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Abstract 
 

The social media have been increasingly used for disaster management (DM) via providing real time data on a broad 

scale. For example, some smartphone applications (e.g. Disaster Alert and Federal Emergency Management Agency 

(FEMA) App) can be used to increase the efficiency of prepositioning supplies and to enhance the effectiveness of 

disaster relief efforts. To maximize utilities of these apps, it is imperative to have robust human behavior models in 

social networks with detailed expressions of individual decision-making processes and of the interactions among 

people. In this paper, we introduce a hierarchical human behavior model by associating extended Decision Field 

Theory (e-DFT) with the opinion formation and innovation diffusion models. Particularly, its expressiveness and 

validity are addressed in three ways. First, we estimate individual’s choice patterns in social networks by deriving 

people’s asymptotic choice probabilities within e-DFT. Second, by analyzing opinion formation models and 

innovation diffusion models in different types of social networks, the effects of neighbor’s opinions on people and 

their interactions are demonstrated. Finally, an agent-based simulation is used to trace agents’ dynamic behaviors in 

different scenarios. The simulated results reveal that the proposed models can be used to establish better disaster 

management strategies in natural disasters. 

 

Keywords 

Disaster Management, Social Media, Decision Field Theory, Opinion Formation, Innovation Diffusion, Agent-based 

Simulation 

 

1. Introduction 
 

Recently, social media platforms have had an increasing role in mitigating the effects of natural disasters. In order to 

scale down the damage caused by natural disasters and to provide citizens with as much relief as possible, governments 

and humanitarian agencies seek to exploit the social media by collecting relevant information as fast as possible. For 

example, in the wake of the Haitian earthquake and Hurricane Irma, many people uploaded photos to Facebook and 

Twitter – as opposed to dialing 911 – to share the situations that they face [1]. Thus, social media is replacing the role 

of the traditional information service system in disaster relief efforts as digital age technologies continue to rapidly 

develop and become more widespread [2]. In order to track the movement of hurricanes and earthquakes as they occur, 

governments have developed smart phone apps which would help in their relief process. In this regard, social media 

now plays a crucial role in all phases of disaster management efforts by sharing information and by eliciting volunteers 

to the cause.  

   

In the view of government and humanitarian agencies, social media can be used as a system of collecting information. 

However, due to the tremendous amount of generated information during the disaster (Figure 1), it is hard to identify 

trustworthy and helpful sources [1, 3]. Figure 1 shows that around one million tweets were published in one day during 

Hurricane Irene [3]. Therefore, in order to extract important information from social media, it is necessary for 

governments or agencies to develop a unified framework such as the Disaster Alert or Federal Emergency 

Management Agency (FEMA) especially in countries where smartphones are common [1, 2]. Another important task 

is to make all people aware of these apps or frameworks, encouraging them to use the apps to report their situation 

and ask for social aids in the event of an emergency [2]. Here, in order to maximize the spread of these innovative 

apps into communities, it becomes necessary to understand the innovation diffusion behavior in social networks [4]. 

 

On the other hand, people may use social media to organize volunteer groups to help their communities during the 

disaster recovery period [2, 4]. This is known as crowdsourcing, derived from the words “crowd” and “source” [1, 4]. 
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Many researchers have defined crowdsourcing in different ways, however, the common idea is to outsource needed 

relief activities such as the delivery of necessity resources (e.g., foods or water) to the public [2, 4]. Thus, the research 

goal for them is to create a sympathetic atmosphere in which many people will volunteer to provide aids. Therefore, 

there is a need to study and understand the opinion formation model in social networks in order to maximize the effect 

of crowdsourcing, policy, or campaign for crisis relief efforts. 

 

Based on two research needs and opportunities stated above, the goal of this research is to understand the nature of 

innovation diffusion and opinion formation in order to utilize social media in crisis. As shown in Figure 2, these two 

behaviors can be understood as two hierarchal decision-making models in social networks: top-down and bottom-up, 

respectively. The government can establish different support policies to prepare for emergencies and for relief 

activities. In both cases, accurate and generalized individual decision-making models should be introduced first to 

support hierarchical models. To this end, the Decision Field Theory (DFT) and its extensions were introduced, which 

has been widely applied in many areas [5, 6]. By incorporating DFT in hierarchical models, two research goals - 

understanding the coverage of the innovation diffusion and the relationships between public opinion and disaster 

policy characteristics - can be accurately modeled and analyzed. Throughout this paper, two models are discussed to 

resolve the problems, and simulation analysis is conducted to demonstrate the validity of the proposed models. 

