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Abstract
We develop and analyze a model for scheduling transport

for perishable products. Once the harvest is picked, its qual-

ity starts to deteriorate, eventually having no value. In hand-

picked crops, the rate of picking often varies during the day.

One would like to transport the harvest to a cooling station

(cold chain), but to do so according to an optimal policy.

This optimal policy should reflect a trade-off between the

loss of quality and the rate of harvest, and the fact that only

a finite number of transports can be scheduled. We model

the harvest and loss of quality and arrive at a computation-

ally solvable optimization problem.
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1 INTRODUCTION

Optimization is an important part of the food system. Interacting demands on quality, quantity, and

sustainability often can have decisive influence on a product’s viability. With the advent of precision

agriculture, these decisions can be made at more and more granular levels. We are interested in one

specific problem; optimal transportation scheduling for hand-picked crops.

In practice, various hand-picked crops are picked, loaded onto a truck, and then transported to a

cooling facility. Cooling slows the degradation of the product, but ambient temperatures may lead to

noticeable loss of quality while the crop is being aggregated and loaded onto a truck for transport.

This creates a number of challenges. Hand harvesting is, almost by definition, subject to much more

variability than machine harvesting. There are variations from person to person, and also from moment

to moment. Our interest is to start to understand how to think of some of these trade-offs.

There are a number of works which lay foundations in this area. Some survey articles are Amorim,

Meyr, Almeder, and Almada-Lobo (2013) and Akkerman, Farahani, and Grunow (2010). Vehicle rout-

ing problems are well-understood. Vehicle-routing problems have been applied to food supply chains

with a number of case studies providing focus to particular issues. A Portuguese food network was
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studied in Amorim, Parragh, Sperandio, and Almada-Lobo (2014), and Osvald and Stirn (2008) con-

sider a model of a Slovenian system. Rong, Akkerman, and Grunow (2011) consider optimization at

a large system level, and then focuses on a study using bell peppers. Some of these take an even more

granular perspective and look at multitemperature systems; see Hsu and Chen (2014) (cf. Kuo and

Chen, 2010). Both Garcia and Lozano (2005) and Hsu, Hung, and Li (2007) look at the effect of time

windows. Similarly, Arbib, Pacciarelli, and Smriglio (1999) seek to optimize when “launch times” can

be varies.

At a farm level, Ferguson and Koenigsberg (2007) consider perishability at the farm level, seeking to

optimize revenue from deteriorating inventory which can be sold, but which then competes with fresher

inventory. Similarly, Lin and Chen (2003) consider optimal order placement in the face of perishability.

Our interest seems to be unique, in that we are interested particularly in the time spent before the

harvest enters the system. In hot ambient temperatures, some produce can suffer a loss of over 10%
per hour while waiting to be cooled. We are interested in scheduling optimal loading times in the face

of empirically observed time-varying harvest rates (see also Bandiera (2004) for some mathematical

modeling of worker incentives).

Precision agriculture is opening up new challenges. The current literature has focused primarily

on optimization once a harvest has entered the transportation and distribution system. With more and

better sensing and extremely granular data, estimation of the instantaneous rate of harvesting is tech-

nically feasible. We believe that optimization at the actual level of individual harvesting can provide

meaningful improvements.

Our model is continuous both in time and harvest quality. Harvesting occurs on an interval [0, 𝑇 ].
When the fruit is harvested, it decays at a fixed rate, at some point becoming worthless. Storage in cold

chain retards the decay, so we want to carefully plan for transport to cold chain. We pose a problem

involving quality decay and transport to cold chain, reframe it as a constrained optimization problem on

a convex feasible region, and then develop a computationally feasible simulated annealing algorithm

to find the optimum.

