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Studies of resting state functional MRI (rs-fRMI) are increasingly focused on “dynamics”,
or on those properties of brain activation that manifest and vary on timescales shorter
than the scan’s full duration. This shift in focus has led to a flurry of interest in developing
hypothesis testing frameworks and null models applicable to the dynamical setting. Thus
far however, these efforts have been weakened by a number of crucial shortcomings
that are outlined and discussed in this article. We focus here on aspects of recently
proposed null models that, we argue, are poorly formulated relative to the hypotheses
they are designed to test, i.e., their potential role in separating functionally relevant
BOLD signal dynamics from noise or intermittent background and maintenance type
processes is limited by factors that are fundamental rather than merely quantitative or
parametric. In this short position paper, we emphasize that (1) serious care must be
exercised in building null models for rs-fMRI dynamics from distributionally stationary
univariate or multivariate timeseries, i.e., timeseries whose values are each independently
drawn from one pre-specified probability distribution; and (2) measures such as kurtosis
that quantify over-concentration of observed values in the far tails of some reference
distribution may not be particularly suitable for capturing signal features most plausibly
contributing to functionally relevant brain dynamics. Other metrics targeted, for example,
at capturing the type of epochal signal variation that is often viewed as a signature of brain
responsiveness to stimuli or experimental tasks, could play a more scientifically clarifying
role. As we learn more about the phenomenon of functionally relevant brain dynamics
and its imaging correlates, scientifically meaningful null hypotheses and well-tuned null
models will naturally emerge. We also revisit the important concept of distributional
stationarity, discuss how it manifests within realizations vs. across multiple realizations,
and provide guidance on the benefits and limitations of employing this type of stationarity
in modeling the absence of functionally relevant temporal dynamics in resting state fMRI.
We hope that the discussions herein are useful, and promote thoughtful consideration of
these important issues.
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INTRODUCTION

Studies of blood oxygenation-level dependent (BOLD) resting
state functional magnetic resonance imaging (rs-fMRI) have been
increasingly focused on properties of functional activation that
manifest and vary on timescales shorter than the full duration
of the scan (Hutchison et al, 2013). Such an approach is a
more natural way to analyze such data as we know the brain
is a highly dynamic organ. In resting-state studies, we do not
have the benefit of external indicators of behavior other than
the narrow case of subject wakefulness, which can be studied
by using simultaneous electroencephalogram (EEG) recordings
(Wu et al,, 2010; Tagliazucchi and Laufs, 2015; Allen et al.,
2018). In the case of resting data, we are seeking evidence in
the scan itself of shifts in a subject’s cognitive focus, emotional
state, attention or consciousness level: e.g., we are attempting
to locate the temporal and correlative signatures of complex
internal (“ecologically authentic”) sequences of mental tasks. The
growing focus on shorter timescale analysis and examining these
functionally relevant brain dynamics (FRBD) in rs-fMRI has
spawned a number of efforts (Hutchison et al., 2012, 2013; Jones
et al., 2012; Calhoun et al., 2014; Preti et al., 2016) to identify
variations (univariate, multivariate and relational/correlative)
in network behavior that arise from reconfigurations of the
subject’s cognitive, attentional, sensory, emotional (CASE) states
(see Figure 1, partial guide to acronyms). These shifts can be
conscious or non-conscious, and targets of investigation can
be expanded to include temporal fluctuations that shape and
maintain crucial neural circuitry that indirectly supports effective
brain function.

Testing the statistical significance of the dynamic (i.e., time-
varying) measures capturing these CASE shifts in such shorter
timescale analyses assumes great importance because of the noisy
(inherent physiological and artifactual confounds) nature of
BOLD rs-fMRI data. While it would be highly useful to replicate
the behavior of “noiseless” BOLD data to construct appropriate
null simulations, the absence of a baseline, i.e., ground truth
for resting state, makes this step extremely challenging. A
null distribution of the test-statistic capturing the phenomenon
of interest must therefore be approximated using multiple,
independent “surrogate” realizations of the empirical data. The
surrogate data realizations ideally retain all statistical properties
of the empirical data other than the phenomenon of interest, and
hence give a meaningful null to validate statistical significance
of the metric capturing the phenomenon of interest. Notably,
non-parametric null models based on phase randomization (PR)
and/or vector auto-regression (VAR) approaches (Chang and
Glover, 2010; Cribben et al., 2013) have been widely used to seek
evidence for presence of non-stationarities (discussed in section
Statistical Stationarity, Gaussianity, and rs-Brain Dynamics).
These models allow us to comment on the Gaussian, stationary,
and linear properties of the studied data. The work on null
models and hypothesis testing (e.g., Zalesky et al., 2014; Zalesky
and Breakspear, 2015; Hindriks et al., 2016; Laumann et al.,
2016; Shakil et al.,, 2016; Shi et al, 2016; Abrol et al., 2017;
Liégeois et al., 2017) frameworks for shorter timescale analysis of
network behavior and dynamics has produced some preliminary

(although possibly contrasting) insights but limitations remain.
One major limitation of using these (phase randomized or vector
autoregressive) non-parametric null models as also pointed in
a few of these studies (Zalesky and Breakspear, 2015; Shakil
et al,, 2016) is that they can also be rejected due to presence
of non-linearities. Because of this, rejection of null hypotheses
stemming from such approaches in their current form do not
allow us to conclude the presence/absence of non-stationarities.
More importantly, the fact that values within a signal are not
inconsistent with values drawn from some fixed pre-specified
distribution, i.e., that the signal is not provably distributionally
non-stationary does not rule out the presence of FRBD 4. Given
the dynamic nature of the human brain, the most interesting
hypotheses about fMRI dynamics would not focus on whether
they exist, but rather on how they might manifest differentially
over different temporal, spatial, and functional scales.