 

 

The structure of this paper is as follows. In Section 2, the basic concept of Decision Field Theory (DFT) and its 

extensions (i.e. eDFT) are introduced, and the asymptotic nature with choice probability under eDFT are also 

explained. In Section 3, the extension of innovation diffusion and opinion formation models within the eDFT 

framework are demonstrated. Finally, experimental results for models’ validation are provided in Section 4. 

 

2. Extended Decision Field Theory (eDFT) and Choice Probabilities  
 

2.1 Decision Field Theory (DFT) and its extension (eDFT) 

 

Decision Field Theory (DFT) is a well-known cognitive decision-making framework in psychology, and has been 

employed in various application areas such as engineering, biology, social science [5, 6]. Unlike approaches based on 

utility function (another widely used model for individual decision-making processes), DFT does not require any 

specific mathematical assumption such as convexity or continuity on the model [5]. The main idea of DFT is people’s 

decisions are affected by past experience (SP(t)) and current evaluation (V(t+1)) as shown in equation (1).  

                                                         

DFT:  𝑷(𝑡 + 1) =  𝑺𝑷(𝑡) + 𝑽(𝑡 + 1) = 𝑺𝑷(𝑡) + 𝑪𝑴𝑾(𝑡 + 1)                                  (1) 

 

Equation (1) represents how individual preference values of all options (P(t+1)) are evaluated. To depict memory loss 

about past preferences (SP(t)), matrix S is used to represent memory loss factors. Personal current evaluation of 

options - valence vector V(t+1) - is equal to CMW(t+1), which means that the evaluation is the product of the personal 

relative weights of decision criteria (W(t+1)), individual assessment of options on the criteria (M), and scale factors 

(C). With a relative simple structure, DFT can represent a general individual decision making process. One may extend 

DFT by incorporating dynamic changes of environments surrounding decision-makers. Thus, extended DFT (eDFT) 

illustrates that individual assessment of options on the criteria can alter over time depending on environmental changes 

[6]. For example, in a natural disaster (such as hurricane and earthquake) the cost of necessary resources (e.g., water) 

Figure 1 Number of Tweets of Hurricane Harvey 

 

Figure 2 Overview of Hierarchical Decision-making 
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can be more expensive than the regular period. In order to convey the idea, one can update the matrix M to M(t+1), 

because ith row of the matrix M represents the personal evaluation of ith option regarding the criteria within DFT. 

Thus, dynamic changes of characteristics of options over time due to environmental changes can be captured within 

eDFT [6] as in equation (2):  

 

     eDFT: 𝑷(𝑡 + 1) =  𝑺𝑷(𝑡) + 𝑽̂(𝑡 + 1) = 𝑪𝑴(𝑡 + 1)𝑾(𝑡 + 1)                              (2) 

 

According to (2), eDFT expresses that current preference values are cumulative sum of all past historical values as a 

recurrence relation. In order to derive asymptotic preference value, it is recommended to represent 𝑷(𝑡 + 1) as the 

sum of a finite series. The finite sum of current preference values within eDFT is represented as equation (3):   

     

                               𝑷(𝑡) =  ∑ 𝑺𝒌𝒏−𝟏
𝒌=𝟎 𝑪𝑴((𝑛 − 𝑘)ℎ)𝑾((𝑛 − 𝑘)ℎ) + 𝑺𝒌𝑷(0)                               (3) 

 

Our main research interests on eDFT are two folds: i) asymptotic preference values and ii) agent’s choice probabilities. 

Thus, in Section 2.2., we show how asymptotic preference values within eDFT can be derived with the basic 

information of M and W with two lemmas (Lemmas 1 and 2). Then, we also show that how the lemmas are used to 

determine individual’s choice probabilities within the eDFT model.  

 

2.2 Choice probabilities of eDTF 

 
The following two lemmas show asymptotic nature of eDFT, and a corollary describes asymptotic choice probabilities. 

