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Abstract: Rapid and low-power control over the direction of a radiating light field is a major
challenge in photonics and a key enabling technology for emerging sensors and free-space
communication links. Current approaches based on bulky motorized components are limited by
their high cost and power consumption, while on-chip optical phased arrays face challenges in
scaling and programmability. Here, we propose a solid-state approach to beam-steering using
optomechanical antennas. We combine recent progress in simultaneous control of optical and
mechanical waves with remarkable advances in on-chip optical phased arrays to enable low-power
and full two-dimensional beam-steering of monochromatic light. We present a design of a silicon
photonic system made of photonic-phononic waveguides that achieves 44◦ field of view with 880
resolvable spots by sweeping the mechanical wavelength with about a milliwatt of mechanical
power. Using mechanical waves as nonreciprocal, active gratings allows us to quickly reconfigure
the beam direction, beam shape, and the number of beams. It also enables us to distinguish
between light that we send and receive.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fiber-coupled photonic circuits are powerful tools in our information infrastructure. In order to
leverage these circuits to control and analyze light in our environment, we need to control how
they radiate and absorb radiation. Gratings are an established way of controlling how photonic
circuits radiate. They are dispersive: tuning the wavelength of light incident on a grating changes
the angle at which it is scattered. With a tunable laser gratings can thus steer light in one
dimension [1, 2]. When incorporated with phase-shifters into an array, they can steer in two
dimensions [3–8]. The size, weight, power, and cost of these integrated beam-steering systems
is lower than the motorized optical gimbals currently used with free-space optical systems for
lidar, optical wireless communication [9, 10], and free-space optical interconnects [11]. The
growing presence of autonomous systems, such as self-driving cars, motivates the development
of mass-manufacturable photonic systems. With low-power on-chip beam-steering, a host of
remote sensing, communication, and display applications comes into reach.
With angular dispersion as the steering mechanism the etched grating’s period Λ fixes a

relation between optical wavelength λ and scattering angle θ. In contrast, with the ability to
tune the grating period Λ, a monochromatic beam can be formed and directed. Sound is a
naturally tunable optical grating. An acoustic wave containing multiple wavelengths scatters light
into multiple angles as realized in pioneering work on acousto-optic beam deflectors [12–14].
A progression to guided-wave, collinear systems [15, 16] and arrays [17] in Ti-diffused and
proton-exchanged lithium niobate waveguides enabled large fields of view for monochromatic
light. These low index-contrast lithium niobate waveguides limit integrability, resolution, and
efficiency. We address these limitations by embracing high index-contrast, subwavelength-scale
silicon waveguides to be incorporated into a dense phased array. These waveguides – engineered
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Fig. 1. (a) A mechanical wave with wavevector K scatters a guided optical wave (β) into
free-space (k) at an angle θ. A single antenna scatters light into a cone. Sweeping the
mechanical frequency, and therefore K , steers the cone through a range of angles θ. (b)
Incorporating these antennas into a phased array forms a beam in the far-field directed into
angle φ. Antennas consist of partially released silicon ridge waveguides each of which
supports guided optical and guided mechanical modes. The displacement field u that scatters
guided light (color representing the electric displacement field Dx) out at θ = 60◦. (c)
Light from a phase-shifter/splitter network (not shown) counterpropagates with mechanical
waves driven by a piezoelectric transducer. An interdigital transducer (gray) is patterned
on a piezoelectric film (red) deposited on SOI (blue on white). The transducer injects
mechanical waves with nanometer-scale displacement and milliwatt-level power into the
silicon waveguides.

to guide both light and sound – have recently been shown to exhibit strong acousto-optic
interactions between propagating waves with tailorable dispersion [18–20].

Here we develop the concept of an optomechanical antenna (OMA) and present a perturbative
description of the coupling between guided and radiated light by sound analogous to cavity
optomechanics and Brillouin scattering [18–23]. After illustrating the scattering process for a
slab waveguide, we explore the optical and mechanical co-design of an OMA compatible with
silicon photonics and practical for a phased array antenna. We will show that such an OMA can
scatter light in millimeters with only hundreds of microwatts of mechanical power. We conclude
with an outline of this device’s performance, an account of the effects of disorder, and an outlook
on the new capabilities of this approach.

2. Mechanics as a dynamic grating

In an optomechanical antenna [Fig. 1(a)] a guided optical wavewith electric fieldE exp (iβz − iωt)
is scattered by a guided mechanical wave with displacement field u exp (−iKz − iΩt) into
radiating light with electric field Er exp (ik · r − iωrt). Energy and momentum conservation for
the counter-propagating, anti-Stokes process

ωr = ω +Ω (1)
k cos θ = β − K, (2)

determine the scattering angle θ [Fig. 1(a)]. The equations above describe the copropagating,
Stokes process by reversing the sign of Ω. Under these phase-matching constraints, a single
antenna radiates into a cone and a phased array into a pair of beams above and below the
array. A frequency-swept mechanical drive sweeps the beam angle θ across the field of view in
microseconds – the time it takes a mechanical wave to traverse the antenna.
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Analogous to the treatment of interactions in cavity optomechanics and Brillouin scattering,
we perturbatively compute radiation from an OMA. Mechanical deformations vary the dielectric
permittivity ε → ε+δuε ·uwith photoelastic andmoving-boundary contributions to the scattering
given explicitly in appendix C. Making a first Born approximation (see appendix C) [24], we have(

∇ × ∇ × −µεω2
)

Er = iωµJom (3)

where the optomechanically-induced polarization current

Jom = −iω (δuε · u)E (4)

is defined in terms of the unperturbed guided optical and mechanical modes E and u. The result
is a set of inhomogeneous equations which we solve for the radiated electric field Er.
Coupling to radiation causes decay of the optical power P(z) in the waveguide. From

perturbation theory we find that the matrix element coupling E and Er scales as u = max|u|.
By Fermi’s Golden Rule, the radiated optical power per unit length is α = αmu2 and therefore
proportional to power in the mechanical wave Pm. Neglecting mechanical decay,

P (z) = P0e−αmu
2z . (5)

The scattering rate αm is the rate of conversion between guided and radiating optical fields per
unit length per the square of the mechanical deformation amplitude. In contrast to static gratings
where the scattering rate is fixed by fabrication, modulating the mechanical power modulates the
effective aperture Leff = α

−1
m u−2 of an OMA.

3. Radiation of a slab waveguide

We begin by analyzing a simple OMA: a 220 nm thick silicon slab waveguide suspended in air.
A typical scattering process is plotted in Fig. 2(a) where an antisymmetric mechanical Lamb
wave scatters a counter-propagating guided transverse-electric (TE) optical mode into free space
at θ = 45◦.
The slab waveguide is simple enough to admit to an analytical approach. A full coupled-

mode description for roughness-induced scattering has been developed and is applicable to
optomechanical scattering [25,26]. We take a numerical approach easily extended to arbitrary
geometries in which finite-element-method solutions of the uncoupled equations drive the
inhomogeneous Eq. (3).