The best we can hope for right now is for researchers to
focus on what signal properties they are seeking to quantify,
and why they believe that a strong presence of these properties
should be taken as evidence of FRBD (or of nuisance factors
that are not easily separable from FRBD at current levels
of measurement resolution). It can be argued that analyzing
univariate or multivariate timeseries variations that are most
plausibly connected with actual shifts in mental functioning (e.g.,
temporal epochs exhibiting profound changes in magnitudes
and spectrum) will ultimately yield more scientifically clarifying
information about observed resting state brain dynamics than
approaches based on quantifying the improbability of observed
values with respect to some fixed reference distribution. As
we will be discussing in this paper, the presence of spectrally
distinguishable temporal epochs (SDTEs) (see Figure 1) at both
univariate and multivariate scales (where they play a larger role
in connectivity) is one potential form of evidence for rs-FRBD
that might warrant more attention. There are many features and
timescales over which functionally relevant temporal variations
might manifest, and most prospective metrics will present
some combination of over-sensitivity to irrelevant features and
blindness to important features and/or timescales. Development
of valid metrics for functionally relevant brain dynamics presents
thus presents a major challenge in the field (as also discussed
in Hindriks et al., 2016). Such a metric would essentially,
with some degree of specificity, rise in the presence of those
univariate or multivariate timeseries variations that are most
plausibly connected with actual shifts in mental functioning.
The factors that obstruct development of powerful, valid metrics
also present serious challenges to the development of valid,
scientifically useful null models. In studies where the natural
null hypothesis is effectively that “measured dynamic signal
properties do not reflect functionally relevant dynamic neural
processes,” an appropriate null space of network timecourses
would have to lack variations consistent with actual shifts in
mental functioning, for example, (1) there must be no task,
experimental or ecological condition whose signature presents as
a type of epochal variation! generically observable in this null

I'The term “epoch” has been used in this paper to refer to a duration, time period,
and not necessarily of repetitive nature.
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CASE

Some important broad
categories of mental and
neural functions

Mental Phenomena

Partial Guide to Acronyms

FRBD

C=Cognitive F=Functionality S=Spectrally
A=Attentional R=Relevant D=Distinguishable
S=Sensory B=Brain T=Temporal
E=Emotional D=Dynamics E=Epochs

Dynamic neural processes that
support shifting configurations
of mental functions

N

Neural Phenomena

FIGURE 1 | Diagrammatic summary of several key acronyms in use throughout this paper.

SDTEs

Data intervals with
distinguishable univariate or
multivariate spectral features

Data Properties

space, and (2) the timeseries features that occur most rarely in
this space must be exactly those that are most strongly consistent
with a brain undergoing shifts in CASE state. Another, more
general, hidden risk when using multi-parameter simulation-
based null models is ensuring that the resulting distributions
of key test statistics are not influenced by auxiliary model
parameters unrelated to those explicitly connected with the null
hypothesis.

In what follows, we further detail these points and address
them, in particular, as they relate to the null model and test
metric used in a recent paper (Laumann et al., 2016). Our
concerns are applicable well beyond the scope of Laumann
et al. (2016) but this recent paper motivates us to discuss
some of the inherent challenges of dynamic fMRI analyses,
and helps illustrate the key pitfalls of employing naive null
models in efforts to detect the presence of ubiquitous, complex
and poorly understood phenomena such as functionally-relevant
brain dynamics.

As this position paper was written in partial dialogue with
a recent published paper (Laumann et al., 2016) addressing the
validity of dynamic functional network connectivity, we provide
a very brief summary of some salient details from that paper
to facilitate the reader’s engagement with the discussion that
follows. Using a null space of windowed connectivity matrices
computed from spectrally and covariance constrained Gaussians
(SCC Gaussians), the authors employ multivariate kurtosis as
a test statistic to test the null hypothesis of “no dynamics”.
Among other findings, they report (1) a strong relationship
between motion (mean frame displacement) and kurtosis; and (2)
that the clusters formed by time-varying connectivity matrices
from the null space are nearly indistinguishable from those

computed from empirical data. Also, while the focus of Laumann
et al. (2016) was predominantly on connectivity dynamics,
connectivity-based findings do carry much broader implications
about the validity of shorter timescale dynamics of fMRI
voxel and network timecourses as well (if connectivity is not
dynamically changing on some timescale, then the underlying
univariate signals are not dynamically changing in any ways
that validly affect their measured correlative relationships
etc.).