Lemma 1.  Assume that M(t) and W(t) are independent. Let 𝐸[𝑾(𝑡)] = 𝝎 = [
ω1

𝜔2
] , 𝐸[𝑴(𝑡)] = 𝚳 = [

𝐦1
𝑇

𝐦2
𝑇] =

[
𝑚11 𝑚12

𝑚21 𝑚22
] . Let the 𝐶𝑜𝑣(𝑾(𝑡)) = Σ𝜔 = [

𝜎𝜔1
2 𝜎𝜔1𝜔2

𝜎𝜔1𝜔2
𝜎𝑤2

2 ] , 𝑎𝑛𝑑  𝐶𝑜𝑣(𝒎𝑖(𝑡)) = Σ𝒎𝑖
= [

𝜎𝑚𝑖1
2 𝜎𝑚𝑖1𝑚𝑖2

𝜎𝑚𝑖1𝑚𝑖2
𝜎𝑚𝑖2

2 ] ∀i ∈

{1,2}. Then, mean and covariance matrix of V(t) can be expressed as follows: 

 

              𝐸[𝑽(𝒕)] = 𝑪𝑴𝝎,  𝐶𝑜𝑣[𝑽(𝒕)] = 𝑪𝚪𝑪′ where 𝚪 is:                              (4) 

 

𝚪 = [
𝜎𝑚11

2 (𝜔1 + 𝜎𝜔1

2 ) + 𝜎𝑚12

2 (𝜔2 + 𝜎𝜔2

2 ) + 𝑚11𝜎𝜔1

2 + 𝑚12𝜎𝜔2

2 𝑚11𝑚21𝜎𝜔1

2 + 𝑚12𝑚22𝜎𝜔2

2

𝑚11𝑚21𝜎𝜔1

2 + 𝑚12𝑚22𝜎𝜔2

2 𝜎𝑚21

2 (𝜔1 + 𝜎𝜔1

2 ) + 𝜎𝑚22

2 (𝜔2 + 𝜎𝜔2

2 ) + 𝑚21𝜎𝜔1

2 + 𝑚22𝜎𝜔2

2 ] (5) 

 

pf) According to (2), 𝐸[𝑽(𝑡)] = 𝐸[𝑪𝑴(𝑡)𝑾(𝑡)] = 𝑪𝐸[𝑴(𝑡)]𝐸[𝑾(𝑡)] = 𝑪𝑴𝝎 hold. The second last equality holds 

due to the independence between M(t) and W(t). Also, 𝐶𝑜𝑣[𝑽(𝑡)] = 𝐶𝑜𝑣[𝑪𝑴(𝑡)𝑾(𝑡)] = 𝑪𝐶𝑜𝑣[𝑴(𝑡)𝑾(𝑡)]𝑪’ 

=  𝑪𝑐𝑜𝑣 [
𝒎1

𝑇(𝑡)𝑤1(𝑡)

𝒎2
𝑇(𝑡)𝑤2(𝑡)

] 𝑪=𝑪 [
𝑣𝑎𝑟(𝒎1

𝑇(𝑡)𝑤1(𝑡)) 𝑐𝑜𝑣(𝒎1
𝑇(𝑡)𝑤1(𝑡), 𝒎2

𝑇(𝑡)𝑤2(𝑡))

𝑐𝑜𝑣(𝒎1
𝑇(𝑡)𝑤1(𝑡), 𝒎2

𝑇(𝑡)𝑤2(𝑡)) 𝑣𝑎𝑟(𝒎2
𝑇(𝑡)𝑤2(𝑡))

] 𝑪′ =  𝑪𝜞𝑪′. 

