
Tight Trade-offs for the Maximum k-Coverage
Problem in the General Streaming Model

Piotr Indyk

indyk@mit.edu

CSAIL, MIT

Ali Vakilian

vakilian@mit.edu

CSAIL, MIT

ABSTRACT

We study the maximum k-coverage problem in the general

edge-arrival streaming model: given a collection ofm sets F ,

each subset of a ground set of elementsU of size n, the task
is to find k sets whose coverage is maximized. The sets are

specified as a sequence of (element, set) pairs in an arbitrary
order. Our main result is a tight (up to polylogarithmic fac-

tors) trade-off between the space complexity and the approx-

imation factor α ∈ (1/(1 − 1/e), Ω̃(
√
m)] of any single-pass

streaming algorithm that estimates the maximum coverage

size. Specifically, we show that the optimal space bound is

Θ̃(m/α2). Moreover, we design a single-pass algorithm that

reports an α-approximate solution in Õ(m/α2 + k) space.1

Our algorithm heavily exploits data stream sketching tech-

niques, which could lead to further connections between

vector sketching methods and streaming algorithms for com-

binatorial optimization tasks.

CCS CONCEPTS

•Theory of computation→ Streamingmodels; Sketch-

ing and sampling; Lower bounds and information complex-

ity.

KEYWORDS

max k-cover, sketching/streaming, heavy hitters

ACM Reference Format:

Piotr Indyk and Ali Vakilian. 2019. Tight Trade-offs for the Maxi-

mum k-Coverage Problem in the General Streaming Model. In 38th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS ’19), June 30–July 5, 2019, Amsterdam, Netherlands.

1Õ , Ω̃, Θ̃ suppress polylog factors.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6227-6/19/06. . . $15.00

https://doi.org/10.1145/3294052.3319691

ACM,NewYork, NY, USA, 19 pages. https://doi.org/10.1145/3294052.

3319691

1 INTRODUCTION

Maximum k-coverage (Maxk-Cover) is a classic problem
in combinatorial optimization. Given a ground set U of n
elements, a family ofm sets F (each is a subset ofU), and

a parameter k , the goal is to select k sets in F whose union

has the largest cardinality. Maxk-Cover is an important

problem in submodular maximization, with applications in

many areas, including operations research, machine learning,

information retrieval and data mining [1, 19, 37].

The classic greedy algorithm for this problem [35] guaran-

tees an approximation ratio of 1/(1 − 1/e), which is known

to be tight under P , NP [23]. Unfortunately, the standard

greedy algorithm does not scale very well to massive data

sets [19]. This has led to considerable interest in developing

maximum coverage algorithms tailored to modern architec-

tures specifically designed for massive data processing. In

particular [37] gave the first algorithm for the problem in

the data streaming model, where the algorithm is required to

make a single pass over the input F while using a sub-linear

amount of memory. Since then, there has been a large body

of work designing space-efficient streaming algorithms for

maximum coverage [6, 12, 33, 34], as well as its dual variant,

set cover [6, 7, 12, 17, 21, 22, 26–28].
The initial algorithms were developed in the set arrival

model, where the input sets are listed contiguously. This

restriction is natural from the perspective of submodular

optimization, but limits the applicability of the algorithms
2
.

Avoiding this limitation can be difficult, as streaming algo-

rithms can no longer operate on sets as “unit objects”. As a

result, the first maximum coverage algorithm for the general

edge arrivalmodel, where pairs of (set, element) can arrive in

arbitrary order, have been developed recently. In particular

[12] presented a one-pass algorithm with space linear inm
and constant approximation factor

3
. We remark that many of

2
For example, consider a situation where the sets correspond to neighbor-

hoods of vertices in a directed graph. Depending on the input representation,

for each vertex, either the ingoing edges or the outgoing edges might be

placed non-contiguously.

3
Note that in [12]m denotes the number of elements and n denotes the

number of sets.

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

200

https://doi.org/10.1145/3294052.3319691
https://doi.org/10.1145/3294052.3319691
https://doi.org/10.1145/3294052.3319691

the prior bounds (both upper and lower bounds) on set cover

and max k-cover problems in set-arrival streams also work

in edge arrival streams (e.g. [6, 7, 21, 26, 27, 34]). However,

the design of efficient streaming algorithms for the coverage

problems on edge arrival streams was first studied explicitly

in [12].

A particularly interesting line of research in set arrival

streaming set cover and max k-cover is to design efficient

algorithms that only use Õ(n) space [9, 17, 22, 34, 37]. Previ-
ous work have shown that we can adopt the existing greedy

algorithm of max k-cover to achieve constant factor approx-

imation in Õ(n) space [9, 37] (which later improved to Õ(k)
by [34]). However, the complexity of the problem in the “low

space” regime is very different in edge-arrival streams: [12]

showed that as long as the approximation factor is a constant,

any algorithm must use Ω(m) space. Still, our understanding
of approximation/space trade-offs in the general case is far

from complete. Table 1 summarizes the known results.

Other related work. Another important related question

in this area is to design a “low-approximation” (i.e., bet-

ter than the 2-approximation guarantee of the greedy ap-

proach) streaming algorithm for the max k-cover problem
in the set arrival setting. Recently, Norouzi-Fard et al. [36]

presented the first streaming algorithm that improves upon

2-approximation guarantee of greedy approach on random
arrival streams. Very recently, Agrawal et al. [2] achieved

an almost 1/(1 − 1/e)-approximation in Õ(n) space which
is essentially the optimal bound [34]

4
. Still it is an impor-

tant question to design such algorithms on adversarial order

streams. We also remark that the algorithms of [2, 36] do not

work on edge arrival streams.

In many scenarios, space is the most critical factor, and

thus the question becomes: what approximation guarantees

are possible within the given space bounds? This question

has been studied before in the context of set cover in set

arrival streams (e.g. [17, 22]), leading to poly(n,m)-factor

approximation algorithms.

Our results. In this paper, we complement the work of [12]

by designing space-efficient algorithms for super-constant

approximation factors α . In fact, we show a tight (up to poly-

logarithmic factors) trade-off between the two: the optimal

space bound is Õ(mα 2
) for estimating the maximum coverage

value, and Õ(mα 2
+k) for reporting an approximately optimal

4
Both [2, 36] study the more general problem of submodular maximization

and their results are stated with different notation and assuming oracle
access. Here, we state their guarantees for max cover on set arrival streams

solution
5
. The approximation factor α can take any value in

(1/(1 − 1/e), Ω̃(
√
m)].

Our techniques. In the edge arrival model, elements of

each set can arrive irregularly and out of order. This neces-

sitates the use of methods that aggregate the information

about the input sets, or their coverage. In particular, dis-

tinct element sketches were used both in [12] (implicitly)

and [34] (explicitly). In this paper we expand the use of

sketching toolkit. Specifically, in addition to distinct element

estimation [5, 11, 13, 30, 31], we also need algorithms for

heavy hitters with respect to the L2 norm [14, 15, 18, 39],

as well as a frequency-based partitioning of elements, and

detecting sets that “substantially contribute” to the solu-

tion [29]. Application of vector-sketching techniques (e.g. Lp -
sampling/estimation and heavy hitters) in graph streaming

settings have been studied extensively (e.g. [3, 4, 8, 20, 25, 32]).

We believe that our algorithms can lead to further connec-

tions between vector sketching methods and streaming al-

gorithms for the coverage problems.

Lower bound. Our algorithm was inspired by the lower

bound. Specifically, it was previously shown by [12] that ap-

proximating Maxk-Cover by a factor better than 2 requires

Ω(m) space. Similar approach works for larger values of α , by
showing a reduction from the α-player set disjointess problem
(DSJ[m]) with unique intersection guarantee (i.e., either play-

ers’ sets are disjoint or there is a unique item that appears

in all sets) to the task of α-approximating Maxk-Cover.
The specific hard instances in the aforementioned lower

bound can be distinguished in the streaming model using

space O(mα 2
). To this end, we compute an α-approximation

to the L∞-norm of a vectorv that, for each element e , counts
the number of sets e belongs to. This problem can be solved

inO(mα 2
) space, by using L2-norm sketches [5]. This suggests

that it might be possible to solve the general Maxk-Cover
using sketching techniques as well.

Upper bound. We start our algorithm with a “coverage

boosting” universe reduction technique which constructs a

reduced size instance (i.e. with reduced ground set) whose op-

timal k-cover has constant fraction coverage (see Section 3.1).
This step is particularly important as the space complexity of

the existing methods for Maxk-Cover is proportional to the
reciprocal of the fraction of covered elements in an optimal

solution.

Once we have a constant fraction coverage guarantee, our

algorithm exploits three different approaches so that on any

instance, at least one of them reports a “good” approximate

solution.

5
We note that similar trade-offs were previously obtained for the set cover

problem, as [7] showed a Θ(mn/α 2) bound for estimation, and a Θ(mn/α)
bound for reporting. Interestingly, the 1/α 2

vs. 1/α gap does not occur for

our problem.

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

201

Estimation/

Reporting

Set/Edge

Arrival

Approximation Space Upper Bound Space Lower Bound

Estimation Set Arrival 1/(1 − ε) – Ω̃(mε2)[6]

Estimation Set Arrival 1/(1 − 1/e − ε) – Ω(mk2
)[34]

Reporting Edge Arrival 1/(1 − 1/e − ε)a Õ(mε3)[12], Õ(
m
ε2)[34] –

Reporting Set Arrival 4 [37], 2 [9]
b Õ(n) –

Reporting Set Arrival 2 + ε Õ(kε3)[34] –

Estimation Edge Arrival α Õ(mα 2
) [here] Ω(mα 2

) [here],[12]

Reporting Edge Arrival α Õ(mα 2
+ k) [here] –

Table 1: The summary of known results on the complexity of single-pass streaming algorithms of Maxk-Cover.

a
Allowing exponential runtime, the approximation factor becomes

1

1−ε which matches the information theoretic lower bound of [6] up to a factor of
1

ε .
b
Their result works for the general submodular maximization assuming access to a value oracle that given a collection of sets computes their coverage. A

careful adoption of their result to Maxk -Cover (without the value oracle) uses Õ (n) space.

Multi-layered set sampling. By extending the set sam-
pling approach (see Section 2.1) and trying a larger range

of sampling rate, [km ,
αk
m], we design a smooth variant of set

sampling: a collection of sets sampled uniformly and indepen-

dently
6
at rate Õ(

βk
m) w.h.p., covers all elements that appear

in at least
m
βk sets. Besides expanding the application of set

sampling in finding α-approximate k-cover, this smooth vari-

ant implies more structure on the number of elements in a

wider range of frequency levels which is specifically crucial

in our approach for detecting sets with “low contribution”.

Unlike the set sampling based technique whose success

in finding an α-approximate k-cover only depends on the

structure of the set system, the performance of the next two

approaches rely on the structure of optimal solutions as well:

whether the majority of the coverage (in a specific optimal

k-cover) is due to (few) “large” sets or, (many) “small” sets.

Heavy hitters and contributing frequencies. The high

level idea in this approach is that if in an optimal solution,
a sufficiently7 small number of sets cover the majority of the
elements (covered by the optimal solution), it is enough to find
a single large set, which naturally hints the use of ideas re-

lated to heavy hitters. For the sake of efficiency (in space

complexity), we randomly partition sets into supersets of size
at most k . However, once we merge sets into a single super-

set, we can no longer distinguish between their coverage

and their total size. Since we combine sets at random, if all

elements have “low” frequency in the set system, then the

gap between the total size of all sets in a superset and their

coverage is just Õ(1). This observation implies that if there

is no “common” element in the set system, then we can use

the total size of the sets in a superset as an estimate of its

6
In fact, O (logmn)-wise independent is sufficient for all applications in

this paper.

7
Depending on how large our desired approximation factor α is.

coverage size. To get around the case with (many) “common”

elements, we show that performing the heavy hitter based

algorithm on a sampled set of elements will find a sufficiently

large superset as desired (see Section B).

Detecting k-covers with many small sets. Finally, we ad-

dress the case in which an optimal k-cover consists of many

“small” sets. In this case, we can show that after subsampling

sets uniformly with probability 1/α , a (kα)-cover with cover-

age at least Θ(1/α) times the coverage of an optimal k-cover
survives. This sampling method will save us a factor of α in

the memory usage of the algorithm. Further, by exploiting

the structural property guaranteed due to the multi-layered

set sampling
8
, we can show that element sampling can save

another factor of α in the space complexity once applied to

find a constant factor approximate Max (kα)-Cover of the
subsampled sets.