2 THE MODEL

Suppose that produce is picked at time-varying rate {𝑟(𝑡); 0 ≤ 𝑡 ≤ 𝑇 } during the day.1 In other words,

the amount of produce picked between times 𝑠 and 𝑡 (with 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 ) is

∫
𝑡

𝑢=𝑠
𝑟(𝑢)𝑑𝑢. (1)

They immediately start to spoil once they are picked. Let us quantify this by assuming that they have

“value” 1 the instant they are picked, and they have value 𝗏𝑘(𝜏)
def
= (1 − 𝑘𝜏)+ after 𝜏 minutes (i.e., they

lose 𝑘% of their value, but cannot have negative value23). This is similar to the perishability function

of Zhang, Hu, and Wang (2011). The challenge is when to collect the berries and transport them to a

cooling area. We have 𝑁 trucks, each of which has capacity 𝐶 , and we want to identify instants {𝑡𝑛}𝑁𝑛=1
at which these trucks should collect the picked berries.

Define 𝑡0
def
= 0; then the 𝑛th truck will collect fruit picked in (𝑡𝑛−1, 𝑡𝑛]. Mathematically, we want to

maximize

𝑃 (𝑡1, 𝑡2 … 𝑡𝑁 )
def
=

𝑁∑
𝑛=1

∫
𝑡𝑛

𝑢=𝑡𝑛−1
𝗏𝑘(𝑡𝑛 − 𝑢)𝑟(𝑢)𝑑𝑢 (2)
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over all nondecreasing sequences (𝑡𝑛)𝑁𝑛=0 with 𝑡0 = 0 such that

max
1≤𝑛≤𝑁 ∫

𝑡𝑛

𝑢=𝑡𝑛−1
𝑟(𝑢)𝑑𝑢 ≤ 𝐶. (3)

The inequality (3) means (recall (1)) that the amount in each truck is less than the capacity 𝐶 , and (2)

means that we maximize the value of the day’s harvest (when spoilage is accounted for).4

We numerically solve this problem, and show that various “naive” scheduling problems are notice-

ably suboptimal. Note that the optimal scheduling decisions propagate; if we modify the load of any

given truck, it may affects how the remaining trucks should be loaded.

3 RESCALING TIME

Let us recalibrate our problem in terms of amount harvested; this allows us to more directly impose

the constraints of (3). For a sequence (𝓁𝑛)𝑁𝑛=1 of elements in ℝ+, define

𝑃 (𝓁1,𝓁2 …𝓁𝑁 )
def
= sup

{
𝑃 (𝑡1, 𝑡2 … 𝑡𝑁 ) ∶ 0 = 𝑡0 < 𝑡1 … 𝑡𝑁 ≤ 𝑇 , ∫

𝑡𝑛

𝑢=𝑡𝑛−1
𝑟(𝑢)𝑑𝑢 = 𝓁𝑛

}
. (4)

Instead of trying to maximize a function of times (i.e., 𝑃 of (2)), we can now maximize function of

harvested amounts. This will simplify how we search through configuration space (namely, we will

end up with a convex configuration space in (10)). We then have that (2)–(3) is equivalent to

inf
{
𝑃 (𝓁1,𝓁2 …𝓁𝑁 ) ∶ 𝓁𝑛 ≤ 𝐶

}
. (5)

Let us now define

𝑅0(𝑡)
def
= ∫

𝑡

𝑢=0
𝑟(𝑢)𝑑𝑢 𝑅1(𝑡)

def
= ∫

𝑡

𝑢=0
𝑢𝑟(𝑢)𝑑𝑢

for 𝑡 ∈ [0, 𝑇 ]. The increments of 𝑅0 directly connect to the capacity constraints of (3). Since 𝗏𝑘 is a

combination of a constant and a linear function, the value function (2) can at least locally be written as

a combination of 𝑅0 and 𝑅1; doing so will help simplify things a bit further. Note that 1 − 𝑘(𝑡 − 𝑢) ≥ 0
if and only if 𝑢 > 𝑡 − 1∕𝑘. Thus5