 

Lemma 2.  The asymptotic preference values within the eDFT framework follows asymptotic mean and variance: 

 

           lim
t→∞

 E[𝐏(t)] = (𝐈 − 𝐒)−1𝑪𝑴𝝎                                                                (6) 

          lim
t→∞

 Cov[𝐏(t)] = ∑ 𝑺𝑖𝐂𝚪𝐂′𝑺′𝑖∞
𝑖=1                                                               (7) 

 

pf) Take an expectation and limitation on both sides in equation (2), 𝑙𝑖𝑚
𝑡→∞ 

𝐸[𝑷(𝑡 + ℎ)] = 𝑙𝑖𝑚
𝑡→∞ 

𝑺𝐸[𝑷(𝑡)] + 

𝑙𝑖𝑚
𝑡→∞ 

𝑪𝐸[𝑴(𝑡 + ℎ)𝑾(𝑡 + ℎ)]holds. This implies (𝑰 − 𝑺)𝑙𝑖𝑚
𝑡→∞ 

𝐸[𝑷(𝑡)] = 𝑪𝑴𝝎.  Thus, under the condition of 

|S| <1, 𝑙𝑖𝑚
𝑡→∞ 

𝐸[𝑷(𝑡)]  = (𝑰 − 𝑺)−1𝑪𝑴𝝎 . In addition, 𝑙𝑖𝑚
𝑡→∞

 𝐶𝑜𝑣[𝑷(𝑡 + 1)] = 𝑙𝑖𝑚
𝑡→∞

 𝐶𝑜𝑣[𝑷(𝑡)] + 𝑙𝑖𝑚
𝑡→∞

 𝐶𝑜𝑣[𝑽(𝑡 +

ℎ)]. By the independence assumption between M and W, the interaction term will disappear. Using the mathematical 

induction, 𝑙𝑖𝑚
𝑡→∞

 𝐶𝑜𝑣[𝑷(𝑡)] = 𝑪𝜞𝑪′ + 𝑺1𝑪𝜞𝑪′𝑺1′ + 𝑺2𝑪𝜞𝑪′𝑺2′ + ⋯ =∑ 𝑺𝑖𝑪𝜞𝑪′𝑺′𝑖∞
𝑖=1 .  

 

Corollary 1. Assume that weight vector (W(t)) in eDFT follows iid Gaussian distribution. Then, the choice probability 

of option X over Y within eDFT is asymptotically represented as follows: 
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      𝑃𝑟[𝑋|𝑋, 𝑌] = ∫ ∫
𝑒𝑥𝑝[−((𝑝𝑥−𝑝𝑦)−(𝜁𝑥−𝜁𝑦))2/(2(𝛾𝑥

2+𝛾𝑦
2−2𝛾𝑥𝑦)]

(2𝜋(𝛾𝑥
2+𝛾𝑦

2−2𝛾𝑥𝑦)0.5  𝑑𝑝𝑥𝑑𝑝𝑦  
{𝑝𝑥>𝑝𝑦}

                             (8) 

where 𝜁𝑥 and ζy are asymptotic expected values from lemma 2, and 𝜎𝑥
2 and 𝜎𝑦

2 are diagonal elements of asymptotic 

covariance matrix (𝚪) while 𝜎𝑥𝑦 is a non-diagonal element of 𝚪. 

 

Pf) Since each preference value of eDFT is the cumulative sum of all previous iid normal distribution, all elements 

still remain to follow Gaussian distribution. Thus, in the binary setting, this choice probability becomes the probability 

that the X normal variable is greater than Y, which is represented as equation (8). 

 

By showing dynamic change of preferences and their ultimate values in Lemma 1 and Lemma 2, one can find the 

choice probabilities at the end as shown in equation (8). In Section 3, we demonstrate how the eDFT and its 

mathematical results can be incorporated in the proposed hierarchical decision-making processes such as opinion 

formation and innovation diffusion models with the consideration of human interactions in social networks. 

 

3. Hierarchical Modeling: Opinion Formation and Innovation Diffusion  
  

While an extended Decision Field Theory (eDFT) has been used more to represent individual decision-making 

processes, it is essential to generalize the framework by incorporating human interactions in social networks. In a 

hierarchical structure of social networks, one cannot concern the decision-making processes without the interactions 

among people. Therefore, we chose to adopt two major hierarchical decision-making models: 1) Bounded Confidence 

model (BCM) and 2) Latane’s diffusion model to represent opinion formation and innovation diffusion processes, 

respectively [7, 8]. In this section, we discuss why these two model have been chosen and also introduce extensions 

of both models by incorporating the eDFT for individual decision-making processes. 

