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1 | INTRODUCTION

Optimization is an important part of the food system. Interacting demands on quality, quantity, and
sustainability often can have decisive influence on a product’s viability. With the advent of precision
agriculture, these decisions can be made at more and more granular levels. We are interested in one
specific problem; optimal transportation scheduling for hand-picked crops.

In practice, various hand-picked crops are picked, loaded onto a truck, and then transported to a
cooling facility. Cooling slows the degradation of the product, but ambient temperatures may lead to
noticeable loss of quality while the crop is being aggregated and loaded onto a truck for transport.
This creates a number of challenges. Hand harvesting is, almost by definition, subject to much more
variability than machine harvesting. There are variations from person to person, and also from moment
to moment. Our interest is to start to understand how to think of some of these trade-offs.

There are a number of works which lay foundations in this area. Some survey articles are Amorim,
Meyr, Almeder, and Almada-Lobo (2013) and Akkerman, Farahani, and Grunow (2010). Vehicle rout-
ing problems are well-understood. Vehicle-routing problems have been applied to food supply chains
with a number of case studies providing focus to particular issues. A Portuguese food network was
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studied in Amorim, Parragh, Sperandio, and Almada-Lobo (2014), and Osvald and Stirn (2008) con-
sider a model of a Slovenian system. Rong, Akkerman, and Grunow (2011) consider optimization at
a large system level, and then focuses on a study using bell peppers. Some of these take an even more
granular perspective and look at multitemperature systems; see Hsu and Chen (2014) (cf. Kuo and
Chen, 2010). Both Garcia and Lozano (2005) and Hsu, Hung, and Li (2007) look at the effect of time
windows. Similarly, Arbib, Pacciarelli, and Smriglio (1999) seek to optimize when “launch times” can
be varies.

At afarm level, Ferguson and Koenigsberg (2007) consider perishability at the farm level, seeking to
optimize revenue from deteriorating inventory which can be sold, but which then competes with fresher
inventory. Similarly, Lin and Chen (2003) consider optimal order placement in the face of perishability.

Our interest seems to be unique, in that we are interested particularly in the time spent before the
harvest enters the system. In hot ambient temperatures, some produce can suffer a loss of over 10%
per hour while waiting to be cooled. We are interested in scheduling optimal loading times in the face
of empirically observed time-varying harvest rates (see also Bandiera (2004) for some mathematical
modeling of worker incentives).

Precision agriculture is opening up new challenges. The current literature has focused primarily
on optimization once a harvest has entered the transportation and distribution system. With more and
better sensing and extremely granular data, estimation of the instantaneous rate of harvesting is tech-
nically feasible. We believe that optimization at the actual level of individual harvesting can provide
meaningful improvements.

Our model is continuous both in time and harvest quality. Harvesting occurs on an interval [0, T'].
When the fruit is harvested, it decays at a fixed rate, at some point becoming worthless. Storage in cold
chain retards the decay, so we want to carefully plan for transport to cold chain. We pose a problem
involving quality decay and transport to cold chain, reframe it as a constrained optimization problem on
a convex feasible region, and then develop a computationally feasible simulated annealing algorithm
to find the optimum.

2 | THE MODEL

Suppose that produce is picked at time-varying rate {r(r); 0 < ¢t < T'} during the day.! In other words,
the amount of produce picked between times s and 7 (with 0 < s <t <T)is

t
/ r(wdu. @)

They immediately start to spoil once they are picked. Let us quantify this by assuming that they have

“value” 1 the instant they are picked, and they have value v, (7) d;f(l — kt)* after r minutes (i.e., they
lose k% of their value, but cannot have negative value®3). This is similar to the perishability function
of Zhang, Hu, and Wang (2011). The challenge is when to collect the berries and transport them to a
cooling area. We have N trucks, each of which has capacity C, and we want to identify instants {7, }fl\’:l
at which these trucks should collect the picked berries.

def . o . .
Define ¢, = O; then the nth truck will collect fruit picked in (¢,_y, ¢,,]. Mathematically, we want to
maximize

N o,
Pliyty 1) S Y / v (1, — wyrw)du @)
— u=t

n—1
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over all nondecreasing sequences (tn)r],V: o With 75 = 0 such that

t"
max / r(udu < C. 3)
1<n<N u=t,

The inequality (3) means (recall (1)) that the amount in each truck is less than the capacity C, and (2)
means that we maximize the value of the day’s harvest (when spoilage is accounted for).*

We numerically solve this problem, and show that various “naive” scheduling problems are notice-
ably suboptimal. Note that the optimal scheduling decisions propagate; if we modify the load of any
given truck, it may affects how the remaining trucks should be loaded.