The scattering rates plotted in Fig. 2(b) show that nanometer-scale oscillations yield millimeter-
scale effective apertures. Light which propagates with an effective index neff = 2.8 scatters
out symmetrically above and below the waveguide in the phase-matched region when K/2π is
between 1.2 µm−1 (θ = 0◦) and 2.5 µm−1 (θ = 180◦). The moving-boundary term dominates
the optomechanical interaction while the photoelastic contribution is 50× smaller for this OMA
(see appendix B.3). The interaction between TE guided light and Lamb waves is captured by an
optomechanically-induced polarization current along ŷ

Jom = −iω∆εEyux ŷ, (6)

which drives ŷ-polarized TE optical fields in the surrounding medium. For antisymmetric Lamb
waves, the polarization currents induced on the top and bottom surfaces of the waveguide are
180◦ out-of-phase, but since ntSi ≈ λ

2 , they interfere constructively giving rise to strong scattering
rates α. For the same reason, surface currents of symmetric Lamb waves interfere destructively
such that the moving-boundary contribution to α is small detailed in appendix B.2.
Since the mechanical frequencies are much smaller than the optical frequency, they can be

treated quasi-statically. Rather than the perturbative approach, the waveguide can be statically
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Fig. 2. (a) Scattering from the TE-polarized optical mode of a 220 nm thick suspended
silicon slab is computed nonperturbatively and the electric displacement field Dy is plotted
where the maximal displacement u is set to 30 nm for visibility of the radiated field. The
single-sided scattering rate α is quadratic in u even for large displacements. (b) The
displacement-normalized scattering rates for the slab and ridge OMA are plotted together
for u = 1 nm. Slab rates plotted in black and gray are computed nonperturbatively in 2D
(dotted) as well as perturbatively in 2D (dot-dash) and 3D (dashed). For the ridge OMA of
section 4, radiation into the optical slab modes (green), air (blue), and the silicon handle
(red) add to give the total scattering rate (yellow). (c) Normalizing the scattering rate by
power, here 1 mW per antenna for a ridge OMA array and 1 mW per 1.41 µm for the slab,
gives a practical measure of the field of view ∆θ. Tight confinement of the optical and
mechanical energy in the transverse direction for the ridge OMA leads to enhanced radiation
for a range of angles compared to the slab case.

deformed by u and solved for the radiating field by frequency or time-domain methods. The
quasi-static, nonperturbative approach agrees well with perturbative calculations and results from
literature (see appendix A).

While easily compared to scattering rates for etched gratings, the displacement-normalized αm
hides an important aspect of optomechanical antenna performance: the mechanical power. The
fixed-power antenna functions [Fig. 2(c)] fall rapidly at higher angles θ since K and therefore
Pm ∝ Ω2 increase. In comparison to OMAs employing surface acoustic waves in lithium
niobate [17], suspended structures are compliant and tightly confine the mechanical energy of
their modes. This reduces the mechanical power Pm needed to achieve a given scattering rate αm
by orders of magnitude.

4. Optomechanical antennas for silicon photonics

Having explored a two-dimensional optomechanical antenna, we add transverse structure to
our calculations to yield a design for an OMA practical for an array and compatible with
microelectronics manufacturing. In doing so, the mechanical waves of the slab are replaced by a
multi-moded mechanical response of the core and socket of the waveguide in Fig. 1(b). Mixing
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Fig. 3. The ridge OMA guides light and sound supporting a range of mechanical modes
over which the 193 THz optical mode (dot on black band of (a) Ey inset) can be scattered
from 0◦ to 90◦ (shaded in blue). The mechanical power needed to achieve max |uz | = 1 nm
oscillations of the core is plotted above the bands of (b) Inset plots of the displacement
show the low K behavior (red) where the mode resembles the fundamental Lamb mode of a
uniform, clamped membrane. The first excited symmetric mode in the shaded region (black
dot) is the mode of interest with scattering rates plotted in Fig. 2. After the anticrossing the
mode is expelled from the core into the sockets (blue dot). In (a), the antisymmetric (with
respect to y-reflection) and symmetric bands are plotted in black and red, respectively. In
(b), symmetric and antisymmetric bands are plotted in black and red, respectively. In both
band diagrams, the continuum of radiation modes of the 50 nm SOI stack are hatched.

between core and socket modes becomes an important feature of the antenna’s optomechanical
response.
The OMA we describe is designed for 220 nm silicon-on-insulator (SOI) common in silicon

photonics. A ridge waveguide is defined by a 170 nm partial etch, leaving a compliant 50 nm
socket connecting the 450 nm wide optical core to the substrate. The ridge is partially released
leaving a 1.33 µm wide suspended region. This width allows for subwavelength 1.41 µm pitched
arrays with a transverse field of view ∆φ of up to 67◦.
This OMA supports both guided optical and guided mechanical modes. At 193 THz optical

waves are confined to the waveguide core and have an effective index neff = 2.33, well above
the slab modes of the 50 nm SOI stack (hatched in Fig. 3(a)). The effective index sets the
range of wavevectors K ∈ 2π × [0.86, 2.15] µm−1 that phase-match β to free-space k. For these
wavevectors, Lamb-like flexural modes of the waveguide have lower phase velocities than any
other mechanical excitation in the system. They comprise bands that fall below the cone of
surface and bulk waves of the 50 nm SOI stack, represented by the hatched region in Fig. 3.
Consequently, they do not suffer mechanical radiation losses in the absence of disorder [20, 27].
Mechanical modes of the structure can be understood in terms of waves in the sockets and

waves in the core. Only motion of the core causes the antenna to radiate, directing our attention
to the first excited symmetric band of Fig. 3(b). The fast band of the core mixes with the slow
bands of the socket giving rise to avoided crossings at K/2π of 0.8 µm−1 and 1.5 µm−1. Below
and above the avoided crossings, the sockets are mechanically decoupled by the core. This leads
to nearly degenerate symmetric (black) and antisymmetric (red) bands. The motion of the core is
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Table 1. Optomechanical antenna properties.

Antenna property

Antenna length Leff 2 mm

Mechanical power Pm 2 mW

Transducer bandwidth ∆Ω2π 1.6 GHz

Field of view ∆θ 44◦

Spot size δθ 0.05◦

Resolvable spots Nθ 880

Optical bandwidth ∆ω2π 39 GHz

Mechanical bandwidth ∆Ωm
2π 2 MHz

suppressed in these degenerate bands, and therefore there is no optomechanical coupling.
The scattering rates are computed perturbatively and plotted in Fig. 2(b) alongside the results

for a slab. The scattering rate α is peaked at θ ≈ 60◦ and falls off near the avoided crossings.
Since the scattering rates are normalized by the maximum displacement of the core and not
by power, these tails come from changes to the mechanical mode profile. Radiation into air is
slightly weaker than into silicon. The latter is small but nonzero even when radiation into air is
disallowed by phase-matching

��k−1 (β − K)
�� > 1. The ridge OMA scatters out at nearly half the

rate of the slab.
Despite the effects of mechanical mode mixing, the ridge OMA retains a large field of view

as shown by the power-normalized antenna function of Fig. 2(c). For less than a milliwatt of
mechanical power per antenna, corresponding to approximately 1 nm maximal displacement,
scattering lengths of 2 mm can be achieved over ∆θ = 13◦. Doubling either the power or the
scattering length more than doubles the field of view ∆θ = 44◦.

