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Abstract
Precision agriculture significantly depends on measuring

yield; this allows feedback to optimize various decisions.

While spatially granular yield mapping is readily avail-

able in machine-harvested row crops, it is more diffi-

cult in hand-picked row crops. We study here a data set

collected during harvesting of strawberries; using smart-

phones, we collected Global Positioning System (GPS)

logs of individual harvesters. Using recent advances in fea-

ture identification, we are able to algorithmically decom-

pose the path into individual excursions into the field to

harvest the berries. This lays the groundwork for yield

mapping.

To further develop this area, we recommend that
Resource Managers
• Pursue wider scale trials of geolocated harvest data col-

lection of hand-picked crops.

• Join this geolocated harvest data with data from other

aspects of field operations.

• Join this geolocated harvest data with output measure-

ments like quality and quantity.

K E Y W O R D S
hand-picked crops, precision agriculture, yield information

1 INTRODUCTION

One of the developing success stories in the application of “big data” is precision agriculture: using

very granular data to analyze, optimize, and predict the production and processing of various agricul-

tural products. World population is estimated to increase to 9.7 billion in 2050, from a current count
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of 7.3 billion United Nations (2015). Increasingly ubiquitous sensing abilities (e.g., in situ nitrogen

and soil sensors, and aerial imagery from drone and satellite) allow precise understanding of the state

of the field. For row crops (wheat, corn, soy, etc.), large mechanized farming equipment provides nat-

ural platforms from which to gather very precise data on harvesting; advances in connectivity have

made that data immediately available. The scientific understanding of agriculture has, as a result, seen

significant advances.

The promise of precision data is that it will enable better decision making. Food production is in fact

a very complicated industry. It depends heavily on long-term weather behavior, functional machinery,

prices of the food products themselves, prices of raw materials, energy, and water, and, in many cases,

on human involvement.

Our interest here is in algorithmically studying and identifying several operational aspects in

hand-picked high-value specialty crops: strawberries, certain types of grapes and apples, and oth-

ers. While many crops are harvested by machine, a number of crops crucially depend on human dis-

cernment. U.S. production of hand-picked crops is often in the billions of dollars. These crops can

have very high value (multiple times the value of row crops). Since a mechanized platform (e.g.,

harvesters) is often currently unavailable for these crops (in part due to the need for human discre-

tion in identifying fruit of the correct ripeness), some aspects of precision agriculture need to be

rethought.1

Labor is often the largest expense in the whole process2 for these crops. The central role of human

behavior leads to a number of relatively novel issues. Variability of harvesting is much greater than

in machine-harvested crops. Efficiency and speed vary from harvester to harvester and from moment

to moment. See Gemtos, Fountas, Tagarakis, and Liakos (2013) for a study of precision agriculture in

hand-picked fruits in Greece, where Normalized difference vegetation index (NDVI) and yield vari-

ability are compared. Our effort on labor analytics will hopefully complement the data analytics of

field fluctuations; fluctuations of field and labor should be considered jointly.

This paper focusses on reverse-engineering precise behavior in a field based on GPS tracks. There

is an increasing interest in using passively obtained GPS information as a source of information. GPS

data can be treated as a “fingerprint”; see Rossi, Walker, and Musolesi (2015). Similarly, GPS data can

be used to identify modes of mobility Ellis et al. (2014), Zheng, Li, Chen, Xie, and Ma (2008). In the

case of hand-picked agriculture, we believe that this type of information from GPS data can be used

as the foundation of a yield map.

Mathematically, our challenge is to identify several prespecified patterns in GPS tracks. Simply put,

harvesting occurs when a harvester makes an excursion into a field. We would like to algorithmically

identify this behavior, particularly in real data, which is discrete and noisy. We also are faced with

heterogeneity in harvesting speed and behavior; some harvesters move faster than others, and there are

several typical types of excursions.

Starting with data collected from a strawberry farm in Southern California, we develop an

𝐿2 minimization problem, which captures our pattern-matching problem. We adapt some recent

work of Liu and Li (2016), which seeks sparse solutions of pattern-matching problems. We then

follow this with some ad hoc techniques for cleaning and simplifying the resulting suggested

patterns.

2 SETUP AND PROBLEM

Our efforts here focus on data collected during harvest at Crisalida farms, in Oxnard, California, on

February 19, 2016. Four harvesters were equipped with smartphones, which recorded GPS coordiantes
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at 5-second intervals. The latitude and longitude tracks are in Figure 2. Looking at the latitude and

longitude, one can visually see lunch breaks, harvesting, and weeding activity (where the harvesters

walk the whole length of the field).

A focal point of our efforts is to algorithmically interpret geolocation data. In this case, we want to

disambiguate several behaviors; we want to quantify human labor as much as possible. Since human

labor is extremely costly, this may be useful in helping to optimize it.

