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Abstract: Many coastal cities are facing frequent flooding from storm events that are made worse by
sea level rise and climate change. The groundwater table level in these low relief coastal cities is an
important, but often overlooked, factor in the recurrent flooding these locations face. Infiltration of
stormwater and water intrusion due to tidal forcing can cause already shallow groundwater tables
to quickly rise toward the land surface. This decreases available storage which increases runoff,
stormwater system loads, and flooding. Groundwater table forecasts, which could help inform
the modeling and management of coastal flooding, are generally unavailable. This study explores
two machine learning models, Long Short-term Memory (LSTM) networks and Recurrent Neural
Networks (RNN), to model and forecast groundwater table response to storm events in the flood
prone coastal city of Norfolk, Virginia. To determine the effect of training data type on model accuracy,
two types of datasets (i) the continuous time series and (ii) a dataset of only storm events, created
from observed groundwater table, rainfall, and sea level data from 2010-2018 are used to train and
test the models. Additionally, a real-time groundwater table forecasting scenario was carried out
to compare the models’ abilities to predict groundwater table levels given forecast rainfall and sea
level as input data. When modeling the groundwater table with observed data, LSTM networks were
found to have more predictive skill than RNNs (root mean squared error (RMSE) of 0.09 m versus
0.14 m, respectively). The real-time forecast scenario showed that models trained only on storm
event data outperformed models trained on the continuous time series data (RMSE of 0.07 m versus
0.66 m, respectively) and that LSTM outperformed RNN models. Because models trained with the
continuous time series data had much higher RMSE values, they were not suitable for predicting the
groundwater table in the real-time scenario when using forecast input data. These results demonstrate
the first use of LSTM networks to create hourly forecasts of groundwater table in a coastal city and
show they are well suited for creating operational forecasts in real-time. As groundwater table levels
increase due to sea level rise, forecasts of groundwater table will become an increasingly valuable
part of coastal flood modeling and management.

Keywords: groundwater table; forecast; recurrent neural network; long short-term memory; coastal
flooding
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1. Introduction

Storm events in low relief coastal areas can quickly raise the groundwater table, which is often
relatively shallow [1,2]. During these events, infiltration and groundwater table response decrease
the volume available for stormwater storage, therefore increasing runoff and, by extension, loads on
stormwater systems [3]. Many coastal urban areas are also experiencing increased flooding due to
land subsidence and climate change effects, such as sea level rise [4], increased precipitation, and
more frequent extreme climactic events [5]. While there are several causes of flooding in coastal
cities [6], the groundwater table level is a largely unrepresented factor and forecasting its variations
can provide valuable information to aid in planning and response to storm events. Furthermore,
because the groundwater table will rise as sea level rises [3,7-9], stormwater storage capacity will
continue to decrease and inundation from groundwater may occur. Damage from groundwater
inundation, which occurs through different mechanisms than overland flooding, can have significant
impacts on subsurface structures [10,11]. Even if groundwater inundation does not regularly reach
the land surface, increased duration of high groundwater table levels could have significant impacts
on infrastructure [8,12-14] making groundwater table forecasting an increasingly important part of
effectively modeling and predicting coastal urban flooding.

In the field of groundwater hydrology, models based on the physical principles of groundwater
flow have traditionally been some of the main tools for understanding the mechanics of these
systems [9,15-20]. Developing these models, however, requires extensive details about aquifer
properties. In urban areas, this level of detail is hard to achieve at high resolutions because the
subsurface is a complex mix of natural and anthropogenic structures such as varied geologic deposits,
buried creeks or wetlands, roadbeds, building foundations, and sanitary and stormwater pipes. These
factors should be considered when developing a physics-based model; if the necessary data are not
available then assumptions and estimations must be substituted based on domain knowledge. Even if
the data necessary to build a physics-based model are available, there is still the challenge of calibrating
the model to adequately reflect reality.

Machine learning approaches are being increasingly used by hydrologists in order to mitigate
the difficulties associated with physics-based models [6,21-27]. The advantage of such data-driven
modeling is that physical relationships and the physical parameters needed to describe the physical
environment do not need to be explicitly defined; the machine learning algorithm approximates the
relationship between model inputs and outputs through an iterative learning process [28]. Neural
networks (NN) have been used to model and predict nonlinear time series data, such as the groundwater
table, and have been found to perform as well as, and in some cases, better than physics-based
models [29,30]. Several studies have applied NN models on a daily or monthly time step to aquifers
used for water supply in order to make forecasts appropriate for groundwater management. [31-36].
Few studies, however, have used NNs for predicting the groundwater table in unconfined surficial
coastal aquifers where flooding is a major concern and a finer time scale is needed to capture the
impacts of storm events [2].

Recurrent neural networks (RNNs) have been a popular choice for modeling groundwater time
series data because they attempt to retain a memory of past network conditions. While RNNs have been
successfully applied to groundwater modeling [31-34], it’s been found that standard RNN architectures
have difficulty capturing long term dependencies between variables [37]. This is due to two problems,
(i) vanishing and (ii) exploding gradient, where weights in the network go to zero or become extremely
large during model training. These two problems occur because the error signal can only be effectively
backpropagated for a limited number of steps [38].

One of the most successful approaches to avoiding the vanishing and exploding gradient problems
has been the long short-term memory (LSTM) variant of standard RNNs [38]. LSTM is able to avoid
these training problems by eliminating unnecessary information being passed to future model states,
while retaining a memory of important past events. In the field of natural language processing, LSTM
has become a popular choice of neural network because of its ability to retain context over long
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spans [39]. LSTM has also been effective for financial time series prediction [40] and for short-term
traffic and travel time predictions [41,42] Despite the wide variety of applications, however, LSTM has
only recently been used for hydrologic time series prediction [43,44]. For example, LSTM was found to
outperform two simpler RNN architectures for predicting streamflow [45]. LSTM networks have also
recently been used to model the groundwater table on a monthly time step in an inland agricultural area
of China [46]. This agriculture focused study provides valuable information on the advantages of LSTM
for groundwater level prediction over a basic feed-forward neural network (FFNN), but only presents
predictions for one time step ahead. In a real-time flood forecasting application, however, longer
forecasts of the groundwater table at short time intervals would be needed [2] and should include the
use of forecast input data. LSTM models have yet to be evaluated for this type of application.