A microwave-driven, electromechanical transducer could excite the milliwatt-scale mechanical
waves needed to efficiently scatter light out of the array. The coherent optical transduction
schemes demonstrated in SOI would here exceed the power-handling thresholds for silicon
waveguides. This follows from the discrepancy between optical and mechanical frequencies. A
milliwatt mechanical wave corresponds to a phonon flux on the order of 1021 Hz. Achieving
the same flux of optical photons requires 100 Wwhereas microwave photons can be converted
to phonons with high efficiency by piezoelectric or capacitive electromechanical transducers.
Our work motivates the integration of microwave-driven, electromechanical transducers into the
silicon photonics platform [28].

5. Optics of optomechanical antennas

In the previous sections we designed an optomechanical antenna that can be integrated into a
silicon photonic phased array. Here we discuss the main properties of its radiation pattern.

In the far-field the beam radiated from an OMA array is governed by Fraunhofer diffraction. For
an ideal radiator where Jom does not vary in the longitudinal direction and remains coherent over
a length Leff, the far-field spot size is δθ = λ/(Leff sin θ). The polar field of view ∆ cos θ = ∆K/k
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is set by the range of wavevectors ∆K for which α is large as quantified in Fig. 2(c). A full system
requires an efficient mechanical transducer and coupling structure with bandwidth ∆Ω over this
range. Assuming negligible mechanical group velocity dispersion, the number of resolvable
spots is the mechanical transit time-bandwidth product Nθ = ∆θ/δθ = τm∆Ω/2π.
Since Leff plays an important role in beam quality, we quantify sources of spatial decay and

decoherence of Jom that limit Leff. Variations in the amplitude and phase of Jom arise from optical
and mechanical decay, as well as dephasing due to geometric disorder [29–32] and thermal
fluctuations.
As light and sound propagate along the antennas, the phase of Jom accumulates an error

δϕ(z). This differs from beam-steering systems that use spatial light modulators [33], MEMS
micromirrors [34, 35], or microlens arrays [36] where light interacts with the device only over a
small distance. For fluctuations δβ(z) and δK(z) spatially correlated over ξ � Leff, the phase
error δϕ(z) diffuses along the antennas and is Gaussian-distributed with its variance growing
linearly with z. We define Lϕ as the length after which the phase variance 〈δϕ2(z)〉 averaged
along the antennas equals π2. This dephasing length Lϕ depends on the relative propagation
direction of the guided optical and mechanical waves. In the counter-propagating case we find〈

δϕ2 (z)
〉
= Sββ[0]z + SKK [0](L − z) (7)

where Sββ and SKK are the power spectral densities of δβ and δK (see appendix D for a
derivation).
Geometric fluctuations δXl , indexed by l, shift β by δβ(z) = ∑

l ∂lβδXl(z) such that for
stationary noise with correlations

〈δXl (∆z) δXl (0)〉 = σ2
l e−|∆z |/ξl (8)

we get Sββ[0] = 2
∑

l(∂lβσl)2ξl and similarly for K . Slow drifts in Xl (large ξl) are more limiting
than roughness since they lead to more rapid phase accumulation along each antenna. Therefore
the dephasing length is

Lϕ =
2π2

Sββ[0] + SKK [0]
(9)

In the copropagating case we similarly obtain 〈δϕ2(z)〉 = Sk| |k| | [0]z with δkq(z) = δβ(z) − δK(z),
and the dephasing length Lϕ,co is found by replacing the denominator and factor of 2 in the
numerator of Eq. (9) by Sk| |k| | [0].
We compute the geometric sensitivities to fluctuations ∂lβ and ∂lK for different types of

pertubations and find height variations to be the dominant source of dephasing. These results
are collected in table 2 along with corresponding dephasing lengths. Our finite-element models
predict similar optical and mechanical sensitivities to height disorder. The mechanical and
optical sensitivities are usually of opposite sign: mechanical waves speed up when optical waves
slow. We compute the mechanical sensitivities at a wavelength of Λ = 842 nm and frequency of
Ω/2π = 3.42 GHz such that the steering angle θ = 60◦ corresponds to the maximal scattering
rate α [Fig. 2].
For the dephasing length estimates in table 2 the standard deviations σl are based on

measurements of similar silicon photonic circuits [29–32] and correlation lengths ξl of 50 µm
are assumed (see appendix D). In the purely optical case, the overall geometric dephasing length
is Lϕ,β = 3.4 mm. For counter-propagating optical and mechanical waves we have Lϕ = 1.7 mm:
about half of Lϕ,β as the optical and mechanical phase errors add incoherently. Further, the
dephasing length for copropagating fields Lϕ,co = 0.9 mm is about four times smaller than Lϕ,β
as the optical and mechanical phase errors subtract coherently.
Temperature gradients across the system also shift the phases of the guided optical and

mechanical fields. Spatially inhomogeneous temperatures are analogous to geometric disorder.
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Table 2. Dephasing in a ridge OMA.

Geometric dephasing σl

(nm)
∂lβ

(mm−1nm−1)
∂lK

(mm−1nm−1)
Lϕ,β
(mm)

Lϕ
(mm)

Lϕ,co
(mm)

Core width 0.5 7.8 -1.2 13 13 9.7

Core height 0.3 14.6 -12.2 10 6.1 3.1

Slab height 0.5 9.8 -11.9 8.1 3.3 1.7

Membrane width 2 −0.003 1.2 4021 35 34

Thermal dephasing ∆T
(K)

∂T β

(mm−1K−1)
∂T K

(mm−1K−1)
LT,β

(mm)
LT

(mm)
LT,co
(mm)

5 0.9 0.2 1.4 1.1 1.8

A temperature gradient ∆T across the antenna array results in thermal dephasing lengths
of LT = 2π/(|∂T (β + K)|∆T) in the counterpropagating and LT,co = 2π/(|∂T kq |∆T) in the
copropagating case (see appendix D). Careful thermal management can likely limit spatial
temperature gradients to 5 K across the array [37] so we find LT ≈ 1.5 mm in either case (table 2).

Optical and mechanical crosstalk between the waveguides in a phased array is another source of
phase errors. Crosstalk splits the wavevectors of symmetric k+ (· · ·++++ . . . ) and antisymmetric
k− (· · · + − + − . . . ) array supermodes, causing them to dephase after a length Lx = π/(k+ − k−).
A 1.41 µm pitch array has an optical crosstalk length of Lx = 8.7 mm.

Larger apertures yield narrower spots and higher resolution at the cost of the optical and
mechanical modulation bandwidth. Although our control over mechanical wavevector K enables
beam-steering at fixed optical frequency, optomechanical antennas are still dispersive. The
optical bandwidth ∆ω at fixed mechanical frequency is set by how much ω can be changed before
a spot shifts by δθ. We find ∆ω/2π = 1/(τ − τr) with τ = Leff ng/c the transit time of the guided
optical wave where ng is the group index, and τr = Leff cos θ/c the transit time of the radiating
field across the aperture (see appendix F). Similarly, the mechanical transit time τm determines
the mechanical bandwidth ∆Ωm/2π = 1/τm within a spot at fixed optical frequency.
Estimates of the antenna properties above for the ridge OMA are provided in table 1. We

assume an effective antenna length of 2 mm limited by dephasing. The field of view is from θ of
35◦ to 79◦. We compute the optical bandwidth around θ = 60◦ with an optical group index of
4.3 and a mechanical group velocity of 4135 m/s.