3 | RESCALING TIME

Let us recalibrate our problem in terms of amount harvested; this allows us to more directly impose
the constraints of (3). For a sequence (¢,,) ,’l\’: | of elements in R, define

In

N def
Bt by.. )= sup{P(tl,tz...tN) L0=1y<ty..ty <T, /

u=t,_

r(u)du = f,,} . @

Instead of trying to maximize a function of times (i.e., P of (2)), we can now maximize function of
harvested amounts. This will simplify how we search through configuration space (namely, we will
end up with a convex configuration space in (10)). We then have that (2)—(3) is equivalent to

inf {P(£),¢,...¢7) 1 £, <C}. 6))

Let us now define

def [T def [T
Ro(t)z/ r(u)du Rl(t)=/ ur(u)du

u=0 =0

for ¢t € [0, T']. The increments of R, directly connect to the capacity constraints of (3). Since v, is a
combination of a constant and a linear function, the value function (2) can at least locally be written as
a combination of Ry and R;; doing so will help simplify things a bit further. Note that 1 — k(t —u) > 0
if and only if u > t — 1/k. Thus’

N lﬂ
Pt ty ... 1y) = 2/ {1 = k(t, = )} Z{us 1 1y rdu
u=ty_

n=1
N

Y / ' {1 = k(t, — u)}r(u)du

=t,_1V(t,—1/k)

n=1

N
DA —kt,) {Ro(t,) = Ry (1,4 V (1, — 1/K)) }
n=1

+k{R(1,) = Ry (1, V (1, = 1/K)) } } . (6)

This almost allows us to write P (and P) directly in terms of R, and R;.
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Let us now define harvest time. For £ > 0, define
~ def |
R&)=inf{r>0: Ry®)>=¢};

R(?) is the first time that at least # units have been harvested. In fact, since R, is defined as the running
Lebesgue integral,

R@&)=inf{t>0: R1)=¢}.

We also have that R is the left-continuous inverse of R,. Note that if » = 0 on an interval (a, b) (e.g.,
during a work break), Ry, is flat on (a, b) and thus not invertible. The left-inverse is well-defined, and
turns out to lead to the correct calculations (see below). We would like to use R to rewrite P.

Comparing (4) and (6), there are several possibilities. First of all, we say that R, is invertible at level
¢ if

def
R;\(&)= {1 €[0,T] : Ry(t") = ¢}
is asingleton. If R, is not invertible at level Z, there is an interval [a, b] (with a < b) such that Ry(s) = £

for all s € [a, b]. We note that then a = R(?).
Let us take a closer look at (4). Fix (£ n)f:]: I Define

L= Y ¢y )

1<n’'<n

forne {1,2... N}.Fixn € {1,2... N} and note that
Ry(t,) = L,
If R, is invertible at L,,, then
t, = R(L,).

Assume next that n < N and Ry, is not invertible at L,. Thus there is an interval [a, b] (with a < b)
such that

Ro(s) = LH
for all s € [a, b]. Let us also fix 7,1 and 7,_; such that
Rot,-) =L,y and  Ry(ty1) = Ly

Note that

s ln+
sup {/ (1 -k(s—w}" r(u)du+/ 1 {1 = k(1,4 —u)}+ r(u)du}
s€la,b] u=t u=s

n—1

a ln+
= sup {/ (1= k(s —w)}t r(wdu + / 1 {1 = k() - u)}+ r(u)du}
s€la,b] u=t u=a

n—1
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(the first equality holds since r(u)du integrals are zero over [a, b], and the second equality holds since
s (1 — k(s — u))* is nonincreasing in s). We can now use the fact that a = f((Ln).

Assume next that n = N and Ry, is not invertible at L,. Thus there is an interval [a, b] (with a < b)
such that

a tn+l
/ {1 —k(a—uw)}" r(udu+ / {1 -k, - u)}+ r(u)du} ®)

=lp-1 u=a

Ro(s) = Ln
for all s € [a, b]. Let us also fix ¢,_; such that
Ro(t,_) =1L, ;.

