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The liquid state machine (LSM) is a model of recurrent spiking neural networks (SNNs) and provides

an appealing brain-inspired computing paradigm for machine learning applications. Moreover, operated by

processing information directly on spiking events, the LSM is amenable to efficient event-driven hardware

implementation. However, training SNNs is in general a difficult task as synaptic weights shall be updated

based on neural firing activities while achieving a learning objective. In this paper, we explore bio-plausible

spike-timing-dependent-plasticity (STDP) mechanisms to train liquid state machine models with and without

supervision. First, we employ a supervised STDP rule to train the output layer of the LSM while delivering

good classification performance. Furthermore, a hardware-friendly unsupervised STDP rule is leveraged to

train the recurrent reservoir to further boost the performance. We pursue efficient hardware implementation

of FPGA LSM accelerators by performing algorithm-level optimization of the two proposed training rules and

exploiting the self-organizing behaviors naturally induced by STDP.

Several recurrent spiking neural accelerators are built on a Xilinx Zync ZC-706 platform and trained for

speech recognition with the TI46 speech corpus as the benchmark. Adopting the two proposed unsupervised

and supervised STDP rules outperform the recognition accuracy of a competitive non-STDP baseline training

algorithm by up to 3.47%.

CCS Concepts: · Computing methodologies → Neural networks; · Computer systems organization

→ Neural networks; · Hardware→ Neural systems;

Additional Key Words and Phrases: Liquid State Machine, On-chip Training, Spike-Timing-Dependent-

Plasticity, FPGA Accelerators

1 INTRODUCTION

The biological brain offers a promising source of inspiration for building novel hardware architec-
tures and algorithms of next generation computing systems. Biological neurons perform complex
interactions at large scales and conduct sophisticated tasks with impressive energy and space
efficiency. Their exhibiting behaviors and properties are currently studied in significant research
efforts aiming to model them with modern analogical tools.
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algorithms implemented in these works is that good performance is typically guaranteed only with
full connectivity between the reservoir and readout. This leads to overall high complexity of the
network and also large overhead for hardware implementation. Besides, training algorithms that
applied to the LSM and SNNs in general shall update the synaptic weights only based on the local
neural firing activities while achieving the end learning objectives. This natural property of the
SNN imposes a significant challenge on the design of learning algorithms, as most conventional
optimization methods do not satisfy it.
The above challenges motivate us to seek an alternative learning algorithm. To this end, spike-

timing-dependent plasticity (STDP) [5], a well-known unsupervised learning mechanism can be
considered as a good solution if combined with supervision given that it operates by locally tuning
synaptic weights according to temporal spike correlations and produces interesting self-organizing
behaviors. Ideas of combining supervision and STDP have been explored for precisely timed spike
pattern reproduction and decision making [9, 19, 20], however, without demonstrating in real-world
applications.
A preliminary version of the work in this paper has been presented in [12] that proposed the

calcium-modulated supervised STDP particularly under the context of the LSM, which was only
evaluated in software simulation with continuous values and STDP learning curves. In this paper,
we explore STDP mechanisms to train liquid state machine models with and without supervision
on a hardware LSM accelerator. First, we employ a supervised STDP rule to train the output layer
of the LSM while delivering good classification performance. Furthermore, a hardware-friendly
unsupervised STDP rule [13] is leveraged to train the recurrent reservoir for a further performance
boost. We pursue efficient hardware implementation of FPGA LSM accelerators which allows for
on-chip training and inference by performing algorithm-level optimization of the two proposed
training rules and exploiting the self-organizing behaviors naturally induced by STDP. The runtime
on-chip learning accuracy as well as the hardware implementation overhead of the LSM neural
processors are reported in this paper.
The implemented calcium-modulated supervised STDP algorithm for the output layer targets

two important objectives: delivering good learning performance and sparsifying output synapses to
reduce network complexity and potentially hardware overhead. By nature, these two objectives are
competing with each other as sparsifying readout synapses can easily harm learning performance.
To address this challenge, a unifying two-step supervised STDP tuning approach is adopted such
that both objectives can be achieved at the same time.
Towards the objective to improve the learning performance, a calcium-modulated learning

algorithm based on supervised STDP is proposed, denoted as CaL-S2TDP . In CaL-S2TDP , for a
given input class, the supervisory signal applied to the targeted output neuron and instructs it to
fire at a high frequency level. For the undesired output neurons that associated to different labels
with the presented input, motivated by the STDP mechanisms discovered in the brain [7], we define
a depressive STDP learning rule to force them to fire at a desired low frequency level. In this way,
we maximize the distance of firing frequencies from the desired neuron to undesired neurons for
making classification decisions.