6. Nonreciprocity and multiplexing mechanics

In addition to two-dimensional beam-steering, active gratings generated by mechanical waves
naturally implement certain functionalities that are not intrinsically present in other approaches.

First, the time-varying grating generated by a unidirectional mechanical field breaks reciprocity
in the structure. Therefore the system operates as a nonreciprocal metasurface [38]: light that
is scattered out is shifted up in frequency by Ω and the light coming back is shifted up again
in frequency by Ω such that the roundtrip optical frequency shift is 2Ω [Fig. 4]. Therefore the
system naturally includes a frequency-shifting function that can be used for heterodyning with an
on-chip local oscillator.

Second, even at a fixed optical wavelength we can inject a superposition of mechanical waves
with different wavevectors. Each of these mechanical waves generates an outgoing beam at
a separate angle that can be controlled, sent to different targets, and read out independently
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Fig. 4. (a) On the transmit side, the optical wave at ω is shifted to an outgoing optical wave
at frequency ω +Ω. (b) The backscattered light now has an additional Doppler shift of δω.
This incoming wave mixes with the same mechanical wave and excites the optical waveguide
at frequency ω + 2Ω + δω. (c) The resulting optical spectrum allows us to distinguish
between light being sent and received, moving the received beam outside of the laser phase
noise. (d) The outgoing radiation can be multiplexed dynamically by exciting a superposition
of mechanical waves. Each of the outgoing beams can be controlled independently. As a
special case, this implies widely different optical wavelengths can be sent to and received
from the same spot.

[Fig. 4(d)]. As a special case, this enables multiple optical wavelengths to be sent to and received
from a single angular spot. Such functionality may prove useful in the realization of free-space
communication links [11,39], (holographic) video displays [14,40], remote sensing [41–43], and
coherent imaging [44, 45].

7. Conclusion

In conclusion, we propose an on-chip, two-dimensional beam-steering system compatible with
standard microelectronics processes based on guided mechanical waves. We design hybrid
photonic-phononic waveguides whose mechanical excitations can travel on the surface of a
silicon-on-insulator chip. The propagating mechanical fields – acting as active gratings – convert
between guided and radiating optical fields in a rapidly reconfigurable way. Efficient optical mode
conversion can be realized in millimeter-scale apertures with low mechanical drive power. The
system can steer monochromatic light over a large field of view; distinguish between outgoing
and incoming light through a nonreciprocal frequency shift; and control the beam direction, beam
shape, and the number of beams. More generally, we have shown that subwavelength control of
photons and phonons enables low-power, dynamic control of light.

Appendix A Simulation methods

A.1 Nonperturbative method of computing scattering rates

We perform nonperturbative scattering simulations with the finite-element solver COMSOL [46]
solvingMaxwell’s equations in either 2D or 3D in the frequency domain. The resulting eigenvalue
problem has nearly guided solutions. Light scattered out of the slab is absorbed by a perfectly
matched layer, causing the eigenvalue to become complex ω→ ω − i κ2 . In this section we show

                                                                                              Vol. 26, No. 17 | 20 Aug 2018 | OPTICS EXPRESS 22083 



that the scattering rate α is related to κ as

α =
κ

vg
=

ω

Qvg
(10)

where vg = c/ng is the optical group velocity.
Consider an optical waveguide with energy per unit length E, power transmitted down the

waveguide P, and power scattered out of the waveguide per unit length Ps . We would like to
relate Ps to the attenuation rate α. Energy conservation yields

∂tE = −∂zP − Ps (11)

which for steady state ∂t → 0 becomes ∂zP = −Ps . Since

Q =
ω

κ
and κ =

Ps
E , (12)

our statement of energy conservation becomes

∂zP = −
ω

Q
E (13)

which can be reexpressed using vg =
P
E as

∂zP = −
ω

Qvg︸︷︷︸
≡α

P . (14)

Therefore, the optical power decays exponentially at a rate α that can be expressed in terms of the
imaginary part of the eigenvalues of our numerical solutions.

A.2 Verification of the model

A.2.1 Literature grating simulation

We test our nonperturbative computational approach by modeling two wavelength-scale periodic
optical structures from the literature: (1) a high index-contrast, strong silicon-on-insulator grating
coupler [47] used in imec’s silicon photonics pilot line [48] and (2) a low index-contrast, weak
grating coupler [49].

Table 3. References [47] and [49] provide the scattering rate α as a function u for these
gratings. We compute αm by estimating a couple of points in their figures in a similar
range of u. Our model agrees with the literature result up to 3% for the strong grating
and up to 5.6% for the weak grating.

αm (mm−1nm−2) α−1
m (mmnm2)

SOI literature [47, 48] 0.059 16.9

Our model 0.061 16.4

Little [49] 7.5 · 10−4 1333

Our model 7.1 · 10−4 1408
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Fig. 5. We compute scattering rates for strong and weak gratings previously demonstrated
to verify our numerical methods. The scattering strength scales quadratically with the
perturbation u. (a) Simulation of a strong SOI grating [47] that has been tested experimentally
[47, 48]. The group index of the optical mode is ng = 3.6 and the Bloch index is 2.85.
The grating pitch is 630 nm and the core thickness is 220 nm. (b) Simulation of a weak
grating [49]. The group index of the optical mode is ng = 3.4 and the Bloch index is 3.29.
The grating pitch is 10 µm and the core thickness is 500 nm.

A.2.2 PML tests

We implement the perfectly matched layers (PMLs) at the bottom and top of the simulation as an
imaginary part of the refractive index =n starting a distance xstart = 6 µm above and below the
waveguide. For |x | > xstart the strength of the PML is set by

=n =
(
|x | − xstart

xpml

)2
(15)

such that =n = 1 at a distance |x | = xstart + xpml = 15 µm away from the waveguide. The
computational domain ends at |x | = xend = d

2 + 20 µm with perfectly conducting boundaries and
d = 220 nm the typical core thickness. We set the maximum mesh size in the core and free-space
domains at 10 nm and 150 nm. With these parameters, the simulation time is about 20 s for a
wavelength of 0.63 µm. We check PML operation with the following tests, all for the SOI grating
coupler of Fig. 5(a) and for a perturbation of u = 5 nm. The scattering rate α ≈ 1.42/mm in
these tests [Fig. 5(a) and 6].
First, we investigate the field intensity in the free-space domain. For 1 µm < |x | < xstart the

field remains roughly constant, confirming that the PML mainly measures the radiation power
and not the evanescent field of the guided mode. Next, we sweep the size of the computational
domain xend [Fig. 6(a)]. The scattering rate saturates fast, likely because of reduced reflections
off the perfectly conducting boundaries, and stays constant up to 10−4 fractionally afterwards.
Second, we sweep xpml and thus the PML strength [Fig. 6(b)]. The scattering rate decreases
rapidly until xpml > 2 µm and then fluctuates at 10−4 fractionally. Third, we sweep xstart and
xpml = xstart + 3 µm while keeping other parameters constant [Fig. 6(c)]. The scattering rate
oscillates initially and then stays constant up to 10−4 fractionally. Fourth, we sweep the maximum
mesh element size in the free-space domains [Fig. 6(c)]. The scattering rate again fluctuates at
10−4 level fractionally.