2 PRELIMINARIES AND NOTATIONS

2.1 Sampling Methods for Max k-Cover
Here we describe two sampling methods that have been

used widely in the design of streaming algorithms for Maxk-
Cover and Set Cover [6, 7, 12, 21, 26, 27, 33, 34]. For a collec-
tion of sets Q, we define C(Q) to denote the set of elements

that are covered by Q; C(Q) :=
⋃

S ∈Q S . Moreover, we de-

note an optimal k-cover of (U, F) by OPT.

Set Sampling. Roughly speaking, it says that by selecting

sets uniformly at random, with high probability, all elements

that appear in large number of sets will be covered.

Definition 2.1 (λ-common element). An element e ∈ U is

called λ-common if it appears in at least c ·m ·polylog(m,n)/λ

8
If the multi-layered set sampling fails to return an α -approximate estimate,

we can infer strong conditions on the maximum number of elements that

belong to each frequency level in [mk , m
αk].

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

202

sets in F . Furthermore, We denote the set of λ-common

elements byUcmn
λ .

Observation 2.2. For any 0 ≤ λ1 ≤ λ2,Ucmn
λ1
⊆ Ucmn

λ2
.

Lemma 2.3 (Set Sampling [21]). Consider a set system
(U, F) and let F rnd ⊆ F be a collection of sets such that
each set S is picked in F rnd with probability λ

m . With high
probability, F rnd covers all elements that appear in Ω̃(m/λ)
sets (i.e. λ-common elements).

Observation 2.4. Let Q be a subset of F of size (βk). Then,
in any partitioning of Q into β groups, there exists one group
with coverage at least |C(Q)|/β . In particular, an optimal k-
cover in Q covers at least |C(Q)|/β .

This simple observation is in particular interesting be-

cause it relates the task of α-approximating Maxk-Cover
to solving instances of Max (βk)-Cover where β ≤ α .

Element Sampling forMaxk-Cover. This samplingmethod

shows that if we sample elements ofU uniformlywith a large

enough rate (i.e. proportional to (k |U|)/|C(OPT)|), then a

constant factor approximate k-cover over the sampled ele-

ments w.h.p., is a constant factor approximate solution of

the original instance.

Lemma 2.5 (Element Sampling Lemma [21, 33]). Con-
sider an instance of Max k-Cover(U, F). Let’s assume that
an optimal k-cover of (U, F) covers (1/η)-fraction ofU. Let
L ⊂ U be a set of elements of size Θ̃(ηk) picked uniformly
at random. Then, with high probability, a Θ(1)-approximate
k-cover of (L, F) is a Θ(1)-approximate k-cover of (U, F).

2.2 HeavyHitters and Contributing Classes

Suppose that a sequence of items p1, · · · ,pT arrive in a data

stream where for each j ≤ T , pj ∈ [m]. We can think of

the stream as a sequence of (insertion only) updates on an

initially zero vector ®a such that upon arrival of pj in the

stream, ®a[j] ← ®a[j] + 1. Here, we review the notion of F2-
heavy hitter and contributing coordinates that are used in our

algorithm for approximating Maxk-Cover.

Definition 2.6 (F2-HeavyHitters). Given anm-dimensional

vector ®a, an item j (corresponding to ®a[j]) is aϕ-HeavyHitter
of F2(®a), if ®a[j]

2 ≥ ϕ · F2(®a) = ϕ ·
∑

j ∈[m] ®a[j]
2
. Intuitively, the

set of items that appear frequently in the stream are the

heavy hitters.

We conceptually partition coordinates of ®a into classes

Ri = {j | 2
i−1 < ®a[j] ≤ 2

i }.

Definition 2.7 (γ -contributing coordinates). A class of co-

ordinates Rt is γ -contributing if |Rt | · 2
2t ≥ γF2(®a) =

γ
∑

j ∈[m] ®a[j]
2
.

Let Rt ∗ be a γ -contributing class and let nt ∗ denote the size
of Rt ∗ ; nt ∗ = |Rt ∗ |. Further, let’s assume that i∗ = ⌈lognt ∗⌉;
2
i∗−1 < nt ∗ ≤ 2

i∗
. Let h : [m] → [(12m logm)/2i

∗

] be

a function chosen uniformly at random from a family of

Θ(log(mn))-wise independent hash functions. We define Si∗

as a sampled substream of the input stream with rate 1/2i
∗

.

More precisely, Si∗ only contains the updates corresponding

to the coordinatesFi∗ = {j | h(j) = 1} that aremapped to one

under h. Next, we show that the survived coordinates of Rt ∗

(j ∈ Rt ∗) in ®ai∗ , which is the vector ®a restricted to the items in

Fi∗ , are Ω̃(γ)-HeavyHitters of F2(®ai∗); ®a[j]2 ≥ Ω̃(γ) ·F2(®ai∗).
Roughly speaking, if we subsample the stream so that only

polylog(m) coordinates of Rt ∗ survive, then with high proba-

bility these coordinates are Ω̃(γ)-HeavyHitters of the sam-

pled substream.

Claim 2.8. With probability at least 1−m−1, the number of
survived coordinates in the sampled substream Si∗ is at least
(6m logm)/2i

∗

.

Lemma 2.9. With probability at least 1−2/(9 log2 n logcm),
a coordinate j ∈ Rt ∗ is a (

γ
162 log

2 n log
c+1m
)-HeavyHitter in the

sampled substream St ∗ .

Next, we can use the exiting algorithms for F2-HeavyHitters
to complete this section.

Theorem 2.10 (F2-heavy hitters algorithm [14, 15, 18,

39]). Let’s assume that ®a is am-dimensional vector initialized
to zero. Let S be a stream of items p1, · · · ,pT where for each
j ∈ [T], pj ∈ [m]. Then, there is a single pass algorithm F2-
HeavyHitter that uses Õ(1/γ) space and with high probability
returns all coordinates i such that ®a[i]2 ≥ γF2(®a). In addition,
it returns (1 ± 1

2
)-approximate values of these coordinates.

Finally, there exists an algorithm that with probability at

least 1 − 2/(9 logn logcm), finds at least one coordinate in

each γ -contributing class of ®a using Õ(1/γ) space.

Theorem 2.11 (γ -contributing algorithm [29]). Let’s
assume that ®a is anm-dimensional vector initialized to zero.
Let S be a stream of items p1, · · · ,pT where for each j ∈
[T], pj ∈ [m]. Moreover, let’s assume no item in S has fre-
quency more than n. There exists a single pass algorithm F2-
Contributing that uses Õ(1/γ) space and with probability
at least 1 − 2/(9 logn logcm) returns a coordinate i from each
γ -contributing class. In addition, it returns (1± 1

2
)-approximate

frequency of these coordinates.

Proof. There are atmost logn (the total number of classes)

γ -contributing classes for ®a and for each γ -contributing class
Rt , by Lemma 2.9, with probability at least 1−2/(9 log2 n logcm),

a coordinate in Rt will be a Ω̃(γ)-HeavyHitter of F2(®ai∗)
(where i∗ = ⌈log(nt)⌉). By trying all values of i∗ ∈ [logn],

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

203

with probability at least

1 − logn(
2

9 log
2 n logcm

) ≥ 1 −
2

9 logn logcm

F2-Contributing algorithm outputs a coordinate from each

γ -contributing class. �

F2-Contributing(γ , r):
for each nt ∈ {2

i | i ∈ [log r]} do in parallel

◃ nt : #coordinates in a γ -contributing class
let ϕ ← (

γ
432 logn log

c+1m
) ◃ ϕ-HeavyHitter

let HH be a instance of F2-HeavyHitter(ϕ)
let ρ ← (12 logm)/2i ◃ sample rate

pick h : [m] → [m/ρ] from a family of

Θ(log(mn))-wise independent hash functions

for each i in the data stream

if h(i) = 1 then feed i to HH
◃ heavy coordinates with their approximate freq.

return output of HH

2.3 L0-Estimation

Norm estimation is one of the fundamental problems in

the area of streaming algorithms where we are given an

m-dimensional vector ®a which is initialized to zero and a se-

quence of items p1, · · · ,pT (updates for the vector ®a) where
for each j ∈ [T], pj ∈ [m] arrive in a data stream. In the well-

studied task L0-estimation (also known as Count-distinct
problem), the goal is to output a (1 ± ε)-estimate of the num-

ber of distinct elements (i.e., L0(®a) := |{i | ®a[i] , 0}|) after

reading the whole stream.

Theorem 2.12 (L0-estimation [5, 11, 13, 30, 31]). Let’s
assume that ®a is anm-dimensional vector initialized to zero.
Let S be a stream of items p1, · · · ,pT where for each j ∈ [T],
i j ∈ [m]. There exists a single pass algorithm that returns a
(1 ± 1/2)-approximation of L0(®a) and uses Õ(1) space.

3 ESTIMATING SIZE OF MAXIMUM

COVERAGE

In this section, we describe the outline of our single-pass

algorithm that approximates the coverage size of an optimal

k-cover of (U, F) within a factor of α using Õ(m/α2) space

in arbitrary order edge arrival streams. The input to our

algorithm is k,α,n = |U| and m = |F |. In high level, we

perform three different subroutines in parallel and show

that for any given Maxk-Cover instance, at least one of the
subroutines estimates the optimal coverage size within the

desired factor in the promised space.

Theorem 3.1. For any α ∈ [Õ(1), Ω̃(
√
m)], the single-pass

algorithm EstimateMaxCover uses Õ(m/α2) space and with

probability at least 3/4 computes the size of an optimal

coverage ofMaxk-Cover(U, F)within a factor ofα in edge-
arrival streams.

Note that Theorem 3.1 togetherwith theO(1)-approximation

algorithms of [12, 34] that use Õ(m) space, imply that for any

α ∈ (1/(1−1/e), Ω̃(
√
m)], there exists a single-pass streaming

algorithm that computes an α-approximation of the optimal

coverage size of Maxk-Cover(U, F) in Õ(mα 2
) space. In the

longer version of the paper, we extend our approach fur-

ther to achieve a single pass algorithm that computes an

α-approximate k-cover in Õ(mα 2
+ k) space.

Theorem 3.2. For any α ∈ [Õ(1), Ω̃(
√
m)], there exists a

single-pass algorithm that uses Õ(mα 2
+k) space and with prob-

ability at least 3/4 returns an α-approximate solution of
Maxk-Cover (U, F) in edge-arrival streams.

Finally, we complement our upper bounds with amatching

lower bound in Section 5.

Theorem 3.3. Any single pass (possibly randomized) algo-
rithm on edge-arrival streams that α -approximates the optimal
coverage size of Maxk-Cover requires Ω(mα 2

) space.

As a first step, we provide a mapping from the ground set

U to a small size set of pseudo-elements such that the optimal

k-cover on the pseudo-elements covers a constant fraction

of the pseudo-elements. This reduction is in particular useful

for bounding the number of required samples in methods

such as element sampling.

3.1 Universe Reduction

In this section we show that in order to solve Maxk-Cover
on edge-arrival streams, it suffices to solve the instances

whose optimal coverage size are at least a constant fraction

of |U|. This reduction is particularly important as the space

complexity of the existing methods for Maxk-Cover is pro-
portional to the reciprocal of the fraction of covered elements

in an optimal solution. To this end, suppose that we have an

algorithm A for Maxk-Cover in edge-arrival streams with

the following properties:

Definition 3.4 ((α, δ ,η)-oracle for Maxk-Cover). An algo-

rithm A is an (α, δ ,η)-oracle for Maxk-Cover if it satisfies
the following properties (α denotes the approximation guar-

antee, δ denotes the failure probability and η is the promised

coverage of an optimal k-cover):

• If the optimal coverage size of Maxk-Cover(U, F) is
at least |U|/η, then with probability at least 1 − δ , A
returns an α-approximation of the optimal coverage

size.

• If A returns z, then an optimal solution of Maxk-
Cover (U, F) with high probability, has coverage at

least z.

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

204

EstimateMaxCover (as in Figure 1) is an Õ(α)-approximation

algorithm for Maxk-Cover on edge arrival streams that in-

vokes (α, δ ,η)-oracles for Maxk-Cover.