Moreover, the proposed CaL-S2TDP deals with the weight saturation problem that has not been
addressed in earlier supervised STDP algorithms. The weight saturation in SNNs prevents neurons
from learning new information in its later training stage [6] and can result in a poor learning
performance. The weight saturation problem is even worse on hardware SNNs as the synaptic
weight resolution is limited. Furthermore, frequent weight updates lead to excessive memory access
on the hardware neural processor and hence increase the power consumption. To solve these
problems, in the proposed CaL-S2TDP algorithm, we employ a probabilistic weight update scheme
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and a calcium-modulated stop-learning mechanism to slow down the weight update and hence the
learning progress.

In general, a full connection between the reservoir and the readout layer with high bit resolutions
are required for good classification performance. This could potentially lead to the over-fitting
problem due to the high network complexity, and also brings a large silicon overhead and energy
dissipation on hardware LSM accelerators. Towards the objective of sparsifying output synapses
to reduce network complexity and potentially hardware overhead which tackles this issue, we
propose a calcium-modulated sparsification algorithm based on supervised STDP, denoted as CaS-
S2TDP . The CaS-S2TDP algorithm sparsifies the readout connectivity to a noticeable degree and
demonstrates that it can reduce power consumption without significantly degrading the learning
performance.
The key ingredient of the proposed supervised STDP readout training algorithm is that we

cascade the CaS-S2TDP and CaL-S2TDP training and achieve the aforementioned two competing
objectives simultaneously through a unifying two-step supervised STDP based readout tuning
approach. Essentially, CaS-S2TDP exploits the automatic competition among afferent synapses of
each readout neuron induced by the STDP weight tuning mechanism [22]. This as a result produces
a synaptic weight dynamics with desired sparsity while preserves the spatiotemporal structure in
the input. The sparsity discovered by CaS-S2TDP is carried over to the training under CaL-S2TDP .
While STDP in general is amenable to hardware realization given its simplicity and locality,

realizing continuous STDP in a digital architecture with cost effectiveness still poses a substan-
tial challenge. An accurate implementation with high resolution costs large hardware overhead.
However, utilizing low bit resolution by sparsely sampling the continuous weight and STDP
curve could easily harm the learning performance. To address this challenge, in this work, we
perform the algorithm-level optimization for the two STDP training algorithms and also lever-
age the self-organizing behaviors naturally induced by STDP. In the reservoir, the data-driven
hardware-optimized STDP [13] is adopted, which gives a low bit-resolution hardware realization
with minimum discretization errors. In the readout layer, we design the learning engine with
minimized resource and power overhead by maximizing the resource sharing among different
learning processes.

Several FPGA recurrent spiking neural accelerators are built on a Xilinx Zync ZC-706 platform
with the ARM microprocessor on the same board serving as the host. For demonstration purpose,
the neural accelerators are trained for the non-trivial speech recognition task with the TI46 [24]
speech corpus benchmark. Our results indicate that the LSM neural accelerators can achieve up to
3.47% classification performance boost with two unsupervised and supervised training algorithms
compared to the baseline. Besides, we also show that both unsupervised and supervised STDP
algorithms can be implemented on the hardware with great efficiency.

2 HARDWARE-FRIENDLY UNSUPERVISED STDP FOR RESERVOIR TRAINING

In this section, we briefly introduce the standard STDP as a reference and then discuss the imple-
mented hardware-friendly unsupervised STDP for reservoir tuning.