Similar to (8), we have that

sup {/ {1 —k(s—u)}* r(u)a’u}
s€la,b] u=t,_,
= sup {/ {1 —k(s—u)}" r(u)du}
s€la,b] u=t,_|

= {/a {1—k(a—u)}+r(u)du}
u=t,_;
and a = R(L,).

With these calculations in mind, we can replace 7, in (6) with R(Ln), giving us that

P&\t ... f5) = Tooy {(1 = kR(L,) { Ry(R(L,)) = Ry (R(L,_) V (R(L,) = 1/k)) }

+k{R(R(L,)) = R, (R(L,_) V(R(L,) = 1/k)) } } . ©)
Finally, let us take a closer look at the allowable £,’s. We must of course have that
N
D £, < Ry(T)
n=1
(if not, P(¢,,Z5 ... £ ) = —c0). Thus the set of #,’s for which P will be positive will be

N
C= {(fl,fz...f,\,)e RY : )2, < Ry(D), max £, gc}. (10)

n=1

Clearly, C is a convex set. For C itself to be nonempty, we must in turn have that Ry(T") < NC. In this
case, the vector (£,)""_ given by

def Ry(T)
n = N
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is admissible.
If (7%, f; ffv) is the optimizer of (5), then the optimizer of (2)—(3) is given as

N
r =R<Z fj).
n'=1

We now have rewritten our original problem as an optimization problem (of a nonconvex function,
namely, 13) over a convex set (e.g., C).

4 1 OPTIMIZATION SCHEME

At this point, our task is to maximize P of (9) over the convex set C of (10) (where we use (7) to
define the L,’s in (9)). Convex sets have appealing geometry, leading to numerical methods which are
simpler than directly optimizing (2) subject to the constraints of (3). In particular, if we numerically
test a point in (10), the structure of (10) naturally suggests ways to find a “nearby” candidate next point
also in (10).

Definition 1 (Projection to C). Fix (71,7, ...¢x) € RN. If TN 7, > Ry(T), define

adel ; _Ro(T)

4 p
S Y
(thus Zn L Ci = Ro(T)). If supy << v f < C, define fB fAforn € {1,2... N}. Otherwise, define
A - s
A maxd —n L AscC (11)
Ro(T)/N
and then define

~ f ~
FEE (1= AN+ 2

Ry(T)
T

We write (CB,08 ... 08)=Pc(£,¢,...£ ) (CE, €2 ... £8) is the projection of (£,,¢, ... £ ) onto
C).

We have defined (11) as the smallest A such that

sup {(1—,1)#‘“ R@ )} C.

1<n<N

Definition 2 (Random Admissible Point). Let (£|,7,...£y) in Rf be such that ¢, is randomly
chosen in [0, Ry(T')]. Set (l1.65...0x8) = P-(¢,,.7; ... Cn) (in the sense of Definition 1). We say that
(21,0, ... £) is a random admissible point.

Definition 3 (Iteration). Fix an admissible (£(,¢, ... ) € Rf andé > 0. Foreachn € {1,2... N},
let £ be randomly chosen in [0, Ry(T)] N (£, — 8,2, + 8). Set (£8, 08 .. 08)=P(£4, 03 ...E%)
(in the sense of Definition 1). We say that (£, ff fﬁ) is a 6-iterate of (€1, ... Cn)-
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Let us construct a simulated annealing scheme. Starting with an initial (admissible)
def def
¢ ;(fl,z,”Z...fN)ERf, we want to test a new £’ ;(f’,f;...fjv)e RY and update to that
point with a probability which is higher if P(#’) > P(£). As our iterative scheme progresses, we want
more and more certainty. By tuning various coefficients, we want to explore all of C and find the

global maximum.
Define

def
T,= 1/In(n+e)

and set

def
5,= C/T,.