 

Among various opinion formation models, DeGroot’s (naïve) learning model is widely known for social interactions 

[9]. This model insists that the individual’s opinion is the equally weighted sum of her neighbors’ preferences [9]. For 

example, if one person has ten mutual friends in Facebook, her preference value of an option becomes an equally 

weighted sum of all her ten friends’ values. The model delivers a clear idea on how people’s opinions can be formed 

with a simple structure, but there exists one limitation: different types of human interactions are not fully considered 

[10]. For example, even unfriendly people are supposed to communicate with each other in forming their preferences 

in DeGroot’s model. As this is not likely to occur in the real situation, it is imperative to convey different types of 

relations in opinion formation. 

 

Bounded Confidence Model (BCM) was developed to account for different types of human interactions [10]. The 

main idea is simple: an individual is affected by the similar opinions of her neighbors. The BCM model is as follows: 

 

              𝑝𝑖(𝑡 + 1) = |𝐼(𝑖, 𝑥(𝑡))|
−1

∑ 𝑝𝑗(𝑡)𝑗∈𝐼(𝑖,𝑥(𝑡)) ,  where  𝐼(𝑖, 𝑥(𝑡)) = {1 ≤ 𝑗 ≤ 𝑛 | |𝑝𝑖 − 𝑝𝑗| ≤ 𝜖𝑖}                (9) 
 

𝑝𝑖(𝑡) represents the individual i’s opinion at time t+1, while 𝐼(𝑖, 𝑥(𝑡)) represents the set of her neighbors who have 

similar preference values. Only neighbors who have similar opinions to individual i can affect i’s preference. The 

important parameter in BCM is 𝜖𝑖, which depicts the individual’s generosity. For example, if she has a high value of 

𝜖𝑖 , she is more open to listen to neighbors of different preferences. Under this setting, if 𝑝𝑖  is replaced with the 

preference values within the extended DFT model, the updated BCM can embody not only individual decision-making 

framework but also human interactions. We call this extension as extended BCM (eBCM) and demonstrate its validity 

by showing how different epsilon values affect the asymptotic status of social networks in Section 4. 

 

Furthermore, innovation diffusion processes can also be demonstrated under the eDFT framework. The choice of 

binary options (such as shifting the older smartphone to a newer model) is the primary phenomena to be posed in the 

innovation diffusion model. In most literatures, the choice behavior of agents in social networks are supposed to follow 

S-curve diffusion phenomena [11]. Sigmoid function is a typical example with the shape of S-curve [11]. The domain 

of this function is the whole real line (R), while all return value stays from 0 to 1, corresponding to the choice 

probability. For example, logistic or hyperbolic tangent functions are widely used sigmoid functions [11]. In this work, 

the modified logistic function (MLF) is used to convey Latane’s extended innovation diffusion model, because this 

model has been widely utilized and extended to describe human behaviors in social networks [10, 11]. The main 
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premise of this model is that if many of your friends have adopted a new technology, you are more likely to adopt it 

as well. Equation (10) shows the choice probability of MLF: 
 

𝑃𝑟𝑖 = 𝑓(𝐼𝑖) =
𝑒

𝐼𝑖
𝜂

(𝑒

𝐼𝑖
𝜂 +𝑒

−
𝐼𝑖
𝜂 )

, where 𝐼𝑖 =  ∑
𝑠𝑗𝜎𝑗

𝑆𝐸𝑖
+ ℎ𝑗∈𝑁(𝑖)                                        (10) 

 

𝐼i shows the social network’s impact on individual decision-maker i, which consists of four parameters: structural 

embeddedness (𝑆𝐸𝑖 ), agent j’s influence on the network (𝑠𝑗 ), the neighbor’s binary choice (𝜎𝑗 ∈ {0, 1}), and the 

external noise or information to the network (h). In order to assign reasonable values, practical definitions of them 

(especially the first two terms) have to be discussed. Structural embeddedness (SEi) represents the number of 

interactions of the individual i within the network (e.g., this value can be degrees of node i in the network topology), 

while personal influence on the network (sj) can be expressed as induvial j’s social influence within the networks. 