2.1 Baseline Unsupervised STDP

The nearest-neighbor STDP is an unsupervised Hebbian learning mechanism that updates the
weight of a synapse based on the relative spiking timing of its pre- and postsynaptic neurons [5].
For a given synapse connected from neuron j to neuron i, the weight gets update on both pre- and
postsynaptic spike events and the amount ∆w relies on the temporal difference ∆t = ti − tj between
the spike pair:
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this, the adopted hardware-optimized STDP algorithm discretizes the synaptic weight and the
learning curve collaboratively in a data-driven approach so as to match realistic synaptic events
and minimize quantization error over a large set of STDP updates. This includes 1) discretizing the
continuous weights such that the equilibrium weight distribution is well represented, 2) discretizing
the STDP curve to match the characteristics of the synaptic update given the spike timing difference
∆t and the continuous weight change ∆w .
The pseudo code of the hardware-friendly STDP algorithm is presented below. The weightw

and weight change ∆w with superscript d refer to the discretized values, while those with the
superscript c represent the continuous ones. The synaptic weight resolution B is usually chosen
to be very small for resource and power efficiency. In this way, the STDP curve is mapped to a
look-up table (LUT) for weight update in the hardware. This optimization problem can be solved
offline given the small design space.

ALGORITHM 1: Hardware-friendly STDP Algorithm

begin

STEP 1: Profile continuous STDP:

Run continuous STDP simulation with typical inputs, collect synaptic events:

{∆tk ,∆w
c
k
,wc

old,k
,wc

new,k
}, k ∈ [1,N ], and weight distribution

STEP 2: Optimize weight discretization:

Set digital reservoir synaptic weight resolution B

foreachwc
k
do

minimize
wd
j

∑
k min

wd
j

{(wc
k
−wd

j )
2}, wd

j ∈ [wmin,wmax], j ∈ [1, 2, · · · , 2B ]

end

STEP 3: Optimize STDP learning curve:

Set digital reservoir synaptic weight resolution B

foreach {wd
old,k

,∆tk } do

minimize
wd
new,k

∑
k min
wd
new,k

{(wc
new,k

−wd
new,k

)2}, wd
new,k

∈ {wd
1 ,w

d
2 , · · · ,w

d
2B
}

end

end

3 HARDWARE-FRIENDLY SUPERVISED STDP FOR READOUT TRAINING

In SNNs, information is encoded and processed in the form of local spikes. This enforces synaptic
weights to be updated locally based on neural firing activities when training SNNs. Under this
consideration, STDP, which by nature locally tunes the synaptic weight according to temporal
spike correlations, can serve as a good alternative to train SNNs towards certain learning objectives.
However, how to apply supervision on the by-default unsupervised STDP mechanism needs
carefully study, which we present in this section.

3.1 Baseline Supervised STDP

Classification decisions made by the LSM can be inferred from the associated class label of the
output neuron with the highest firing frequency. Given that, we describe the target of a supervised
training algorithm on spiking neural networks as: maximizing the firing frequency of the readout
neuron whose class label corresponds to the presented input sample, referred to as the łdesired
neuronž, and at the same time minimizing the firing frequency of all other readout neurons, referred
to as łundesired neuronsž.

, Vol. 1, No. 1, Article 1. Publication date: April 2019.



Energy-efficient FPGA Spiking Neural Accelerators with Supervised and Unsupervised

Spike-Timing-Dependent-Plasticity 1:7

Mathematically, this is to solve the following optimization problem:

max
f ij

N∑

i=1

(f ic(i)(Xi ,W ) −

C∑

j,c(i)

f ij (Xi ,W )), subject tof ij ≥ 0, (2)

where N is the total number of training samples, C is the total number of input classes, and Xi is
the ith input sample that belongs to class c(i). f ij is the firing frequency of the jth readout neuron

under the ith input, andW is the readout synapse weight vector.
In Eqn. 2, for each input sample, we want to maximize the distance of firing rate between the

desired neuron and undesired neurons so as to optimize the classification error over the entire
training dataset. However, solving it in a mathematically exact manner is formidable.
Therefore, instead of solving Eqn.2 directly, we propose the deterministic supervised STDP