We hope our discussion clarifies the implications of Laumann
et al. (2016), while also conveying the challenges of the
project its authors undertook. It must also be noted that
for remainder of the manuscript we shall be focusing on
discussing appropriateness of null models in the context of
epochal temporal variations (key contributors to estimated
FC measures and potential signatures of FRBD) as the
specific phenomenon of interest, and not in context of
testing for scan-length statistical stationarity (unless otherwise
specified).

MODELING FUNCTIONALLY RELEVANT
BRAIN DYNAMICS VS. MODELING THEIR
ABSENCE (DATA MODELS VS. NULL
MODELS)

The relationship between well-constructed models of observed
data and null models for a given phenomenon depends largely
on the relationship between observed/observable data and the
phenomenon being investigated. In situations such as those
presented by the study of resting-state functionally relevant brain
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dynamics (rs-FRBD) using human subject fMRI data, where the
null hypothesis is that a certain phenomenon is not present
but the empirical data being modeled (in this case real fs-
fMRI data) happens to be data in which this phenomenon is
continually present, then the goals of building a null model
for the phenomenon and accurately modeling the data can
diverge significantly. Though there are many cases where highly
accurate models of the data are also appropriate models of
a setting in which the null hypothesis applies, e.g., they are
also good null models. In the fMRI setting, for example, a
high-fidelity model of motion-curated data might be useful
for flagging future scans that warrant examination for motion
contamination.

As discussed earlier, one of the challenges in the field of
brain dynamics is that it is difficult to generate a true/valid
null model as the phenomena of interest are rather poorly
defined. Thus, modeling this data with high fidelity is not
going to be the same as producing a null model for brain
dynamics. In fact, a valid null simulation model of multivariate
signals lacking features corresponding to rs-FRBD would by
necessity diverge from actual scans observed in living people.
Depending on what turn out to be the most reliable timeseries
indicators of CASE-driven brain dynamics, it is possible that
there could be a valid null model that exhibits some similarities
with the observed data (or output from good models of
that data). However, a model built on the null hypothesis
of no brain dynamics would by necessity only rarely create
realizations that look similar to real rs-fMRI multivariate
timeseries.

Statistical Stationarity, Gaussianity, and

rs-Brain Dynamics

The statistical or distributional stationarity of a generating
process is defined through the invariance of its joint probability
distribution across any number of samples, to any time shift, and
as such, with real data, it can be only inferred using multiple
realizations of the finite-time empirical timeseries. A process
is stationary if the statistical characterization computed over N
realizations of any k-tuple of timepoints of length j {t;,,. ...t}
and their t-translates {t;, + 7,...,t, + T} converge to identical
values as N — o0o. A practical way to infer stationarity is
by estimating a finite set of moments as they are easier to
compute than a full probability distribution. Of course, it is
important to note that any definition of stationarity depends
on the interval over which it is evaluated. For a given interval
over which stationarity holds, it is quite possible for strongly
distinguishing spectral characteristics to manifest over shorter
sub-intervals as we demonstrate next. Matching white Gaussian
noise to a template spectrum actually produces every possible
signal with the given time-averaged spectral content given by the
target. Statistical stationarity without other explicit constraints
on the process does not imply that individual realizations of
the univariate or multivariate timeseries (e.g., for fMRI these
are individual subjects) are not featuring pronounced temporal
epochs (see Figure 2). Even white Gaussian noise, for example,
matched to some empirically-valid band-limited spectrum—a
common statistical tactic that was also a step in the null model
proposed in Laumann et al. (2016)—can be markedly epochal
within typical individual realizations. This general phenomenon

1 te[0,4m)
CoS 2t t€ [4m,8n)
coS /4 t€ [8m,12m)

J)=

0 471 942 1414 18.?5 23.56 28.27 3299 37.7

will have different autocorrelations
E(F,(t) = E(F,(t))=03354 for all 1,1’

Statistical Stationary Does not Ensure Absence of Evident Temporal Epochs

Uniform Random
04 Circular Shifts of f

F, = f(t+t,(mod 12m))
0.2 T ~U(-127,127)

F, is statistically stationary as a stochastic process even though (1) each realization has time-varying
mean, variance and frequency and (2) for many lags, time-separated windows within each realization

FIGURE 2 | The function f is a highly stylized example of a signal with distinguishable temporal epochs. The first, second, and final third have different means,
variances and characteristic frequencies. The stochastic process F1, however, whose realizations are obtained through uniform random circular shifts of f, is
statistically stationary in that that the statistical summaries assessed at distinct timepoints over large numbers of realizations are the same. All realizations have spectral
and epochally clear variations, which would be reflective of FRBD, but as a stochastic process the collection of phase-shifted versions of f are statistically stationary.

Realizations of F,

......

E(F,F (1)) = c(\for all {1,t:|t-t|=v}
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is mostly clearly visually evident in cases like the one presented
in Figure 3 where Gaussian white noise is spectrally matched to
a narrow-band spectral template.