Our standard operating parameters are all chosen in these regions of 10−4 fractional sensitivity
to discretization and PML parameters. Therefore, we expect simulation results accurate at
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Fig. 6. The scattering rate is insensitive to changes in the PML. (a) A sweep of simulation
size xend shows initially an increase and then saturation of the scattering rate α when
xend > 10 µm. (b) The scattering rate drops fast with PML curvature xpml and saturates
beyond xpml > 2 µm. (c) The scattering rate remains constant when xstart > 3 µm. (d)
Coarse mesh size does not strongly impact scattering rate below 200 nm. Similarly, the fine
mesh size does not affect the scattering rate below 20 nm.

percent-level at least for decay rates far above κ
2π ≈ 10MHz, quality factors below Q ≈ 107,

scattering rates above α ≈ 10/m and decay lengths below α−1 ≈ 10 cm. We determine all
scattering rates a factor 103 to 104 away from these thresholds. The quadratic scaling of scattering
rate with respect to perturbations enables extrapolation to smaller perturbations u where necessary.

A.2.3 FDTD calculations

In addition to the COMSOL-based frequency-domainmodels, we also developed Lumerical-based
finite-difference time-domain (FDTD) [50] 2D and 3D models to compute the scattering rates
and radiation patterns. Here we inject a pulse with a bandwidth of 5 to 10 nm and determine
the scattering rate α from the exponential decay of the guided power. Lumerical has built-in
functions that allow for a straightforward determination of the electromagnetic beam in the
far-field and thus the angles and strengths of the first-, second- and higher-order grating lobes.
The results generally agree with the COMSOL-based frequency-domain approach described
above and in the main text. We focus on the faster frequency-domain simulations.

Appendix B Silicon slab in air with sinusoidal perturbation

B.1 Scattering rate comparison

In this section, we investigate the scattering rates of suspended silicon-on-insulator slabs in
greater detail.
Table 4 shows a comparison of the scattering rates of five types of perturbations to a 220 nm

thick silicon slab waveguide. We perform these calculations at fixed frequency of 193.5THz and
fixed scattering angle of 67◦. The Bloch index of the optical slab mode is about 2.82 and the
grating pitch is 630 nm. From top to bottom, the first grating is the silicon-on-insulator grating
of section A.2.1. It has only a top surface rectangular perturbation. The second grating has
air both above and below the core. Its scattering rate is slightly higher owing to the increased
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Table 4. The scattering rate varies several orders of magnitude depending on the type
of perturbation. A symmetric, sinusoidal perturbation has the largest scattering rate
in a 220 nm thick silicon slab. For some perturbations the scattering rate scales with
u4 instead of u2 because of destructive cancellations in the term proportional u2. In
general the scattering rate contains all terms u2l with l any positive integer. Here we
use the perturbation-normalized quality factor as Qm = ω/(αmvg).

αm (mm−1nm−2) α−1
m (mmnm2) Qm (nm2)

u

0.059 16.9 2.5 · 105

u

0.073 13.7 2.0 · 105

u

u
1.4 · 10−6 (u(nm))2 7.1·105

(u(nm))2
1010

(u(nm))2

u

u 0.31 3.2 5.8 · 104

u

0.74 1.3 2.4 · 104

index-contrast. The third structure has a symmetric perturbation to the top and bottom surfaces.
Its scattering rate for a δ = 1 nm perturbation is about four orders of magnitude below that of the
SOI grating coupler that breaks vertical symmetry. In addition, its scattering rate scales with δ4

instead of the usual δ2 – even though second-order scattering (satisfying β − 2K = k cos θ2nd) is
not phase-matched for any angle θ2nd when θ = 67◦. The suppressed scattering and δ4-scaling
arise from destructive cancellations in the fields scattered from the top and bottom surfaces,
see Fig. 7 and discussion below for details. The fourth grating is identical except in that it has
an antisymmetric perturbation to the top and bottom surfaces. The scattering rate α is a factor
0.31
0.073 = 4.3 larger than that of a grating with a perturbation only on the top surface. The enhanced
scattering arises from constructive interference between the fields radiated by top and bottom
perturbations [Fig. 7]. The fifth grating has a sinusoidal instead of a rectangular perturbation.
It is nearly identical to the dynamic mechanical field we propose to excite. The first Fourier
component of a rectangular signal is 2

π , so the scattering by the sinusoidal perturbation is a factor
(π/2)2 = 2.4 stronger. The sinusoidal symmetric perturbation to a 220 nm-thick suspended
silicon slab thus has an overall enhancement of a factor 10.2 with respect to grating coupler with
air below and a factor 12.5 compared to a typical silicon-on-insulator grating coupler.

B.2 Thickness dependence of scattering rate

Next, we compute the scattering rate as a function of waveguide thickness for sinusoidal symmetric
and antisymmetric perturbations [Fig. 7] for the same parameters as in subsection B.1. We find
the scattering rate α for the antisymmetric perturbation to be maximal when

d =
(
l +

1
2

)
λSi (16)
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Fig. 7. The scattering rate αm caused by the antisymmetric sinusoidal perturbation is
maximal at thicknesses d =

(
l + 1

2

)
λSi with λSi = λ

nSi
= 443 nm the optical wavelength

in silicon and l a positive integer, while it vanishes at d = lλSi. A symmetric sinusoidal
perturbation yields the opposite behavior. This behavior is caused by interference between
the scattered field from the top surface and that scattered from the bottom surface. As the
waveguide core becomes thicker, the structure is less sensitive to either type of perturbation.
One simulation point just above a thickness of 600 nm was removed manually as the script
had selected the wrong optical mode. We computed both curves for a perturbation u = 10 nm.

with d the core thickness, l an integer and λSi = λ
nSi
= 443 nm the optical wavelength in silicon.

The scattering vanishes when
d = lλSi (17)

while the core with a symmetric perturbation exhibits the reverse behavior. The effect arises
from interference between the scattered fields generated by the top and bottom slab surfaces. For
an antisymmetric perturbation, there is another 180◦ shift in the phasing of the top and bottom
scatterers. Therefore, constructive interference occurs when the thickness is a multiple of a
wavelength plus an additional half-wavelength to compensate for the 180◦ phasing of the sources.
Interestingly, the global maximum in the scattering rate of an antisymmetric perturbation –
similar to that of a Lamb-type mechanical field – occurs exactly at a core thickness of d = 220 nm.
In addition, this antisymmetric sinusoidal perturbation offers the strongest scattering rates of
all the perturbation types (table 4). Hence antisymmetric Lamb-like flexural mechanical fields
propagating along a 220 nm-thick suspended silicon waveguide are ideal excitations for coupling
guided and free-space optical fields.