algorithm, referred to as D − S2TDP , which is a feasible solution exploiting the local weight update
characteristics of STDP (Fig. 3(a)). The main idea of the D-S2TDP is based on the observation
that the standard STDP rule works by adjusting the strength of the synaptic connection between
a neuron pair based on their relative firing timing. This can be leveraged to control the firing
activities of the postsynaptic neuron, in our case the desired output neuron, to an expected level if
a well-defined supervisory signal is given. The supervisory signal, i.e., classification teacher (CT)
signal in Fig. 3(a), is an injected positive current to force the desired neuron to fire frequently and
hence invoke enough weight updates. Under the mediation of the STDP, afferent synapses of the
desired output neuron form a stronger connection which in turn further increases the likelihood of
the postsynaptic neuron to fire in presence of its presynaptic spikes. As illustrated in Fig. 3(b), with
the CT presented, the desired neuron i1 generates more spikes in response to a presynaptic spike,
resulting in further potentiation of wi1 . The presence of CT also robustly bring up the learning
process when the initial weights are very small.
In terms of undesired neurons, we want to prevent them from firing when unassociated input

samples are presented. To achieve this, a novel depressive STDP rule is proposed (see Fig. 3(a))
to depress afferent synapses so that the chance of postsynaptic firing is reduced. As depicted in
Fig. 3(c), when the undesired postsynaptic neuron i2 fires in response to a causal spike pattern, the
afferent synaptic weightwi2 is decreased to discourage it to fire again.

The depression induced by the anti-causal (i.e., post-before-pre) spike pairs still applies to both
desired and undesired neurons. This enables competition among plastic synapses such that a sparse
structure can be learned [22].

3.2 Proposed CaL-S2TDP Training Algorithm

The proposed D-S2TDP effectively serves the supervised training purposes on spiking neurons.
However, the deterministic weight update scheme could result in several known issues such as
poor memory retention, weight saturation and large dynamic hardware power consumption. To
address these problems, we optimize the supervised STDP algorithm with the proposedCaL-S2TDP
algorithm.

In D-S2TDP , the desired output neuron maintains a high firing frequency and hence frequently
update its synaptic weights. However, the number of weight levels is limited by the finite resolution
representation when implemented on the hardware. As a result, the learning ends up in a way that
most recent information presented to the neuron are learned better than the past information [2, 3].
This issue is known as the memory retention. Moreover, when training on the hardware, the
frequent weight update results in frequent switching activities of the associated signals and logic
cells as well as intensive weight memory access, which leads to high power consumption. To this
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Fig. 8. (a) The design of the learning engine in LEs that implements the hardware-friendly unsupervised

STDP reservoir tuning mechanism. (b) An illustration of how time difference ∆t is computed in the hardware

learning engine.

including the basics of STDP learning mechanism, probabilistic weight update, and the calcium-
modulated stop-learning rule. Second, in the readout training stage, the sparsification training
underCaS-S2TDP and classification training underCaL-S2TDP are executed in two phases in order
without overlap. This gives us an opportunity to explore the resource sharing of logic cells and
memories when implementing these two algorithms to optimize the resource utilization and power
efficiency. As shown in Fig. 9, the entire data path, including arithmetic logic cells and STDP learning
lookup tables (LUTs), are shared by both algorithms. Moreover, inCaL-S2TDP implementation, the
łpotentiationž in the depressive STDP rule for undesired neurons is implemented by the same LTP
LUT as the regular STDP LTP curve for calculating update probability. To realize the depression
update, instead, we inverse weight update value from +∆W to −∆W when ∆t > 0, which is
controlled by the CT as shown in Fig. 9. As such, we maximize the resource reuse to build an
overhead and energy efficient readout learning engine.
In the learning engine in OEs, first, we follow the implementation in the RE that computes the

spike timing differences using shift registers. As shown in Fig. 9, SR0 is the postsynaptic shift
register and SR1 to SRm are the presynaptic shift registers. In OEs, the value ofm is generally much
larger than that in the LE due to the full connectivity of the readout synapses.
After the spike timing difference ∆t is computed, first, its signed bit is examined to determine