The simulated null model of Laumann et al. (2016) is
built from spectrally and covariance constrained multivariate
Gaussian processes (SCC Gaussians). The use of an SCC
Gaussian timeseries as a null model for functionally-relevant
brain dynamics (FRBD) rests on an implicit assumption that
(in the case of a 95% confidence level) fewer than 5% of the
signals in this space exhibit characteristics consistent with
FRBD. The use of fMRI as an imaging modality also rests on

an implicit assumption that some significant proportion of
the data being recorded reflects functionally relevant brain
dynamics. It would be hard, for example, to justify studying
even scan-length (static) spectral and relational/connectivity
characteristics of timeseries whose fluctuations are believed to be
largely artifactual. The functioning human brain during any state
of wakefulness is (hopefully inarguably) continually engaged
in myriad temporally-varying combinations of cognitive,
sensorimotor, attentional, emotional, planning, imagination, and
memory-related tasks. Many of these functions are in use even
during sleep. Thus, any null model of multivariate timeseries

Spectrally Matching Gaussian Noise to a Fixed Narrow-Band Target
Spectrum Does not Ensure Absence of Evident Temporal Epochs

White Noise Spectrally Matched to the Spectrum of S(t):
60 Realizations (Displayed as 3 Sets of 20 Time series)

Epochal Time series

S

Power

Spectrum Focused in Narrow Band
About one Dominant Frequency

- IIJI]I-..----

H

Realizations

"Tl‘".‘

FIGURE 3 | The signal S(f) consisting of a low-amplitude 0.08 Hz segment followed by a high-amplitude 0.08 Hz segment is one manifestation of a signal with a

narrow-band spectrum (shown top left) focused at 0.08 Hz. Matching 60 timeseries of Gaussian white noise to this spectrum yields (in sets of 20) the timeseries shown
in the other three panels of this figure. It is evident that spectral-matching of Gaussian noise to a generic template spectrum can contain discernible temporal epochs
with any given realization. Thus, such a model cannot be a good null model for dynamic connectivity as it will contain the very dynamics we are interested in studying.

Realizations

b

Reallzatlons
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whose characteristics are highly consistent with empirically
observed fMRI-based brain measurements has little utility
(notably in the context of functionally relevant brain dynamics),
since the phenomenon that it is testing for is ubiquitous rather
than rare. The space of SCC multivariate Gaussians replicates
real fMRI network timeseries with sufficient fidelity to induce
broad consistency in measurable characteristics between the
simulated data and the empirical data it was modeled upon
(Liégeois et al., 2017). Moreover, there is no a priori reason
to believe that aberrant or “tail” phenomena in this space
should be more strongly associated with functionally-relevant
brain dynamics than with measurement noise, motion or other
artifacts, e.g., the sort of features that might warrant examining
a scan for possible removal rather than positioning it as an
exemplar of functionally-relevant resting state brain dynamics.

Multivariate Signals Lacking Plausible
Markers of rs-Brain Dynamics (Valid Null

Models for Brain Dynamics)

The development of valid null models for rs-FRBD is
substantially hindered by a dearth of fMRI recordings from
living subjects under conditions that all but preclude the
ongoing CASE shifts unavoidably present even in sleeping or
mentally impaired subjects. Resting state fMRI data is generally
recorded under conditions in which functionally relevant brain
dynamics ought to be continually present. Thus, the measurable
features of empirically observed multivariate fMRI network
timeseries are intractably “contaminated” from the standpoint of
parameterizing a null space in which signal properties reflecting
rs-FRBD are ensured to be rare.

Another challenge for hypothesis testing of rs-FRBD resides
in identifying quantifiable signal features for which every
upward increment of the associated measure unambiguously
yields stronger evidence for the presence of rs-FRBD. Without
this property, observations from the distributional tails of the
measure are simply improbable, but not necessarily in ways
that relate to FRBD. Thus, the first-layer of challenges is posed
by our limited understanding of the signal properties whose
variation through time reflect some shift in one of the brain’s
myriad comingling functions. These are often amplified by non-
monotonic relationships between those properties and the neural
functions they putatively reflect. One example of such a property
is kurtosis (see Technical Supplement), a higher-order statistical
moment that has been employed (Laumann et al., 2016) to gauge
the (presumably function-relevant) “dynamic-ness” of simulated
and empirical fMRI signals. Univariate kurtosis captures the
“peakedness” of a unimodal distribution; it rises with the number
and magnitude of observations in a sample that would be outliers
if the underlying process was stationary Gaussian, i.e., a Gaussian
with constant mean and variance. Modestly elevated kurtosis
might well reflect some unusually strong or active brain dynamics
— this would have to be demonstrated, but is not implausible.
However, extremely large kurtosis values occur when a sample
contains numerous wildly large (in magnitude) observations. A
brain recording with these characteristics is more likely to suggest
noise, motion or other nuisance factors than anything connected

with actual rs-FRBD occurring during the scan (see Figure 5).
More generally though, the effort to statistically validate the
presence of a phenomenon that is almost axiomatically continual
in any valid recording seems misguided. The more interesting
hypotheses about fMRI dynamics would not focus on whether
they exist, but rather on how they might manifest differentially
over different timescales, spatial scales and functional scales.