𝑃 (𝑡1, 𝑡2 … 𝑡𝑁 ) =
𝑁∑
𝑛=1

∫
𝑡𝑛

𝑢=𝑡𝑛−1
{1 − 𝑘(𝑡𝑛 − 𝑢)}𝜒{𝑢>𝑡−1∕𝑘}𝑟(𝑢)𝑑𝑢

=
𝑁∑
𝑛=1

∫
𝑡𝑛

𝑢=𝑡𝑛−1∨(𝑡𝑛−1∕𝑘)
{1 − 𝑘(𝑡𝑛 − 𝑢)}𝑟(𝑢)𝑑𝑢

=
𝑁∑
𝑛=1

{
(1 − 𝑘𝑡𝑛)

{
𝑅0(𝑡𝑛) − 𝑅0

(
𝑡𝑛−1 ∨ (𝑡𝑛 − 1∕𝑘)

)}
+ 𝑘

{
𝑅1(𝑡𝑛) −𝑅1

(
𝑡𝑛−1 ∨ (𝑡𝑛 − 1∕𝑘)

)}}
. (6)

This almost allows us to write 𝑃 (and 𝑃 ) directly in terms of 𝑅0 and 𝑅1.
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Let us now define harvest time. For 𝓁 > 0, define

𝑅̃(𝓁)
def
= inf

{
𝑡 > 0 ∶ 𝑅0(𝑡) ≥ 𝓁

}
;

𝑅̃(𝓁) is the first time that at least 𝓁 units have been harvested. In fact, since 𝑅0 is defined as the running

Lebesgue integral,

𝑅̃(𝓁) = inf
{
𝑡 ≥ 0 ∶ 𝑅0(𝑡) = 𝓁

}
.

We also have that 𝑅̃ is the left-continuous inverse of 𝑅0. Note that if 𝑟 = 0 on an interval (𝑎, 𝑏) (e.g.,

during a work break), 𝑅0 is flat on (𝑎, 𝑏) and thus not invertible. The left-inverse is well-defined, and

turns out to lead to the correct calculations (see below). We would like to use 𝑅̃ to rewrite 𝑃 .

Comparing (4) and (6), there are several possibilities. First of all, we say that 𝑅0 is invertible at level

𝓁 if

𝑅−1
0 (𝓁)

def
= {𝑡′ ∈ [0, 𝑇 ] ∶ 𝑅0(𝑡′) = 𝓁}

is a singleton. If𝑅0 is not invertible at level 𝓁, there is an interval [𝑎, 𝑏] (with 𝑎 < 𝑏) such that𝑅0(𝑠) = 𝓁
for all 𝑠 ∈ [𝑎, 𝑏]. We note that then 𝑎 = 𝑅̃(𝓁).

Let us take a closer look at (4). Fix (𝓁𝑛)𝑁𝑛=1. Define

𝐿𝑛

def
=

∑
1≤𝑛′≤𝑛

𝓁𝑛′ (7)

for 𝑛 ∈ {1, 2…𝑁}. Fix 𝑛 ∈ {1, 2…𝑁} and note that

𝑅0(𝑡𝑛) = 𝐿𝑛.

If 𝑅0 is invertible at 𝐿𝑛, then

𝑡𝑛 = 𝑅̃(𝐿𝑛).

Assume next that 𝑛 < 𝑁 and 𝑅0 is not invertible at 𝐿𝑛. Thus there is an interval [𝑎, 𝑏] (with 𝑎 < 𝑏)

such that

𝑅0(𝑠) = 𝐿𝑛

for all 𝑠 ∈ [𝑎, 𝑏]. Let us also fix 𝑡𝑛+1 and 𝑡𝑛−1 such that

𝑅0(𝑡𝑛−1) = 𝐿𝑛−1 and 𝑅0(𝑡𝑛+1) = 𝐿𝑛+1.