whether this is an LTP or LTD update. LTP and LTD lookup tables store the weight update
probability which is related to the time difference. In general, a smaller |∆t | indicates a stronger
relation between the pre- and postsynaptic neurons thus leads to a higher weight update probability
according to the STDP tuning mechanism. The entries of both look-up tables are optimized to
get good learning performance. At each biological time step, at most one LUT is enabled. The
LUTs are implemented with the distributed RAM on the FPGA with zero read latency. The weight
update probability output from the LUT is then compared it with the output from the random
number generator (i.e., RNG in Fig 9), which is implemented by a linear-feedback shift register that
generates a different pseudo-random number at each biological time step. If the generated random
number is smaller than the probability threshold, and at the same time the calcium concentration
is in the activation range, then the corresponding synaptic weight is updated. Similar to the RE, the
calculation of ∆t and ∆w in OE are executed in serial in the order of synapse index in each neuron.
Note that during the readout sparsification phase, only the afferent synapses of the desired

readout neuron are enabled for weight update. Therefore, the ST signal in 9 serves as an enable
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The LSM neural accelerator communicates with the host through a high-speed 32-bit AMBA
AXI interface in a hand-shaking manner. When the host receives a request (req_input in Fig. 10) for
a new input from the LSM accelerator, it writes the input pattern of the current biological time step
to the input spike buffer located inside the interface. The depth of the input buffer is 1 and the width
equals the number of spike channels of the input data. The original input files are stored in an SD
card which can only be directly accessed by the host. After the input spike write is done, the host
asserts an input valid signal (input_vld in Fig. 10) in the configuration registers (config registers in
Fig. 10). This bit will be seen by the LSM accelerator and it then takes the spikes from the input
buffer and starts processing. The neural accelerator is also responsible for cleaning the input_vld
bit after reading input spikes. Before the input_vld signal is deasserted by the LSM accelerator, the
host is blocked and would not process any other function.
During the inference stage, the host takes the output spikes generated from the LSM neural

accelerator to analyze the classification accuracy. After the LSM neural processor finishes processing
the current input, it asserts the output_ready signal. The host keeps pooling the configuration
registers for this signal. When the host sees the signal asserted, it takes the spikes out from the
output spike buffer and updates the spike counts of each output neurons accordingly. At the end of
each input sample, the host interprets the classification decision by selecting the corresponding
class label of the output spiking neuron that fires most during the presence of the current input
sample. This classification decision is then compared with the ground truth label to see if it is
correct. At the end of the inference stage, the host will report the overall classification accuracy as
the performance of the LSM neural processor.

6.2 Training Setup and Benchmarks

In the LSM neural accelerator implemented in this work, there are 135 reservoir neurons set up on
a 3D grid using the approach described in [27]. 80% of the reservoir neurons are excitatory and
the rest are inhibitory. The number of readout neurons is decided by the number of classes to be
classified in the benchmark, which is 26 in our case.

In the reservoir layer of the proposed recurrent spiking neural processor, we adopt the optimized
hardware-friendly unsupervised STDP training from [13]. To minimize hardware implementation
cost, the reservoir synaptic weights is set to 2 and weight changes are only executed when |∆t | ≤ 3.
Table. 1 shows the lookup table that is implemented in the LSM neural accelerator.

Table 1. Optimized weight discretization of unsupervised STDP

wd
1 = 0 wd

2 = 2 wd
3 = 6 wd

4 = 8

∆t = −3 wd
1 wd

2 wd
3 wd

4

∆t = −2 wd
1 wd

1 wd
2 wd

3

∆t = −1 wd
1 wd

1 wd
1 wd

2

∆t = 0 wd
1 wd

2 wd
3 wd

4

∆t = 1 wd
3 wd

4 wd
4 wd

4

∆t = 2 wd
2 wd

3 wd
4 wd

4

∆t = 3 wd
1 wd

2 wd
3 wd

4

For the supervised STDP readout training approach, the parameters of the algorithms are
selected by exploring the design space to a certain level and we present the chosen values of the
key parameters in Table 2. To optimize the hardware overhead and at the same time guarantee
a good learning performance, the readout synaptic weight is set to 10-bit signed integers for all
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algorithms that are studied in this paper. The initial weights are random values betweenWmin and
Wmax . The depth of both LTD and LTP LUT are set to 16 and the LUTs are tuned offline in the
software simulator such that a good classification performance can be achieved.