Assume that we have an admissible point (fﬁm), f;m) . fg\',")) (let (f(l), fél) . fﬁ\l,)) be arandom admis-
sible point). Let (7}, 72, ... £ ) be a 6, -iterate of (£\", £ ... #\"). Define

def . 1 5 ( sm)  Hm) 5(m) b o(m) H(m) (m)
p_mm{exp[T—m{P<fl N2 ...fN>—P<f] N2 ...ZN)} ,1 7.

def
Flip a coin with bias p. If the coin comes up heads, define ff,mﬂ) =/ n

def
define £ = £,

, and if the coin comes up tails,

S | EXAMPLES

5.1 | Example 1

Let us see what happens with a somewhat realistic example. Let us say that the day is divided into four
intervals defined by time {7, }jzo. Let us furthermore say that

r(t) = bj + m(t — Tj)

for T S1<Tjy forj € {0,1,...7} and r = O outside of [z, 75]. The period [z, 7|) corresponds to the
beginning of the day, and workers are warming up. The workers work at peak efficiency, a constant rate,
on [7y, 7). In the later morning, on [7,, 73), efficiency declines. Lunch break is [r3, 7;). The workers
resume at constant rate on [z, 75), and slow again on [75, 7c) as the day draws to a close. For specificity,
let us assume that

T0:O
T1=1
T2=3
T3=4
T4=4.5
T5:6

T6:7
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—fully loaded trucks (5)
— optimally scheduled eight trucks|

1.4 20 24

()

1.0

0.4

0.0

FIGURE 1 Rates for Example 1

and we assume that

(1 +2: if

3 if
3-w-3) i
=19 if
2 if
2_(t—6) if

\

0<t<1
1<t<3
3<t<4
4<t<45
45<t<6
6<t<T.

12)

The total harvest is 15 units. Let us assume that truck capacity is 3 units, so five trucks are needed.
Let us in fact assume that eight trucks are available. See Figure 1. Let us also assume a coefficient of

spoilage of k = 0.2.

A naive scheduling policy would be to pack all trucks to capacity (except perhaps the last one); i.e.,
¢, =3forne {1,2...5}. This would give us a value of 21.8, and the trucks would be scheduled for
times 1.33,2.33, 3.35, 5.24, and 6.98. However, if eight trucks are available, the optimal loads are 1.83,
1.96, 2.13, 2.50, 1.87, 1.51, 1.68, and 1.52, occurring at times 0.94, 1.59, 2.30, 3.14, 3.89, 5.14, 5.98,
and 6.99. The value of this scheduling policy is 22.4, which is a 2.7% increase over the value of the

equally spaced loads.

One might also space the trucks so that they all have equal loads of 15/8 = 1.875. This would have
value 22.29; the optimal policy is a 0.2% increase over equally-spaced loads. In this case, equally-

spaced loads are almost optimal.
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2 — equally loaded trucks (6)
—— optimally scheduled six trucks
o
(=4
>
N
~
o -
T
""\
o - -
T T T T T
0 2 4 6 8
time

FIGURE 2 Rates for Example 2

5.2 | Example 2

Let us now change r of (12) to reflect a burst of activity in the interval [1, 3]. Namely, let us set r(¢) = 15
if 1 <t < 3. Let us also set the coefficient of spoilage to be k = 0.3. If we wait much longer after time
3, the harvest just picked will spoil. Let us increase the truck capacity to 10.

Numerically, 39 units are harvested, so we need at least four trucks. Let us assume that we use six
trucks. Equally spaced loads would give 39/6 = 6.5 units to each truck, with a resulting harvest value
of 53.6. On the other hand, optimal loading would give a value of 55.6, a 3.8% increase. See Figure 2.

Both of these examples admittedly show modest gains in value. More extreme fluctuations would
probably reveal scenarios where the gains are more significant.

6 | CONCLUSIONS AND FUTURE WORK

Real production methods are in fact more complicated than the model developed here. Harvest qual-
ity is typically quantized into integer scores. We also have of course completely ignored stochasticity.
We have assumed that the initial value of the harvest and the rate of harvesting are both determin-
istic. The initial value of the harvest produce in fact takes on a distribution, and the rate of harvest
is also random, both due to variations from worker to worker and also from day to day for the same
worker. A well-motivated stochastic model could be designed to capture these effects. Finally, qual-
ity is typically determined (and decisions made) via sampling; this adds an extra layer of statistical
variability.

! Realistically, we will only be able to estimate r at discrete points during the day.

2 The constant k may be dependent on weather, humidity, and other environmental factors.
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. def
3 We use the standard notation that x* = max{x,0} for x € R.

4Ift, = t,_,, the nth truck is empty after having picked up an infinitesimally small amount of harvest.

. . def )
3 Using the standard notation that x V y = max{x, y} for x and y in R.
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