With the growing availability of large datasets and high performance computing, data-driven
modeling techniques can now be evaluated for groundwater table forecasting. The objective of this
study, therefore, is to compare RNN and LSTM neural networks for their ability to model and predict
groundwater table changes in an unconfined coastal aquifer system with an emphasis on capturing
groundwater table response to storm events. Based on prior research on this topic, it is expected that
LSTM will outperform RNN for forecasting groundwater table levels. In this study, LSTM and RNN
models were built for seven sites in Norfolk, Virginia USA, a flood prone coastal city. The models were
trained and tested using observed groundwater table, sea level, and rainfall data as input. In addition to
comparing RNN and LSTM neural networks, the effect of different training methods on model accuracy
was evaluated by creating two unique datasets, one of the complete time series and one containing only
periods identified as storms. The two types of datasets were bootstrapped and a statistical comparison
of the two model types was made with t-tests to determine if differences in the results were significant.
To ensure fair comparison, the hyperparameters of the RNN and LSTM networks were individually
optimized with an advanced tuning technique instead of traditional ad-hoc methods. Once trained
and evaluated, the RNN and LSTM models were tested with forecast sea level and rainfall input data
to quantify the accuracy that could be expected in a real-time forecasting scenario.

This paper is structured as follows: First, a description of the study area, data and methodology
used is given in Section 2. The methodology includes a description of the RNN and LSTM networks,
input data preprocessing, and how models are trained and evaluated. The results of data preprocessing
and modeling are then presented in Section 3 and discussed in Section 4. Conclusions are drawn in
Section 5.

2. Materials and Methods

2.1. Study Area

The City of Norfolk, Virginia is located on the southern portion of the Chesapeake Bay along the
eastern coast of the United States (Figure 1, inset). The city covers 171 km? of land with an average
elevation of 3.2 m (above the North American Vertical Datum of 1988) and has 232 km of shoreline.
Home to almost a quarter million people [47], Norfolk serves important economic and national security
roles with one of the U.S.’s largest commercial ports, the world’s largest naval base, and the North
American Headquarters for the North Atlantic Treaty Organization (NATO). The larger Hampton
Roads Region, of which Norfolk is a major part, has the second greatest risk from sea level rise in
the U.S. and is surpassed only by New Orleans [48]. This risk is partly due to coupled sea level
rise and regional land subsidence from groundwater withdrawals from the deep Potomac Aquifer
for water supply and glacial isostatic adjustment [49]. Because of these and other factors, including
low relief terrain and a regular hurricane season, the city and larger Hampton Roads region face
increasingly frequent and severe recurrent flooding [4] which threatens its economic, military, and
historic importance.
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Figure 1. Location of gauges in Norfolk, Virginia.
Figure 1. Location of gauges in Norfolk, Virginia.

2.2. Data
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data was collected in two forms: observed and forecasted.
2.2.1. Observed Data

2'2‘1A015’ﬁ?(ﬁ¥1%ddra)?a{‘§et of groundwater table level observations for seven shallow monitoring wells
in Norfohkquad previded rbyirthe dlampitn Ked dbseanitabionfblistich SHRERY thigusrihgTallds i
Nerfsidwiater phseidetioby, ihenetaraptonniostsedaatitative Mivute tiheReEp) atFdgeferancediie thy
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the observed data are for the period between 1 January 2010 and 31 May 2018.
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2.2. Forecast Data
2.2. Forecast Data
In order to simulate a real-time forecast scenario, archived forecast data were collected for three
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forecast data was available and had both dry periods and storm events. The storm events in the

2.
2.



Water 2019, 11, 1098 6 of 38

archived forecast data ranged from unnamed storms to Hurricane Hermine and Tropical Storm Julia,
which H4S 3R a2t E R perlod of 100200 years, based on the 24 and 48 h rainfall [52].%3%ecast

rainfall wis senerated iy theddishsResalution Repid Refiesh (BB RRAmedsharipdussel thgdigtional
Centeprier Envivenmendal-Fradistiosn Q¢aBRloovbich meparatend sl {orecaskaipfsmatspralegical
conditips)linclyding tetal Byrface prgaiRdasianofoRMpec Rufighl SHIRRIth maeso) utiproehd kinthd hese
data Metarciivéehtey the GanteoforehtighAredforinmadEB pitidy geiblheatdnihersily odrebits[5f] and
was doesesreoldginal demddieababecluding total surface precipitation, for the coming 18 hours with a
PRl eh 3dvat- ﬂﬁ?&%@%m%mfée&sxﬂt%égrgléfﬁbx%%rfﬁemmeﬁemskﬂ%fﬂt@same
three WRDSHRMAS A (R preb R arsepRd eotadhat drigkessvere downloaded at an hourly time step,
and i is re e%%eﬁaSt 3 IRYR: ‘\ﬁ?ggforece Sewé ﬁpomt S%atlon wasgethergd T‘?re%c@énur?? tfns S%H}ZIOII is
d1
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surge-rffeRfsnatch the observed sea level under normal weather conditions, they do not include any storm
surI%e effects.