EstimateMaxCover(k,α):

if kα ≥ m then do return n/α ◃ trivial bound

◃ different guesses of optimal coverage size

for each z ∈ {2i | i ∈ [logn]} do in parallel

estz ← 0

repeat log(1δ) times ◃ boosting success probability

pick h : U → [z] from a family of 4-wise

independent hash functions.

for each (S, e) in the data stream

feed (S,h(e)) to (α, δ ,η)-oracle A ◃ Sh
estz ← max(output of A on Sh , estz)

returnmax{estz | estz ≥ z/(4α)}

Figure 1: A single-pass algorithm that computes an

Õ(α)-approximation of the optimal coverage size of

Maxk-Cover.

As in EstimateMaxCover, let h : U → [z] be a hash

function picked uniformly at random from a family of 4-wise

independent hash functions mapping the ground setU onto

pseudo-elementsV = {1, · · · , z}. Furthermore, for a subset

of elements S , we define h(S) :=
⋃

e ∈S h(e).

Lemma 3.5. Let h : U → [z] be a hash function picked
uniformly at random from a family of 4-wise independent
hash functions where z ≥ 32. Further, let S be a subset ofU of
size at least z. Then, with probability at least 3/4, |h(S)| ≥ z/4.

Proof. For any pair of elements ei , ej ∈ S , let Xi , j be a

random variable which is one ifh(ei) = h(ej) (i.e. they collide)
and zero otherwise. LetX :=

∑
ei ,ej ∈S Xi , j denote the the total

number of collision among the elements of S under h.
First, we show that if X ≤ |S |2/γ , then |h(S)| ≥ γ/4. Let’s

assume h(S) = {v1, · · · ,vq} and let ni denote the number

of elements in S that are mapped to vi by h. Then, the total
number of collision, X , is

X =

q∑
i=1

(
ni
2

)
≥

q∑
i=1

(
ni
2

)2 ≥
1

4

· q · (
|S |

q
)2 =

|S |2

4q
.

This implies that q = |h(S)| ≥ γ/4. Using this observation, it

only remains to show that with probability at least 3/4, |X | ≤
|S |2/z. Sinceh is selected from a family of 4-wise independent

hash functions, {Xi , j }ei ,ej ∈S are pairwise independent. Hence,

E[X] =
∑

ei ,ej ∈S

E[Xi , j] =

(
|S |

2

)
· (
1

z
) ≤
|S |2

2z
,

Var[X] =
∑

ei ,ej ∈S

Var[Xi , j] =

(
|S |

2

)
· (
1

z
−

1

z2
) ≥

z

8

.

Applying Chebyshev’s inequality,

Pr(X > |S |2/z) ≤ Pr(X > E[X] + Var[X]) ≤
1

Var[X]
≤

8

z
≤

1

4

.

Hence, with probability at least 3/4, X ≤ |S |2/z which im-

plies that with probability at least 3/4, |h(S)| ≥ z/4. �

Theorem 3.6. Suppose that there exists a (α, δ ,η)-oracle
for Maxk-Cover on edge-arrival streams that uses f (m,α)
space with η ≥ 4 wherem denotes the number of sets in the
input. Then, EstimateMaxCover is an O(α)-approximation
algorithm for Maxk-Cover with failure probability at most
4δ logn that uses Õ(f (m,α)) space on edge-arrival streams.

Proof. LetOPT denote an optimal solution ofMaxk-Cover
on (U, F). First, we show that with high probability, Es-

timateMaxCover returns Ω(|C(OPT)|/α). Note that for

each guess on the optimal coverage size z ≤ |C(OPT)|, by
Lemma 3.5, the probability that in none of log(1/δ) itera-
tions |h(C(OPT))| > |C(OPT)|/4 is at most δ (i.e., none of

the iterations preserve the optimal coverage size up to a fac-

tor of 4). Moreover, by the guarantee of (α, δ ,η)-oracles for
Maxk-Cover, each run ofA fails with probability at most δ .
Thus, by an application of union bound, with probability at

least 1 − 2δ logn, estz is at least z/(4α) for all z ≤ |C(OPT)|.
This in particular implies that the solution returned by Esti-

mateMaxCover is at least |C(OPT)|/(8α). Moreover, since

the coverage of a k-cover never increases after applying the

“universe reduction” step (i.e. for eachS ⊆ U, |h(C(S))| ≤ |S |)
and the estimate returned by the (α, δ ,η)-oracle A is with

high probability less than the optimal coverage size, the out-

put of EstimateMaxCover is in [|C(OPT)|/(8α), |C(OPT)|]
with probability at least 1 − 4δ logn.

Finally, since EstimateMaxCover runs logn log(1δ) in-
stances of A with parameter (α, δ ,η) in parallel and each

instance hasm sets, the total space of EstimateMaxCover

is Õ(f (m,α)). �

The universe reduction step basically enables us to only

focus on the instances of Maxk-Cover in which the opti-

mal solution covers a constant fraction of the ground set,

namely at least |U|/4 elements. Next, in Section 4, we de-

sign an Õ(m/α)-space (α, δ ,η)-oracle for Maxk-Cover with
α = Ω̃(1),η ≥ 4 and δ = O(1/logn), which together with

Theorem 3.6 complete the proof of Theorem 3.1. Our (α, δ ,η)-
oracle forMaxk-Cover performs three different subroutines

in parallel that together guarantee the required properties

of (α, δ ,η)-oracles and only use Õ(m/α2) space:

Set sampling based approach. This subroutine which

provides the guarantee of (α, δ ,η)-oracles when the num-

ber of common elements is large (see Definition 2.1) is an

application of a “multi-layered” variant of set sampling. This

subroutine is presented in Section 4.1.

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

205

HeavyHitter based approach. We relate the problem

of α-estimating/approximating of Maxk-Cover to the prob-
lem of finding contributing classes and heavy hitters on prop-

erly sampled substreams (see Section 2.2) when the main

contribution of an optimal solution of Maxk-Cover is due to
“large” sets. In particular, this subroutine finds anα-estimation

of the optimal coverage size when α = Ω(k). This approach
is presented in Section 4.2.

Element sampling based approach. Finally, we employ

element sampling together with a new sampling technique

that samples a collection of sets to find a desired estimate

of Maxk-Cover on instances for which the main contribu-

tion to an optimal solution comes from “small” sets. Here,

we also take advantage of the structure guaranteed by the

multi-layered set sampling on the number of elements in

different frequency levels. This subroutine is presented in

Section 4.3.

4 (α, δ ,η)-ORACLE OF MAX k-COVER

In this section, we design the promised (α, δ ,η)-oracle for
Maxk-Cover. LetOPT denote an optimal solution of Maxk-
Cover (U, F). As described in Definition 3.4, the solution

returned by a (α, δ ,η)-oracle with high probability, is smaller

than |C(OPT)| and if |C(OPT)| ≥ |U|/η, with probability at

least (1 − δ), it outputs a value not smaller than |C(OPT)|/α .
The following Theorem together with Theorem 3.6 prove

Theorem 3.1.

Theorem 4.1. Oracle(α,k) performs a single pass on edge
arrival streams and implements a (Õ(α), (logn polylog(m))−1,η)-
oracle of Maxk-Cover(U, F) using Õ(m/α2) space.

Proof. The proof follows from the guarantees of LargeCom-

mon (Theorem 4.4), LargeSet (Theorem 4.8) and SmallSet

(Theorem 4.22). The total space of the algorithm is clearly

Õ(m/α2) which is the space complexity of the each of sub-

routines invoked by Oracle. �

To design the promised (α, δ ,η)-oracle, we design differ-

ent subroutines such that each guarantees the properties

required by the oracle if certain conditions based on the the

size/value of following notions hold.

Common elements. An important property in design of

our oracle is whether there exists β ≤ α such that the num-

ber of (βk)-common elements is relatively large (see Defini-

tion 2.1).

We also take advantage of another useful notion which is

a property of a k-cover (though, here we only describe it for

optimal k-covers).

Contribution to the optimal coverage. Given the input

argument α and a parameter s as defined in Table 2, we

define the following notion of contribution for the sets in an

(optimal) k-cover.

Definition 4.2. For a k-cover OPT = {O1, · · · ,Ok }, we

consider an arbitrary ordering of the sets in OPT and de-

fine the contribution of Oi to C(OPT) as |O
′
i | where O

′
i :=

Oi \
⋃

1≤j<i Oi . Note that O
′
i are disjoint and |

⋃
i ∈[k]O

′
i | =

|C(OPT)| = z. We (conceptually) define OPTlarge to be the

collection of all sets in OPT that contribute more than z/(sα)
to C(OPT) according to O ′i s; OPTlarge = {Oi ∈ OPT | |O

′
i | ≥

z/(sα)} for s < 1 (as in Table 2). Note that since O ′i s are
disjoint, |OPTlarge | ≤ sα .

w = min{k,α }, s = 9

5000

√
2η log(sα) log2(mn)

· wα

f = 7 log(mn), σ = 1

2500 log
2(mn)

t = 5000 log
2(mn)

s , η = 4

Table 2: Values of the parameters used in this section.

Design of (δ ,α,η)-oracle of max k-cover. Here we sketch
a high-level outline of our (δ ,α,η)-oracle for Maxk-Cover
(refer to Figure 2 for a formal description). In the following

cases, σ = Ω(1

log
2(mn)
) (as in Table 2).

I. If there exists a β ≤ α such that |Ucmn
βk | ≥

σ β |U |
α . In

this case, by Observation 2.4, to approximate the optimal

solution size within a factor of Õ(α), it suffices to find βk
sets that cover Ucmn

βk which can be done via set sampling

(see Section 4.1).

II. |C(OPTlarge)| ≥
|C(OPT) |

2
and ∀β ≤ α, |Ucmn

βk | <
σ β |U |

α .

The subroutine for this case which is presented in Section 4.2,

handles the instances of the problem in which sα ≥ 2k or,

sα < 2k and there exists an optimal solution OPT such that

|C(OPTlarge)| ≥ |C(OPT)|/2.

Claim 4.3. If sα ≥ 2k , then |C(OPTlarge)| ≥ |C(OPT)|/2.

Proof. Consider the optimal solution OPT and ignore the

sets in OPT whose contribution to the coverage is less than

|C(OPT)|/(2k). Note that the survived sets belong toOPTlarge

and their total coverage is at least |C(OPT)| − k · |C(OPT) |
2k ≥

|C(OPT)|/2. �

III. |C(OPTlarge)| <
|C(OPT) |

2
and ∀β ≤ α, |Ucmn

βk | <
σ β |U |

α .

In this case, the main contribution to the coverage of OPT

comes from “small” sets. This enables us to show that if we

sample sets with probability 1/α , then Ω̃(1/α)-fraction of

sets in OPT survive and with high probability, their cover-

age is Ω̃(|C(OPT)|/α). In Section 4.3, we show that element

sampling method with some new ideas can take care of this

case which can only happen when sα < 2k .

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

206

Oracle(k,α):

◃ For instances in which ∃β ≤ α s.t. |Ucmn
βk | ≥

σ β |U |
α

solcmn ← LargeCommon(k,α)
if sα ≥ 2k then do

◃ If sα ≥ 2k , then |OPTlarge | ≥ |OPT|/2

solHH ← LargeSet(k,α,k)
else do

◃ For instances with sα < 2k and |OPTlarge | ≥ |OPT|/2

solHH ← LargeSet(k,α,α)
◃ For instances with |OPTlarge | < |OPT|/2
solsmall ← SmallSet(k,α)

returnmax(solcmn, solHH, solsmall)

Figure 2: An (α, δ ,η)-oracle of Maxk-Cover.

4.1 Multi-layered Set Sampling

Here, we first guess the value of β (more precisely, a 2-

approximate estimate of β) and then pick βk sets F rnd
β at

random and compute their coverage in one pass using Õ(1)
space. To get the desired space complexity, we use the im-

plementation of set sampling with O(log(mn)) random bits

as described in Section A.1.

Theorem 4.4. Consider an instance (U, F) of Maxk-Cover.
The LargeCommon algorithm uses Õ(1) space and if there ex-
ists β ≤ α such that |Ucmn

βk | ≥
σ β |U |

α , then with high probabil-
ity, the algorithm returns at least σ |U|/(6α). Moreover, with
high probability the output of LargeCommon is smaller than
the coverage size of an optimal solution ofMaxk-Cover(U, F).

