency) to all instantaneous
force and position data. The only difference between set-ups was that the airfoil
of the previous study was a single piece of anodized aluminium, whereas ours was
3D-printed (Dimension 1200es) with acrylonitrile-butadiene—styrene and fixed to a
carbon-fibre drive rod. To be consistent with the previous study, we did not remove
inertial forces by subtracting forces in air from forces in water. Given the lower


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.334

Downloaded from https://www.cambridge.org/core. Lehigh University, on 03 Jun 2019 at 18:09:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2019.334

1134 F. Ayancik and others
(a) 07 Princeton (b) 40 Princeton e
0.6 o g=5 % . 350 0 g=5°
05|-@ 0=9° ié 1 30-@ Gp=9° ® ©
o =13° % ' ° —13°
04k o § 251 6p=13
02t 5 1 sk o
0.1} #, . o
ol 1880 1.0 2©
;ég 051 @
—0.1 _ ; L L ] ‘ﬁa‘) I L L
0 0.2 0.4 0.6 0.8 0 1 2 3 4
ceSP? C6SP + coSEEf*

FIGURE 8. Validating thrust/power data. (a) The measured thrust coefficient agrees with
published values. Thrust coefficient is defined as Cr=T/0.5pau?, where p is water density
and a is airfoil area (twice the span times chord). Frequency is scaled as it was in the
previous study (Floryan et al. 2017) to facilitate comparisons: the Strouhal number is
defined as St=fA*c/u and the scaling constant ¢¢ = 2.55. Error bars show =+1 standard
deviation, and the shaded band shows an envelope circumscribing the published values
(Floryan et al. 2017). (b) The measured power coefficient also agrees with published
values, particularly at lower frequencies. The reduced frequency is defined as f* =2nfc/u,
where ¢ is chord length, and the scaling constant ¢y = 4.89.

frequencies used for our validation, we do not expect this difference to significantly
affect our comparison, though it may explain the slight discrepancy between the two
studies in the power reported at higher frequencies (figure 8b).

Appendix B. Induced velocity from a half-ellipse-shaped vortex

The induced velocity at the midspan trailing edge of a wing from a half-ellipse-
shaped shedding vortex ring is a function of the radius of the ellipse, r, and the
eccentric anomaly, B8 (figure 5). The Biot—Savart law provides a general description of
the differential induced velocity field produced by a differential segment of a vortex,
while the total velocity will be the integration of this influence along the length of
the vortex as

I [“dsxr (s/2)rs
Via=— ———, where: r(8) = .
\/(s/Z)2 sin” B + r2 cos? 8

B 1)

4 Jo  Ir)?

Here I' is the vortex circulation, ds is a vector describing the length and orientation of
a differential segment of a vortex, r is a vector from the midspan trailing edge to ds,
s is the span length and r is the r vector at the symmetry plane of the wing, which
is defined as ry = U/(4f)i+ A/2j, as shown in figure 5. The cross product between
ds and r can be written as

ds x r=|ds| |r| sin ¥, B2)

where V is the angle between the vectors ds and r and siny will be

sin Y = |r|—. (B3)
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By substituting (B2) and (B3) into (B 1), the magnitude of the induced velocity
becomes

r (™ dp
Widl=—— | —57
4 Jo  (s/2)|r]

Equation (B4) is an elliptic integral of the second kind with the solution

\/(s/Z)2 sin” B + r2 cos? B. B4)

Vo = 4£ (s/2)E(my) + IrSIE(ml)' B5)
T (s/2)|rl

Here E is the complete elliptical integral of the second kind and m; and m, are the
elliptic moduli defined as

I P N PP B 6a,b
m; = — " and m, = _(s/2)2’ (B 6a,b)

Equations (B5) and (B 6) can be rewritten as

I [ RcE(my) + 2|r,|[E(m)) (AN (UY
'V"”"'_4n< Aelr ) e '”'_\/<2> +<4f)’ Bred)

my=+/1—4AR’kk* and my=+/1—1/(4R*kk"). (B 8a,b)

The direction of the induced velocity is mutually perpendicular to the direction of r
and the spanwise direction.

Appendix C. Alternative geometric assessment of data collapse

The thrust and power scaling relations stated in (4.5) and (4.6), respectively,
represent flat planes in three dimensions. If the relations are accurate, then C7
graphed as a function of ¢; and ¢; should collapse to a flat plane. Similarly, C;
graphed as a function of ¢! and ¢; should also collapse to a flat plane. Figure 9(a,b)
presents C; and Cj plotted as functions of their scaling terms. By rotating the
orientation of the data about the Cj and Cj axes such that the data are viewed
‘edge-on’ (figure 9c,d), it becomes clear that there is an excellent collapse of the data
to flat planes. In fact, the scaling laws are accurate to within £5 % of their full-scale
value based on the deviation of the data from the reference planes. The collapse
occurs over wide ranges of k, St and A, and is independent of the values of the
constants ¢;—cs. Moreover, the scaling relations can be used as predictive relations
once the values of the constants are determined.

Using this geometric approach to show the collapse of experimental data is
problematic. The issue is that the uncertainties in the measurements at low frequencies
and low amplitudes are amplified when the thrust and power are normalized by f2A2,
which can lead to a misinterpretation of the collapse. Thus, assessing the collapse of
experimental data with the proposed scaling relations is best accomplished when the
thrust and power are normalized by dynamic pressure as presented in the main body
of this study. However, since this three-dimensional geometric approach is equivalent
to the approach in the main body, it can be concluded that the collapse of the data
does not depend on the values of the constants c¢;—cg.


https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.334

Downloaded from https://www.cambridge.org/core. Lehigh University, on 03 Jun 2019 at 18:09:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2019.334

1136 F. Ayancik and others
(b)
*
Cp
4
‘ Reference plane
e 0,050
0 0020 0040 0060 @,
s ®6
(© 3 d) 8
2- 6 P
* * L]
Cr Cp
1- Reference plane 4 Reference plane
(edge-on) (edge-on)
0 -~ < - > >
NN N SINCPOININ 0 0020 0040  0.060 0.050
7 / 7/ e aavd ¢* ¢z
s

FIGURE 9. (a,b) Three-dimensional graphs of the thrust and power coefficients as
functions of their scaling terms. (c,d) Three-dimensional thrust and power coefficient
graphs oriented edge-on with a reference plane. The marker colours indicate the aspect
ratio values varying in the range 1 < AR < 1000 with a gradient of colour from black to
white, respectively.
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