2.3. Methodology
Thid¥ hg{iy Wds carried out through the workflow detailed in Figure 3. As such, this section
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post-prodessine hiskrimisbractcas Ml PIepHeessna: Rk RipprsmadeliHataddefds aodte end

of thiB™9FEe§ing. Links to model code and data are given in the Supplemental Data section at the end of
this article.
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2.3.1. Input Data Preprocessing

Data preprocessing involves a number of steps for observed and forecast data (Figure 3).
Raw groundwater table observations were filtered with a Hampel filter [57] to remove large erroneous
values. This filter used the standard deviation of the observations within a single day (720 two minute
observations) rolling window as a threshold; any observations greater than the threshold were replaced
by the rolling median. All of the raw observed data were aggregated to an hourly time step to match
the format of the forecast data. Groundwater table and sea levels were aggregated using the hourly
mean value and rainfall is the cumulative hourly total. Because some wells did have several months of
missing data, any time steps with any missing values were removed. For wells without an immediately
adjacent rain gauge, the rainfall at the well was assumed to be the mean of the surrounding rain gauges
(Table 2).

Table 2. Rain gauges associated with each well based on geographic proximity.

Well ID Rain Gauge (s)
R1
R2
GW1 R4
R7
GW2 R4
GW3 R2
R1
R3
GW4 R5
R7
R2
GW5 R6
GW6 R7
GW7 R6

To prepare the filtered and continuous data as model input, the time series of each variable
(groundwater table, sea level, and rainfall) was shifted to include relevant past observations, based on
an appropriate lag 8, and observations up to the forecast horizon T (18 h in this study to correspond to
the HRRR model forecast horizon). Lags for each well represent the delay between a rainfall or sea
level observation and the corresponding response of the groundwater table and were identified by
cross-correlation analysis (see Section 3.1.1). After shifting the time series of each variable, all data
were normalized to values between 0-1 and combined into an input matrix or tensor and a label tensor.
Each row in the input tensor contains three vectors: Groundwater table gwl;, rainfall rain, and sea

level sea. Each row in the label tensor is a vector of groundwater table values gwly, to be predicted
(Table 3).

Table 3. Input and label tensors for neural network modeling.

Inputs Labels

gwli={t-5...t}
rain={t-%5... t+71} gwlp ={t+1...t+7}
sea={t—-6...t+ 71}

Preprocessing of forecast data, which is retrieved at an hourly time step, consists of two steps
(Figure 3). First, the time series of HRRR rainfall data, which is a gridded product over the continental
United States, has to be extracted for the coordinates of each well. Second, the forecast data have to
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be inserted into the correct locations in the input tensor. Specifically, the observed rainfall and sea
level data in columns (t + 1) to (t + 7) has to be replaced with the corresponding forecast data. This
creates a dataset Dy that includes both observed and forecast data as specified in Figure 3. The same
normalization from 0-1 used for the observed data was applied to the forecast data.

2.3.2. Input Variable Cross-Correlation Analysis

Parsing the relationships between a rainfall or sea level observation and the corresponding
groundwater table response is a crucial component of input data preprocessing. This response time
is called the lag 6 and can be separated into two components: g between rainfall and groundwater
table response and 55 between sea level and groundwater table response. The appropriate or and g,
in hours, for each well was approximated by a cross correlation analysis [25]. This process involves
shifting one signal in relation to the other until a rainfall or sea level observation lines up with its
corresponding groundwater table response. The highest cross correlation value (CCF) corresponds to
the most influential 6y or ds.

2.3.3. Storm Event Response Identification

In order to evaluate the performance of RNN and LSTM models for groundwater table forecasting
during storm events, two training datasets were used (Figure 3). The first training set Dy represents
the continuous time series data and includes both dry and wet days. The second training set Dsiorm
consists only of time periods that were identified as storm events. Dsiorm Was created through a
filtering process using the gradient and peaks of the observed groundwater table values. For any
storm event, the starting time of the event was based on locating the local maxima of the gradient of
the groundwater table and looking backward in time to the first occurrence of zero gradient. A peak
finding algorithm [58] was then used to locate the peak of the groundwater table that occurred after
the corresponding starting time; peak values were used as the end point of the storm.

2.3.4. Bootstrapping Datasets

Bootstrapping was used to generate many datasets with characteristics similar to the observed
datasets. While bootstrapping is generally done by selecting values at random and combining them
into a new dataset, special techniques are needed to preserve the dependence in time series data.
In order to bootstrap the D) datasets in a manner appropriate for time series data, circular block
bootstrapping with replacement was used [59]. The block size was based on the average storm length
found when creating the storm datasets for each well. Because the Dsiorm datasets were already
separated into blocks of different time periods, they were bootstrapped by randomly sampling the
blocks with replacement. By creating one thousand bootstrap replicates of each dataset, a normal
distribution of error can be approximated when the models are trained and tested. The first 70% of each
bootstrapped dataset was taken as the training data and the remaining 30% was used as the test set.

2.3.5. Recurrent Neural Networks

RNNs [60] have been specifically designed to capture the structure that is often inherent in
time series data. They do this by passing the output, or state, of the hidden layer neurons, which
represent what has been learned at the previous time steps, as an additional input to the next time step
(Figure 4A). RNN training was done with back-propagation through time (BPTT) [61], or some variant,
to adjust network weights based on the error gradient with respect to both the network weights and
the previous hidden states. Because gradients can change exponentially during this process, they tend
to either vanish or explode. In this study, a fully connected RNN [62] was used and the output was
calculated by stacking a fully connected layer on top of the RNN cell. The product of the output layer
is the groundwater table level for the forecast horizon t. The RNN calculations can be written as:

hy = tanh(Wx¢ + Uh¢_1 +b) 1)
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weights. The processes within the LSTM cell can be represented with the following equations:
5 s e

3) 3)

i, =it EWRV e B iR Bibi) 4) (4)
0 = o(Wyx, + Ugh_; + b,) 5)
C'. = tanh(W.x, + Uch_; + by) (6)
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ot = 0(Wox¢ + Uohi_1 + by) ()
C't = tanh(Wext + Uchgq +be) (6)
Ci = fi°Crg +1°C't @)

hy = tanh(Cy)°o¢ (8)

yt = Vh{+Db 9)

where f;, iy, and o; represent the forget, input, and output gates, respectively. The new cell state
candidate values and updated cell state are represented by C’ and C;, respectively. Element-wise
multiplication of vectors is represented by ° and the sigmoid activation function is noted as o.