Table 2. Parameter settings of the proposed supervised STDP algorithms.

Parameter Value

A+ 3.0
A− 1.5
τ+ 4.0
τ− 8.0
∆W 1
cθ 5.0
δ 3.0
τc 64.0

The adopted benchmark is a subset of the TI46 speech corpus [24], which contains utterances
of English letters from łAž to łZž. There are 260 samples in this benchmark, ten for each letter,
recorded from a single speaker. The time domain speech signals are first preprocessed by Lyon’s
passive ear model [17] and then encoded into 78 spike trains using the BSA algorithm [21].

During the readout sparsification phase, the CaS-S2TDP is iterated for a sufficient number until
the distribution of the readout synaptic weight reaches a steady state. Based on our observation,
the iteration times is set to 20, which is same as the number of iterations of the unsupervised
STDP reservoir training. This will lead to 25% readout synapses to be sparsified. Then, the readout
layer is trained by the proposedCaL-S2TDP algorithm for another 250 iterations, during which the
zero-weight output synapses will not be considered for weight update. A 5-fold cross-validation
scheme is adopted when evaluating the recognition performance.

7 EXPERIMENTAL RESULTS

With the experimental settings introduced in Section 6, in this section, we report the learning
performance and hardware overhead of the LSM neural accelerators with the proposed supervised
and unsupervised STDP training algorithms.

7.1 Classification Performance of the Recurrent Spiking Neural Accelerator

Given the considered design space, the on-chip learning performances of several recurrent spiking
neural processors for the speech recognition task with the TI46 corpus benchmark are reported in
Table 3. In the table, we also show the performance boost of each training mechanism compared to
the baseline design. The neural accelerators are implemented with different reservoir and readout
training mechanisms as described in the table. The łX+Yž by default means applying X training
mechanism to the reservoir layer and Y to the output layer of the corresponding LSM neural
accelerator. The łbaselinež output training algorithm is a competitive non-STDP supervised spike-
dependent training algorithm proposed in [27]. In the fixed reservoir, synapses weights are not
changeable and are set to 1 for excitatory synapses and −1 for inhibitory ones. The łUnsupv STDPž
represents the proposed hardware-friendly unsupervised STDP reservoir training algorithm.
From the results, it is evident that both unsupervised STDP reservoir training and supervised

STDP readout training algorithm can noticeably improve the classification accuracy of the LSM
neural accelerator. By simply training the reservoir with the proposed hardware-friendly unsu-
pervised STDP algorithm, we can get a performance boost of 1.93% on top of the baseline design.
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Table 3. Performances of LSM neural accelerators with different training mechanisms.

Fixed +

Baseline

Unsupv

STDP +

Baseline

Fixed +

CaL-S2TDP

Unsupv

STDP +

CaL-S2TDP

Fixed +

CaL-S2TDP &

CaS-S2TDP

Unsupv

STDP +

CaL-S2TDP &

CaS-S2TDP

Classifi-

cation

Accuracy

91.53%

(-)

93.46%

(+1.93%)

94.23%

(+2.70%)

95.00%

(+3.47%)

91.92%

(+0.39%)

93.84%

(+2.31%)

When applying only the CaL-S2TDP on the readout layer, the performance boost is up to 2.7%.
And when we combine the STDP-based reservoir training and the readout training, we can get
a major performance improvement of 3.47% on the final classification. The table also shows that
with a sparsified readout connection brought by CaS-S2TDP , the LSM neural processor can still
deliver a decent learning performance which is higher than the baseline. This outperforms the LSM
neural processors with randomly dropped readout synapses, in which an apparent performance
degradation is observed according to the results reported in [12].