B.3 Photoelasticity

Even in absence of a geometric boundary perturbation, a propagating mechanical wave generates
an inohomogeneous strain profile that couples guided optical fields to radiating fields. This is
termed the photoelastic contribution αpe to the total scattering rate αtot. The scattering rates
reported above include only the boundary-induced scattering αmb. Generally speaking, the two
contributions may be of similar size and thus interfere with one another – either enhancing
the total scattering rate or potentially completely canceling it [18, 23, 51]. However, in a
simulation without the boundary perturbation our eigenfrequency model predicts a photoelastic
scattering rate of αpe = 1.4 · 10−2/(mmnm2) – nearly two orders of magnitude smaller than
αmb = 0.74/(mmnm2) (table 4) for a suspended 220 nm-thick silicon slab. Thus the photoelastic
component of the scattering is weak in the considered geometry: even in case of completely
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destructive or constructive interference the total scattering rate

αtot
αmb
=

(
1 ∓

√
αpe

αmb

)2

= 1+0.29
−0.26 (18)

would change by less than 30%. Next, we simulate the combined scattering rate resulting from
interference between the moving-boundary and photoelastic scattering. We find that the two
effects interfere constructively such that αtot = 0.96/(mmnm2) – about 30% larger than αmb.
In this computation of αpe and αtot we implemented the photoelasticity as an anisotropic

refractive index profile with components

ncore =
©­­­­«
nSi + ∆nxx 0 ∆nxz

0 nSi + ∆nyy 0

∆nxz 0 nSi + ∆nzz

ª®®®®¬
(19)

where the index variations ∆n are given by

∆nxx = −
1
2

n3
Sip12Szz (20)

∆nyy = −
1
2

n3
Sip12Szz (21)

∆nzz = −
1
2

n3
Sip11Szz (22)

∆nxz = −n3
Sip44Sxz (23)

with (p11, p12, p44) = (−0.09, 0.017,−0.051) the photoelastic tensor of silicon assuming waveg-
uide orientation along a 〈100〉 axis. The waveguide orientation has a minor effect on the effective
photoelastic components in silicon. The strain components are given by

Szz = ∂zuz = −K2xu sin Kz (24)

Sxz =
1
2
(∂zux + ∂xuz) (25)

= Szx = 0

where K is the mechanical wavevector, u the maximum mechanical perturbation and (ux, uz) =
u(sin Kz,−K x cos Kz) a snapshot of the displacement field of an antisymmetric Lamb-wave
propagating along a thin slab opposite to the z-direction. The origin of the transverse coordinate x
is taken to be in the center of the slab, such that |x | = d/2 corresponds to the silicon/air interfaces
with d the slab thickness. This analytical Lamb-wave solution assumes Kd � 1. Finite-element
simulations showed that the actual mechanical field around Kd ≈ 1 is still captured well by this
analytical approximation. In these simulations we swept u and then obtained αpe and αtot from a
fit to u2 as in Fig. 5.

In general a full 3D simulation of the combined effects of moving boundaries and photoelasticity
must be developed and is possible in our eigenfrequency approach. We have however limited
our current 3D simulations to the moving-boundary effect given the expected weakness of
photoelasticity in this system. We suspect that this weakness is caused by the distributed nature of
the photoelastic scattering, leading to destructive interferences in the outgoing radiation similar
to Fig. 7.
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Appendix C Perturbation theory for optomechanical antennas

In cavity optomechanics and Brillouin scattering, the optomechanical interaction is described
perturbatively by expanding the permittivity in terms of the mechanical deformation

ε → ε + δuε · u + O
(
u2

)
. (26)

We can take the same approach to describe scattering out of a waveguide. After a Fourier
transform ∂t → −iω, Maxwell’s equations for the electric field reduce to(

∇ × ∇ × −µεω2
)

E = iωµJ (27)

where J is a current density. We are interested in a current-free waveguide with a mechanically
perturbed permittivty (

∇ × ∇ × −µεω2
)

︸                 ︷︷                 ︸
Θ

E = µω2 (δuε · u)E. (28)

We first solve the uncoupled equations – Maxwell’s and the theory of elasticity – for the optical
and mechanical modes of the waveguide. The unperturbed electric field satisfies ΘE = 0, which
can be rewritten as a generalized eigenvalue problem of the form AE = ω2BE with Hermitian
operators A and B. Expanding E→ E + Er + . . . and ω2 → ω2 + ω2

1 + . . . the perturbed field
is given by

ΘEr = µεω
2
1E + µω2 (δuε · u)E (29)

to first order in u. Since Θ is Hermitian, Θ|E〉 = 0 implies that 〈E|Θ|Er〉 = 0. Taking the inner
product with |E〉 on both sides yields the first order correction to the eigenvalue

ω1 = −
ω

2
〈E|δuε · u|E〉
〈E|ε |E〉 (30)

where we’ve adopted Dirac notation and substituted ω2
1 → 2ωω1. For proper choice of inner

product and normalization of u, ω1 becomes the coupling rate of cavity optomechanics g0 or
Brillouin scattering g̃0 [21, 52, 53].
We can express the outgoing field fully in terms of Θ and the unperturbed fields

ΘEr = µω
2 (δuε · u)E. (31)

The optomechanical interaction above can be expressed in terms of a current

Jom = −iω (δuε · u)E (32)

allowing us to rewrite the remaining inhomogeneous equations simply as

ΘEr = iωµJom. (33)

C.1 The moving-boundary and photoelastic effect

Next we present an explicit expression for the nonlinear polarization current Jom. Mechanical
waves give rise to changes in the permittivity ε which can be expressed to first order in u in terms
of body (i.e. photoelastic effect [54]) and boundary contributions. The latter requires careful
handling to manage discontinuities in the field at boundaries of dielectrics treated by Johnson et
al. [52, 55]. This variation in the permittivity δuε · u, which is familiar in the fields of cavity
optomechanics and Brillouin scattering, is here a tensor which acts on E to give the polarization
currents Jom above.
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Consider a domain Ω with boundary ∂Ω deformed by u. The normal n points out of the
domain such that for positive u ·n the permittivity of a region in the neighborhood of the boundary
changes by ∆ε ≡ εin − εout. The main trick in forming a well-defined expression for the radiation
pressure on the boundary is to avoid field discontinuities by replacing the component of E normal
to ∂Ω with the electric displacement field D. The boundary contribution then becomes

δuεrp · u = (u · n) δ∂Ω
(
∆εΠq − ε∆ε−1εΠ⊥

)
(34)

which is expressed in terms of the tensors Πq and Π⊥ = I−Πq which project the electric field into
the plane of the dielectric interface or along the normal n, respectively. Here ∆ε−1 ≡ ε−1

in − ε−1
out

and the delta function on the boundary δ∂Ω renders (δuε · u)E into a surface current on ∂Ω.
Suppose the normal is oriented in Cartesian coordinates along z and the dielectric boundary is

at z = 0. Then

(
δuεrp · u

)
E = uzδ (z)


∆εEx

∆εEy

−ε∆ε−1Dz


. (35)

The z component of the expression above poses some difficulty as ε is discontinuous as z = 0.
This is discussed in the next section.

