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Abstract—As the size and amount of data produced by high-
performance computing (HPC) applications grow exponentially,
an effective data reduction technique is becoming critical to
mitigating time and space burden. Lossy compression techniques,
which have been widely used in image and video compression,
hold promise to fulfill such data reduction need. However, they
are seldom adopted in HPC datasets because of their difficulty in
quantifying the amount of information loss and data reduction. In
this paper, we explore a lossy compression strategy by revisiting
the energy compaction properties of discrete transforms on HPC
datasets. Specifically, we apply block-based transforms to HPC
datasets, obtain the minimum number of coefficients containing
the maximum energy (or information) compaction rate, and
quantize remaining non-dominant coefficients using a binning
mechanism to minimize information loss expressed in a distortion
measure. We implement the proposed approach and evaluate
it using six real-world HPC datasets. Our experimental results
show that, on average, only 6.67 bits are required to preserve
an optimal energy compaction rate on our evaluated datasets.
Moreover, our knee detection algorithm improves the distortion
in terms of peak signal-to-noise ratio by 2.46 dB on average.

Index Terms—Discrete Transform, Lossy Compression, Energy
Compaction, Rate-Distortion.

I. INTRODUCTION

Today’s high-performance computing (HPC) simulations
and applications easily produce extremely large volumes of
data. For example, Aeroacoustic CDF (Computational Fluid
Dynamics) simulation [1] and Hardware/Hybrid Accelerated
Cosmology simulation [2] generate terabytes of simulation
results in each simulation time step. Transferring, analyzing
and archiving such large amounts of data result in a massive
burden on I/O and storage systems [3], which leads to pressing
challenges for scalable HPC systems and frameworks. One
approach to alleviate this problem is to reduce the amount of
data through data compression techniques before storing to
disk or transferring through network.

Data compression has two categories, lossless or lossy.
Lossless compression techniques, such as GZIP [4] and
FPC [5], preserve full precision, thus are more acceptable to
domain scientists. However, as shown in many prior studies,
they hardly achieve appreciable compression ratios, typically
no more than two [6]. Lossy compression techniques, widely
used in image and video data compression such as JPEG [7]
and MPEG [8], can potentially obtain higher compression ratio

by discarding a certain amount of fractional part in floating
point numbers. However, they are less commonly used in
scientific datasets because of their uncertainty in the amount
of information loss.

Nevertheless, recent studies have reported that scientific data
can actually tolerate a certain amount of accuracy loss [9].
For instance, Tao et al. [6] conducted a comprehensive study
of understanding lossy compression on HPC datasets. They
examined the impact of reduced accuracy on scientific data
analysis frameworks using the state-of-the-art lossy com-
pressors, including SZ [10], ZFP [11] and ISABELA [12].
Their results demonstrated that there is a trade-off between
compression ratios and tolerable error rate as well as the
complex interplay among compressor design, data features,
and compression performance. Given the pressing challenges
beyond many of HPC I/O system capabilities, an in-depth
understanding of the benefits and pitfalls are needed to make
lossy compression a promising candidate.

In this paper, we analyze a transform-based lossy compres-
sion strategy by exploiting the energy compaction, a well-
established mathematical model, and evaluate rate-distortion
performance using real-world HPC datasets. Specifically, we
apply transforms on segmented block-data, find top coeffi-
cients based on optimal energy compaction rate, and quantize
the remaining by applying binning. Our objective in this paper
is to: 1) find an optimal energy compaction approach that
retains the minimum data points for representing the most
information; 2) design an adjustable parameter for finding
the best trade-off solution; and 3) most importantly, minimize
error in the reconstructed data.

II. ANALYSIS OF TRANSFORM-BASED LOSSY
COMPRESSION

Discrete transforms, which have been widely used in im-
age and video lossy compression systems, are considered an
effective way to achieve higher compression ratios without
losing much information [11], [13]. The main ideas behind
transform techniques are energy compaction property [14] and
the correlation within the signal. In this paper, we represent
HPC data as a signal for better explaining the theory in
signal processing. Motivated by these properties, we propose a
transform-based lossy compression for HPC datasets. We first
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Fig. 1: Total energy attained by different transforms on dataset
rlds. (ori: original time domain representation, DCT: DCT-II,
HWT-2: 2-level HWT, CDF-4: 4-level CDF 9/7, etc.)

formulate the framework for evaluating energy compaction
properties of several commonly used transforms in this section,
then propose our compression strategy by presenting two
algorithms in Section III.