While studies have experimented with different gate configurations, significant improvements
over the standard configuration were not found [63]. This study uses LSTM cells with three gates [62].
The network output was calculated by stacking a fully connected layer on top of the LSTM cell.
The product of the output layer is the groundwater table level for forecast horizon .

2.3.7. Hyperparameter Tuning

Hyperparameter tuning has traditionally been done in an ad-hoc manner through manual trial
and error or random search [22,24,25]. This type of tuning can be efficient, but is hard to reproduce or
compare fairly [64]; with the increasing complexity of network architectures, more formal methods
of hyperparameter optimization are also emerging. In this study, tuning was accomplished for each
model type and for each well using a sequential model-based optimization (SMBO) search with the
tree-structured Parzen estimator (TPE) algorithm, a Bayesian optimization approach [65]. Given the
search history of parameter values and model loss, TPE suggests hyperparameter values for the next
trial which are expected to improve the model loss (reduce root mean squared error (RMSE), in this
case). As the number of trials increases, the search history grows and the hyperparameter values
chosen become better.

The Hyperas library [66] implements the SMBO/TPE technique and was used in this study to
advance what has been done in previous research. For example, when comparing four types of neural
networks, Zhang et al. [67] simply stated that a trial and error procedure was used to select the best
network architecture. When predicting groundwater levels, Zhang et al. [46] presented results for a
trial and error optimization of LSTM hyperparameters, but then state that the same hyperparameters
were used for the much simpler architecture of FFNN models. By not optimizing the hyperparameters
of the FFNN it is more difficult to draw comparisons with the LSTM. Optimizing the hyperparameters
of both the LSTM and RNN models in this study allowed each model the best chance to perform well.

The hyperparameters tuned for each model in this study were the number of neurons, the
activation function, the optimization function, the learning rate, and the dropout rate (Table 4).
The number of neurons influences the model’s ability to fit a complex function. The dropout rate helps
prevent overfitting by randomly dropping some connections between neurons during training [68].
A minimum value of 10% ensures some dropout is used, as the natural tendency would be for models
to not have any connections dropped during training. The combination of hyperparameters for each
model type that resulted in the lowest RMSE, based on 100 trials, was used in the final models.

Table 4. Hyperparameter choices explored.

Hyperparameter Type Options Explored
Number of Neurons Choice 10, 15, 20, 40, 50, 75
Activation Function Choice Rectified Linear Unit (relu), Hyperbolic tangent (tanh), Sigmoid
S . . Adam, Stochastic Gradient Descent (SGD), Root Mean Square
Optimization Function Choice P -
ropagation (RMSProp)
Learning Rate Choice 1x1073,1x1072,1x 1071

Dropout Rate Continuous 0.1-0.5
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A number of hypotheses were formulated to test the effects of model type and training dataset on
forecast accuracy (Table 5). For example, it was hypothesized that LSTM models would have a lower
mean RMSE than RNN models when trained and tested with the Dy, dataset (Table 5, Comparison ID
A). The hypotheses were evaluated using t-tests to evaluate whether or not there was a statistically
significant difference between the mean of the 1000 RMSEs between two models [70]. In order to reject
a null hypothesis that the two models have identical average values, the p-value from the t-test would
need to be significant (less than 0.01).

Table 5. t-test null hypotheses for model type and training data comparison.

Comparison ID Null Hypothesis Testing Data
A RMSE(LSTM, Dg,j1) = RMSE(RNN, Dg1) Dran

RMSE(LSTM, Dstorm) = RMSE(RNN, Dgtorm)
RMSE(RNN/ Dstorm) = RMSE(RNN, Dfull) Dstorm
RMSE(LSTM, Dstorm) = RMSE(LSTM, Dy,1)

RMSE(LSTM, Dy) = RMSE(RNN, Dy,)
RMSE(LSTM, Dstorm) = RMSE(RNN, Detorm)
RMSE(RNN, Dstorm) = RMSE(RNN, Dgyp)
RMSE(LSTM, Dstorm) = RMSE(LSTM, Dy

TOTMm TN«

3. Results

The results of this study are divided into two subsections. The first subsection, data preprocessing
results, describes the findings of the cross correlation analysis, the storm event identification, and the
hyperparameter tuning for each well and model type. The second subsection, model results, describes
the model performance and the statistical evaluation of differences between models and training data
types. This subsection concludes with a visualization of model predictions.

3.1. Data Preprocessing Results

3.1.1. Input Variable Cross-Correlation Analysis

Using cross correlation analysis, appropriate median lags 6 for the entire period of record were
found for each well (Table 6). Rainfall lags g were generally expected to increase with a greater
distance between the land surface and the groundwater table. It was found 6r did increase with
greater depth to the groundwater table when GW2 and GW3 were compared. At GW2, ég was 26 h
and the mean groundwater table depth was 0.61 m (Table 1) while at GW3 6r was 59 h and the mean
groundwater table depth was 2.32 m. At the other wells, however, this relationship did not hold.
For example, GW1 had the same 6r as GW2, but the mean groundwater table depth was very similar
to that of GW3 (2.31 m). Other characteristics that influence infiltration rate, such as vertical hydraulic
conductivity, porosity, impermeable surfaces, or the configuration of the stormwater system appear to
have had a large effect on o at these wells. In addition, sea level may also be influencing groundwater
table levels at some or all of these wells.