LargeCommon(k,α):

for each βg ∈ {2
i | 1 ≤ i ≤ logα } do in parallel

◃ Perform set sampling in one pass using Õ(1) space.

pick hg : F → [
cm logm

βgk
] at random from Θ(log(mn))-wise

independent hash functions

let DEg be a (1 ± 1/2)-approximation streaming algorithm

of L0-estimation

for each (S, e) in the data stream do

if hg(S) = 1 then feed e to DEg ◃ computes C(F rnd
βg
)

if VAL(DEg) ≥ σβg |U|/(4α) then return 2VAL(DEg)/(3βg)
return infeasible ◃ �β ∈ [α] s.t. |Ucmn

βk | ≥
σ β |U |
αk

Figure 3: A (α, δ ,η)-oracle of Maxk-Cover that handles
the case where the number of common elements is

large.

Claim 4.5. For each βg ∈ {2
i | 1 ≤ i ≤ logα }, with high

probability, |F rnd
βg
| ≤ βgk .

Lemma 4.6. If there exists β ≤ α such that |Ucmn
βk | ≥

σβ |U|/α , then with high probability the output of LargeCom-
mon is at least σ |U|/(6α).

Proof. Let 2
i
be the smallest power of two which is larger

than or equal to β ; i := ⌈log β⌉. Consider the iteration of

LargeCommon in which βg = 2
i
. Since 2β > βg ≥ β and by

Observation 2.2,

|Ucmn
βgk
| ≥ |Ucmn

βk | ≥
σβ |U|

α
≥

σβg |U|

2α
.

Hence, by the guarantee of existing streaming algorithms for

L0-estimation (Theorem 2.12) and set sampling (Lemma 2.3

and A.7), w.h.p.,VAL(DEg) ≥ 1

2
·
σ βg |U |

2α =
σ βg |U |

4α . Hence, the

estimate returned by the algorithmwhich is a lower bound on

the coverage of the best k sets in F rnd
βg

(see Observation 2.4),

w.h.p., is at least
2

3
· 1

βg
·
σ βg |U |

4α =
σ |U |
6α .

Moreover, it is straightforward to check that by the guar-

antee of the streaming algorithm for L0-estimation (Theo-

rem 2.12), the value returned by LargeCommon with high

probability is not more than the actual coverage of the best

k-cover in the collection of sampled sets using hg. �

Lemma 4.7. If LargeCommon returns infeasible, then with
high probability, for all β ≤ α , |Ucmn

βk | ≤
σ ·β · |U |

α .

Proof. Since the algorithm returns infeasible, by the

guarantee of the (1 ± 1/2)-approximation algorithm for L0-
estimation (Theorem 2.12) and set sampling (Lemma 2.3), for

all values of βg ∈ {2
i | i ≤ logα }, with high probability,

|Ucmn
βgk
| ≤ |C(F rnd

βg
)| ≤ 2VAL(DEg) <

σ · βg · |U|

2α
. (1)

Now, for any given value β ≤ α , consider βg := 2
⌈log β ⌉

(i.e. set βg to be the smallest power of two which is larger

than or equal to β). By Observation 2.2, |Ucmn
βk | ≤ |U

cmn
βgk
|

which together with Eq. 1 imply that |Ucmn
βk | ≤

σ ·βg · |U |
2α ≤

σ ·β · |U |
α . �

Proof of Theorem 4.4. The guarantee on the quality of

the output follows from Lemma 4.6. Moreover, by Theo-

rem 2.12, the total amount of space to compute the coverage

of each collectionF rnd
βg

(via existing L0-estimation algorithms

in streams) is Õ(1). Hence, the total space to compute the cov-

erage of all logα collections considered in LargeCommon is

Õ(1). �

4.2 Heavy Hitters and Contributing

Classes: |C(OPTlarge)| ≥ |C(OPT)|/2.

In this section, we show that if there exists an optimal so-

lution OPT of Maxk-Cover(U, F) such that the main con-

tribution in the coverage of OPT is due to large sets, which

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

207

are formally defined to be the sets whose contribution to

C(OPT) is at least |C(OPT)|/(sα), then we can approximate

the optimal coverage size within a factor of Õ(α) by detect-

ing Ω̃(α
2

m)-HeavyHitters in properly sampled substreams.

Following is the main result of this section.

Theorem 4.8. Consider an instance (U, F) of Maxk-Cover.
In a single pass, LargeSet uses Õ(m/α2) space and if the op-
timal coverage size of the instance is Ω(|U|), then with prob-
ability at least 1 − (logn polylog(m))−1, it returns at least
Ω̃(|U|/α). Moreover, with high probability, the estimate re-
turned by LargeSet is smaller than the optimal coverage size.

We defer the proof of Theorem 4.8 to Section B. In this

section, we prove the same guarantees on the performance

of a simplified variant of LargeSet, LargeSetSimple, when

U contains no “common” elements (wee will define them

formally later in this section) which essentially presents the

main technical ideas.

Partitioning sets into supersets.We partition the sets of

F randomly into cm logm
w supersets Q := {D1, · · · ,D cm logm

w
}

via a hash function h : F → [(cm logm)/w] chosen from a

family ofΘ(log(mn))-wise independent hash functions. More

precisely, each set S ∈ F belongs to the superset Dh(S).

The parameter w denotes the desired upper bound on the

maximum number of sets in a superset in Q defined by h and

is set to min(α,k). In fact, given w, we define h to be a func-

tion picked uniformly at random from a family ofΘ(log(mn))-
wise independent hash functions {F → [(cm logm)/w]}.

Claim 4.9. W.h.p., no superset in Q has more than w sets.

Claim 4.10. With high probability, for each e ∈ U \ Ucmn
w

and D ∈ Q, the number of sets in D that contain e is at most
f where f = Θ(log(mn)).

This implies ifUcmn
w = ∅, to get an Õ(α)-approximation

of Maxk-Cover(U, F), it suffices to find a superset whose

total size of its sets is Ω̃(1/α) times the optimal coverage

size. Now, we are ready to exploit the results on F2-heavy
hitters and F2-contributing classes mentioned in Section 2.2

to describe our (α, δ ,η)-oracle for Maxk-Cover assuming

Ucmn
w = ∅. Later in Section B, we show how to remove this

assumption by performing our algorithm on a set of sampled

elements inU instead.

Partitioning supersets by their total size. First, setting

z = |C(OPT)|, we partition the supersets in Q (conceptually)

according to the total size of their sets into O(logα) classes

as follows:

Q0 = {D |
∑
S ∈D

|S | ≥
z

2

}, (2)

Qi = {D |
z

2
i+1 ≤

∑
S ∈D

|S | <
z

2
i }, ∀i ∈ [1, log(α)) (3)

Qsmall = {D |
∑
S ∈D

|S | < z/α }. (4)

Further, let ni denote the number of supersets in Qi ; ni =
|Qi |. Next, we define the vector ®v of size (cm logm)/w such

that ®v[i] =
∑

S ∈Di
|S | denotes the total size of the sets in

Di . In the following, we show that a subset of supersets

with large total size form an Ω̃(mα 2
)-contributing class of

F2(®v) and any superset in this Ω̃(mα 2
)-contributing class is an

α-approximate k-cover of (U, F).
We consider the following two cases depending onwhether

the coordinates corresponding to small supersets,Qsmall, con-

tribute to F2(®v); F2(®vsmall) ≥ F2(®v)/2where ®vsmall denotes the

vector ®v restricted to the coordinates corresponding to su-

persets in Qsmall.

Case 1: Supersetswith total size less thanz/α contribute

to F2(®v). This implies that

F2(®v) ≤ 2F2(®vsmall) ≤
2cm logm

w
·
z2

α2
. (5)

Claim 4.11. If F2(®vsmall) ≥ F2(®v)/2, then there exists an
Ω̃(α

2

m)-contributing classQi∗ of F2(®v) for an index i
∗ < log(sα).

Proof. Since each set inOPTlarge has contribution at least

z
sα toC(OPT), sets inOPTlarge land in one ofQ0, · · · ,Qlog(sα)−1.

Moreover, since OPTlarge has coverage at least z/2,

log(sα)−1∑
i=0

ni ·
z

2
i ≥

∑
Oi ∈OPTlarge

|Oi | ≥ |C(OPTlarge)| ≥ z/2,

which implies that there exists an index i∗ < log(sα) such
thatni∗ ≥ 2

i∗/(2 log(sα)). Hence,Qi∗ is an Ω̃(α
2

m)-contributing

class of F2(®v):

|Qi∗ | · (
z

2
i∗+1)

2 ≥
2
i∗

2 log(sα)
·

z2

4(2i
∗
)2

≥
w

2cm logm
· α2 ·

1

2
i∗+3

log(sα)
· F2(®v) ◃ By (5)

≥ (
w
sα
·

1

8c log(sα) logm
) ·

α2

m
· F2(®v)

More formally, since
w
sα = Ω̃(1) (see Table 2), Qi∗ is a ϕ1-

contributing class of F2(®v) where

ϕ1 = (
w
sα
·

1

8c log(sα) logm
) ·

α2

m
= Ω̃(

α2

m
). (6)

�

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

208

Hence, by Theorem 2.11, a superset of total size at least
2

3
·

1

2
· zsα will be identified by the subroutine F2-Contributing(ϕ1, sα)

using Õ(m/α2) space.

Remark 4.12. Recall that in order to find a coordinate in
a ϕ-contributing class Rt ∗ , F2-Contributing subsamples the
stream proportional to 1/|Rt ∗ | (so that only O(1) coordinates
of Rt ∗ survive) and then with high probability any survived
coordinate of Rt ∗ becomes a Ω̃(ϕ)-HeavyHitter in the sam-
pled substream. However, here we show that there exists a
ϕ-contributing class Rt ∗ whose intersection with OPTlarge is
a ϕ-contributing class of coordinates too. Hence, it suffices to
only search for a coordinate in a ϕ-contributing class of size at
most |OPTlarge | ≤ sα .
We emphasis that bounding the size of a ϕ-contributing

class is not required for the simplified case of this section (i.e.,
Ucmn

w = ∅). However, since we estimate the coverage size of a
superset by the total size of its sets, in Section B where we solve
the general case (i.e.,Ucmn

w , ∅) it is crucial to only consider
ϕ-contributing classes of small size. Otherwise, in the superset
returned by our algorithm, the gap between its actual coverage
size and total size of the sets in the superset can be very large.

Case 2. Supersets with coverage less than z/α do not

contribute to F2(®v).

Claim 4.13. If F2(®vsmall) < F2(®v)/2, then there exists an
Ω̃(1)-contributing class Qi∗ of F2(®v) for an index i∗ < logα .

Proof. In this case, since supersets in Qsmall are not con-

tributing, there exists an index i∗ < log(α) (note that we

consider all classes Q0, · · · ,Qlogα−1 in this case) such that

ni∗ ·
(z
2
i∗
)
2

≥
F2(®v)

2 logα
;

in other words, Qi∗ is a ϕ2-contributing class of F2(®v) where
ϕ2 = (

1

2 logα). �

Note that, by Theorem 2.11, a superset of total size at least

2

3
· 1
2
· zα will be identified by F2-Contributing(ϕ2,

cm logm
w)

using Õ(1) space.

Lemma 4.14. If |C(OPT)| ≥ |U |

η , then w.p. at least 1 −
1/(3 logn logcm), the estimate returned by LargeSetSimple
with parameters (V = U,w, thr1 =

|U |

ηsα , thr2 =
|U |

ηα) has

coverage at least |U|/(3fηα) = Ω̃(|U|/α).

Proof. By Theorem 2.11, w.p. at least 1−2/(9 logn logcm),
the algorithm returns a superset whose total size is at least

2

3
·
|U |

2ηα ≥
|U |

3ηα (in fact, if it is in Case 1, then the estimate is at

least
|U |

3sαη). Then, by Claim 4.10 and assumptionUcmn
w = ∅,

the coverage of the reported superset is at least
1

f ·
|U |

3ηα . �

LargeSetSimple(V,w, thr1, thr2):
◃ Input: w is a bound on the number of sets in a superset

◃ Parameters: ϕ1 = Ω̃(α2/m) and ϕ2 = Ω̃(1)
◃ For Case 1:

Cntrsmall ← instance of F2-Contributing(ϕ1, sα)
◃ For Case 2:

Cntrlarge ← instance of F2-Contributing(ϕ2,
cm logm

w)

pick h : F → [(cm logm)/w] from Θ(log(mn))-wise
independent hash functions

for each (S, e) in the data stream do

if e ∈ V then feed h(S) to both Cntrsmall and Cntrlarge
◃ output(Cntr) returns (1 ± 1/2)-estimate of the frequencies

◃ ∀i ∈ output(Cntr), ṽi denotes the estimated frequency of i
if there exists i ∈ output(Cntrsmall) such that ṽi ≥

1

2
· thr1

return 2ṽi/(3f)
if there exists i ∈ output(Cntrlarge) such that ṽi ≥

1

2
· thr2

return 2ṽi/(3f)
return infeasible

Figure 4: An (α, δ ,η)-oracle of Maxk-Cover that han-

dles the case in which the majority of the coverage

in an optimal solution is by the sets whose coverage

contributions are at least 1/(sα) fraction of the optimal

coverage size.