A. Energy Compaction of Transform Compression

It is well known that signals can be represented quite
accurately using only a small portion of the transform co-
efficients [13]. Effective representation of a signal can be
beneficial if the reconstructed one does not include much
distortion. In other words, transforming an original signal to
another domain (or basis) allows us to represent the signal in
a more concise format. For example, Moon et al. [15] applied
transform-based compression on IoT datasets and showed
that, by keeping only 3.7% of the transform coefficients
(discrete cosine transform coefficients in their case), they could
represent 99.9% of the energy (information) attained by the
original data.

In the theory of signal processing, the energy of a signal f,
εf , is calculated as the sum of squares of individual values:

εf=

N∑
n=1

|fn|2 , n = 1, 2, . . . , N, (1)

where f denotes the transform coefficients of data x and N
denotes the total number of transform coefficients.

Energy compaction can be measured as a function of
preserved energy regarding the number of largest magnitude
transform coefficients [13]. We formulate it as the energy
portion contained in the first M of the entire N sorted
transform coefficients. We refer to this as Energy Compaction
Rate (ECR), which is denoted as:

ECRf =

∑M
n=1 |fn|

2∑N
n=1 |fn|

2
, n = 1, 2, . . . , N,M ≤ N. (2)

B. Estimation of Energy Compaction on Various Transforms

A transform with high ECR is an indication of effective
signal representation and has the potential for achieving high
compression ratio with minimal information loss. Thus, select-
ing the proper transform for our lossy compressor is critical.

TABLE I: Energy compaction rate (%).
Transform Threshold rlds mrsos sedov cellular Eddy Vortex

Original 1/32 6.03 21.65 27.27 6.53 25.91 44.28
1/64 3.09 11.63 15.50 3.45 16.08 28.12

DCT-II 1/32 99.81 91.36 94.50 99.49 94.78 98.35
1/64 99.69 88.17 92.06 99.13 89.29 96.93

HWT 5-level 1/32 96.94 33.22 65.91 92.86 36.64 36.01
HWT 6-level 1/64 93.63 17.60 47.87 86.67 18.12 20.19

CDF 9/7 5-level 1/32 98.08 39.17 62.78 91.82 24.76 27.07
CDF 9/7 6-level 1/64 95.83 21.58 44.46 84.47 11.97 15.47

In this section, we compare three commonly used discrete
data transforms, which are known to be fast and efficient,
by analyzing their ECR on real-world HPC datasets. Details
about evaluated dataset are shown in Table II and will be dis-
cussed later in Section IV. Specifically, we evaluate Discrete
Cosine Transform (DCT-II), Discrete Haar Wavelet Transform
(HWT) and Cohen-Daubechies-Feauveau (CDF 9/7) wavelet,
which were utilized in [16]–[18], respectively. The goal of
our evaluation is to determine the most desirable transform
that preserves the maximum energy using a fixed number of
coefficients.

Figure 1 shows the energy-coefficient plot of three trans-
forms on dataset rlds, where x-axis is the percentage of
coefficient used and y-axis is the total percentage of energy
preserved. It should be noted that HWT and CDF 9/7 require
several recursive passes for a more concise decomposition.
In other words, higher level of decomposition incurs higher
computational cost but produces a more compact signal repre-
sentation. For a fair comparison of computational cost, we
used up to 6-level of HWT and CDF 9/7. As shown in
Figure 1, DCT-II, HWT and CDF 9/7 preserve more energy
than the original representation when the same number of
coefficients are used. The reason is that transforms typically
increase energy compaction during decorrelation by observing
previous or future values in the current signal. Time domain
representation, however, fails to reveal the correlation between
different coefficients efficiently. We also observe that DCT-II
brings the highest energy compaction rate on rlds.

Table I presents the ECR of different transforms on six
evaluated datasets with a fixed amount of coefficients (i.e.,
threshold = M/N ). Overall, we observe that DCT-II leads
to very effective representation of the signal compared with
HWT and CDF 9/7 on the evaluated datasets. Therefore, we
use DCT-II as our main transform method in the remainder of
the paper.

III. ENERGY COMPACTION BASED COMPRESSION
ALGORITHM

In this section, we present our lossy compression strategies
based on discrete cosine transform (DCT-II), and develop two
algorithms: compression with fixed energy compaction rate,
and compression with optimal energy compaction rate using
a knee-point detection mechanism. Both algorithms require
quantization and encoding steps during compression to reduce
error rates and improve compression ratios.