Thus, the concept of (normalized) degree centrality can be used to demonstrate 𝑠𝑗 = dj / 𝑚𝑎𝑥 𝑑𝑘 , 𝑘 ∈ 𝑁(𝑗) [10]. If 

neighbor’s binary choice is assigned based on equation (8) by Corollary 1, MLF is fully incorporated with eDFT. The 

remaining parameter 𝜂 shows the entry barrier of the new technology, which can serve the elasticity of MLF (see 

Figure 3). For example, if the new technology is difficult to understand and utilize, the 𝜂 value becomes larger. In this 

way, all the information regarding networks, people, and the innovation are well suited in the MLF model. In Section 

4, we demonstrate the validity of both eBCM and MLF within eDFT using agent-based simulation. 

 

 

 

 

 

 

 

      Figure 1 Extended Ellipsoid Function with different 𝜼                        Figure 4 Sparse and Dense networks 

 

4. Experiments 
 

The goal of this section is to test whether the extended BCM (eBCM) and the Modified Logistic Function (MLF) 

models can accurately represent decision-making behaviors in social networks through simulation. For the validation 

of eBCM, we introduce three types of networks (i.e. the “self-centered”, the “neutral”, and the “cooperative”) based 

on ratios of the populace’s willingness to listen to different opinions. In corporative networks, most people are open 

to listening to another’s opinion, which results in a larger value for  𝜖. On the other hand, individuals concerned mainly 

with themselves and have a higher value for 𝜖 live in the self-centered networks, while properties of the neutral lies 

between the self-centered and the corporative. A thousand people in each network are forced to decide whether to 

participate in aid activities based on two sequential reasoning processes: i) eDFT and ii) eBCM. The hypothesis being 

test is that people in the corporative network participate in aid activities more than in the self-centered. All 

experimental configurations (i.e. parameters of both models) are depicted demonstrated in Tables 1 and 2.   

 

Table 1 Information of Parameters within eDFT                                 Table 2 Network Configurations    

matrix M(t)  

Participation Uniform (0.7, 0.9) Uniform (0.1, 0.3) 

No participation Uniform (0.1, 0.3) Uniform (0.7, 0.9) 

matrix S 

Participation 0.95 -0.01 

No participation -0.01 0.95 

matrix C 

Participation 1 -1 

No participation -1 1 

Networks for eBCM 𝜖 

Self-centered Uniform (0, 0.1) 

Neutral Uniform (0.1, 0.3) 

Cooperative Uniform (0.3, 0.5) 

Networks for MLF Average degrees 𝑑𝑖 

Sparse 2 

Neutral 5 

Dense 8 

η = 0.1 
η = 0.5 
η = 1 
η = 2 
η = 5 
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Table 3 Simulation Results 

 

 

 

 
 

 

On the other hand, the similar procedure was used to evaluate MLF. We test the following hypothesis holds within 

MLF: if people are more connected as in a dense network, the innovation diffusion process spreads wider and faster 

than the sparse [11]. Similarly, new three types of networks are tested: 1) sparse, 2) neutral, and 3) dense, based on 

the average number of connections (see Figure 4 and Table 2). In the beginning of the simulation, only “the leader”, 

determined as the individual with the largest degree in the community, has installed the disaster management 

application while all the others have not. They update their preferences and the choice probabilities for the decision 

to download the app by MLF under the eDFT model. We monitored the number of people who have installed the app 

at the end and the time until networks’ stability is achieved (at the time when nobody changes her decision any more).  

 

We confirmed that our hypotheses, when tested within the framework of eBCM and MLF, are found to be valid. First, 

the most people in the corporative network volunteered to provide aids for communities and the least in the self-

centered network (Table 3), which shows that our extension of BCM accurately mimics social learning through 

interactions within the community. Second, the diffusion process within MLF spread the slowest in the sparse network 

and the fastest in the sparse network. It means that in a dense network it is much easier to spread the new app among 

community members quickly than it is in a sparse. Therefore, MLF can also accurately recognize the effect of network 

structures in the innovation diffusion processes, i.e., a well-organized information sharing platform helps to spread 

new information to social networks. Understanding the quantitative relationship between network structures and 

diffusion rates remains as a future research opportunity. 
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Network Type  Participation Rate Structures Time Duration until Stability  Coverage 

Self-centered 0.295 Dense 140.7 0.753 

Neutral 0.494 Neutral 174.8 0.518 

Corporative 0.702 Sparse 201.3 0.443 
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