Note that

sup
𝑠∈[𝑎,𝑏]

{
∫

𝑠

𝑢=𝑡𝑛−1
{1 − 𝑘(𝑠 − 𝑢)}+ 𝑟(𝑢)𝑑𝑢 + ∫

𝑡𝑛+1

𝑢=𝑠

{
1 − 𝑘(𝑡𝑛+1 − 𝑢)

}+
𝑟(𝑢)𝑑𝑢

}

= sup
𝑠∈[𝑎,𝑏]

{
∫

𝑎

𝑢=𝑡𝑛−1
{1 − 𝑘(𝑠 − 𝑢)}+ 𝑟(𝑢)𝑑𝑢 + ∫

𝑡𝑛+1

𝑢=𝑎

{
1 − 𝑘(𝑡𝑛+1 − 𝑢)

}+
𝑟(𝑢)𝑑𝑢

}
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=

{
∫

𝑎

𝑢=𝑡𝑛−1
{1 − 𝑘(𝑎 − 𝑢)}+ 𝑟(𝑢)𝑑𝑢 + ∫

𝑡𝑛+1

𝑢=𝑎

{
1 − 𝑘(𝑡𝑛+1 − 𝑢)

}+
𝑟(𝑢)𝑑𝑢

}
(8)

(the first equality holds since 𝑟(𝑢)𝑑𝑢 integrals are zero over [𝑎, 𝑏], and the second equality holds since

𝑠 → (1 − 𝑘(𝑠 − 𝑢))+ is nonincreasing in 𝑠). We can now use the fact that 𝑎 = 𝑅̃(𝐿𝑛).
Assume next that 𝑛 = 𝑁 and 𝑅0 is not invertible at 𝐿𝑛. Thus there is an interval [𝑎, 𝑏] (with 𝑎 < 𝑏)

such that

𝑅0(𝑠) = 𝐿𝑛

for all 𝑠 ∈ [𝑎, 𝑏]. Let us also fix 𝑡𝑛−1 such that

𝑅0(𝑡𝑛−1) = 𝐿𝑛−1.

Similar to (8), we have that

sup
𝑠∈[𝑎,𝑏]

{
∫

𝑠

𝑢=𝑡𝑛−1
{1 − 𝑘(𝑠 − 𝑢)}+ 𝑟(𝑢)𝑑𝑢

}

= sup
𝑠∈[𝑎,𝑏]

{
∫

𝑎

𝑢=𝑡𝑛−1
{1 − 𝑘(𝑠 − 𝑢)}+ 𝑟(𝑢)𝑑𝑢

}

=

{
∫

𝑎

𝑢=𝑡𝑛−1
{1 − 𝑘(𝑎 − 𝑢)}+ 𝑟(𝑢)𝑑𝑢

}

and 𝑎 = 𝑅̃(𝐿𝑛).
With these calculations in mind, we can replace 𝑡𝑛 in (6) with 𝑅̃(𝐿𝑛), giving us that

𝑃 (𝓁1,𝓁2 …𝓁𝑁 ) =
∑𝑁

𝑛=1
{
(1 − 𝑘𝑅̃(𝐿𝑛))

{
𝑅0(𝑅̃(𝐿𝑛)) − 𝑅0

(
𝑅̃(𝐿𝑛−1) ∨ (𝑅̃(𝐿𝑛) − 1∕𝑘)

)}
+ 𝑘

{
𝑅1(𝑅̃(𝐿𝑛)) − 𝑅1

(
𝑅̃(𝐿𝑛−1) ∨ (𝑅̃(𝐿𝑛) − 1∕𝑘)

)}}
. (9)

Finally, let us take a closer look at the allowable 𝓁𝑛’s. We must of course have that

𝑁∑
𝑛=1

𝓁𝑛 ≤ 𝑅0(𝑇 )

(if not, 𝑃 (𝓁1,𝓁2 …𝓁𝑁 ) = −∞). Thus the set of 𝓁𝑛’s for which 𝑃 will be positive will be