A. Compression with Fixed Energy Compaction Rate

We first segment data into small fixed-size blocks and
apply transform on them. The block-based transform design is
applied due to its effectiveness in implementation and decor-
relation efficiency explained in [13], [16], such as computa-
tionally less intensiveness, better decorrelation of the data if a
proper block size is chosen (according to the data contents),
and better characterization of local features than a global
transform. We then save the top dominant block coefficients
as is, based on a fixed ECR provided by users. To improve
the fidelity of compression, we apply adjustable equal-width-
binning quantization [19] on the remaining coefficients rather
than rounding to zero, which is typically used in image and
video compressions. After quantization, we use the Huffman
encoding on bin indices to improve compression ratios.

Let us formulate our first algorithm based on fixed energy
compaction rate. Suppose data is segmented into M blocks,
each with the size of bz (i.e., each block has bz data point).
For each block, top K coefficients are kept to preserve fixed
ECR% of the energy contained. Since B bits can represent
up to a maximum of 2B different values, we equally assign
the remaining coefficients into a maximum of 2B − 1 bins,
where a coefficient falling in a certain bin is approximated as
the bin center value.

B. Compression with an Optimal Energy Compaction Rate

Based on the definition described in Equations 1 and 2,
we know that the energy compaction of transform coefficient
(similar to cumulative energy distribution function) is con-
cave (i.e., energy increases when more coefficient is added).
Therefore, the system will reach a point at which the relative
cost to increase energy preservation is no longer worth the
corresponding performance benefit.

Motivated by this property, in our second algorithm, rather
than using a fixed ECR, we extend it to find the optimal
energy compaction point such that it can best balance inherent
trade-offs between information loss and data reduction. We ac-
complish this by detecting the ‘knee-point’, similar to Kneedle
Algorithm illustrated in [20]. The mathematical definition of
‘knee’ is given as a function of its first and second derivatives,
which is calculated as:

Kf (x) =
f ′′(x)

(1 + f ′(x)2)1.5
, (3)

where Kf (x) defines the curvature of f .
Given this definition, the overarching objective of our algo-

rithm is to save top coefficients in each block that lead to an
optimal energy compaction ‘knee-point’, which is summarized
as follows. First, we fit the energy compaction of transform
coefficient with a smoothing spline to preserve the shape. We
then normalize the points of the smooth curve to the unit
square. Next, we find the ‘knee-point’ in the normalized curve.
This point indicates instances where the rate of increase in
energy compaction rates begins to decrease. In other words,
beyond the knee-point, there is a diminishing return in terms
of data reduction and information loss.

Fig. 2: Our Knee Detection Algorithm. Arrow symbol indi-
cates the detected knee-point.
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Fig. 3: An example application of the spline fitting (interpolate
a 1D function) and polynomial interpolation on block data of
‘sedov’. (a) and (b) are normalized energy compaction, and (c)
and (d) are preserved energy, for spline fitting and polynomial
interpolation, respectively.

In general, the ‘knee-point’ is the point of maximum curva-
ture in a fitted line, i.e., it is approximately the local maxima
if the curve is rotated θ degrees clockwise about the minimum
value of x and y through the line formed by the points (xmin,
ymin) and (xmax, ymax) [20]. Figure 2 depicts the smoothed
and normalized energy compaction, with the black dashed line
indicating the maximum perpendicular distance from y = x.
The red dashed line is the black dashed line after rotating 45
degrees clockwise.

In addition to the one-dimensional (1D) interpolation
method, we also fit the energy compaction with polynomial
interpolation (which generates more smooth curve). Figure 3
shows an example of using both fitting methods on a block
data of ‘sedov’. As shown in Figure 3a and 3b, the intersec-
tions of vertical black lines and fitting lines (blue curve lines)
are the knee-points (local maxima). Figure 3c and 3d show the
number of retained (used) coefficients and the perpendicular
distance based on two fittings in our knee detection algorithms.



TABLE II: Dataset and its characteristics.

Code Dataset Value Range Avg Value Entropy Dimension

FLASH [21] sedov 4.2385 1.0000 4.9702 31040*154
cellular 2.6482E7 2.2083E7 4.1190 32768*295

CMIP5 [22] rlds 361.2303 285.8844 7.2106 12960*100
mrsos 44.5000 7.6916 4.4864 12960*100

Nek5000 [23] eddy 4.8345 3.2366E−8 7.6047 16384*999
vortex 0.0550 0.0017 7.5797 37024*99

IV. EXPERIMENTAL EVALUATION

A. Datasets

We conduct our experiments on the Massachusetts Green
High Performance Computing Cluster (MGHPCC) for running
real HPC applications at various scales to generate datasets. To
evaluate our proposed lossy compression, we use six generated
datasets, all in double-precision floating-point. The detailed
description of the datasets are summarized in Table II.