Table 6. Rainfall 5g and sea level g lags found for each well.

Well ID Sr (h) &g (h)
GW1 26 19
GW2 26 18
GW3 59 -
GW4 25 17
GW5 28 -
GWe 48 -

GW7 58 51
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The impact of sea level lags 65 on the groundwater table was more difficult to determine than
rainfall lags 0g, indicating that sea level does not have as much impact on certain wells; there did not
seem to be clear correlations for GW3, GW5, or GW6. It was expected that the impact of sea level
would decrease with greater distance between a given well and the closest tidal waterbody influencing
it. However, this did not seem to have a strong relationship. GW4, for example, was the farthest
well from a tidal water body but had the shortest 0g, suggesting that tidal water may have a more
direct route to this location. While a strong correlation between sea level and groundwater table was
not found for three wells, it was deemed that sea level could still be an important input variable for
models at those wells because of their proximity to tidal water bodies [71,72]. In order to keep the
data preprocessing consistent, and because g values could not be found for all wells and the bg values
found were always shorter than 5 values, dg was taken as the lag value for all input variables.

3.1.2. Storm Event Response Identification

The storm identification process produced a unique dataset and a different average storm duration
and total number of events for each well (Table 7). Average storm duration, the average length in
hours of the identified periods, was used as the block size for bootstrapping the Dy, datasets. The
storm events identified for each well also accounted for the majority of total rainfall, indicating that the
method is capturing large rainfall events. Storm surge is also being captured at most wells as shown
by the positive increase in mean sea level for the storm events compared to the Dg,; datasets (Table 7).
Figure 6 shows an example of storms found with this process; large responses of the groundwater
table are captured, but smaller responses are excluded.

Table 7. Storm characteristics for each well.

Average Storm % Increase in Mean

Well ID Number of Events % of Total Rain

Duration (h) Sea Level over Dy,
GW1 83 239 75 27
GW2 82 307 85 36
GW3 137 155 57 18
GW4 89 254 67 18
GW5 91 149 60 64
GW6 120 295 60 0
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3.1.3. Hyperparameter Tuning

Tuned hyperparameters were generally consistent across wells and model types (Tables 8 and
9). Dropout rates ranged from just above the minimum of 0.1 to a high of 0.355. The preferred
activation function was the hyperbolic tangent, except for the GW5 RNN. In all cases the Adam
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3.1.3. Hyperparameter Tuning

Tuned hyperparameters were generally consistent across wells and model types (Tables 8 and 9).
Dropout rates ranged from just above the minimum of 0.1 to a high of 0.355. The preferred activation
function was the hyperbolic tangent, except for the GW5 RNN. In all cases the Adam optimization
function performed the best with its recommended learning rate of 10~ [73]. The largest number of
neurons possible (75) was used in five of the seven RNN (Table 8) and LSTM (Table 9) models. The
other models of each type used a midrange number of neurons (40 or 50).

Table 8. Tuned hyperparameters for RNN models.

Well Dropout Rate Actlvafclon Optlmlz.atlon Learning Rate Neurons
Function Function
GW1 0.126 tanh adam 1073 40
GW2 0.340 tanh adam 1073 75
GW3 0.320 tanh adam 1073 75
GW4 0.111 tanh adam 1073 75
GWS5 0.127 relu adam 1073 75
GW6 0.145 tanh adam 1073 75
GW7 0.104 tanh adam 1073 40

Table 9. Tuned hyperparameters for LSTM models.

Well Dropout Rate Actlvajﬂon Optlmlz.atlon Learning Rate Neurons
Function Function
GW1 0.355 tanh adam 1073 75
GW2 0.106 tanh adam 1073 40
GW3 0.166 tanh adam 1073 75
GW4 0.102 tanh adam 1073 75
GW5 0.103 tanh adam 1073 50
GW6 0.251 tanh adam 1073 75
GW7 0.177 tanh adam 1073 75

3.2. Model Results

3.2.1. Network and Training Data Type Comparison

The results in this subsection address hypotheses A-D (Table 5), which compare performance of
the two model types trained using the two different datasets. All of these comparisons had significant
p-values (<0.001). This shows that the null hypotheses that two models have identical average values
was rejected and there are significant differences in RMSE for different model types and training
datasets. The distributions of RMSE values for all bootstrap models in this subsection is available in
Appendix A; corresponding MAE values are available in Appendix C.

When trained with either Dy or Dgtorm, LSTM models have lower mean RMSE values than RNN
models (Figure 7A,B), as hypothesized (Table 5, A and B). LSTM models trained and tested with D¢
had average RMSE values that were lower than RNN models by 49%, 38%, and 18% for thet +1,t+9,
and t + 18 predictions, respectively. LSTM’s advantage over RNN decreased as the prediction horizon
increased. Similarly, LSTM models trained and tested with Dgtorm had lower average RMSE values
than RNN models by 50%, 55%, and 36% for the t + 1, t + 9, and t + 18 predictions when tested on
Dstorm, respectively.
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3.2.2. Real-Time Forecast Scenario