MEASURING FUNCTIONALLY RELEVANT
BRAIN DYNAMICS VS. IDENTIFYING
OUTLYING OBSERVATIONS

A valid metric of brain dynamics should rise monotonically
with the strength of the signal features that are, at our current
level of scientific knowledge, widely believed to have associations
with CASE or task-driven shifts in brain function. The metric
should also be as blind as possible to signal features believed to
represent nuisance factors. The problem of quantifying signal
features that have a high likelihood of representing evolving
CASE states is admittedly very difficult. Every procedure will be
biased by assumptions whose validity cannot be ensured based
the current state of knowledge. The best we can hope for right
now is for researchers to be clear about what signal properties
they are seeking to quantify, and why they believe that a strong
presence of these properties should be taken as evidence of FRBD
(or of nuisance factors that are not easily separable from FRBD at
current levels of measurement resolution).

We show in this section that a measure based on kurtosis,
while sensitive to outliers, is not an ideal metric to capture
brain dynamics and it is quite easy to show that kurtosis can
be more sensitive to very rare outliers than it will be to more
prevalent FRBD. We show in both stylized examples but also
in real data that kurtosis preferentially captures signal features
likely to arise from measurement disruptions (e.g., motion), while
suppressing evidence of more extended spectral epochs within
network timeseries. We also propose a new metric, ®, which we
believe shows some of the desired properties.

Univariate and Multivariate Kurtosis Under

Stationary Gaussianity

Univariate excess or normalized kurtosis, the fourth statistical
moment rescaled by squared variance and centered by
subtraction of 3 has a well-understood distribution under
the Gaussianity assumption that is applicable to Laumann et al.
(2016) and here. Under this assumption, there is a closed-form
transformation (dependent on the sample size, n) that converts
E(X—px)*)
E((X—px)?)’
estimator of true kurtosis, 4, (see Technical Supplement) that is
distributed as a standard normal .47(0, 1) (Cain et al., 2016) and
hence now has altered limits. The use of .4, enables statistical
evaluation of departures from stationary Gaussianity. When
we refer to values of univariate kurtosis, these are values of the
unbiased estimator 4,,. Samples that yield elevated values of 4,
(say, 4y, > 1.96, so that p < 0.05) contain high-magnitude
observations that are too numerous and/or too extreme for the

observed excess kurtosis b = — 3 into an unbiased
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sample to have even a 5% chance of having been generated by a
stationary Gaussian process.

There is a similar transform for Mardia’s multivariate kurtosis
(m.v. kurtosis), with a similar interpretation. The unbiased
estimator B3, (dependent on sample size, 1, and vector length,
p» see Technical Supplement) for Mardia’s multivariate kurtosis
(Mardia, 1970) is:

1 ¢ -
Bup =~ (xi— )" € (xi — i)

i=1

where C! is the n x n inverse covariance matrix of the time-
indexed p-vectors {x;,x2, ..., %}

Wavelet-Based Metric of
Spectrally-Distinguishable Temporal
Epochs

We briefly introduce a novel metric ®: RT— R that explicitly
captures the presence of spectrally distinguishable temporal
epochs in a timeseries (see Figure4 and the Technical
Supplement). The metric has a natural multivariate extension
@ : RV*T— R that evaluates spectrally distinguishable temporal
epochs in multivariate timeseries. ® is not a primary focus of
this short paper, but it plays a role in the discussion that follows
because it provides a more targeted measurement than, for
example, kurtosis, of timeseries characteristics that could form
FRBD.

Epochal Stationarity and Kurtosis

The presence of spectrally distinguishable temporal epochs across
realizations, i.e., multiple subjects’ connectivity characteristics
in individual or multivariate network TCs is one reasonable
potential form of evidence for rs-FRBD. Although it is also
possible that this type of phenomenon could arise from
nuisance factors, epochal behavior has structure that makes
it less likely to be sourced dominantly in nuisance factors
such as motion, measurement noise or physiological rhythms.
For ease of exposition we will introduce some terminology,
epochal stationarity (resp. epochal non-stationarity), to indicate
the absence (resp. presence) of signal variation that presents
within a given empirical observation as a sequence of one or more
spectrally distinguishable temporal epochs. Kurtosis, which can
help identify the presence of outliers in Gaussian data, has been
proposed as a metric to detect FRBD, however kurtosis is highly
susceptible to unstructured amplitude variations. Moreover, as
an outlier metric, kurtosis has greater sensitivity to sharp,
transient, high-amplitude anomalous intervals than to signals
with amplitude and frequency variation on more functionally
relevant timescales (see Figure 5). In fact, the properties leading
to elevated kurtosis are sometimes more present in an epochally
stationary signal than in an epochally non-stationary signal
(see Figure 6), i.e., one that is stationary except within a given
duration. This is not to say that measuring epochal non-
stationarity is straightforward. There are many features and
timescales on which the non-stationarity might be exhibited,
and most prospective metrics will present some combination of

over-sensitivity to irrelevant features and blindness to important
features and/or timescales. We are currently working on a
flexible, tunable approach to capturing the kind of epochally
structured frequency domain variation that promises to provide
valid evidence for brain dynamics after careful evaluation of
sensitivity to nuisance factors.