• How should labor be deployed? How should a crew of laborers be optimally configured? Labor is

typically deployed in a crew of about seven to 10 workers. This crew is supervised, as a group, by a

field boss, and mobile collection equipment (see Section 4) is placed relative to the crew. Harvesters

are often paid piece rate (i.e., amount harvested) and on an hourly basis. One of the workers in a crew

is usually at least slightly faster than the others, and typically he or she sets the pace for the rest of

the crew. However, if the fastest worker then ends up being idle, this is likely suboptimal. Moreover,

there are in fact various types of nonharvesting but necessary behavior–weeding, stacking of crates,

etc. Better identification of these different tasks may allow one to better assess pay schedules. With

realtime data, labor might be better and dynamically redeployed.

• How can farm production be optimized around labor? Given the high cost of labor, how can equip-

ment placement and timing be optimized? One of the challenges is to identify as much as possible

simply through geospatial tracks.

• For highly perishable crops, cooling is an important part of maintaining product value. Can one

automatically and dynamically schedule transportation to cooling facilities based on data (cf. Manuel

& Sowers, 2017)?

There are also other operational concerns surrounding labor. By law, harvesters must be given

lunch breaks and warmup time. Can data analytics provide sufficient verification of good labor

practices?

3 METHODS

Our work reflects data captured at Crisalida farms in Oxnard, California, on February 19, 2016. Four

harvesters carried smartphones with an app, which logged position and timestamp roughly every 5

seconds. The smartphones were of various age and precision (Nexus 4's to Maven ZTE's).

Figure 1 gives an approximate trajectory of a typical harvester's path. The rows in the field were

in this case oriented north–south at this time, so harvesting within a row corresponded to north–south

(latitudinal) motion, and motion across the rows accounted for east–west (longitudinal) motion. Starting

at point 1 in Figure 1, the harvester makes an excursion into the field along a row to point 2. At point

2, the harvester starts harvesting as he or she returns to point 3 along the edge of the field (following

the red solid line from point 2 to point 3 in Figure 1; red lines in Figure 1 denote harvest, while yellow

dashed lines denote nonharvest motion). The harvester off-loads (and submits for inspection) his or

her harvest at a collection station located along the edge of the field near point 3. The harvester then

moves to a new row (point 4) and starts another excursion into the field. The fruit along this new row

may be a bit thin, so the harvest makes an excursion into a row in the adjacent field (point 6 to point

7) and continues harvesting (point 7 to point 8) to fill up his or her cart before again off-loading.

Several things are not apparent from Figure 1. The collection area moves along the edge of the field

from time to time; the harvester may have to move along the edge of the field to go to the collection

area. Second, during harvest activities (the solid red lines in Figure 1), the harvester moves a bit more



4 of 21 SRIVASTAVA ET AL.Natural Resource Modeling

F I G U R E 1 Track

slowly. When the harvest is particularly thick, the harvester may make more than one excursion into the

same row. Each harvester in a sense “owns” his or her rows; as he or she harvests, the harvester culls

the berries (i.e., picks diseased or malformed berries and throws them on the ground) in preparation for

the next harvest several days later. Figure 1 shows one harvester's path. Harvesting is typically carried

out by a team of seven to 10 harvesters; the rows between the red lines 2 to 3 and 5 to 6 “belong” to a

different harvester.

The recorded latitude and longitude data are in Figure 2. Let's look specifically at the first harvester,

Harvester 0, whose latitude and longitude traces are in Figure 3. By interpreting these figures, can

we reverse-engineer what is going on, in terms like our explanation of Figure 1? The amount of data

is initially fairly small, and insufficient for a machine-learning approach. This paper focusses on a

feature-identification approach. In Figure 3, the latitude trace shows a number of excursions into the

field, while the longitude trace shows a gradual motion across the field as row after row is harvested.

Figure 1 captures the main activities, but there may be minor variations. Furthermore, the actual data

behind Figure 3 includes GPS noise. Nevertheless, we would like to identify excursions into the field

and tag them as harvest activity. Having these data will allow us to, over the long term, help identify

yield as a function of soil and microlocal ground conditions.

4 RESULTS AND DATA

The starting point of the analysis (of the behavior of Harvester 0) is a collection of geolocated tracks

taken at observation instants  = {𝑡1, 𝑡2 … 𝑡𝑁}. These times need not be equally spaced; in some cases

battery or connectivity problems may cause a record to be lost. At time 𝑡𝑛, a record (𝑥𝑛, 𝑦𝑛) records

the longitude (the 𝑥 value) and latitude (the 𝑦 value). Since the rows were in north–south orientation;

the excursion into the field can be identified solely by looking at the latitude (𝑦) coordinate. Between

such excursions, the harvester stays on an east–west edge-of-field path along the side of the field; this

edge-of-field path lies at constant latitude

𝑦̂∗ ≈ 34.0001. (1)

A mobile collection station was stationed on the edge-of-field path; at various times, this collection

station was repositioned to be as close as possible to where the harvesters were currently working.
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F I G U R E 2 Latitude (top) and longitude (bottom)
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F I G U R E 3 Latitude (left) and longitude (right) for Harvester 0