Although in this work estimates of the photoelastic effect justified dropping it from our
calculations, we give its contribution to the variation of ε below for completeness. The photoelastic
tensor in common use is defined such that a strain S causes ε∆ε−1

i j = (pS)i j = pi jklSkl . To first
order in u,

δuεpe · u = −ε
pS
ε
ε. (36)

C.2 Implementing the boundary contribution to Jom

The boundary contribution to the scattering process is delta-distributed across the boundary. In
the plane of a dielectric interface – along the x and y axis in Eq. (35) – the perturbation behaves
like a surface current giving rise to discontinuities in the magnetic field

n × ∆H = Jq. (37)

The J⊥ component of the surface current isn’t implemented as a set of boundary conditions.
Instead J⊥ is taken to be a uniform volume current density of finite thickness tJ = 5 nm just
inside the boundaries of our silicon waveguides, normalized by the thickness so as to converge to
a delta function the limit tJ → 0.

The expression for J⊥ is the product of a step and a delta function at the boundary, and volume
approximations of the delta function therefore require some choice of ε in the z component of
Eq. (35). Although J⊥ is discontinuous, the power sourced into the field −E · Jom is continuous,
making the radiated field robust to the exact distribution used for J⊥ [55].
We check our implementation of J⊥ by computing the OM radiation of the fundamental

TM modes of 220 nm, 340 nm, and 440 nm silicon slab waveguides both perturbatively and
nonperturbatively. The results are displayed in Fig. 8.

Appendix D Geometric disorder and dephasing

Geometric disorder has been studied extensively in nanophotonic circuits [29, 31, 32, 56–58] to
understand optical propagation losses. It has also been investigated in the context of Brillouin
scattering – where it leads to broadening of the mechanical resonance [18,19,23,59]. In both
cases the standard deviation of geometric disorder was generally estimated at σ ≈ 1 nm with
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Fig. 8. The scattering rates α are computed for, from top to bottom, a 220 nm, 340 nm,
and 440 nm slab with and without the volume current used to implement the J⊥ ∝ Dz

component of the boundary interaction. For the 220 nm slab, the J⊥ term dominates and our
perturbative (dashed) and nonperturbative (dotted) calculations agree well.

the largest disorder occurring near etched sidewalls. In studies focusing on optical scattering
losses, the coherence lengths ξ were found to be below 100 nm [31,57]. Such short coherence
lengths are not consistent with (1) wafer-scale geometric disorder [56], (2) millimeter-scale
optical dephasing lengths [58] nor with (3) the Brillouin resonance broadening observed in silicon
waveguides [18,23,59]. Therefore, we suspect the spatial correlator to contain at least two terms:
(1) a fast-disorder term with a coherence length of about 50 nm and (2) a slow-disorder term with
a coherence length of about 50 µm. The fast roughness mainly determines optical radiation loss
and backscatter – both of which require large roughness momentum – while the slow drift mainly
determines the dephasing as it builds up over many wavelengths. We expect slow disorder to be
the main hurdle for the proposed device and thus tabulate the various sensitivities in the main
text using ξ ≈ 50 µm.
In the main text, we provided the results of our analysis of dephasing. Here we discuss

the derivations in detail. There are eight cases to be investigated: the out- vs. incoupling,
anti-Stokes vs. Stokes and counter- vs. copropagating cases could each be combined. Four of
these cases suffer from low efficiencies due to a large phase-mismatch. The remaining four cases
are (1) outcoupling by anti-Stokes scattering between counter-propagating guided waves, (2)
outcoupling by Stokes scattering between copropagating guided waves, (3) incoupling by Stokes
scattering between copropagating guided waves and (4) incoupling by anti-Stokes scattering
between counter-propagating guided waves. Cases (3) and (4) are the time-reversed versions of
cases (1) and (2) respectively. Thus they have identical properties and we limit ourselves to cases
(1) and (2) in the following.

Case (1) is attractive as it allows for optical and mechanical excitation from opposite sides of
the array. In anti-Stokes scattering phase errors of the guided optical and the guided mechanical
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wave add, yielding a total phase error of

δϕ(z) =
∫ z

0
dz′ δβ(z′) −

∫ z

L

dz′ δK(z′) (38)

The optical phase error grows forwards while the mechanical phase error grows backwards. The
variance of the phase error is

〈δϕ2(z)〉 =
∫ z

0

∫ z

0
dz′dz′′ 〈δβ(z′)δβ(z′′)〉

+

∫ z

L

∫ z

L

dz′dz′′〈δK(z′)δK(z′′)〉

+ 2
∫ z

0

∫ L

z

dz′dz′′ 〈δβ(z′)δK(z′′)〉. (39)

To compute these terms, we expand δβ =
∑

l ∂lβδXl and δK =
∑

l ∂lKδXl and assume a spatial
correlator for the disorder

〈δXl (∆z) δXl (0)〉 = σ2
l e−|∆z |/ξl . (40)

With this explicit form for the noise correlator, the first term becomes∫ z

0

∫ z

0
dz′′dz′ e−|∆z |/ξl = 2ξl

(
z − ξl + ξle−z/ξl

)
z�ξl≈ 2ξlz (41)

with ∆z = z′− z′′ and similarly for the δK-term. For z � ξl and L − z � ξl the δβδK cross-term
in Eq. (39) is negligible. Substituting Eq. (41) into Eq. (39) we find〈

δϕ2 (z)
〉
=

∑
l

2∂lβ2σ2
l ξlz + 2∂lK2σ2

l ξl (L − z) . (42)

Above we relied on an explicit form for the correlator and simplified the result in the limit
where z � ξl . In this limit a more general expression for

〈
δϕ2 (z)

〉
can be derived in terms of

the power spectral density of the disorder Sηη for noise process η. As a result of the central limit
theorem, any stationary noise process of finite variance integrated over lengths greater than the
noise’s correlation length is Gaussian-distributed. The variance of this integrated process equals
the product of Sηη[0] and the propagation length [60]. For example fluctuations δβ in the optical
wave vector are integrated over the length of the waveguide z contributing to the phase error δϕ
as a Gaussian with variance Sββ[0]z. Here the power spectral density Sββ[ω] of δβ is

Sββ[ω] =
∫ +∞

−∞
dz eiωz 〈δβ(z)δβ(0)〉. (43)

Again dropping the δβδK crossterm, it follows that〈
δϕ2 (z)

〉
= Sββ[0]z + SKK [0](L − z) (44)

as reported in section 5.
We can check that Eq. (42) and Eq. (44) match. The power spectrum for Eq. (40) is

Sββ[ω] =
∑
l

2(∂lβσl)2ξl
1 + (ωξl)2

. (45)
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If we plug this expression at ω = 0 and the corresponding one for δK into Eq. (44) we find
Eq. (42).
In case (2), Stokes scattering implies that the guided optical and guided mechanical phases

subtract such that
δϕ(z) =

∫ z

0
dz′ δkq (46)

with kq = β − K so one can show as in the above that

〈δϕ2(z)〉 = Sk| |k| | [0]z (47)

The thermal dephasing lengths in the main text were derived along similar lines but with constant
δβ and δK along the antennas.