Lemma 4.15. The amount of space used by LargeSetSimple
is Õ(m/α2).

Proof. By Theorem 2.11, the amount of space to perform

Cntrsmall and Cntrlarge as defined in Figure 4 is respectively

Õ(1/ϕ1) = Õ(m/α
2) and Õ(1/ϕ2) = Õ(1). �

4.3 Element Sampling:

|C(OPTlarge)| <
|C(OPT)|

2

We design an (α, δ ,η)-oracle of Maxk-Cover with the de-

sired parameters for the case |C(OPTsmall)| > |C(OPTlarge)|.

Intuitively speaking, in this case, after sampling each set in

F with probability Θ̃(1α) still we can find O(kα) sets whose

coverage size is at least Ω̃(|C(OPT) |α). As proved in Claim 4.3,

if α = Ω̃(k), then the main contribution to the coverage of

OPT is due to OPTlarge and we can α-approximate the opti-

mal coverage size by LargeSet. Hence, in this section we

assume that α = Õ(k). Moreover, throughout this section we

assume that for all β ≤ α , |Ucmn
βk | <

σ ·β · |U |
α (otherwise, our

multi-layered set sampling approach described in Section 4.1

returns an α-approximation of the optimal coverage size).

Lemma 4.16. Consider an instance of Maxk-Cover (U, F).
Suppose that D is a collection of k disjoint sets with coverage
z such that no S ∈ D has size more than z/(sα) where s < 1

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

209

and s = Ω̃(1). Let’s assume that Dsmp := D ∩M where each
S ∈ F survives inM with probability c/(sα) where c > 1

is a fixed constant. Then, with probability at least (1 − 6/c),
Dsmp has size at most (2ck)/(sα) and covers at least (cz)/(2sα)
elements.

Proof. Let D = {S ′
1
, · · · , S ′k } and for each i , let Xi to be

the random variable corresponding to S ′i such that Xi = |S
′
i |

if S ′i ∈ Dsmp and zero otherwise.

Claim 4.17. E[Xi] =
c
sα · |S

′
i | and Var[Xi] ≤

c
sα · |S

′
i |
2.

Next, we define X := X1 + · · · + Xk . Note that E[X] =
(cz)/(sα) and, by the pairwise independence of Xi s and the

assumption that |S ′i | ≤ z/(sα),

Var[X] ≤
c

sα
·

k∑
i=1

|S ′i |
2 ≤

c

sα
· sα · (

z

sα
)2 = c · (

z

sα
)2,

Finally, applying Chebyshev inequality,

Pr[X <
cz

2sα
] = Pr[X < (

cz

sα
−

√
c

2

· (

√
c

sα
· z)] < 4/c .

Hence, with probability at least 1 − 4/c , Dsmp covers at least

(cz)/(2sα) elements.

Next, we show that with probability at least 1 − 2/c , 0 <
|Dsmp | < (2ck)/(sα). For each i , let Yi denote the random
variable corresponding to Si which is equal to one if Si ∈
Dsmp and zero otherwise.

Claim 4.18. E[Yi] = (c/sα) and Var[Yi] ≤ (c/sα).

We defineY = Y1+ · · ·+Yℓ which denotes the size ofDsmp.

Then by pairwise independence of Yis, E[Y] = (ck)/(sα)
and Var[Y] ≤ (ck)/(sα). Applying Chebyshev inequality

(Pr[|Y − E[Y]| ≥ tVar[Y]] ≤ 1/(t2Var[Y])), with probability

at least 1 − (sα)/(ck) ≥ 1 − 2/c (since in this case, α ≤ 2k/s),
0 < |Dsmp | < (2ck)/(sα).
Hence, with probability at least (1 − 6/c), Dsmp is a sub-

set of size at most (2ck)/(sα) that covers at least (cz)/(2sα)
elements. �

Corollary 4.19. Consider an instance (U, F) of Maxk-
Cover and let OPT be an optimal solution of this instance
such that |C(OPTsmall)| ≥

1

2
· |C(OPT)| ≥ |U|/(2η). Moreover,

let M ⊂ F be a collection of Õ(|F |/α) pairwise indepen-
dent sets picked uniformly at random such that each S ∈ F
belongs toM with probability 18

sα . With probability at least
2/3, Max (36ksα)-Cover(U,M) has an optimal solution with
coverage size at least 9 |U |

s·α ·η .

Proof. By definition of OPTsmall, for each O ∈ OPTsmall,

the contribution of O to OPT (i.e. O ′) is at most z/(sα) (see
Definition 4.2). Then, the result follows from an application

of Lemma 4.16 on collection D := {O ′ | O ∈ OPTsmall} by

setting c = 18 and z = |OPTsmall | ≥ |U|/(2η). �

Next, we show that we can perform “element sampling”

and find an Õ(1)-approximation of Max (36ksα)-Cover of the
specified instance in Corollary 4.19, (U,M), in one pass and

using Õ(m/α2) space. To this end, first we compute the space

complexity of (L, F) where L ⊆ U is a subset of size Õ(k)
which is picked by element sampling.

Lemma 4.20. Suppose that coverage size of an optimal so-
lution of Max (kα)-Cover(U, F) is |U|/γ = Ω̃(|U|/α). Let
L ⊂ U be a collection of elements of size Õ(kγα) picked uni-
formly at random. With high probability, the total amount of
space to store the set system (L, F) is Õ(m/α).

Proof. Recall that (U, F) has the property that for all

β ≤ α , |Ucmn
βk | < σβ |U|/α (otherwise, the result of Sec-

tion 4.1 can be applied). Next, we (conceptually) partition

the elements inU into logα + 1 groups as follows:

W0 = U \U
cmn
αk , andWi = U

cmn
(α
2
i−1)k
\ Ucmn

(α
2
i)k

∀i ∈ [logα].

Note that |W0 | ≤ |U| and for each i ∈ [logα], |Wi | ≤

σ |U|/2i−1. Since each element e ∈ U survives in L with

probability Õ(
kγ

α |U |), w.h.p., for each i ∈ [logα], |Wi ∩ L| =

Õ(1 +
σ ·γ ·k
α2i−1). Furthermore, since each element inWi ap-

pears in at most Õ(2
im
αk) sets in F , the total amount of space

required to store (L, F) is at most

S(L, F) =
logα∑
i=0

|Wi ∩ L| · max

e ∈Wi
freq(e)

= Õ(
kγ

α
) · Õ(

m

αk
) +

logα∑
i=1

Õ(1 +
σγk

α2i−1
) · Õ(

2
im

αk
)

= Õ(
γm

α2
) +

logα∑
i=1

Õ(
2
im

αk
+
σγm

α2
) = Õ(m/α).

�

Next, we show that after subsampling the sets by a factor

of Θ̃(1/α), we can save another factor of Ω̃(α) in the space

complexity; in other words, (L,M) uses Õ(mα 2
) space. Note

that since kα may be as large as Ω̃(m) we cannot hope to
show directly that each element inWi appears in at most

Õ(m
2
iαk). However, we can show that the total size of the

intersection of all sets inM with L is Õ(mα 2
) using the prop-

erties of the max cover instance.

Lemma 4.21. Suppose that the coverage size of an optimal
solution of Max (kα)-Cover(U, F) is |U|/γ = Ω̃(|U|/α). Let
L ⊂ U be a collection of elements of size Õ(kγα) picked uni-
formly at random and letM ⊂ F be a collection of sets of
size Õ(m/α) picked uniformly at random. With high probabil-
ity, the total amount of space required to store the set system
(L,M) is Õ(m/α2).

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

210

Proof. First note that since an optimal (kα)-cover of (U, F)
has coverage |U|/γ , with high probability, for each set S ∈

M, |S ∩ L| = Õ(k/α). Moreover, by Lemma 4.20, the size of

the intersection of all sets in F with L is Õ(m/α). Next, we
(conceptually) partition the sets of F into O(logk) groups

based on their intersection size with L as follows (c = Õ(1)):

Qi = {S ∈ F |
1

2
i ·

ck

α
≤ |S ∩ L| <

1

2
i−1 ·

ck

α
}, ∀1 ≤ i ≤ logk

Since the total size of the intersection of all sets with the

sampled set L is w.h.p. Õ(m/α), for each i ≤ logk , |Qi | ≤
Õ (m/α)
(ck)/(2iα) = Õ(2

i ·m
k). Since we have the assumption that

m
kα ≥ 1 (we took care of the case m < kα in the first

line of EstimateMaxCover separately), w.h.p., for each Qi ,

|Qi ∩ M| = Õ(2
im
kα). Hence, the total amount of space to

store (L,M) is at most

logk∑
i=1

1

2
i−1 ·

ck

α
· Õ(

2
im

kα
) = Õ(

m

α2
).

�

SmallSet(k,α):

◃ estimate of the optimal coverage of Õ(kα)-cover
for each γg ∈ {2

−i | i ∈ [logα]} do in parallel:

repeat logn times in parallel:

M ← uniformly selected samples of size Θ̃(m/α)
from F

L ← uniformly selected samples of size Θ̃(γg · (
k
α))

fromU

◃ S(L,M) stores (L,M)
initialize S(L,M) to be an empty set

for each (S, e) in the data stream do

if S ∈ M and e ∈ L then

add (S, e) to S(L,M)
if S(L,M) > Õ(m/α2) then

terminate

solγg ← maxL,M{O(1)-approximation of the coverage

of Max (36ksα)-Cover(S(L,M))}
returnmaxγg {(

|U |

γg(k/α)
· solγg) | solγg = Ω̃(k/α)}

Figure 5: A single pass streaming algorithm that esti-

mates the optimal coverage size of Maxk-Cover(U, F)
within a factor of Õ(α) in Õ(mα 2

) space.

Theorem 4.22. If |C(OPTsmall)| ≥ |U|/(2η) and for all
β ≤ α , |Ucmn

βk | <
σ ·β · |U |

α , then with high probability, Small-

Set outputs an Õ(α)-approximation of the size of an optimal
solution of Maxk-Cover(U, F) in Õ(m/α2) space.

Proof. By Corollary 4.19, for any sampled collection of

setsM of size Θ̃(m/α) (as in SmallSet), with probability

at least 2/3, there exists a subset of size at most (36ksα) inM

whose coverage is 9|U|/(s ·α ·η) = |U|/γ . Moreover, by the

guarantee of element sampling, Lemma 2.5, whenγ/2 < γд ≤
γ , an O(1)-approximate solution of Maxk-Cover(L,M)
w.h.p. is anO(1)-approximate solution ofMaxk-Cover(U,M).
Hence, with probability 1 − n−1, in at least one of the (logn)

instances with the desired γg, solγg has coverage Ω̃(
|U |

γ ·γg ·
(k/α)
|U |
) = Ω̃(k/α) over the sampled elements L. Note that we

need to scale solγg by a factor of Θ̃(|U|/(γg ·
k
α)) to reflect

its coverage onU.

Further, by Lemma 4.21, the amount of space required to

store each (L,M) with high probability is Õ(mα 2
) and since

SmallSet stores Õ(1) different instances (L, F), the total
space of the algorithm is Õ(mα 2

). �

To complete the SmallSet is indeed an (α, δ ,η)-oracle
with the desired parameters, we need to show that it never

overestimates the optimal coverage size.

Lemma 4.23. The output of SmallSet with high probability
is not larger than the optimal coverage size ofMaxk-Cover(U, F).

Proof. The proof follows from the fact that if the optimal

coverage sizeMax (Õ(kα))-Cover(L,M) is not Ω̃(|U|/(α · γg)),
then with high probability in none of the logn iterations

solγg = Ω̃(k/α). Hence, SmallSet with high probability

does not overestimate the size of an optimal Õ(k/α)-cover
in (U, F). �

5 LOWER BOUND FOR ESTIMATING

MAXIMUM k-COVERAGE IN EDGE

ARRIVAL STREAMS

By the result of [12], it is known that estimating the size of

an optimal coverage of Maxk-Cover within a factor of two

requires Ω(m) space. Their argument relies on a reduction

from Set Disjointness problem and implies the mentioned

bound for 1-cover instances. In the following, we generalize

their approach and provide lower bounds for the all range

of approximation guarantees α smaller than

√
m. We remark

that both our lower bound result and the lower bound result

of [12] are basically similar to the lower bound of L∞ and Lk
estimation first proved in [5, 10].