Next, define a reference “excursion.” The data are discrete, and sometimes the harvester “runs” from

the edge-of-field to the region where he/she is harvesting. They may harvest in a particular area, and

then quickly return back to the collection area at the edge of the field. Consider a reference “Box”

function

𝐵◦(𝑡)
def
= 𝜒[0,1](𝑡) =

{
1 if 0 ≤ 𝑡 ≤ 1
0 else

and then shift and scale it; for (ℎ, 𝑇 ,𝑤) in


def
= ℝ ×ℝ × (0,∞), (2)

define

𝐵ℎ,𝑇 ,𝑤(𝑡)
def
= ℎ𝐵◦

(
𝑡 − 𝑇

𝑤

)
, 𝑡 ∈ ℝ. (3)

The set  represents the universe of parameters for all possible “excursions.”

As an example, look at the first 50 records of data; see Figure 4. There is an excursion of about

𝑤1
def
= 200 seconds and height ℎ1

def
= 0.003 degrees latitude starting about 𝑇1

def
= 515 seconds after the

first data point. There is a second excursion of about 𝑤2
def
= 400 seconds and height ℎ2

def
= −0.0026

degrees latitude (an excursion of negative height corresponds to an excursion below 𝑦̂∗) starting about

𝑇2
def
= 2550 seconds after the first data point. Roughly, the track followed by these two excursions can

be written as the function

𝑡 → 𝐵ℎ1,𝑇1,𝑤1
(𝑡) + 𝐵ℎ2,𝑇2,𝑤2

(𝑡) + 𝑦̂∗. (4)

See Figure 4 (which contains several more excursions). A bit more conveniently, define

ℏ
def
= 0.0002 (5)

as a reference excursion height; (4) can then be rewritten as

𝑡 → 𝛼1𝐵ℏ,𝑇1,𝑤1
(𝑡) + 𝛼2𝐵ℏ,𝑇2,𝑤2

(𝑡) + 𝑦̂∗, (6)
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F I G U R E 4 Reduced data set and approximation (Harvester 0)

where

𝛼1
def
=

ℎ1
ℏ

= 1.5 and 𝛼2
def
=

ℎ2
ℏ

= 13.

This captures two of the excursions of the first harvester into the field as a linear combination of two

functions of the form (3) and a reference latitude. The coefficients of the 𝐵ℏ,𝑇𝑖,𝑤𝑖
's, i.e., the 𝛼𝑖's, are of

order 1.

Roughly, we want to write the harvester's latitude track in the form

𝑡 →
∑

(ℏ,𝑇 ,𝑤)∈ ′
𝛼(ℏ,𝑇 ,𝑤)𝐵ℏ,𝑇 ,𝑤(𝑡) + 𝑦̂∗ (7)

for some finite subset  ′ of  and some coefficients {𝛼(ℏ,𝑇 ,𝑤) ∶ (ℏ, 𝑇 ,𝑤) ∈  ′} ⊂ ℝ. Although 𝑦̂∗

of (1) was originally chosen as the edge-of-field latitude in (6), we would in fact like to algorithmically

estimate 𝑦∗ in (7).3

To proceed, we write things as an optimization problem in a vector space. Define the 𝑁-dimensional

latitude observation vector

𝐲
def
=

⎛⎜⎜⎜⎜⎝

𝑦1
𝑦2
⋮
𝑦𝑁

⎞⎟⎟⎟⎟⎠
.
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Define also the constant 𝑁-dimensional column vector

𝟏
def
=

⎛⎜⎜⎜⎜⎝

1
1
⋮
1

⎞⎟⎟⎟⎟⎠
.

If a harvester stays at the edge of the field at some latitude 𝑦∗, his or her latitude at the observation

times will be

𝟏𝑦∗ =

⎛⎜⎜⎜⎜⎝

𝑦∗

𝑦∗

⋮
𝑦∗

⎞⎟⎟⎟⎟⎠
at the 𝑡𝑛's. For each (ℏ, 𝑇 ,𝑤) ∈  , define the ℝ𝑁 -valued feature vector

𝐟ℏ,𝑇 ,𝑤
def
=

⎛⎜⎜⎜⎜⎝

𝐵ℏ,𝑇 ,𝑤(𝑡1)
𝐵ℏ,𝑇 ,𝑤(𝑡2)

⋮
𝐵ℏ,𝑇 ,𝑤(𝑡𝑁 )

⎞⎟⎟⎟⎟⎠
. (8)

Using the latitudes at the 𝑡𝑛's as reference, (7) can be rewritten as

𝐲 ≈
∑

(ℏ,𝑇 ,𝑤)∈ ′
𝛼(ℏ,𝑇 ,𝑤)𝐟ℏ,𝑇 ,𝑤 + 𝟏𝑦∗. (9)

We want to find the “best” approximation of this type.