7.2 Hardware Overhead and Training Efficiency of the Recurrent Spiking Neural

Accelerator

In this section, we compare the overhead of implementing different training mechanisms on the
LSM neural accelerators in terms of resource utilization and dynamic power consumption. Table 4
shows the hardware resource utilizations of LSM neural processors implemented with different
learning mechanisms in terms of slice flip flops (FFs) and slice LUTs as well as their percentages of
usage with respect to the available resources on the targeted FPGA board. Here we only consider
the resource usage of the LSM neural processor accelerator itself and the overhead of the AXI
interface is not included because the interface only takes a small portion of the design and is the
same among different LSM neural processors. Similarly, in Table 5, we report the dynamic training
power consumption of different spiking neural accelerators which is estimated by the Xilinx Power
Analyzer given the activity-based simulation results. The power results are estimated under the
100MHz clock frequency, which is consistent with the working clock frequency of the physical
hardware accelerator.
Table 3, Table 4 and Table 5 in together show the trade-off between the learning accuracy and

the hardware implementation overhead on the recurrent spiking accelerator of different training
algorithms. From Table 4 and Table 5, we can tell that implementing the supervised STDP readout
training required an extra overhead for both on-chip resources and power. The extra overhead
is mainly due the cost of computing the spike timing difference ∆t of pre- and postsynaptic
neurons for all readout synapses. In order to achieve a decent classification performance, the time
windows and correspondingly depths of shift registers reserved in proposed supervised STDP
algorithms, CaS-S2TDP and CaL-S2TDP , are set to 12 for both LTP and LTD. This is much larger
than that in the reservoir for the unsupervised STDP which is set to 3. Moreover, a full connectivity
between the reservoir and the readout layer required a large number of flip flops to be utilized
for implementing supervised STDP algorithms, which contributes majorly to the extra resource
and dynamic power overhead. However, considering that the extra overhead of implementing
unsupervised and supervised training mechanism on the LSM neural accelerator is relatively
small compared to its learning accuracy boost over the baseline, and that the power and resource
utilization is overall low compared to the training cost on the software simulator, the training
efficiency of the hardware LSM neural accelerator is still noteworthy.
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The results from Table 4 and Table 5 also shows that the proposed CaS-S2TDP reduces the
power consumption of the readout classification training stage compared to the case when only
theCaL-S2TDP is applied. Besides, the additional overhead to implementCaS-S2TDP is very small.
This indicates that by sharing the resources in the learning engine in readout neurons, we can
efficiently implement the supervised STDP readout training for both sparsification and classification
at the same time.

Table 4. Hardware resource utilization of LSM neural accelerators with different training mechanisms.

Fixed +

Baseline

Unsupv STDP +

Baseline

UnsupV STDP +

CaL-S2TDP

Unsupervised +

CaS-S2TDP &

CaL-S2TDP

FFs 12694 12717 19841 19844

LUTs 43975 45785 57581 57788

FFs Utilization 2.90% 2.91% 4.54% 4.54%

LUTs Utilization 20.18% 20.95% 26.34% 26.43%

Table 5. Classification training power of different algorithms on LSM neural accelerators.

Fixed +

Baseline

Unsupv STDP +

Baseline

Unsupv STDP+

CaL-S2TDP

Unsupv STDP+

CaS-S2TDP &

CaL-S2TDP

Training for Classifi-

cation Power (mW)
161 195 237 229

8 CONCLUSION

In this paper, we explore bio-plausible STDP training mechanisms with and without supervision on
LSM FPGA recurrent spiking neural accelerators. A novel two-step supervised STDP approach is
implemented to train the output layer of the LSM for both classification performance and synapse
sparsification, and a hardware-friendly unsupervised STDP is used to train the reservoir. The
hardware efficiency of the LSM neural accelerators is optimized by performing algorithm-level
optimization of the two training algorithms and exploiting the self-organizing behaviors of the STDP.
Using the speech recognition task as a demonstrating application, we measure the classification
performance of the proposed recurrent spiking neural accelerator built on the Xilinx Zync ZC-706
FPGA. The results demonstrate that the proposed unsupervised and supervised STDP training
algorithms can work together to greatly improve the accuracy of the LSM with excellent hardware
efficiency.
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