Empirical Data and Simulation Regimes

A set of network timecourses from a clinical rs-fMRI study on
which dynamic functional network connectivity (FNC) results
have already been published (Allen et al, 2014), and five
simulation regimes modeled on that data are employed to explore
and illustrate the role of Gaussianity and statistical stationarity
as well as, spectral and covariance stationarity in modeling rs-
FRBD (and/or its absence). It is important to note that we refer
to stationarity in the true sense as statistical (non)stationarity
in what follows. We use the terms “spectral (non)stationarity”
and “covariance (non)stationarity” to refer to other definitions
used including (Laumann et al., 2016) that invoke the concept
of (non)stationarity through the analysis of a single realization
either in the spectral domain (for the former definition) or using
covariance function (for the latter definition). The approaches are
lightly outlined here, with more details provided the Technical
Supplement.

Real Data

We used previously published (Allen et al., 2014) network
timecourse data from a large multisite clinical resting-state
fMRI study. These timecourses (314 subjects, 47 networks, 158
timepoints), subsequently filtered for frequencies at most 0.08
Hz and z-scored, are referred to below as “Real Data” (Allen
et al., 2014) (see Figure 7; top left). The average power in each
frequency bin in [0.003,0.08] Hz for all network TCs for all
subjects is denoted P . The average cross-network covariance
matrix for all subjects is denoted Cyuy,. Every simulation
regime described below consists of 1000 simulated subjects, each
characterized by a set of 47, length-158 timeseries.

SCC Gaussians: Statistically Stationarity Without
Constraint on SDTEs

Following (Laumann et al., 2016), each simulated subject in the
SCC Gaussian regime is a multivariate timeseries resulting from
the projection of a 47 x 158 matrix of low-pass filtered white
noise spectrally matched to P, onto the eigenspace of C,, (see
Figure 7; top middle).

Covariance-Dynamic SCC Gaussians: Piecewise
Stationary, Two Distinct Covariance Regimes, No
Constraint on SDTEs (CD-SCC Gaussian)

This regime introduces explicit covariance non-stationarity. Each
CD-SCC Gaussian subject starts as a 47 x 158 matrix consisting
of low-pass filtered white noise spectrally matched to P ,,, which
is then divided into three windows, determined by a middle
window of randomly chosen length between 40 and 60 TRs. The
middle window is projected onto the eigenspace of Cu,, which
has structure and is strongly connected, while the first and final
windows are projected onto the eigenspace of C,., a covariance
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FIGURE 4 | The metric @ is intended to capture spectral non-stationarities, or spectrally distinguishable temporal epochs (SDTES), in univariate (Top) and multivariate
(Bottom) timeseries. The univariate version uses wavelets to capture temporally-localized spectral information, yielding a set of time-indexed spectra (Top middle),
which we normalize to have total power equal to the product of the number of frequencies and the number of timepoints. The spectrum at each timepoint carries
modest edge effects, which are more pronounced near the signal boundaries and for slower frequencies captured by wavelets that do not taper as much near the
boundaries. We then compute pairwise L1 distances between the time-indexed spectra (Top right) and compute the median off-diagonal value of the resulting T x T
matrix (scaled by a scaling factor y; see Technical Supplement for details). The multivariate extension ® of ® concatenates the time-frequency spectra of all univariate
constituents along the frequency dimension (Bottom middle), leaving the time dimension unaltered. In this case, we compute the median off-diagonal elements of
the T x T matrix of pairwise differences between time-indexed concatenated spectra (Bottom right). The multivariate metric is higher when constituent univariate
(Continued)
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FIGURE 4 | time-frequency spectra exhibit their largest within-signal spectral differences in mutually distinct temporal intervals. The case shown here does not
illustrate the role of differential intervals of SDTEs among constituent timeseries. The multivariate extension of this metric was successful in capturing slight changes in
frequencies in several consecutive short term epochs too (Supplementary Figure 1). Finally, in all cases, the results were highly similar for both L1 (Manhattan) and L2
(Euclidean) distances (multivariate ® outperformed multivariate kurtosis for both distance measures).

matrix reflecting very weak unstructured network connectivity
(see Figure 7; bottom left).

SCC Gaussians With Noise: Statistically Stationary
With a Single Spike Randomly Inserted Into a Small
Proportion of Network Timeseries (“Noisy SCC
Gaussian”)

This regime introduces extremely sparse, high-amplitude noise
to the SCC Gaussian setting. Each Noisy SCC Gaussian subject
starts as an SCC Gaussian subject, i.e., as a 47 x 158 matrix
consisting of low-pass filtered white noise spectrally matched to
P, then covariance matched to Cgyy,. Of the 47 timeseries in
this matrix, between 3 and 15 are selected at random to carry a
single high frequency spike centered at some randomly selected
timepoint. The entire multivariate timeseries contains between
3 and 15 of these noise artifacts, with at most one in any given
univariate timeseries (see Figure 7; top right).

Spectrally and Statistically Non-stationary: Explicitly
Non-stationary Both Statistically and Epochally (“SS
Non-stationary”)

This regime introduces simulated task-responsiveness to the SCC
Gaussian setting. Each simulated SS Non-stationary subject starts
as an SCC Gaussian subject (a 47 x 158 multivariate timeseries
produced by subjecting white noise to spectral and covariance
constraints exhibited by the real data). The 47 networks for
each subject are divided into at most 17 task-positive networks
(TPNs), at most 11 task-negative networks (TNNs), with the
remaining 19 — 29 networks designated as non-responders
(NRs). Following the same procedure employed for the CD-
SCC Gaussian regime, multivariate timeseries in the SS Non-
stationary regime are divided into three windows determined by
a middle window of randomly-chosen length between 40 and 60
TRs. The hypothetical task takes place during the middle window,
in which (relative to the first and final window) the selected TPNs
exhibit faster, higher amplitude behavior, the selected TNNs
exhibit slower, lower amplitude behavior and the NRs exhibit no
change in behavior (see Figure 7; bottom middle).