 =

{
(𝓁1,𝓁2 …𝓁𝑁 ) ∈ ℝ𝑁

+ ∶
𝑁∑
𝑛=1

𝓁𝑛 ≤ 𝑅0(𝑇 ), max
1≤𝑛≤𝑁 𝓁𝑛 ≤ 𝐶

}
. (10)

Clearly,  is a convex set. For  itself to be nonempty, we must in turn have that 𝑅0(𝑇 ) ≤ 𝑁𝐶 . In this

case, the vector (𝓁𝑛)𝑁𝑛=1 given by

𝓁𝑛
def
=

𝑅0(𝑇 )
𝑁
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is admissible.

If (𝓁∗
1 ,𝓁

∗
2 …𝓁∗

𝑁
) is the optimizer of (5), then the optimizer of (2)–(3) is given as

𝑡∗
𝑛
= 𝑅̃

(
𝑁∑

𝑛′=1
𝓁∗
𝑛

)
.

We now have rewritten our original problem as an optimization problem (of a nonconvex function,

namely, 𝑃 ) over a convex set (e.g., ).

4 OPTIMIZATION SCHEME

At this point, our task is to maximize 𝑃 of (9) over the convex set  of (10) (where we use (7) to

define the 𝐿𝑛’s in (9)). Convex sets have appealing geometry, leading to numerical methods which are

simpler than directly optimizing (2) subject to the constraints of (3). In particular, if we numerically

test a point in (10), the structure of (10) naturally suggests ways to find a “nearby” candidate next point

also in (10).

Definition 1 (Projection to ). Fix (𝓁1,𝓁2 …𝓁𝑁 ) ∈ ℝ𝑁
+ . If

∑𝑁

𝑛=1 𝓁𝑛 > 𝑅0(𝑇 ), define

𝓁𝐴
𝑛

def
= 𝓁𝑛

𝑅0(𝑇 )∑𝑁

𝑛′=1 𝓁𝑛′

(thus
∑𝑁

𝑛=1 𝓁
𝐴
𝑛
= 𝑅0(𝑇 )). If sup1≤𝑛≤𝑁 𝓁𝐴

𝑛
≤ 𝐶 , define 𝓁𝐵

𝑛

def
= 𝓁𝐴

𝑛
for 𝑛 ∈ {1, 2…𝑁}. Otherwise, define

𝜆
def
= max

{
𝓁𝐴
𝑛
− 𝐶

𝓁𝐴
𝑛
−𝑅0(𝑇 )∕𝑁

∶ 𝓁𝐴
𝑛
> 𝐶

}
(11)

and then define

𝓁𝐵
𝑛

def
= (1 − 𝜆)𝓁𝐴

𝑛
+ 𝜆

𝑅0(𝑇 )
𝑁

.

We write (𝓁𝐵
1 ,𝓁

𝐵
2 …𝓁𝐵

𝑁
) = 𝐏(𝓁1,𝓁2 …𝓁𝑁 ) ((𝓁𝐵

1 ,𝓁
𝐵
2 …𝓁𝐵

𝑁
) is the projection of (𝓁1,𝓁2 …𝓁𝑁 ) onto

).

We have defined (11) as the smallest 𝜆 such that

sup
1≤𝑛≤𝑁

{
(1 − 𝜆)𝓁𝐴

𝑛
+ 𝜆

𝑅0(𝑇 )
𝑁

}
≤ 𝐶.

Definition 2 (Random Admissible Point). Let (𝓁1,𝓁2 …𝓁𝑁 ) in ℝ𝑁
+ be such that 𝓁𝑛 is randomly

chosen in [0, 𝑅0(𝑇 )]. Set (𝓁1,𝓁2 …𝓁𝑁 ) = 𝐏(𝓁1,𝓁2 …𝓁𝑁 ) (in the sense of Definition 1). We say that
(𝓁1,𝓁2 …𝓁𝑁 ) is a random admissible point.