To proceed, we want to construct a finite subset  ′ of feature parameters. The height ℎ of an excur-

sion has already been restricted to ℏ. Since we can't really get much more granularity in the start of

an excursion than the points in  , we restrict 𝑇 to the set  . Although we could similarly restrict 𝑤

so that the end of the excursion is also one of the elements of  , this would make the  to be at least

of size
(𝑁
2

)
. In fact, we will require that 𝑤 take values in a reasonably small range; for specificity, we

consider values of 𝑤 in the set


def
= {200, 300, 400, 500}. (10)

Namely, define

 ′ def
= {(ℏ, 𝑇 ,𝑤) ∶ 𝑤 ∈  , 𝑇 ∈  }. (11)

Then, 𝐿
def
= | ′| = 4𝑁 . Let ((

ℏ, 𝑇 𝑜
𝓁 , 𝑤

𝑜
𝓁

))𝐿
𝓁=1 (12)

be an ordering of  ′.

Our choice of  in (10) and subsequent choice of the finite set  ′ of (11) is empirically motivated

by the data from Harvester 0 and the observation that the other harvesters, as seen from Figure 2

have behavior on similar scales. One could add more elements to  , but at the risk of allowing more
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interference between excursions; see Section 5. Our choice of ℏ of (5) is somewhat less important;

variation in the reference height ℏ could be subsumed into the choice of 𝜶.

We can now start to formulate an optimization problem corresponding to (9). We want to find the

(𝛼𝓁)𝐿𝓁=1 ⊂ ℝ𝐿 and 𝑦∗ ∈ ℝ which give the “best” approximation of the form

𝐲 ≈
𝐿∑

𝓁=1
𝛼𝓁𝐟ℏ,𝑡𝓁 ,𝑤𝓁

+ 𝟏𝑦∗ = 𝐅𝜶 + 𝑦∗𝟏 = 𝐅𝑒

(
𝜶

𝑦∗

)
, (13)

where

𝐅
def
=

(
𝐟ℏ,𝑡1,𝑤1

𝐟ℏ,𝑡2,𝑤2
⋯ 𝐟ℏ,𝑡𝐿,𝑤𝐿

)
,

𝜶 =

⎛⎜⎜⎜⎜⎝

𝛼1
𝛼2
⋮
𝛼𝐿

⎞⎟⎟⎟⎟⎠
,

(14)

and where 𝐅𝑒 is the block matrix

𝐅𝑒

def
=

(
𝐅 𝟏

)
.

To minimize the error of the approximation (13), we need to specify a way to measure the error.

Some standard notation for norms on vector spaces will be useful here and for some other rea-

sons. For any nonnegative integer 𝑀 and any symmetric nonnegative 𝑀 ×𝑀 matrix Σ, define the

seminorm

‖𝑥‖2Σ def
= 𝑥𝑇Σ𝑥 (15)

for all 𝑥 ∈ ℝ𝑀 . The size of the error in (13) can now be measured via an 𝐿2(𝑑𝑡) norm. For 𝑛 ∈
{2, 3…𝑁 − 1}, the difference between adjacent midpoints is

𝑑𝑡𝑛
def
= 1

2 (𝑡𝑛+1 + 𝑡𝑛) −
1
2 (𝑡𝑛 + 𝑡𝑛−1) =

1
2 (𝑡𝑛+1 − 𝑡𝑛−1);

define

𝐷 = diag
(
𝑡2 − 𝑡1 𝑑𝑡2 𝑑𝑡3 ⋯ 𝑑𝑡𝑁−1 𝑡𝑁 − 𝑡𝑁−1

)
.

The error of (13) can now be measured as

‖‖‖𝐲 − {
𝐅𝜶 + 𝟏𝑦∗

}‖‖‖2𝐷 =
‖‖‖‖‖𝐲 − 𝐅𝑒

(
𝜶

𝑦∗

)‖‖‖‖‖
2

𝐷

. (16)

The 𝐿2(𝑑𝑡) norm clumps together readings at very similar times (as in the clump of data shortly after

time 16, 000 in Figure 3).

We can of course directly minimize (16) over all 𝜶 and 𝑦∗. Define(
𝜶0
𝑦∗0

)
=
(
𝐅𝑇
𝑒
𝐅𝑒

)−1 𝐅𝑇
𝑒
𝐲. (17)
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F I G U R E 5 𝐿2(𝑑𝑡) approximation

This leads to a fairly good approximation of the latitude track; see Figure 5. This is not surprising given

the dimensionality of the feature set of  ′. However, the 𝛼𝑒's do not allow us to easily distinguish large

and macroscopically visible features from noise. The downward excursion between times 14, 000 and

16, 000 in Figure 5 is approximated by a series of smaller excursions (note the green steps). Indeed,

Figure 6 suggests something of a normal distribution of excursion height. In fact, we want the feature

size to be more multimodal with clustering at sizes of order ±ℏ.