By training and testing models with observed data, comparisons can be made between model
types and training datasets in terms of performance (as shown in Figure 8). The performance of these
models, however, also needs to be evaluated in a real-time scenario that includes forecast conditions of
rainfall and sea level level. The mean RMSE values from testing the models and data treatments with
the De/¥#te8det’atESREWR HVEBure 8 and correspond to hypotheses E-H (Table 5). The distri¥fions
of RMBE yalyes foxall bootsfrap wpdels in this subgectionsis available in, Anpendiy Brsoisssponding
MAE yalhgs gy a8 ARREAS s
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all hadrgigrafisan{R(al48Rd with Dr has greatly increasing error as the forecast horizon grows (Figure
9t+1,t+9, t+18) and tends to be overly impacted by sea level fluctuations. In contrast, the predicted
groundwater table level from the LSTM model trained with Dstorm has much better agreement with
the observed groundwater table levels, even as the forecast horizon increases.
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Visualizations from the real-time forecasting scenario (Figure 9) complement the aggregate metrics
from bootstrap testing of models and training data treatments and demonstrate the response of
predicted groundwater table levels to a storm when using Dy as input data. The forecasts at GW1 are
shown in Figure 9 for Tropical Storm Julia, which impacted Norfolk in late September of 2016. The
initial rainfall from this storm on the 19th caused the groundwater table to spike early on the 20th.
Subsequent rainfall on the 20th, 21st, and 22nd maintained the elevated groundwater table level. The
LSTM model trained with Dy, has greatly increasing error as the forecast horizon grows (Figure 9
t+1,t+9, t+18)and tends to be overly impacted by sea level fluctuations. In contrast, the predicted
groundwater table level from the LSTM model trained with Dgtorm has much better agreement with

the obsetreck@itcindORIEER BibYIEVlevels, even as the forecast horizon increases. 18 of 39
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Figure 9. Comparison of groundwater table observations and forecasts at GW1 from LSTM models

trained Wighretfe OyppanisbiDef grotraiwiner ek observations and forecasts at GW1 from LSTM models
trained with the Drun and Dstorm training sets.

4. Discussion

The results of hypothesis testing (Table 5) indicate that both model type and the training data
influenced the accuracy of groundwater table forecasts. The LSTM architecture was better able to
learn the relationships between groundwater table, rainfall, and sea level than the simpler RNN.
Additionally, models trained with storm data Dstorm outperformed models trained with the full
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4. Discussion

The results of hypothesis testing (Table 5) indicate that both model type and the training data
influenced the accuracy of groundwater table forecasts. The LSTM architecture was better able to
learn the relationships between groundwater table, rainfall, and sea level than the simpler RNN.
Additionally, models trained with storm data Dstorm outperformed models trained with the full dataset
D1 when tested on either observed for forecast data. In the real-time scenario one reason for this
difference in performance could be the structure of the test set D¢t. These results indicate that the
structure of the time series data in Dstorm and Dy are more closely aligned, as opposed to the time
series structure of Dg,j; and Dg.t. The models trained on Dy also have to learn groundwater table
response with many observations where no rainfall occurred. In contrast, models trained on Dorm,
which have a higher proportion of observations with rainfall, may have a clearer pattern to learn.

In the real-time forecasting scenario, both RNN and LSTM models trained with Dsiorm
demonstrated predictive skill, forecasting groundwater table levels with low RMSE values (Figure 8F).
Models trained with Dy, however performed much worse because of the noisier signal they had
to learn (Figure 9) and are not suitable for use in a real-time forecasting scenario. Across all wells,
averaged RMSE values for the RNN models were 0.06 m, 0.1 m, and 0.1 m for thet+1,t+9,and t + 18
predictions, respectively. Averaged RMSE values for the LSTMs were slightly lower at 0.03 m, 0.05
m, and 0.07 m for the t+1, t+9, and t+18 predictions, respectively. While there is limited research on
the use of LSTMs for forecasting groundwater table, these results are comparable with the work of J.
Zhang et al. [46], who reported RMSE values for one-step ahead prediction of monthly groundwater
table at six sites ranging from 0.07 m to 0.18 m. The current work makes advances by showing that
both LSTM and RNN can accurately forecast groundwater table response to storm events at an hourly
time step, with forecast input data, and at longer prediction horizons all of which are necessary in a
coastal urban environment.

Because the effect of sea level on the groundwater table is heavily dependent on well location and
soil characteristics not included in this study, a sensitivity analysis was performed by removing sea
level from the Dy, and Dgiorm data sets and retraining and retesting the models. Of the wells that
were not correlated with sea level, GW3 and GW6 performed better without sea level data. Using
RNN models trained with Dy, there was an average decrease in RMSE of 12% for GW3 and 41%
for GW6. The only exception to this is the GW6 RNN trained with Dgiorm Which performed much
worse without sea level. For LSTM models trained with Dy, however, there was only a 3% decrease
in RMSE for GW3 and a 2% decrease for GW6. The third well that was not correlated with sea level,
GWS5, was worse without sea level for the RNN trained with Dg,j; the average increase in RMSE was
17%. Removing sea level at this well had no change in RMSE for the LSTM models trained with Dgj.
This particular well is only 32 m from the coast so the influence of sea level seems reasonable. When
models were trained with Dgiorm excluding sea level, across all well there was an average increase
in RMSE of 8% for RNN models and no change for LSTM models. This demonstrates that sea level
data is important for groundwater table prediction during storms for wells close to the coast and
this is captured effectively by the Dsiorm datasets (Table 7). This analysis indicated that RNN models
were much more sensitive to the inputs used than LSTM models. As designed, the structure of LSTM
models allowed them to filter out noisy data and have little to no change in RMSE if sea level data was
removed, especially when using the best performing combination of LSTM and Dgtorm training data.

The results of this study illustrate the trade-off between model complexity and performance that
has implications beyond creating forecasts. The increased complexity of LSTM models, in terms of
gates that learn and the constant error pathway, allowed them to have more predictive skill than the
RNN models for forecasting groundwater table response to storm events. Additionally, the structure
of LSTM models allowed them to filter out noise from the sea level signal which RNN struggled to do.
Most of the comparisons presented in the Results had significant p-values; because of the large sample
size (1000) however, even a very small difference in RMSE values between two models was considered
significant. For example, the differences between LSTM and RNN models trained with Dgiorm in the
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real-time forecasting scenario were statistically significant (Figure 8F). The average difference in the
RNN and LSTM RMSE values, however, was only 0.03 m, 0.05 m, and 0.03 m for thet + 1, t + 9, and
t + 18 predictions, respectively. If these groundwater table forecasts were to be used as additional
input to a rainfall-runoff model to predict flooding, it seems unlikely that the small differences between
RNN and LSTM models would have a large impact, especially when compared to other factors like
rainfall variability and storm surge timing.