B. Evaluation Schemes and Metrics

We analyze our compression strategy using the following
six schemes:
• A1: compression with fixed energy compaction rate.
• A2: compression with optimal energy compaction rate.
• A2 interp1d: A2 using 1D interpolation.
• A2 polynomial: A2 using polynomial interpolation.
• A1 B: A1 with equal-width-binning.
• A2 interp1d B & A2 polynomial B: A2 interp1d and

A2 polynomial with equal-width-binning, respectively.
We choose rate-distortion, a critical metric used in eval-

uating the quality of compressed data, to assess the overall
compression quality. As for rate-distortion, rate (or bit-rate)
refers to the average number of bits used to represent a data
point after the compression. It is equal to the number of full
bits (i.e., 64-bit for double precision) used to represent each
original data point divided by the overall compression ratio.
On the other hand, the Compression Ratio (CR) is defined as:

CR =
D

D′
, (4)

where D is the original size and D′ is the compressed size.
Distortion is assessed using Peak Signal-to-Noise Ratio

(PSNR) to measure the overall distortion between the original
data and the reconstructed (decompressed) data, which can be
expressed in terms of logarithmic decibel scale:

PSNR = 20 ∗ log10(data range)− 10 ∗ log10(MSE), (5)

where data range and MSE refer to data value range and
mean squared compression error, respectively.

Therefore, higher PSNR represents less error, and smaller
bit-rate represents higher compression ratio.

C. Evaluation Results

a) Energy Compaction and Datasets: The characteristics
of HPC data vary as the data is generated from different
applications or solvers. Thus, the inherent compressibility also
varies from application to application. Figure 4 shows the
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Fig. 4: Energy compaction on evaluated datasets.
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Fig. 5: Rate-distortion on A1 and A2 interp1d (dashed line:
rate-distortion on A1 with bz of 64; cross sign: rate-distortion
on A2 interp1d with bz of 64).

energy compaction rate of our evaluated datasets with different
energy compaction properties. For example, to preserve 95%
of the energy, mrsos needs more than 8% of the coefficients,
which is relatively higher than other datasets. Hence, mrsos is
considered as a dataset with low energy compact property.
It also shows that sedov preserves more energy than eddy
when less than 2% of coefficients are used. However, beyond
that, eddy preserves more energy than sedov. Based on these
observations, it is critical to find the ‘knee-point’ of each
dataset rather than using a fixed energy compaction rate.

b) Comparison between Fixed and Optimal Energy Com-
paction Rates: Figure 5 shows the rate-distortion of A1
and A2 interp1d. As shown in the figure, we observe that
A2 interp1d overall achieves higher PSNRs than the A1 coun-
terpart when the same bit-rates are used. The PSNR is espe-
cially higher on mrsos, which means our knee-point detection
algorithm is effective for datasets with low energy compaction
property. Figure 6, on the other hand, shows the rate-distortion
of A1, A1 B, A2 interp1d B, and A2 polynomial B. We can
see that from A1 to A1 B, PSNR increases with a great
extent, showing an average increment of 15.8 dB on all
six datasets. A2 interp1d B, which is an improvement from
A1 B, improves the PSNR further, with an average increment
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Fig. 6: Rate-distortion charts per each dataset for different algorithms.

TABLE III: Total number of coefficients, on average, used in
each block.

Algorithm sedov cellular rlds mrsos eddy vortex
Interp1d 3.929 6.844 9.356 11.172 9.597 11.925

Polynomial 3.853 6.449 9.557 10.956 9.182 10.122

of 2.46 dB on all six datasets. Furthermore, for mrsos, which
originally exhibited less energy compaction property, PSNR
improved by 6.49 dB. We also find that the optimal algorithm
does not show a significant improvement on cellular, which
inherently has a high energy compaction property. Because of
this property, the chances of our knee algorithm for further
optimization are relatively low.

c) Rate-distortion and Block Size: We next evaluate how
block size would affect the performance of our algorithm.
Figure 7 presents the rate-distortion of A1 with block size
(bz) of 16, 64 and 256. The energy compaction rates (ECR)
were set to 90%, 99%, 99.9% and 99.99%. While we observe
an overall trend that higher PSNRs need higher bit-rates, A1
on dataset sedov, cellular and rlds shows higher PSNRs with
less increase in bit-rates. We also observe that more bit-rate
is needed to preserve 99.9% or higher ECR on the majority
of the evaluated datasets. This indicates that the system has
reached a point where increasing energy no longer benefits the
performance. It is also shown that varying bz does not affect
the rate-distortion much on datasets such as rlds and eddy,
while sedov, cellular, mrsos and vortex have higher PSNRs
when bz is set to 16 and 64 (smaller block size).

d) Spline Fitting: We also observe that the differences
between A2 interp1d B and A2 polynomial B are relatively
small on most evaluated datasets. Table III and IV show the

TABLE IV: Average energy compaction rate (%).