In fact, we want 𝜶 to have only a few nonzero components; we want to enforce sparsity. Ideally, we

would like to penalize the 𝐿0 norm on the components of 𝜶; recall that

‖𝜶‖0 def
= |||{𝓁 ∶ 𝛼𝓁 ≠ 0

}|||
for 𝜶 = (𝛼1, 𝛼2 … 𝛼𝐿), where |𝐴| is the cardinality of 𝐴. Fix a penalty parameter 𝜘 > 0 and consider

the minimization problem

min
𝑦∗∈ℝ,𝜶∈ℝ𝐿

(𝑦∗,𝜶), (18)

where

(𝑦∗,𝜶)
def
= ‖‖𝐲 − 𝐅𝜶 − 𝟏𝑦∗‖‖2𝐷 + 1

2𝜘 ‖𝜶‖0 . (19)

This is now a well-understood problem; there are a number of ways to regularize this prob-

lem and enforce sparsity; the standard approach depends on least absolute shrinkage and selec-

tion operator (LASSO) techniques; see Hastie, Tibshirani, and Wainwright (2015). We would like
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F I G U R E 6 Histogram of components of 𝜶0

to, however, try to adapt the recent work of Liu and Li (2016), which suggests something like

an expectation-maximization (EM) algorithm to regularize (18). Note, however, that we want to

be careful to not penalize a nonzero 𝑦∗; the calculations of Liu and Li (2016) must be slightly

modified.

To incorporate the thoughts of Liu and Li (2016), we approximate  to separate out some effects of

feature inclusion or exclusion. For 𝐦 = (𝑚1, 𝑚2 …𝑚𝐿) ∈ ℝ𝐿, define

Π𝐦
def
= diag

(
𝜒{𝑚1≠0} 𝜒{𝑚2≠0} ⋯ 𝜒{𝑚𝐿≠0}

)
𝑆−
𝐦

def
= diag

(
𝑚−2
1 𝜒{𝑚1≠0} 𝑚

−2
2 𝜒{𝑚2≠0} ⋯ 𝑚−2

𝐿
𝜒{𝑚𝐿≠0}

)
𝑆+
𝐦

def
= diag

(
𝑚2
1 𝑚2

2 ⋯ 𝑚2
𝐿

)
;

note that all of these matrices are symmetric and nonnegative semidefinite. Also, note that Π𝐦 is a

projection operator and that specifically

(
Π𝐦𝜶

)
𝓁 =

{
𝛼𝓁 if 𝑚𝓁 ≠ 0
0 if 𝑚𝓁 = 0.
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Define

̂(𝑦∗,𝜶,𝐦)
def
= ‖‖𝐲 − 𝐅Π𝐦𝜶 − 𝟏𝑦∗‖‖2𝐷 + 𝜘

2
∑

𝓁∶𝛼𝓁≠0

𝛼2𝓁

𝑚2
𝓁

= ‖‖𝐲 − 𝐅Π𝐦𝜶 − 𝟏𝑦∗‖‖2𝐷 + 𝜘

2
‖𝜶‖2

𝑆−
𝐦

= ‖‖𝐲 − 𝐅Π𝐦𝜶 − 𝟏𝑦∗‖‖2𝐷 + 𝜘

2
‖‖Π𝐦𝜶‖‖2𝑆−

𝐦

(20)

for 𝑦∗ ∈ ℝ and 𝜶 and 𝐦 in ℝ𝐿. The last line uses the fact that Π𝑇
𝐦𝑆

−
𝐦Π𝐦 = 𝑆−

𝐦. Note that

(𝑦∗,𝜶) = ̂(𝑦∗,𝜶,𝜶).

We then want to minimize ̂ over 𝑦∗ and 𝜶 with the added constraint that 𝐦 = 𝜶. We want to do

this via a recursive algorithm. Fix an initial 𝑦∗0 ∈ ℝ and 𝜶0 ∈ ℝ𝐿 and iteratively define

(𝑦∗
𝑛+1,𝜶𝑛+1)

def
= argmin

𝑦̂∗∈ℝ
𝜶̂∈ℝ𝐿

̂(𝑦̂∗, 𝜶̂,𝜶𝑛) (21)

for 𝑛 ∈ {0, 1…}.

5 THE ALGORITHM

The solution of (21) is fairly simple; the extremals are easy to compute. Note, by way of prelude, that

the gradient of (15) at a point 𝑥 ∈ ℝ𝑀 is given by 2Σ𝑥. For a fixed 𝐦 ∈ ℝ𝐿, differentiating the map

(𝑦̂∗, 𝜶̂) → ̂(𝑦̂∗, 𝜶̂,𝐦) with respect to 𝜶̂ and 𝑦̂∗, we thus have that

−
(
𝐲 − 𝐅Π𝐦𝜶 − 𝟏𝑦∗

)𝑇
𝐷𝐅Π𝐦 + 𝜘𝜶𝑇 𝑆−

𝐦 = 0

−
(
𝐲 − 𝐅Π𝐦𝜶 − 𝟏𝑦∗

)𝑇
𝐷𝟏 = 0,

respectively. Rearranging,

(
Π𝐦𝐅𝑇𝐷𝐅Π𝐦 + 𝜘𝑆−

𝐦
)
𝜶 + Π𝐦𝐅𝑇𝐷𝟏𝑦∗ = Π𝐦𝐅𝑇𝐷𝐲

𝟏𝑇𝐷𝐅Π𝐦𝜶 + 𝟏𝑇𝐷𝟏𝑦∗ = 𝟏𝑇𝐷𝐲.
(22)