The increased complexity of the LSTM models, while they had better performance than the RNN
models, also increased their computational cost. The main difference in computational cost of the
LSTM and RNN in this study was the length of training time. When trained on an HPC with either an
NVIDIA Tesla K80 or P100 GPU or a smaller NVIDIA Quadro P2000 GPU on a desktop computer,
wall-clock training time for LSTM models was approximately three times that of RNN models. Factors
in training time include hyperparameters, such as the number of neurons in the hidden layer, which
were relatively similar between model types. Once models are trained, groundwater table forecasts are
obtained by a forward pass of input data through the network; this time was short and comparable for
both models. For this groundwater table forecasting application training time was not a major concern,
but if the application was time sensitive and the models were frequently retrained, RNNs could be an
appropriate choice that does not sacrifice much in terms of accuracy.

Because forecast data were used as model input in the real-time scenario, it’s important to
note some of the uncertainties that dataset might introduce. HRRR rainfall data are a product of a
numerical forecast model and as such is subject to the uncertainty of that model, which includes the
transformation of radar reflectivity data into precipitation amounts [74]. Additionally, the uncertainty
of HRRR forecasts will increase the farther into the future they are. NOAA sea level forecasts, as
previously mentioned, are based only on the harmonic constituents of the astronomical tide cycle.
For rainfall-dominated storm events this type of forecast may be accurate enough as a model input,
but any storm surge from hurricanes or nor’easters would not be included. This could result in under
prediction of groundwater table levels. While archived storm surge predictions were not available for
this study, in a real scenario predictions of storm surge could be incorporated into the model input.

The neural networks and data processing techniques presented in this paper are applicable to
other coastal cities facing sea level rise and recurrent flooding. Because there is a lack of groundwater
table data in most locations however, the direct transferability of the models created for Norfolk should
be explored in other locations were observational data are not available. Even in Norfolk, questions
still remain about how much data, both temporally and spatially, is needed to accurately forecast
groundwater table levels using the methods presented in this study. In this study, at least eight years
of data were available for each well, but other researchers have found acceptable results when training
neural networks with more [32,33] and less [2,71] time series data. Based on our sensitivity analysis,
rainfall is the most important input for the models. However, sea level data was from a single station;
if there were more sea level gauges throughout the city it could provide a more accurate input for
these models to learn from. The groundwater table monitoring network in Norfolk consists of only
seven wells; while this network is a valuable source of data, it may not be dense enough to accurately
represent the groundwater table across the complex urban landscape. The city is divided by many tidal
rivers and stormwater conveyances and the effects these features have on the groundwater table maybe
highly localized. Areas where groundwater table level is important to flooding are likely not well
represented by a distant monitoring well. Research has been done with kriging to determine potential
densities of groundwater monitoring [75] and rain gauge networks [76]. A similar approach may be
valuable in Norfolk or comparable cities to determine the optimal density of monitoring networks
when planning for and adapting to climate change and sea level rise.

5. Conclusions

The objective of this study was to compare two types of neural networks, RNN and LSTM, for
their ability to predict groundwater table response to storm events in a coastal environment. The study
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area was the city of Norfolk, Virginia where time series data from 2010-2018 were collected from
seven shallow groundwater table wells distributed throughout the city. Two sets of observed data, the
full continuous time series Dy,;; and a dataset of only time periods with storm events Dstorm, were
bootstrapped and used to train and test the models. An additional dataset Dy including forecasts
of rainfall and sea level was used to evaluate model performance in a simulation of real-time model
application. Statistical significance in model performance was evaluated with t-tests.

Major conclusions from this study, in light of the hypotheses described in Table 4 are:

e  Both model type and training data are important factors in creating skilled predictions of hourly
groundwater table using observed data:

e  Using Dy, LSTM had a lower average RMSE than RNN (0.09 m versus 0.14 m, respectively)
e  Using Dstorm, LSTM had a lower average RMSE than RNN (0.05 m versus 0.10 m, respectively)

e  The best predictive skill was achieved using LSTM models trained with Dstorm (average RMSE =
0.05 m) versus RNN models trained with Dsiorm (average RMSE = 0.10 m)

e  LSTM has better performance than RNN but requires approximately 3 times more time to train

e Inareal-time scenario using observed and forecasted input data, accurate forecasts of groundwater
table were created with an 18 h horizon:

e LSTM: Average RMSE values of 0.03, 0.05, and 0.07 m, for thet + 1, t + 9, and t + 18h
forecasts, respectively

e RNN: Average RMSE values of 0.06, 0.10, and 0.10 m, for the t + 1, t + 9, and t + 18h
forecasts, respectively

Forecasts of groundwater table levels are not common; in many locations even direct measurements
of the groundwater table are not widely available. As sea levels rise and storms become more extreme,
however, forecasts of groundwater table will become an increasingly important part of flood modeling.
In low-lying coastal areas, sea level rise, stormwater infiltration, and storm surge could cause
groundwater inundation. Even if groundwater inundation does not occur, increased duration of high
groundwater table levels could have significant impacts on infrastructure. Forecasts of groundwater
table, an often overlooked part of coastal urban flooding, can provide valuable information on
subsurface storage available for stormwater and help inform infrastructure management and planning.