Appendix E Mechanical losses

Material losses cause mechanical waves to decay at a rate γ = Ω/(Qmvm) where Qm is the
mechanical quality factor and vm is the mechanical group velocity. At room temperature,
nonlinear phonon processes limit mechanical Qs of silicon resonators to Q ≈ 104 [61]. Waves in
the ridge OMA presented in the text at K = 2π × 1.2 µm−1 which scatters light at θ = 60◦ have a
frequency Ω = 2π × 3.42 GHz and group velocity vm = 4135m/s. Assuming a quality factor
Qm = 3 × 103, the resulting decay length is γ−1 = 580 µm.
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Fig. 9. Mechanical losses alter the exponential envelope of an ideal OMA, limiting the
effective aperture and increasing the mechanical power needed to achieve it. (a) The solid
curves show power radiated per unit length across an antenna for values of ζmax = − log a
ranging from -1 to 5 (from red-to-black in even steps). Large scatterings rates a results in
approximately exponential radiation patterns as in the lossless case. As a decreases, the
profile shifts toward higher z with a constant FWHM of ∆ζ = 2.45. The dotted curves show
the fraction of the guided light remaining in the waveguide, plotted on the same axes. (b)
The mechanical power needed to achieve a particular radiation pattern is plotted against the
antenna’s length L on the same abscissa as (a).
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Attenuation of the mechanical waves modifies the optical scattering rate α from the antenna
and thereby the radiation pattern of an OMA. Consider the counter-propagating optical and
mechanical waves of the anti-Stokes process for which

∂zP = −αmPmP (48)
∂zPm = γPm (49)

where αm is a power-normalized scattering rate, not to be confused with the displacement-
normalized rate represented by αm in the rest of the text. In the above equations we assume the
mechanical drive Pm is undepleted by the scattering process, a reasonable assumption since the
phonon flux for a 1 mW drive is larger than a 1 mW optical guided wave by a factor of ω/Ω ≈ 105.
The optical power is P0 at the beginning of the antenna where z = 0 and the mechanical power is
Pm 0 at the end of the antenna where z = L. We can solve these equations given the boundary
conditions above to find the optical power along the antenna

P (z)
P0
= e−a(eζ−1) (50)

where we’ve introduced two dimensionless parameters: the local scattering rate at the beginning of
the antenna a = −αmPm0e−γL/γ and the distance along the antenna ζ = γz. The power radiated
from the waveguide is computed from the guided power by taking the derivative Pr = −∂zP
yielding

Pr (ζ)
γP0

= a exp
(
ζ − a

(
eζ − 1

))
. (51)

Maximal scattering occurs at ζmax = − log a. When the optical scattering rate at z = 0 is large
compared to the mechanical attenuation rate γ such that ζmax � 0, the power radiated Pr decays
exponentially and attenuation can be ignored. As a is decreased perhaps by lowering Pm0, the
maximum shifts right ζmax and when sufficiently far from the origin and for sufficiently long
antennas the resulting radiation pattern has a FWHM of ∆ζ = 2.45. The 1/e width is 3 and
the 1/e2 width is 4.45. Figure 9 shows the mechanical power necessary to achieve a particular
radiation pattern for an antenna of a particular length.

Appendix F Derivation of antenna properties

Here we provide derivations of the antenna properties presented in the main text. Some of the
properties are illustrated in Fig. 10.

F.1 Field of view

The field of view ∆θ is the range of angles than can be reached by sweeping the mechanical
frequency. It is set by the bandwidth of the electromechanical transducer, the sensitivity of
the mechanical wavevector to frequency as well as the sensitivity of radiation wavevector to
mechanical wavevector. In particular, subtracting the phase-matching conditions at two different
mechanical frequencies leads to

k(ωr + ∆Ω) cos(θ + ∆θ) − k(ωr) cos(θ) = −∆K (52)

with ∆Ω = vm∆K the bandwidth of the electromechanical transducer. This determines ∆θ in
general, while for small ∆θ we get

∆θ =
∆Ω

k sin(θ)

(
1
vm
+

cos(θ)
c

)
(53)

≈ ∆Ω

k sin(θ)vm
=
∆Ω

2π
λ

sin(θ)vm
(54)

with λ = 2π/k the radiation’s wavelength. Here we used c � vm.
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Fig. 10. (a), The field of view ∆θ is the range of angles that can be reached by tuning the
mechanical frequency Ω at fixed optical frequency ω. (b) The spot size δθ is the angular
width – set by the wavevector uncertainty δK – of the scattered optical beam in the far
field. (c) The optical bandwidth at each spot ∆ω is the amount the optical frequency ω can
be shifted before the beam angle shifts by more than the spot size δθ at fixed mechanical
frequency Ω. Since both the outgoing wavevector k and the guided wavevector β change
with frequency, the optical bandwidth at each spot ∆ω is set by the walk-off between the
guided and radiating optical fields.

F.2 Spot size

The spot size δθ is the angular width of the scattered optical beam in the far field. It is set by the
wavevector uncertainty δK = 2π

Leff
corresponding to the finite aperture:

k δ cos(θ) ≈ k sin(θ)δθ (55)

= δK =
2π
Leff

where we dropped a minus sign. Therefore,

δθ =
λ

sin(θ)Leff
(56)

F.3 Number of resolvable spots

The number of resolvable spots Nθ is the ratio between the field of view ∆θ and the spot size δθ.
Neglecting the frequency-dependence of k allows us to express Nθ = ∆K/δk only in terms of
the mechanical properties of the optomechanical antenna. We find that

Nθ =
∆K
δk
=
∆θ

δθ
=
∆Ω

2π
τm. (57)

The number of resolvable spots is set by the product of the transducer bandwidth ∆Ω and the
mechanical transit time τm = Leff/vm. With a large bandwidth transducer we have ∆K → 2k and
therefore Nθ → 2 Leff

λ – making the effective aperture length the ultimate limit on the number of
resolvable spots.

F.4 Bandwidth at each spot

The optical bandwidth is set by how much the optical frequency can be changed before the
beam angle disperses more than the spot size. For fixed K we differentiate the phase-matching
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condition and
cos θ δk + k δ cos θ︸   ︷︷   ︸

=δK

= δβ. (58)

We equate the second term, the angular variation from changing ω, to the angular spread of the
beam in section F.2 δK = 2π

Leff
. Relating δβ and δk to ∆ω by the guided and free-space optical

dispersion relations we find
∆ω

2π
=

1
τ − τr

(59)

with τ = Leffng/c the transit time of the guided optical wave and τr = Leff cos θ/c the transit time
of the radiation mode across the aperture and ng the group index of the guided optical wave.
The optical bandwidth at each spot ∆ω0 is thus set by the walk-off between the guided and the
radiation mode.
A similar derivation as in the optical case above shows that the mechanical transit time

determines the mechanical bandwidth at each spot

∆Ωm
2π
=

1
τm

(60)
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