Definition 3 (Iteration). Fix an admissible (𝓁1,𝓁2 …𝓁𝑁 ) ∈ ℝ𝑁
+ and 𝛿 > 0. For each 𝑛 ∈ {1, 2…𝑁},

let 𝓁𝐴
𝑛

be randomly chosen in [0, 𝑅0(𝑇 )] ∩ (𝓁𝑛 − 𝛿,𝓁𝑛 + 𝛿). Set (𝓁𝐵
1 ,𝓁

𝐵
2 …𝓁𝐵

𝑁
) = 𝐏(𝓁𝐴

1 ,𝓁
𝐴
2 …𝓁𝐴

𝑁
)

(in the sense of Definition 1). We say that (𝓁𝐵
1 ,𝓁

𝐵
2 …𝓁𝐵

𝑁
) is a 𝛿-iterate of (𝓁1,𝓁2 …𝓁𝑁 ).
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Let us construct a simulated annealing scheme. Starting with an initial (admissible)

𝓁
def
= (𝓁1,𝓁2 …𝓁𝑁 ) ∈ ℝ𝑁

+ , we want to test a new 𝓁′ def= (𝓁′
1,𝓁

′
2 …𝓁′

𝑁
) ∈ ℝ𝑁

+ and update to that

point with a probability which is higher if 𝑃 (𝓁′) > 𝑃 (𝓁). As our iterative scheme progresses, we want

more and more certainty. By tuning various coefficients, we want to explore all of  and find the

global maximum.

Define

𝑇𝑛
def
= 1∕ ln(𝑛 + 𝑒)

and set

𝛿𝑛
def
= 𝐶∕𝑇𝑛.

Assume that we have an admissible point (𝓁(𝑚)
1 ,𝓁(𝑚)

2 …𝓁(𝑚)
𝑁

) (let (𝓁(1)
1 ,𝓁(1)

2 …𝓁(1)
𝑁
) be a random admis-

sible point). Let (𝓁1,𝓁2 …𝓁𝑁 ) be a 𝛿𝑚-iterate of (𝓁(𝑚)
1 ,𝓁(𝑚)

2 …𝓁(𝑚)
𝑁

). Define

𝑝
def
= min

{
exp

[
1
𝑇𝑚

{
𝑃

(
𝓁(𝑚)
1 ,𝓁(𝑚)

2 …𝓁(𝑚)
𝑁

)
− 𝑃

(
𝓁(𝑚)
1 ,𝓁(𝑚)

2 …𝓁(𝑚)
𝑁

)}]
, 1
}

.

Flip a coin with bias 𝑝. If the coin comes up heads, define 𝓁(𝑚+1)
𝑛

def
= 𝓁𝑛, and if the coin comes up tails,

define 𝓁(𝑚)
𝑛

def
= 𝓁(𝑚)

𝑛 .

5 EXAMPLES

5.1 Example 1
Let us see what happens with a somewhat realistic example. Let us say that the day is divided into four

intervals defined by time {𝜏𝑛}4𝑛=0. Let us furthermore say that

𝑟(𝑡) = 𝑏𝑗 + 𝑚(𝑡 − 𝜏𝑗)

for 𝜏𝑗 ≤ 𝑡 < 𝜏𝑗+1 for 𝑗 ∈ {0, 1,…7} and 𝑟 ≡ 0 outside of [𝜏0, 𝜏5]. The period [𝜏0, 𝜏1) corresponds to the

beginning of the day, and workers are warming up. The workers work at peak efficiency, a constant rate,

on [𝜏1, 𝜏2). In the later morning, on [𝜏2, 𝜏3), efficiency declines. Lunch break is [𝜏3, 𝜏4). The workers

resume at constant rate on [𝜏4, 𝜏5), and slow again on [𝜏5, 𝜏6) as the day draws to a close. For specificity,