Supplementary Materials: Model code is available on Github at: https://github.com/UVAdMIST/
Norfolk_Groundwater_Model. Data is available on Hydroshare at: http://www.hydroshare.org/resource/
813dedd3568b4ef3897202988c14a522.
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Figure A1. RMSE distributions for GW1 using observed data. Columns represent the forecast horizons
t+1,t+9, and t + 18. Rows are specified as model type, training data, and testing data.
Figure Al. RMSE distributions for GW1 using observed data. Columns represent the forecast
horizons t +1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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Figure A2. RMSE distributions for GW2 using observed data. Columns represent the forecast
horizons t + 1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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Figure A3. RMSE distributions for GW3 using observed data. Columns represent the forecast
horizons t+1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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Figure A4. RMSE distributions for GW4 using observed data. Columns represent the forecast
horizons t +1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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horizons t+1, t+9, and t + 18. Rows are specified as model type, training data, and testing data.
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Figure A6. RMSE distributions for GW6 using observed data. Columns represent the forecast
horizons t+1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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Figure A7. RMSE distributions for GW7 using observed data. Columns represent the forecast
horizons t+1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.



Water 2019, 11, 1098 28 of 38
Water 2019, 11, x FOR PEER REVIEW 29 of 39

Attt

t+1 t+9 t+18
250
" 200
i
Q
= 150
]
Q
= 100
g
50 -
0 -
0.75 1.00 1.25
B
a
3
Q
=
|—
(V)]
|
B
a
S
2
a
=
=
o
0.03 0.04 0.05 0.04 0.05 0.06 0.06 0.07
200 250
£ 150 - 200 4
QE 150
£ 100 - 150
Q 100 -
E 100
50 i
0 50 50 -
0 - 0 - 0 -
0.03 0.04 0.035 0.040 0.045 0.050 0.05 0.06 0.07

RMSE (m)

Figure A8. RMSE distributions for GW1 using forecast input data. Columns represent the forecast
horizons t + 1, t + 9, and t + 18. Rows are specified as model type, training data, and testing data.

Figure B1. RMSE distributions for GW1 using forecast input data. Columns represent the forecast
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Figure B2. RMSE distributions for GW2 using forecast input data. Columns represent the forecast
horizons t+1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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Figure A10. RMSE distributions for GW3 using forecast input data. Columns represent the forecast
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Figure B3. RMSE distributions for GW3 using forecast input data. Columns represent the forecast
horizons t+1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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Figure B4. RMSE distributions for GW4 using forecast input data. Columns represent the forecast
horizons t+1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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Figure A12. RMSE distributions for GW5 using forecast input data. Columns represent the forecast
horizons t + 1, t + 9, and t + 18. Rows are specified as model type, training data, and testing data.

Figure B5. RMSE distributions for GW5 using forecast input data. Columns represent the forecast
horizons t+1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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Figure B7. RMSE distributions for GW7 using forecast input data. Columns represent the forecast
horizons t+1, t +9, and t + 18. Rows are specified as model type, training data, and testing data.
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Appendix C

Table A1. Mean mean absolute error (MAE) values for each model type and training dataset treatment
at each well and forecast period when tested on observed data.

Model  Training  Testing  Forecast
Type Data Data Period

RNN Dtunl Dt t+1 0031 0060 0072 0019 0035 0116  0.029
t+9 0049 0089 009 0036 0054 0410  0.044
t+18 0069 0118 0127 0052 0075 0236  0.060
RNN Dtunl Dstorm t+1 0038 0072 0080 0022 0047 0121  0.034
t+9 0064 0114 0119 0042 0074 0397  0.054
t+18 0092 0151 0157 0060 0102 0228  0.076
LSTM Dtunl Drunl t+1 0020 0029 0021 0008 0016 0013 0014
t+9 0040 0067 0053 0027 0039 0032  0.028
t+18 0061 0102 0087 0046 0063 0052  0.045
LSTM Dtunl Dstorm t+1 0025 0033 002 0010 0020 0013 0016
t+9 0056 0083 0070 0032 0053 0034  0.036
t+18 0084 0128 0116 0054 0084 0057  0.058
RNN Dstorm  Dstorm t+1 0030 0060 0069 0069 0039 002  0.026
t+9 0041 0068 0080 0288 0045 0028  0.033
t+18 0051 0085 0095 0208 0048 0036  0.043
LSTM  Dsorm  Dstorm t+1 0024 0031 0023 0008 0017 0012 0013
t+9 0036 0049 0037 0015 0027 0019  0.021
t+18 0045 0066 0052 0023 0033 0027  0.029

GW1 GW2 GW3 GW4 GW5 GWe GW7

Table A2. Mean MAE values for each model type and training dataset treatment at each well and
forecast period when tested on forecast data Dy;.

Model  Training  Testing  Forecast
Type Data Data Period

RNN Drun Drest t+1 0.211 0.308 0.881 0.206 0.613 0.369 0.356
t+9 0.439 0.513 1.001 0.333 0.668 0.960 0.608
t+18 0.998 0.537 1.131 0.800 0.913 0.493 1.113
LSTM Dsun Drest t+1 0.235 0.454 0.716 0.199 0.394 0.346 0.295
t+9 0.374 0.362 0.976 0.285 0.759 0.440 0.853
t+18 0.939 0.421 1.178 0.764 1.011 0.488 1.222
RNN Dstorm Drest t+1 0.027 0.064 0.064 0.068 0.027 0.026 0.023
t+9 0.032 0.060 0.096 0.241 0.037 0.026 0.036
t+18 0.038 0.073 0.106 0.160 0.034 0.037 0.034
LSTM Dstorm Drest t+1 0.022 0.029 0.027 0.007 0.014 0.012 0.012
t+9 0.028 0.044 0.038 0.012 0.019 0.019 0.017
t+18 0.037 0.059 0.055 0.022 0.025 0.027 0.025

GW1 GW2 GW3 GW4 GW5 GWe GW7
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