Multiply the first equation by 𝑆+
𝐦 and note that 𝑆+

𝐦Π𝐦 = 𝑆+
𝐦 and 𝑆+

𝐦𝑆
−
𝐦 = Π𝐦. Letting 𝐈𝐿 be the 𝐿 × 𝐿

identity matrix,

(
𝑆+
𝐦𝐅

𝑇𝐷𝐅 + 𝜘𝐈𝐿
)
Π𝐦𝜶 + 𝑆+

𝐦𝐅
𝑇𝐷𝟏𝑦∗ = 𝑆+

𝐦𝐅
𝑇𝐷𝐲. (23)

Note that this depends on 𝜶 through Π𝐦𝜶. The last equation of (20) implies that ̂(𝑦∗,𝜶,𝐦) does not

depend on (𝐈𝐿 − Π𝐦)𝜶, so let's add the requirement that

(
𝐈𝐿 − Π𝐦

)
𝜶 = 0.
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Adding this to the second equation of (22) and to (23),(
𝑆+
𝐦𝐅

𝑇𝐷𝐅 + 𝜘𝐈𝐿
)
𝜶 + 𝑆+

𝐦𝐅
𝑇𝐷𝟏𝑦∗ = 𝑆+

𝐦𝐅
𝑇𝐷𝐲

𝟏𝑇𝐷𝐅𝜶 + 𝟏𝑇𝐷𝟏𝑦∗ = 𝟏𝑇𝐷𝐲.

In block form, ((
𝑆+
𝐦𝐅

𝑇𝐷𝐅 + 𝜘𝐈𝐿
)
𝑆+
𝐦𝐅

𝑇𝐷𝟏
𝟏𝑇𝐷𝐅 𝟏𝑇𝐷𝟏

)(
𝜶

𝑦∗

)
=
(
𝑆+
𝐦𝐅

𝑇𝐷𝐲
𝟏𝑇𝐷𝐲

)
. (24)

In fact, we can further rewrite this. Define the block matrices

𝐒𝐦
def
=

(
𝑆+
𝐦 0
0 1

)

𝐈̂
def
=

(
𝐈𝐿 0
0 0

)

𝐀
def
= 𝐅𝑇

𝑒
𝐷𝐅𝑒

𝐛
def
= 𝐅𝑇

𝑒
𝐷𝐲.

Then, (24) is

(
𝐒𝐦𝐀 + 𝜘 𝐈̂

)(
𝜶

𝑦∗

)
= 𝐒𝐦𝐛.

Thus, (
𝜶

𝑦∗

)
=
(
𝐒𝐦𝐀 + 𝜘 𝐈̂

)−1
𝐒𝐦𝐛.

The recursive algorithm is then(
𝜶𝑛+1
𝑦∗
𝑛+1

)
=
(
𝐒𝛼𝑛𝐀 + 𝜘 𝐈̂

)−1
𝐒𝛼𝑛𝐛.

This recursion is started at (17).

5.1 Termination threshold
Fix now a termination threshold

𝜏
def
= 0.01 (25)

and stop the recursion at the first 𝑁∗ such that

‖𝜶𝑁∗+1 − 𝜶𝑁∗‖𝐿2 ≤ 𝜏‖𝜶𝑁∗‖ (26)

(i.e., when the change in 𝜶𝑛 is less than 1% of 𝜶𝑛 itself). From some numerical exploration, 𝑁∗ < 30
in most cases.
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5.2 Quantization threshold
In a sense, the relaxed 𝐿0 algorithm of Section 5 is designed to minimize the number of “nonsmall”

components of 𝜶. After the algorithm has terminated, we forcibly set the “small” elements of 𝜶𝑁∗ to

zero. The term (𝛼𝑁∗ )𝓁𝐟ℏ,𝑡𝓁 ,𝑤𝓁
corresponds to an excursion of height (𝜶𝑁∗ )𝓁ℏ. Let's assume that the

algorithm of Section 5 indeed thinks that an excursion is in fact spurious if it is less than 0.00002◦
latitude; i.e., if |(𝜶𝑁∗ )𝓁| < 𝛿, where

𝛿
def
= 0.01. . (27)

Define 𝜶̂ ∈ ℝ𝐿 as

𝜶̂𝓁
def
=

{
(𝜶𝑁∗ )𝓁 if ||(𝜶𝑁∗ )𝓁|| ≥ 𝛿

0 else.
(28)

6 PENALTY SIZE

In order for (18) (or more accurately (21)) to decompose the data 𝐲 into a small number of 𝐟ℏ,𝑇 ,𝑤
pattern vectors as in (8), we want to choose 𝜘 so that the penalty term in (19) is sufficiently strong

compared to the mean-square error of the approximation (the ‖ ⋅ ‖2
𝐷

term in (18) or (21)). Latitude

measurements have error of size 10−8 while the time instants are in seconds. Over a time interval of

size 𝑇 (in seconds)

‖‖𝐲 − 𝐅𝜶 − 𝟏𝑦∗‖‖2𝐷 = 𝑂(10−16𝑇 ).