Covariance-Dynamic Spectrally and Statistically
Non-stationary: Explicitly Non-stationary Both
Statistically and Epochally With Two Distinct
Covariance Regimes (“CD-SS Non-stationary”)

This regime introduces explicit covariance non-stationarity to
the SS Gaussian setting. Each simulated CD-SS Non-stationary
subject starts as an SS Non-stationary subject (see immediately
above). In this regime, however, the temporally task-responsive
middle window is additionally subjected to explicitly different
covariance constraints than the task-free first and final windows.
Following the procedure from the CD-SCC Gaussian, the middle
window of CD-SS Non-stationary subjects is projected onto

the eigenspace of Cg,s,, while the first and final windows are
projected onto the eigenspace of C,,.x (see Figure 7; bottom
right).

Kurtosis Is Overly Sensitive to Noise
Artifacts and Very Rarely Identifies Explicit
Spectral, Statistical, and Covariance

Non-stationarities
As mentioned earlier, the utility of kurtosis as a measure of
functionally relevant brain dynamics is mitigated by its highly-
tuned sensitivity to spikes and outliers in the data. We saw
this earlier in stylized univariate timeseries (see Figure5).
The issue is equally evident (see Figure8) in more complex
multivariate simulations involving different degrees of non-
stationarity, exhibited in different ways. Employing m.v. kurtosis
as a measure of FRBD implies that timeseries on which it assumes
values large enough to provide significant evidence (p < 0.05)
against the null hypothesis of stationary multivariate Gaussianity
are those in which the features associated with FRBD are
most markedly present. More specifically, these features increase
monotonically with m.v. kurtosis. In Figure 8 however, we see
that that the only the simulation regime in which a non-negligible
percentage (93%) of realizations is identified as exhibiting FRBD
using m.v. kurtosis is the regime featuring a handful of spikes
in an otherwise stationary 47 x 158 multivariate Gaussian.
Only 5.3% of realizations from the explicitly covariance-dynamic
regime are identified using the m.v. kurtosis metric as exhibiting
FRBD, and for the other non-stationary regimes the percentage
of realizations identified as exhibiting FRBD is less than a tenth
of a percent. Similarly, the actual data recorded from subjects
undergoing continual CASE-shifts exhibits no evidence by the
m.v. kurtosis criterion of having arisen from a source in which
functionally relevant brain dynamics are present. This clearly
highlights the limitations of kurtosis as an indicator of FRBD.
Elevated kurtosis indicates the sample contains too many points
that are too extreme in magnitude under an assumption of
stationary Gaussianity; it is less effective at capturing the dynamic
changes in temporal behavior (including covariance) that are
more plausible markers of FRBD and are richly present in most
realizations of even stationary multivariate Gaussian processes.
Conversely, as shown in Figure9, the proposed metric
(defined in Figure 4 and the Technical Supplement) responds in
a more reasonable way to those features of real and simulated
multivariate timeseries that have strong likelihood of reflecting
FRBD vs. those that are simply aberrant in some other way.
Results show that, in contrast to multivariate kurtosis, the
lightly contaminated SCC Gaussians in terms of ® exhibit
significantly less evidence of reflecting FRBD than either of
the SS Non-stationary regimes (Figure9, row 2, columns 5
and 6) and real data is statistically indistinguishable from
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FIGURE 5 | (i) Highest kurtosis applies in a signal with a transient high-amplitude high-frequency interval, more consistent with a motion or noise than with shifting
CASE states; @ is extremely low for this seeming artifact; (ii-iv) Much lower kurtosis in stylized signals with highly distinguishable temporal epochs are more
consistent with FRBD; much higher in these strong FRBD candidates; (v) Lowest kurtosis in stylized signal with very strong and distinguishable temporal epochs;
much higher @ for this strong FRDB candidate. Positive univariate excess kurtosis indicates super-Gaussianity (and is not particularly useful for indicating functionally
relevant dynamics). As such, kurtosis is high when there are a larger number of high-amplitude observations than should arise under the assumption of Gaussianity.
Univariate kurtosis (transformed via equation (1) in the Technical Supplement) to distribute, assuming Gaussianity, as a standard normal random variable) is negative
on each of the stylized examples (ii-v) that exhibit distinguishable temporal epochs consistent with functionally relevant brain dynamics. It is very large and positive
only in the example containing a single high-amplitude, high-frequency “spike” (i). The behavior that appears in the upper tail of the kurtosis distribution is more
consistent with motion artifacts or measurement error than anything previous imaging or EEG studies have found to be associated with experimental tasks. The
metric, @, introduced in this work, is at least 2.8 times larger for examples (ii-v) that exhibit distinguishable temporal epochs consistent with functionally relevant brain
dynamics than for the case (i) that features a single high-frequency high-amplitude “spike” embedded in an otherwise spectrally epochless signal. As such & exhibits
the behavior we would expect, whereas kurtosis is not particularly useful for detecting behavior consistent with relevant brain dynamics for the examples shown
above. Additionally, ® successfully captured small changes in frequencies in several consecutive short term epochs as well (Supplementary Figure 2).
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FIGURE 6 | Stylized signal pairs; (Left) two signals, each with highly distinguishable spectral epochs and whose connectivity switches sign on one epoch vs. (Right)
two perfectly stationary pure sinusoids whose connectivity does not change at all; m.v. kurtosis is higher for the stationary pairs with unchanging connectivity than for
the pairs with shifting connectivity. Note that @ is higher for the pair that includes epochs. Excess multivariate kurtosis indicates multivariate super-Gaussianity (and is
not particularly useful for indicating functionally relevant dynamics). Multivariate kurtosis (transformed via Equation 4 from the Technical Supplement) is assumed to be
distributed, assuming multivariate Gaussianity on the part of the random vector, as a multivariate standard normal random variable) on both stylized multivariate
examples. The first (Left) features two signals that each exhibit highly distinguishable spectral epochs and whose correlative behavior is also dynamic: they are
perfectly correlated, then perfectly anti-correlated, then again perfectly correlated. This is a very dynamic context but not only presents negative multivariate kurtosis,
its kurtosis value is even more negative than the second example (Right) that features two spectrally unchanging signals whose mutual correlations are consistently