Algorithm sedov cellular rlds mrsos eddy vortex
Interp1d 98.44 99.59 99.99 99.99 89.83 93.55

Polynomial 98.44 99.59 99.99 99.99 90.12 91.08

average coefficients used and energy compaction rates in each
block of A2 interp1d B and A2 polynomial B, with bz of
64. As we can see, the optimal energy compaction rates of
rlds and mrsos are higher than other datasets, which need
more coefficients as a result. Unlike rlds and mrsos (both
from CMIP5), the optimal energy compaction rates of eddy
and vortex (both from Nek5000) are much smaller, but still
need to preserve the same number of coefficients. Datasets
sedov and cellular (both from FLASH) show the best energy
compaction property where minimum coefficients are needed
for representing the most amount of information. The result
also shows that, when block size is set to 64, the average
bit-rate of FLASH application to preserve an average energy
of 99.015% is 5.5 (with compression ratio of 11.64), and the
overall average on six datasets is energy of 96.915% and bit-
rate of 6.67 (with compression ratio of 7.11).

V. RELATED WORK

Numerous efforts have been made by researchers to apply
data compression on scientific datasets for various purposes
such as reducing checkpoint overheads. Lakshminarasimhan
et al. [24] proposed a technique called ISABELA where the
B-Spline transformation is applied on sorted data to make
scientific dataset amenable to data compression. The fitting
function used in ISABELA can guarantee a 0.99 correlation
with the original data.
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(f) vortex

Fig. 7: Rate-distortion of Algorithm A1 with different block size (bz) and energy compaction rate (ECR). x-axis: bit-rate,
y-axis: PSNR (dB). (circle marker: ECR = 90%, triangle marker: ECR = 99%, diamond marker: ECR = 99.9%, and square
marker: ECR = 99.99%).

Chen et al. [25] applied a lossy compression method,
called NUMARCK, on the change ratios between consecu-
tive checkpoints. More recently, Yuan et al. [26] presented
a parallelized version of NUMARCK. The rationale behind
NUMARCK is that data values change smoothly in most
scientific simulations, thus storing the difference makes sense
rather than storing data as is. One drawback of this approach
is the higher memory requirement, which is not suitable for
future extreme-scale systems where memory will be scarce
due to the increasing number of cores. Sasaki et al. [27]
also applied similar lossy compression, which is based on
wavelet transformation. Their approach, however, is limited to
multi-dimensional datasets, particularly a climate application
called NICAM. Baker et al. [28] also evaluated how data
compression impacted on climate data.

A recent study by Di and Cappello [29] used several
curve-fitting techniques to predict successive data points, and
represented those predictable data as the corresponding fit-
ting models. For unpredictable datasets, they applied lossy
compression using a binary representation analysis. Tao et
al. [30] extended Di and Cappello’s approach by employing
an adaptive quantization mechanism to improve accuracy of
their prediction-based compression algorithm.

Our proposed approach is different from these prior studies.
Our mechanism is based on solutions used in image and video
data compressions. Moreover, our approach of applying trans-
form and quantization on datasets with any dimensionality is
different from prior studies that require linearization of data
before applying compression [29]. Unlike our recent work

that uses a fixed coefficient selection mechanism [15], [16],
the proposed approach selects coefficients dynamically based
on our knee-point calculation mechanism. We also provide a
mechanism to tune several key factors in lossy compression
such as amount of error introduced by lossy compression,
compression time, compression ratio, etc.

VI. CONCLUSION

In this paper, we analyze a lossy compression strategy by
exploiting the energy compaction rate within our compression
framework and evaluate rate-distortion performance using six
real-world HPC datasets. Specifically, we apply block-based
transforms and choose top dominant coefficients with the
maximum energy compaction rates. Remaining coefficients are
quantized using equal-width binning. Our experimental results
show that our technique requires only 6.67 bits on average
to preserve an optimal energy compaction rate for evaluated
datasets. We also show that our optimization algorithm im-
proves the distortion rate (in terms of PSNR) by 2.46 dB on
average.

In our future work, we plan to expand the proposed com-
pression technique in several ways. First, we plan to apply
multiple transforms in our compression mechanism and find
the optimal one for each data block that generates the highest
energy compaction rate. We also plan to improve the rate-
distortion of our technique by optimizing the quantization
model. Lastly, we plan to extend our method to single-
precision datasets and incorporate into various layers in our
DCTZ framework [16] and HPC I/O software stack.
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