let us assume that

𝜏0 = 0

𝜏1 = 1

𝜏2 = 3

𝜏3 = 4

𝜏4 = 4.5

𝜏5 = 6

𝜏6 = 7



8 of 10 MANUEL AND SOWERSNatural Resource Modeling

F I G U R E 1 Rates for Example 1

and we assume that

𝑟(𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + 2𝑡 if 0 ≤ 𝑡 < 1
3 if 1 < 𝑡 ≤ 3
3 − (𝑡 − 3) if 3 ≤ 𝑡 < 4
0 if 4 ≤ 𝑡 < 4.5
2 if 4.5 ≤ 𝑡 < 6
2 − (𝑡 − 6) if 6 ≤ 𝑡 < 7.

(12)

The total harvest is 15 units. Let us assume that truck capacity is 3 units, so five trucks are needed.

Let us in fact assume that eight trucks are available. See Figure 1. Let us also assume a coefficient of

spoilage of 𝑘 = 0.2.

A naive scheduling policy would be to pack all trucks to capacity (except perhaps the last one); i.e.,

𝓁𝑛 = 3 for 𝑛 ∈ {1, 2…5}. This would give us a value of 21.8, and the trucks would be scheduled for

times 1.33, 2.33, 3.35, 5.24, and 6.98. However, if eight trucks are available, the optimal loads are 1.83,

1.96, 2.13, 2.50, 1.87, 1.51, 1.68, and 1.52, occurring at times 0.94, 1.59, 2.30, 3.14, 3.89, 5.14, 5.98,

and 6.99. The value of this scheduling policy is 22.4, which is a 2.7% increase over the value of the

equally spaced loads.

One might also space the trucks so that they all have equal loads of 15∕8 = 1.875. This would have

value 22.29; the optimal policy is a 0.2% increase over equally-spaced loads. In this case, equally-

spaced loads are almost optimal.
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5.2 Example 2
Let us now change 𝑟 of (12) to reflect a burst of activity in the interval [1, 3]. Namely, let us set 𝑟(𝑡) = 15
if 1 ≤ 𝑡 < 3. Let us also set the coefficient of spoilage to be 𝑘 = 0.3. If we wait much longer after time

3, the harvest just picked will spoil. Let us increase the truck capacity to 10.

Numerically, 39 units are harvested, so we need at least four trucks. Let us assume that we use six

trucks. Equally spaced loads would give 39∕6 = 6.5 units to each truck, with a resulting harvest value

of 53.6. On the other hand, optimal loading would give a value of 55.6, a 3.8% increase. See Figure 2.

Both of these examples admittedly show modest gains in value. More extreme fluctuations would

probably reveal scenarios where the gains are more significant.

6 CONCLUSIONS AND FUTURE WORK

Real production methods are in fact more complicated than the model developed here. Harvest qual-

ity is typically quantized into integer scores. We also have of course completely ignored stochasticity.

We have assumed that the initial value of the harvest and the rate of harvesting are both determin-

istic. The initial value of the harvest produce in fact takes on a distribution, and the rate of harvest

is also random, both due to variations from worker to worker and also from day to day for the same

worker. A well-motivated stochastic model could be designed to capture these effects. Finally, qual-

ity is typically determined (and decisions made) via sampling; this adds an extra layer of statistical

variability.

1 Realistically, we will only be able to estimate 𝑟 at discrete points during the day.

2 The constant 𝑘 may be dependent on weather, humidity, and other environmental factors.
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3 We use the standard notation that 𝑥+
def
= max{𝑥, 0} for 𝑥 ∈ ℝ.

4 If 𝑡𝑛 = 𝑡𝑛−1, the 𝑛th truck is empty after having picked up an infinitesimally small amount of harvest.

5 Using the standard notation that 𝑥 ∨ 𝑦
def
= max{𝑥, 𝑦} for 𝑥 and 𝑦 in ℝ.
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