The lower bound result we explain in this section is based

on the well-known r -player Set Disjointness problem with

unique set intersection promise which has been studied ex-

tensively in communication complexity (e.g. [11, 16, 24]).

The setting of the problem is as follows: There are r players
and each has a set Ti ⊆ [m]. The promise is that the input is

in one of the following forms:

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

211

• No Case: There is a unique element j ∈ [m] such that

for all i ≤ r , j ∈ Ti .
• Yes Case: All sets are pair-wise disjoint.

Moreover, a round of communication consists of each player

i sending a message to player i+1 in order from i = 1 to r −1.
The goal is that at end of a single round, player r be able

to correctly output whether the input belongs to the fam-

ily of Yes instances or No instances. Chakrabarti et al. [16]

showed the following tight lower bound on the one-way

communication complexity of the r -player Set Disjointness
problem with unique set intersection promise.

Theorem 5.1 (From [16]). Any randomized one-way pro-
tocol that solves r -player Set Disjointness(m) with success
probability at least 2/3 requires Ω(m/r) bits of communication.

We remark that the same Ω(m/r) communication lower

bound was later proved for the general model (i.e. with mul-

tiple rounds) by Gronemeier [24]. However, for our applica-

tion, the lower bound on the one-way communication model

suffices.

Corollary 5.2. Any single-pass streaming algorithm that
solves r -player Set Disjointness(m) with success probability
at least 2/3 consumes Ω(m/r 2) space.

Next, we sketch a reduction from r -player Set Disjointness(m)
to Maxk-Cover withm sets such that an α-approximation

protocol of Maxk-Cover solves the corresponding instance
of r -player Set Disjointness(m). To this end, consider an

arbitrary instance I of α-player Set Disjointness(m) prob-
lem in which each player i has a set Ti ⊂ [m]. DefineUI =
{e1, · · · , eα } to be the set of elements in the Max 1-Cover
instance and for each player i if j ∈ Ti then add (ei , S j ,) to
the stream. In other words, in the constructed Max 1-Cover
(UI , FI := {S1, · · · , Sm}) instance, we have an element ei
corresponding to each player i and there exists a set S j cor-
responding to each item j ∈ [m]. Moreover, each set S j in
the Max 1-Cover instance (UI, FI) denotes the set of play-
ers in the Set Disjointness(m) instance I whose input sets

contain j; S j := {i ∈ [α] | j ∈ Ti }.

Claim 5.3. If I is a No instance, then the optimal coverage
of the Max 1-Cover instance (UI, FI) is α .

Proof. In this case, by the unique intersection promise,

there exists an item j that belongs to all Ti (for i ∈ [α]).
Hence, by the construction of the Max 1-Cover instance,

S j covers the wholeUI . Thus, the optimal 1-cover has size

α . �

Claim 5.4. If I is a Yes instance, then the optimal coverage
of the Max 1-Cover instance (UI, FI) is 1.

Proof. Since Tis are disjoint, for each j ∈ [m], the set S j
has cardinality one. �

Corollary 5.2 together with Claims 5.3 and 5.4 imply the

stated lower bound on α-approximating the optimal cover-

age size of Maxk-Cover in edge-arrival streams in Theo-

rem 3.3: Any single pass (possibly randomized) algorithm on
edge-arrival streams that α -approximates the optimal coverage
size of Maxk-Cover requires Ω(mα 2

) space.

ACKNOWLEDGMENTS

This work was supported by grants from the NSF and the

Simons Investigator award.

REFERENCES

[1] Z. Abbassi, V. S. Mirrokni, andM. Thakur. 2013. Diversitymaximization

under matroid constraints. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,

32–40.

[2] Shipra Agrawal, Mohammad Shadravan, and Cliff Stein. 2019. Sub-

modular Secretary Problem with Shortlists. In 10th Innovations in
Theoretical Computer Science Conference (ITCS). 1:1–1:19.

[3] K. J. Ahn, S. Guha, and A. McGregor. 2012. Analyzing graph structure

via linear measurements. In Proc. 23rd ACM-SIAM Sympos. Discrete
Algs. (SODA). 459–467.

[4] K. J. Ahn, S. Guha, and A. McGregor. 2012. Graph sketches: sparsifica-

tion, spanners, and subgraphs. In Proc. 31st ACM Sympos. on Principles
of Database Systems (PODS). 5–14.

[5] N. Alon, Y. Matias, and M. Szegedy. 1999. The space complexity of

approximating the frequency moments. Journal of Computer and
system sciences 58, 1 (1999), 137–147.

[6] S. Assadi. 2017. Tight Space-Approximation Tradeoff for theMulti-Pass

Streaming Set Cover Problem. In Proc. 36th ACM Sympos. on Principles
of Database Systems (PODS). 321–335.

[7] S. Assadi, S. Khanna, and Y. Li. 2016. Tight Bounds for Single-Pass

Streaming Complexity of the Set Cover Problem. In Proc. 48th Annu.
ACM Sympos. Theory Comput. (STOC). 698–711.

[8] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavtsev. 2016. Maximummatch-

ings in dynamic graph streams and the simultaneous communication

model. In Proc. 27th ACM-SIAM Sympos. Discrete Algs. (SODA). 1345–
1364.

[9] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. 2014.

Streaming submodular maximization: Massive data summarization on

the fly. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. 671–680.

[10] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. 2004. An

information statistics approach to data stream and communication

complexity. J. Comput. Sys. Sci. 68, 4 (2004), 702–732.
[11] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan.

2002. Counting distinct elements in a data stream. In International
Workshop on Randomization and Approximation Techniques in Com-
puter Science. 1–10.

[12] M. Bateni, H. Esfandiari, and V. S. Mirrokni. 2017. Almost Optimal

Streaming Algorithms for Coverage Problems. In Proc. 29th ACM Sym-
pos. Parallel Alg. Arch. (SPAA). 13–23.

[13] J. Blasiok. 2018. Optimal streaming and tracking distinct elements

with high probability. In Proc. 29th ACM-SIAM Sympos. Discrete Algs.
(SODA). 2432–2448.

[14] V. Braverman, S. R. Chestnut, N. Ivkin, J. Nelson, Z. Wang, and D. P.

Woodruff. 2017. BPTree: An ℓ2 Heavy Hitters Algorithm Using Con-

stant Memory. In Proc. 36th ACM Sympos. on Principles of Database
Systems (PODS). 361–376.

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

212

[15] V. Braverman, S. R. Chestnut, N. Ivkin, and D. P. Woodruff. 2016. Beat-

ing CountSketch for heavy hitters in insertion streams. In Proc. 48th
Annu. ACM Sympos. Theory Comput. (STOC). 740–753.

[16] A. Chakrabarti, S. Khot, and X. Sun. 2003. Near-optimal lower bounds

on the multi-party communication complexity of set disjointness. In

18th Annual IEEE Conference on Computational Complexity. 107–117.
[17] A. Chakrabarti and A. Wirth. 2016. Incidence Geometries and the Pass

Complexity of Semi-Streaming Set Cover. In Proc. 27th ACM-SIAM
Sympos. Discrete Algs. (SODA). 1365–1373.

[18] M. Charikar, K. Chen, and M. Farach-Colton. 2002. Finding frequent

items in data streams. In Proc. 29th Int. Colloq. Automata Lang. Prog.
(ICALP). 693–703.

[19] F. Chierichetti, R. Kumar, and A. Tomkins. 2010. Max-cover in map-

reduce. In Proc. 19th Int. Conf. World Wide Web (WWW). 231–240.

[20] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, A. McGregor, M.

Monemizadeh, and S. Vorotnikova. 2016. Kernelization via sampling

with applications to finding matchings and related problems in dy-

namic graph streams. In Proc. 27th ACM-SIAM Sympos. Discrete Algs.
(SODA). 1326–1344.

[21] E. D. Demaine, P. Indyk, S. Mahabadi, and A. Vakilian. 2014. On

Streaming and Communication Complexity of the Set Cover Problem.

In Proc. 28th Int. Symp. Dist. Comp. (DISC), Vol. 8784. 484–498.
[22] Y. Emek and A. Rosén. 2014. Semi-Streaming Set Cover. In Proc. 41st

Int. Colloq. Automata Lang. Prog. (ICALP) (Lect. Notes in Comp. Sci.),
Vol. 8572. 453–464. https://doi.org/10.1007/978-3-662-43948-7_38

[23] U. Feige. 1998. A threshold of ln n for approximating set cover. Journal
of the ACM (JACM) 45, 4 (1998), 634–652.

[24] A. Gronemeier. 2009. Asymptotically Optimal Lower Bounds on the

NIH-Multi-Party Information Complexity of the AND-Function and

Disjointness. In 26th International Symposium on Theoretical Aspects of
Computer Science, STACS 2009, February 26-28, 2009, Freiburg, Germany,
Proceedings. 505–516.

[25] S. Guha, A. McGregor, and D. Tench. 2015. Vertex and hyperedge

connectivity in dynamic graph streams. In Proc. 34th ACM Sympos. on
Principles of Database Systems (PODS). 241–247.

[26] S. Har-Peled, P. Indyk, S. Mahabadi, and A. Vakilian. 2016. Towards

Tight Bounds for the Streaming Set Cover Problem. In Proc. 35th ACM
Sympos. on Principles of Database Systems (PODS). 371–383.

[27] P. Indyk, S. Mahabadi, R. Rubinfeld, J. Ullman, A. Vakilian, and A.

Yodpinyanee. 2017. Fractional Set Cover in the Streaming Model.

Approximation, Randomization, and Combinatorial Optimization (AP-

PROX/RANDOM) (2017), 198–217.

[28] P. Indyk, S. Mahabadi, R. Rubinfeld, A. Vakilian, and A. Yodpinyanee.

2018. Set Cover in Sub-linear Time. In Proc. 29th ACM-SIAM Sympos.
Discrete Algs. (SODA). 2467–2486.

[29] P. Indyk and D. P. Woodruff. 2005. Optimal approximations of the

frequency moments of data streams. In Proc. 37th Annu. ACM Sympos.
Theory Comput. (STOC). 202–208.

[30] D. M. Kane, J. Nelson, and D. P. Woodruff. 2008. Revisiting norm

estimation in data streams. arXiv preprint arXiv:0811.3648 (2008).
[31] D. M. Kane, J. Nelson, and D. P. Woodruff. 2010. An optimal algo-

rithm for the distinct elements problem. In Proc. 29th ACM Sympos. on
Principles of Database Systems (PODS). 41–52.

[32] M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford. 2017. Single

pass spectral sparsification in dynamic streams. SIAM J. Comput. 46, 1
(2017), 456–477.

[33] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. 2011. Filtering: a

method for solving graph problems in mapreduce. In Proc. 23rd ACM
Sympos. Parallel Alg. Arch. (SPAA). ACM, 85–94.

[34] A. McGregor and H. T. Vu. 2017. Better Streaming Algorithms for

the Maximum Coverage Problem. In 20th International Conference on
Database Theory (ICDT). 22:1–22:18.

[35] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. 1978. An analysis of

approximations for maximizing submodular set functions–I. Mathe-
matical Programming 14, 1 (1978), 265–294.

[36] Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir

Zandieh, Aidasadat Mousavifar, and Ola Svensson. 2018. Beyond

1/2-Approximation for Submodular Maximization on Massive Data

Streams. In International Conference onMachine Learning (ICML). 3826–
3835.

[37] B. Saha and L. Getoor. 2009. On Maximum Coverage in the Streaming

Model & Application to Multi-topic Blog-Watch. In Proc. SIAM Int.
Conf. Data Mining (SDM). 697–708.

[38] J. P. Schmidt, A. Siegel, and A. Srinivasan. 1995. Chernoff–Hoeffding

bounds for applications with limited independence. SIAM Journal on
Discrete Mathematics 8, 2 (1995), 223–250.

[39] M. Thorup and Y. Zhang. 2012. Tabulation-based 5-independent hash-

ing with applications to linear probing and second moment estimation.