The excursions are on the order of 5 minutes or 300 seconds, so in time 𝑇 we should have 𝑇 ∕300
excursions; thus,

1
2𝜘 ‖𝜶‖0 = 𝜘𝑂(10−2𝑇 );

matching these up, we start by requiring that 𝜘 ≫ 𝑂(10−14).
Figures 7 and 8 show the approximation for small (10−10) and large (10−5) values of 𝜘; in these

figures, we have not thresholded as in (28) (or alternately, we have set 𝛿 = 0). Before thresholding as

in (28), we would like to see that the algorithm of (5) identifies a few large excursions. For 𝜘 = 10−5,

the iteration given by (25) and (26) stops after 7 iterations. If 𝜘 = 10−10, the rule of (25) and (26)

does not stop the iteration; 𝛼 seems not to converge. Figure 9 shows that ‖𝑑𝛼‖∕‖𝛼‖ seems to oscillate

around 0.5. On the other hand, if 𝜘 = 10−5, almost all of the (𝛼𝑁∗ )𝓁 's are small (we decompose a large

excursion into a large number of really small excursions); we would like to decompose the latitude

track in to a few macroscopically visible features.

Some numerical exploration reveals that

𝜘 = 1.5 × 10−7 (29)

gives reasonably good performance, and stops after 8 iterations; see Figure 10.

In Figures 7, 8, and 10, the blue dots represent the sizes and starting points of different features.

Adding these features up gives the green approximate excursion paths.
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F I G U R E 7 Approximation for Harvester 0 with 𝜘 = 10−10 after 30 iterations

F I G U R E 8 Approximation for Harvester 0 with 𝜘 = 10−5
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F I G U R E 9 ‖𝑑𝛼‖∕‖𝛼‖ for 𝜘 = 10−10

F I G U R E 1 0 Approximation for Harvester 0 with 𝜘 = 1.5 × 10−7
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F I G U R E 1 1 Approximation for Harvester 0 with 𝜘 = 1.5 × 10−7; features thresholded at 𝛿 = 0.01

We now threshold the data from Figure 10, as in (27) and (28). The result is Figure 11.

7 OVERLAPPING EXCURSIONS

Figure 10 shows another problem; the above algorithm tends to decompose an excursion with sev-

eral data points at different latitudes into multiple overlapping excursions (i.e., multilevel excursions).

Near timestamp 10, 000 in Figure 10, some multilevel excursions have been decomposed into several

overlapping features. This causes a challenge for the 𝐿0 algorithm we are using. While we might be

tempted to increase 𝜘 to further penalize these overlapping excursions, the size (about 0.0003◦ degrees

of latitude) of these multilevel excursions may in fact be the same as some of the smaller excursions

(see those near timestamp 4000 in Figure 10). Increasing 𝜘 could just as well remove the approxima-

tion of the excursion near timestamp 4000 as remove the second level of an excursion near timestamp

10, 000.

We resolve this problem by combining excursions; we will do this after the iterations of (21) and

Section 5 iterate (i.e., after the thresholds of subsection 5.1 have been reached). We create a partial

order on  by stating that the excursion (ℎ1, 𝑇1, 𝑤1) ≤ (ℎ2, 𝑇2, 𝑤2) if

𝑇2 ≤ 𝑇1 ≤ 𝑇2 +𝑤2,

then 𝐵ℎ1,𝑇1,𝑤1
starts during 𝐵ℎ2,𝑇2,𝑤2

. This leads to a multilevel excursion. In this case, we add the

height of the excursion with parameter (ℎ1, 𝑇1, 𝑤1) to the excursion (ℎ2, 𝑇2, 𝑤2) and remove the excur-

sion at (ℎ1, 𝑇1, 𝑤1). The resulting excursion still has support (𝑇2, 𝑇2 +𝑤2) but has height, which reflects

the combination of the excursions. While some data are thus lost, the beginning of the excursion, i.e.,

𝑇2 (which, hopefully, respects when and where the harvester entered the field), is preserved.
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F I G U R E 1 2 Approximation for Harvester 0 with 𝜘 = 1.5 × 10−7; features thresholded at 𝛿 = 0.01 and combined

F I G U R E 1 3 Approximation for Harvester 1 with 𝜘 = 1.5 × 10−7; features thresholded at 𝛿 = 0.01; excursions

uncombined (left) and combined (right)