SIAM J. Comput. 41, 2 (2012), 293–331.
[40] S. Vadhan. 2012. Pseudorandomness. Foundations and Trends® in

Theoretical Computer Science 7, 1–3 (2012), 1–336.

A CHERNOFF BOUND FOR

APPLICATIONS WITH LIMITED

INDEPENDENCE

In this section, we mention some of the results in [38] on

applications of Chernoff bound with limited independence

that are used in our analysis.

Definition A.1 (Family of d-wise Independent Hash Func-
tions). A family of functionsH = {h : [m] → [n]} is d-wise
independent, if for any set of d distinct values x1, · · · , xd ,
the random variables h(x1), · · · ,h(xd) are independent and
uniformly distributed in [n] when h is picked uniformly at

random fromH .

Next, we exploit the results that show for small values of

d , we can store a family of d-wise hash function in small

space and in the same time it suffices for our application of

Chernoff bound.

Lemma A.2 (Corollary 3.34 in [40]). For every values
ofm,n, and d , there is a family of d-wise independent hash
functionsH = {h : [m] → [n]} such that a selecting a random
function fromH only requires d · log(mn).

Lemma A.3 (Theorem 5 in [38]). Let X1, · · ·Xn be binary
d-wise independent random variables and letX := X1+· · ·+Xn .
Then,

Pr(|X − E[X]| ≥ δE[X]) ≤

{
e−

E[X]δ 2
3 : if δ < 1 and d = Ω(δ 2E[X]);

e−
E[X]δ

3 : if δ ≥ 1 and d = Ω(δE[X]).

LemmaA.4 (Theorem 6 in [38]). LetX1, · · · ,Xn andY1, · · · ,Yn
be Bernoulli trials such that for each i , E[Xi] = E[Yi] = pi .
Let assume that Yi s are independent, but Xi s are only d-wise
independent. Further, let p(r) and pd (r) respectively denote
Pr(

∑n
i=1 Yi = r) and Pr(

∑n
i=1Xi = r) and let µ =

∑n
i=1 pi be

the expected number of success in the trials.
If d ≥ eµ+ ln(1/p(0))+r +D, then |pd (r)−p(r)| ≤ e−Dp(r).

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

213

https://doi.org/10.1007/978-3-662-43948-7_38

A.1 An Application: Set Sampling with

Θ(log(mn))-wise Independence

Consider a set system (U, F) and leth : F → [(cm logm)/γ]
be a function selected uniformly at random from a family

of Θ(log(mn))-wise independent hash functions where c is a
sufficiently large constant. Then, we think of our randomly

selected sets F rnd
to be the collection of sets in F that are

mapped to one by h; F rnd
:= {S ∈ F | h(S) = 1}.

Lemma A.5. Assuming γ ≥ 6c log2m, with probability at
least 1 −m−1, |F rnd | ≤ γ .

Proof. Let Xi be a random variable which is one if Si ∈
F rnd

and zero otherwise. We define X := X1 + · · · + Xm .

Note that Xi are Θ(log(mn))-wise independent and E[X] =
γ/(c logm). Then, by an application of Chernoff bound with

limited independence (Lemma A.3),

Pr(X > γ) ≤ Pr(X > (1 +

√
6c

γ
logm)E[X]︸ ︷︷ ︸

≤2γ /c

) < m−1.

Hence, with high probability, F rnd
has size at most γ . �

Next, we show that F rnd
covers the set of elementsUcmn

γ
(see Definition 2.1).

Lemma A.6. With probability at least 1 − n−1, F rnd covers
Ucmn

γ .

Proof. Let e ∈ Ucmn
γ and let S1, · · · , Sq be the sets in F

that cover e: for each i ≤ q, e ∈ Si . We define Xi to be a ran-

dom variable which is one if Si ∈ F
rnd

and is zero otherwise.

We also define X := X1 + · · · + Xq to denote the number of

sets in F rnd
that cover e . Note that Xi are Θ(log(mn))-wise

independent and E[X] = (γ/(cm logm)) · q ≥ logn log(mn).
Then, applying Chernoff bound on random variables with

limited independence (Lemma A.3),

Pr(X < 1) < Pr(X < (1 −
√
(6 logn)/E[X]︸ ︷︷ ︸

≤1/2

)E[X]) < n−2.

Hence, by union bound over all elements inUcmn
γ , with high

probability, F rnd
coversUcmn

γ . �

Lemma A.7 (Set Sampling with limited independence).

Θ(log(mn)) random bits suffice to implement set sampling
method.

B GENERALIZATION OF SECTION 4.2

In this section we generalize the approach of Section 4.2

which relates the results on heavy hitters and contributing

classes to approximating the optimal coverage size. In Sec-

tion 4.2, to simplify the presentation, we had the assumption

thatUcmn
w is empty. This is in particular important since we

can then assume that the total size of k-covers are roughly
the same as their coverage size (up to polylogarithmic fac-

tors).

Here, we take care of the case in whichUcmn
w is non-empty

and complete the description of our (α, δ ,η)-oracle of Maxk-
Cover for the case |C(OPTlarge)| ≥ |C(OPT)|/2. The high-

level idea is to sample enough number of elements so that the

algorithm using heavy hitters and contributing classes still

works but in the same time no w-common element is among

the sampled elements with at least a constant probability.

Step 1. Sampling Elements. We sample a subset L ⊂

U in which each element e is in L with probability ρ =

(ts · αη)/|U| = Õ(α/|U|) where t = Õ(1) (see Table 2 for

the exact values). We implement the process of sampling

L via a hash function from a family of Θ(log(mn))-wise in-
dependent functions H = {h : U → [n

t·sα ·η]} such that

L = {e ∈ U | h(e) = 1}.

Claim B.1. With high probability, ρ |U |
2
≤ |L| ≤

3ρ |U |
2

.

For each collection of set D, we define D ′ to be the inter-

section of D with L; D ′ := {S ∩ L | S ∈ D}.

Claim B.2. If |C(D)| ≥ |U|/(54fηα), then with probability
at least 1−m−2, |C(D ′)| ≥ ρ |C(D)|/2. Moreover, if |C(D)| <
|U|/(54fηα), then with probability at least 1−m−2, |C(D ′)| <
ts/(36f).

Proof. Since ts ≥ 27 · 24f logm (as in Table 2), it follows

from two applications of Chernoff bound on random vari-

ables with limited independence (Lemma A.3). �

Similarly to Lemma 4.14, we have the following guarantee

for LargeSetSimple using the sampled set of elements L.

Lemma B.3. If |C(OPT)| ≥ |U|/η and L ∩Ucmn = ∅, then
with probability at least 1 − (2 logn polylogm)−1, the output
of LargeSetSimple with parameters (L,w, r1 = sLα, r2 =
cm logm

w , thr1 =
|L |

18ηsα , thr2 =
|L |

6ηα) is a superset whose cover-
age is at least |U|/(54fηα).

Proof. By Claim B.1, (ρ |U|)/2 ≤ |L| ≤ (3ρ |U|)/2. More-

over, by Claim B.2 and since |C(OPT)| ≥ |U|/η, with proba-

bility at least 1 −m−2, |C(OPTlarge) ∩ L| ≥ ρ |C(OPT)|/4 ≥
|L|/(6η). We define ηL := 6η to denote the coverage of

OPTlarge on the sampled elements L.

Now, consider the collection OPTlarge := {O1, · · · ,Oq}.

Since for each i ≤ q, the contribution of Oi to the cover-

age of OPT is at least 1/(sα) fraction (i.e. |Oi \
⋃

j<i O j | ≥

|C(OPT)|/(sα) ≥ |U|/(ηsα)), by Claim B.2, with probability

at least 1 −m−1, for all i ≤ q,

|(Oi \
⋃
j<i

O j) ∩ L| ≥ ρ |C(OPT)|/(2sα).

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

214

This implies that {Oi ∩ L | Oi ∈ OPTlarge} is a collection

of sets whose contribution to C(OPT) ∩ L w.h.p. is at least

(
ρ |C(OPT) |

2sα)/(
3ρ |C(OPT) |

2
) = 1/(3sα). We define sL := 3swhich

denotes the contribution of sets in OPTlarge compared to the

coverage of OPT on the sampled elements L.

By an application of Lemma 4.14 with parameters (V :=

L, thr1 :=
|L |

ηLsLα
, thr2 :=

|L |

ηLα
), with probability at least

1 − 1/(3 logn logcm), the algorithm returns a superset D ′i
whose coverage on the sampled set L is at least

|L|

3fηLα
≥

ρ |U|

36fαη
=

ts
36f
.

Then, by Claim B.2, with probability at least 1−m−2,Di has

coverage at least |U|/(54fηα). �

Step 2. Handling Common Elements. Next, we turn our

attention to the case L ∩ Ucmn
w , ∅. Although common

elements may be covered Ω̃(1) times within a single super-

set, the contribution of common elements to all supersets is

roughly the same.

Claim B.4. Let Lcmn
w := L∩Ucmn

w be the set of w-common
elements that are sampled in L. Then, with high probability,
for each superset D, the total number of times that elements
of Lcmn

w appear in D (counting duplicates) belongs to [P, 2P]
where P is a fixed number larger than logn.

Proof. Let e ∈ Ucmn
w be a w-common element and let

S1, · · · , Sq be the collection of sets that contain e . For a su-
persetDj , define Xi , j to be a binary random variable that de-

notes whether Si ∈ Dj . Moreover, let Yj ,e := X1, j + · · ·+Xq, j .

Then, E[Yj ,e] =
wq

cm logm . By an application of Chernoff bound

with limited independence (Lemma A.3) and since wq ≥
cm logm logn log(mn) (see Definition 2.1),

Pr(|Yj ,e − E[Yj ,e]| ≥

√
6c log(mn)m logm

wq︸ ︷︷ ︸
≤1/3

E[Yj ,e]) ≤ (mn)−2.

(7)

Note that for any w-common element e and any pair of su-

persets Dj ,Di , E[Yj ,e] = E[Yi ,e]. In particular, we define

Ye := E[Yj ,e] whose value is independet of the supersets.

Next, we define Ycmn :=
∑

e ∈Ucmn
w

Ye to denote the expected

contribution of w-common elements to any superset. Hence,

for each superset Dj , with probability at least 1 − 1/(nm2),

the total number of times that w-common elements are cov-

ered by Dj belongs to the range [2Ycmn/3, 4Ycmn/3]. Hence,

with probability at least 1 − (mn)−1, the contribution of

sampled w-common elements to each superset belongs to

[2Ycmn/3, 4Ycmn/3] where Ycmn ≥ logn log(mn)|Lcmn
w | ≥

logn. �

Next, we show that if a w-common element is picked in L

the algorithm still does not return a superset with small cov-

erage (though it may missed all large supersets). To this end,

we modify LargeSetSimple and design a new subroutine

LargeSetComplete as in Figure 6. The high-level idea is to

guarantee that if the main contribution of a superset is just

from the duplicate counts of w-common elements (∝ P), it
will not be returned. To achieve this, unlike LargeSetSimple

we do not allow F2-Contributing to consider contributing

classes of any size (up to |Q|). Instead, we set parameters r1
and r2 which denotes how large the size of a contributing

class that we are looking for is. To handle the case in which

the size of a contributing class is large (i.e. larger than r2),
we sample supersets proportional to 1/r2 and compute their

coverage by existing L0-estimation algorithms.

Lemma B.5. Even ifL∩Ucmn
w , ∅, with probability at least

1−m−1, none of the solutions returned by LargeSetComplete
with parameters (L,w, r1 = sLα, r2 = Θ̃(

cm logm
w), thr1 =

|L |

18ηsα , thr2 =
|L |

6ηα) is a superset with coverage less than |U|/(54f·
η · α).

Proof. Here, we need to revisit Case 1 and Case 2 of

Section 4.2 and redo the calculations with respect to the

sampled elements L.

Case 1. Suppose that F2-Contributing(Ω̃(
α 2

m), sL · α) re-
turns a solution whose coverage is less than |U|(54f · η · α).
Let ®r be a vector of size at most (cm logm)/w whose ith

entry denotes the total size of the intersection of sets in

Di and L
rare
w := L \ Ucmn

w ; ®r [i] :=
∑

S ∈Di
|S ∩ Lrare

w |. By

Claim B.2, if |C(Dj)| < |U|/(54fηα), with probability at

least 1 −m−2, |C(Di) ∩ L
rare
w | < |C(Di) ∩ L| < ts/(36f).

Hence, together with Claim 4.10, with probability at least

1 − 2m−2, ®r [i] < ts/36.
Similarly, let ®v be a vector of size (cm logm)/w whose ith

entry denotes the total size of the intersection of sets in Di
with the sampled elements L; ®v[i] :=

∑
S ∈Di

|S ∩ L|. Note
that Since P ≥ 1, for each superset Di with coverage less

than |U|/(54f · η · α), ®v[i] ≤ 2P + ®r [i] ≤ (ts/36)P . On the

other hand, by Claim B.4, with probability at least 1 −m−1,
the value of ®v[j] for all j in the sampled substream is at least

P .
Moreover, since the size of contributing classes in this case

is at most sL · α = 3sα (more precisely, we can always find

at most 3sα sets that are Ω̃(α
2

m)-contributing), by Claim 2.8,

with probability at least 1 −
logm
m , all sampled substreams

considered by F2-Contributing(ϕ1, sL ·α) have size at least
cm logm/(w · s · α). Hence, by Claim B.4, with probability at

least 1 −
2 logm
m ,

F2(®vsmp) ≥ (
cm logm

w · s · α
)P2,

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

215

LargeSetComplete(V,w, r1, r2, thr1, thr2):
◃ Input: w is an upper bound on the size of a superset

◃ Parameters: ϕ1 = Ω̃(α2/m) and ϕ2 = Ω̃(1)
◃ For Case 1

let Cntrsmall be an instance of F2-Contributing(ϕ1, r1)
◃ For Case 2

let Cntrlarge be an instance of F2-Contributing(ϕ2, r2)
pick h : F → [(cm logm)/w] from Θ(log(mn))-wise

independent hash functions

for each (S, e) in the data stream do

if e ∈ V then feed h(S) to both Cntrsmall and Cntrlarge
◃ output(Cntr) returns (1 ± 1/2)-estimate of frequencies

if there exists i∗ ∈ output(Cntrsmall) such that ṽi∗ ≥
1

2
· thr1

return 2ṽi∗/(3f)
◃ add return {S | h(S) = i∗} to get a k-cover
if there exists i∗ ∈ output(Cntrlarge) such that ṽi∗ ≥

1

2
· thr2

return 2ṽi∗/(3f)
◃ add return {S | h(S) = i∗} to get a k-cover

◃ Case 2: if size of the contributing class is large; Ω̃(|Q|)
letM ⊂ Q be a collection of size 12|Q| logm/r2

picked uniformly at random

for each i ∈ M do

◃ DE estimates the coverage of the supersets in L

let DEi be a (1/2)-approximation algorithm of

L0-estimation initialized to zero

pick h : F → [(cm logm)/w] from Θ(log(mn))-wise
independent hash functions

for each (S, e) in the data stream do

if e ∈ V and h(S) ∈ M then feed h(S) to DEh(S)
if there exists i∗ ∈ M such that VAL(DEi∗) ≥ 1

2
· thr2

return 2VAL(DEi∗)/3
◃ add return {S | h(S) = i∗} to get the k-cover

return infeasible

Figure 6: A (α, δ ,η)-oracle of Maxk-Cover that handles
the case inwhich themajority of the coverage in an op-

timal solution is due to the sets whose coverage contri-

butions are at least 1/(sα) fraction of the optimal cov-

erage size.

where ®vsmp is a vector corresponding to a sampled substream

considered in F2-Contributing(ϕ1, sL · α). Since s4t2 ≤
81

2η log(sα) (see Table 2) and by the value of ϕ1 as in Eq. (6), the

following holds:

(
ts
36

)2P2 < ϕ1 ·
cm logm

w · s · α
P2,

which implies that with probability at least 1− 3 logm/m, an

entry corresponding to a superset with coverage less than

|U|/(54f · η · α) cannot be a ϕ1-HeavyHitter in any of the

sampled substreams considered in F2-Contributing(ϕ1, sL ·
α).

Case 2. The high-level idea in this case is similar to the

previous case. In Case 1, we heavily used the fact that there

exists a class containing at most sL · α coordinates that is

Ω̃(α
2

m)-contributing.

This observation is crucial because then we can show

that all sampled substreams considered in F2-Contributing

with parameters (ϕ1, sLα) have size at least Ω̃(m/(w · sL ·α))
which rules out the possibility that a coordinate correspond-

ing to a small superset is a Ω̃(α
2

m)-HeavyHitter for suffi-

ciently small values of s (recall that sL = 3s).
However, in this case, a contributing class may have size

Ω̃(m/w)which results in a sampled substreamwith only Õ(1)
coordinates in the run of F2-Contributing! To address the

issue, we handle the case in which a contributing class has

more than r2 :
cm logm

w · γ coordinates separately:

1. Ω̃(1)-contributing class has size less than r2. Since
P ≥ 1 and by Claim B.2 and 4.10, for each superset Dj with

coverage less than |U|/(54f · η · α), with probability at least

1 − 2m−2, ®v[j] ≤ (ts/36)P . On the other hand, by Claim B.4,

with probability at least 1 −m−1, the value of ®v[j] for all j in
the sampled substream is at least P . Moreover, by Claim 2.8,

with probability at least 1 −
logm
m , all sampled substreams

considered in F2-Contributing(ϕ2 =
1

2 log(α) , r2) invoked by
LargeSetComplete (which is to handle Case 2) have at least

(
3cm logm

w·r2
) = 3

γ coordinates. Hence, F2(®vsmp) ≥
3

γ · P
2
. By

setting

γ <
3ϕ2

(ts/36)2
=

1944

log(α)t2s2
, (8)

®v[j]2 ≤ (ts/36)2P2 < (1

2 logα F2(®vsmp)), which implies that an

entry corresponding to a superset with coverage less than

|U |

27f ·η ·α cannot be a ϕ2-HeavyHitter in any of the sampled

substream considered in F2-Contributing(ϕ2, r2).

2. Ω̃(1)-contributing class has size at least r2. Here, we
need to consider an extra case compared to Lemma 4.14

and B.3 because we do not allow r2 to try all values up to

(
cm logm

w). To address the case in which the number of coor-

dinates in a contributing class is larger than r2, we sample

ℓ = (12 logm)|Q|/r2 supersetsM uniformly at random from

Q; with high probability,M contains a superset from the

contributing class. Then, we compute the coverage of sam-

pled supersets via an existing algorithm for L0-estimation.

By Claim 4.13, the coverage of supersets corresponding to

the ϕ2-contributing class whose size is larger than r2 on the

sampled set L is at least |L|/(ηL · α) ≥ ts/(12f). Hence, the
algorithm finds a superset with coverage at least ts/(36f) on
L which by Claim B.2, it implies that the returned superset

has coverage at least |U|/(54f · η · s · α). �

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

216

Theorem B.6. If |C(OPT)| ≥ |U|/η, then with probability
at least 1−(logn polylogm)−1, LargeSet(k,α) returns at least
|U |

54f ·η ·α . Moreover, if LargeSet(k,α) returns a value other than
infeasible, then with probability at least 1−4m−1, |C(OPT)| ≥
|U |

54f ·η ·α .

Proof. By Lemma B.5, with probability at least 1 − 3m−1,
LargeSet never returns a superset with coverage less than

|U|/(27fηα); either it returns a large enough estimate or

returns infeasible. Here, we show that if |C(OPT)| > |U|/η,
then the algorithm will return an estimate at least |U|/(54f ·
η · α) with probability at least 1 − 1/(2 logn logcm) − n−1.
To this end, we show that with high probability, in one of

the O(logn) parallel runs of LargeSet, the sampled sets of

elements L does not contain any common element. Then,

by Lemma B.3, the algorithm with probability at least 1 −

1/(2 logn logcm) returns |U|/(54f · η · α) in the iteration in

which the sampled set of elements that does not contain any

common elements.

Now, we show that with probability at least 1 − n−1, in
one of O(logn) parallel runs of LargeSet, the sampled set

does not contain any common elements. Let q = |Ucmn
w |

and define Y1, · · · ,Yq to be independent Bernoulli trials with

probability of success equal to ρ. Recall that, we have the

assumption that |Ucmn
k | ≤

σ |U |
α and since w ≤ k , |Ucmn

w | ≤

|Ucmn
k | ≤

σ |U |
α ,

µ = E[
q∑
i=1

Yi] ≤
σ |U|

α
· ρ = t · s · η · σ

Pr(

q∑
i=1

Yi = 0) = (1 − ρ)q ≥ e−2ρq ≥ e−2t·s·η ·σ

Next, let’s assume that Ucmn
w = {e1, · · · , eq}. Further, de-

fine X1, · · · ,Xq to be random variables such that Xi = 1 if

ei ∈ L. Hence,X1, · · · ,Xq are Θ(log(mn))-wise independent
Bernoulli trials with success probability E[Xi] = ρ. Next, by
Lemma A.4 with the following parameters:

r = 0, ln(1/p(0)) ≤ 2t · s · η · σ , µ = t · s · η · σ ,D = 12 log(mn),

and show that

Pr(L ∩Ucmn
w = ∅) = Pr(

q∑
i=1

Xi = 0) ≥ Pr(

q∑
i=1

Yi)(1 − e
−D)

≥ e−2t·s·η ·σ /2.

Hence, since t · s · η · σ = η = O(1) (see Table 2),

Pr(In all runs, L ∩Ucmn , ∅) ≤ (1 − e−2t·s·η ·σ)O (logn) ≤ n−1.

The second property follows from Lemma B.5: if the al-

gorithm returns a value other than infeasible, then with

probability at least 1−4m−1, |C(OPT)| ≥ |U|/(54f ·η ·α). �

LargeSet(k,α,w):
◃ Run LargeSetComplete on sampled set of elements

repeat O(logn) times in parallel

let L ⊆ U s.t. each e ∈ L w.p. ρ =
t·sα ·η
|U |

r1 ← sLα , r2 ←
cm logm

w · γ ◃ γ := 1944

t2s2 logα
thr1 ← |L|/(18ηsα), thr2 ← |L|/(6ηα)
sol← LargeSetComplete(L,w, r1, r2, thr1, thr2)

if sol , infeasible then return |U|/(54f · η · α)
return infeasible

Figure 7: A single pass streaming algorithm.

Lemma B.7. The amount of space used by LargeSet is
Õ(mα 2

).

Proof. Note that LargeSet performs O(logn) instances
of LargeSetComplete in parallel. Hence, the total amount

of space use by LargeSet is O(logn) times the space com-

plexity of LargeSetComplete.

Similarly to the space analysis of LargeSetSimple, the

amount of space to performCntrsmall andCntrlarge as defined
in LargeSetComplete is respectively Õ(1/ϕ1) = Õ(m/α2)

and Õ(1/ϕ2) = Õ(1). Moreover, for the last case in which the

contributing class has size larger than r2, by Theorem 2.12,

in total Õ(m
w·r2
) = Õ(1) space is required to compute the

coverage of sampled supersets inM. Note that, in all cases,

by Lemma A.2, the algorithm can store h in Õ(1) space.
Hence, the total amount of space required to implement

LargeSet is Õ(mα 2
). �

Proof of Theorem 4.8. The guarantee on the quality of

the returned estimate follows from Theorem B.6 with w =
min{α,k} and s = Õ(w/α) (as in Table 2). Moreover, LemmaB.7

shows that the space complexity of LargeSet is Õ(mα 2
).

Moreover, since with high probability the estimate re-

turned by the algorithm is a lower bound on the cover-

age size of a k-cover of F , the output of LargeSet with

high probability, is smaller than the optimal coverage size of

Maxk-Cover(U, F). �

Session 4: Streams PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands

217

	Abstract
	1 Introduction
	2 Preliminaries and Notations
	2.1 Sampling Methods for Max k-Cover
	2.2 HeavyHitters and Contributing Classes
	2.3 L0-Estimation

	3 Estimating Size of Maximum Coverage
	3.1 Universe Reduction

	4 (,,)-Oracle of Max k-Cover
	4.1 Multi-layered Set Sampling
	4.2 Heavy Hitters and Contributing Classes: |C(OPTlarge)| |C(OPT)|/2.
	4.3 Element Sampling: |C(OPTlarge)| < |C(OPT)|2

	5 Lower Bound for Estimating Maximum k-Coverage in Edge Arrival Streams
	Acknowledgments
	References
	A Chernoff Bound for Applications with Limited Independence
	A.1 An Application: Set Sampling with (log(mn))-wise Independence

	B Generalization of Section 4.2
	C Omitted Proofs of Section 2.2