This step requires a large number of pairwise comparisons of nonzero excursions. Naïvely, one might

look at all pairs of nonzero excursions, combine them if they are ordered, and then repeat until no more

combinations can be done. In fact, this can be simplified if the universe (2) of possible excursions is

organized when constructing 𝐅 of (14). Choose  ′ of (11) as follows:

{
(ℏ, 𝑇1, 500), (ℏ, 𝑇2, 500)… (ℏ, 𝑇𝑁, 500),⋯

(ℏ, 𝑇1, 400), (ℏ, 𝑇2, 400)… (ℏ, 𝑇𝑁, 400)⋯

(ℏ, 𝑇1, 200), (ℏ, 𝑇2, 200)… (ℏ, 𝑇𝑁, 200)
}
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F I G U R E 1 4 Approximation for Harvester 2 with 𝜘 = 1.5 × 10−7; features thresholded at 𝛿 = 0.01; excursions

uncombined (left) and combined (right)

F I G U R E 1 5 Approximation for Harvester 3 with 𝜘 = 1.5 × 10−7; features thresholded at 𝛿 = 0.01; excursions

uncombined (left) and combined (right)

(i.e., in the notation of (12), (ℏ, 𝑇 𝑜
1 , 𝑤

𝑜
1) = (ℏ, 𝑇1, 500), (ℏ, 𝑇 𝑜

2 , 𝑤
𝑜
2) = (ℏ, 𝑇2, 500), (ℏ, 𝑇 𝑜

𝑁+1, 𝑤
𝑜
𝑁+1) =

(ℏ, 𝑇1, 400), and so forth). We can then sequence through  ′ and combine excursions. Sequence

through increasing 𝓁, and sequence through decreasing 𝓁′ with 𝓁 ≤ 𝓁′, and combine (ℏ, 𝑇 𝑜
𝓁 , 𝑤

𝑜
𝓁) and

(ℏ, 𝑇 𝑜
𝓁′
, 𝑤𝑜

𝓁′
) if (ℏ, 𝑇 𝑜

𝓁 , 𝑤
𝑜
𝓁) ≤ (ℏ, 𝑇 𝑜

𝓁′
, 𝑤𝑜

𝓁′
). This combines overlapping excursions, with smaller excur-

sions being folded into larger ones.

There are now 16 excursions; see Figure 12.

8 RESULTS AND DISCUSSION

To understand the performance of the above algorithm, we apply our algorithm to the other harvesters;

• set 𝜘 = 1.5 × 10−7 (as in (29)),

• stop the iteration when ‖𝑑𝛼‖1 ≤ 0.1‖𝛼‖1 (as in (25) and (26)),

• threshold the 𝛼𝓁 's at 0.01 as in (27) and (28).

There are several ways in which the algorithm can fail.
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The plot for Harvester 1 is in Figure 13. The algorithm misses several excursions near time 𝑡 = 5000.

Based on the uncombined excursions, the combination procedure combines together some adjacent

positive and negative excursions. Similar behaviors hold for Harvesters 2 and 3; see Figures 14 and 15.

More granularity in the collection of widths of (10) would allow better representation of the transition

between negative and positive excursions.

A related problem is apparent in Figure 15 (and in particular, the right-hand plot in Figure 15, where

the features have been combined). The negative excursion that starts at around time 4000 is broken into

two smaller negative excursions. Here, adding longer excursions to (10) would algorithmically allow

for this.

9 CONCLUSION

The calculations of this paper, while still allowing room for improvement, do allow one to identify

when and where harvesting is taking place. This could lead to more precise yield maps, which give

information about field productivity on a reasonably granular scale. In particular, precise information

about harvest, such as we have attempted, could lead to row-by-row productivity.

In practice, harvesters make excursions into a field to harvest a prespecified amount of fruit; in the

case of strawberries, a “crate” of several “clamshell” containers (these clamshells are what ultimately

appear in retail stores). Once these crates are filled, they are subjected to a quality check (at the edge

of the field). Timestamps from these quality checks translate into when a crate of berries has been

harvested; combining that with the ability to identify excursions into fields, as we have proposed here,

allows one to identify where and at what rate a crate has been harvested. This leads to yield maps.

A further exploration of the ideas proposed in this work might depend on a larger data set with a

wider range of possible behaviors. It would also be important to compare the results of our algorithm

with a ground truth of actual harvesting records. In order to implement some of these harvest estimates

at a larger level, some understanding of reliability would be needed.
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ENDNOTES
1 The video https://www.youtube.com/watch?v=CFORJwDMxqs gives a realistic idea of harvesting.

2 See http://www.ers.usda.gov/topics/farm-economy/farm-labor/background.aspx

3 In fact, most farms do have precise GPS data about field boundaries, meaning that 𝑦∗ is already known. However,

harvesting crews can, during the course of a day, finish one field and move to another. There are thus a finite number of

possible field edges, and there is a natural change point detection problem associated with algorithmically identifying

when a crew moves to a new field. Algorithmically identifying the edge of the field gives us some preliminary tools to

understanding variability in the field itself.
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