highly distinguishable spectral epochs and whose

is higher for the stationary pairs with uncharging

mpared to the static example (Right).

the covariance-dynamic SCC Gaussian regime (Figure9, row
1, column 4). So ® is putting regimes exhibiting different
kinds of temporally epochal behavior—including the epochal
behavior seen in statistically stationary Gaussian processes—
in what seems a plausible ordering with respect to dynamism:
SCC Gaussians < Real Data ~ Covariance-Dynamic SCC
Gaussians < Noise-Contaminated SCC Gaussians < SS Non-
stationary < Covariance-Dynamic SS Non-stationary (where
curly binary relations indicate ordinal evidence of potentially
relevant multivariate epochal behavior as measured by @ (see
legend for more details).

This plausible ordering with respect to the t-statistic values
from the analysis is much more meaningful for the ® metric
than multivariate kurtosis. The spectra for the SCC Gaussians
are more uniformly spread than the real data (please note
that it is only the “average spectral power” that is matched to

the real data) which is potentially one reason why the SCC
Gaussians exhibit less evidence of dynamics than the real data.
On the other hand, the multiple high frequency spikes add to
temporal variation in the spectral content of the SCC Gaussians
to which they are introduced, therefore resulting in false, elevated
values of the multivariate metric in the modified (noisy) SCC
Gaussian regime. Finally, both of the non-stationary classes are,
by construction, explicitly non-stationary both statistically and
epochally; hence, they are expected to exhibit greater evidence of
dynamics. However less evidence of dynamics in real data than
these two particular classes suggests that real data is not as non-
stationary in nature as these explicitly non-stationary classes. In
any case, the preliminary advantages of using a raw measure of
this type are clearly evident from the meaningful patterns convey
by the pairwise t-tests on metric values from the different regimes
(Figure 9). Still, a lot more developmental and validation work
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same way as in the Spectrally and Statistically Non-stationary regime.

Single Time series

FIGURE 7 | (Top Left) Real Data: Multivariate timeseries consisting of network timecourses from an actual rs-fMRI subject (Allen et al., 2014) (3 single network
examples displayed immediately to the right); (Top Middle) SCC Gaussians: Multivariate timeseries of SCC Gaussians modeled on mean spectral content and mean
mutual covariance of empirical network timecourses from the study shown at the top left. (Top Right) Noisy SCC Gaussians: The same as SCC Gaussians but with
between 3 and 15 high-amplitude, high-frequency “spikes” interspersed, examples circled. No more than one spike is inserted in any individual timecourse and at
most 15 of the 47 timecourses contain spikes. (Bottom Left) Covariance-Dynamic SCC Gaussians: This regime starts like the SCC Gaussians, in that the timeseries
are spectrally matched to the mean spectral content of the target empirical dataset. However, the next stage involves covariance matching the middle interval to the
mean mutual covariance of the empirical networks, while the first and final intervals are matched to a very weakly connected covariance structure. (Bottom Middle)
Spectrally and Statistically Non-stationary: This regime also starts like the SCC Gaussians, in that the timeseries are spectrally and covariance matched to the mean
spectral content and covariance structure of the target empirical dataset. Here though there is a middle window in which a subset of TPNs exhibits high-amplitude,
high frequency behavior, a subset of TNNs exhibits low-amplitude, low-frequency behavior and most networks are NR to the stimulus. (Bottom Right) Covariance
Dynamic and SS Non-stationary: This regime starts like the Covariance Dynamic SCC Gaussians, then a subset of TPNs and TNNs are chosen to respond in the

Target Covarlances

is required to identify an exhaustive statistical measure most
appropriate for the entire possible range/type of spectral and
amplitudinal variations (or controlling ability for different classes
of noise) in the resting state time-courses, and that validates as
being statistically significant.

CHOOSING A TEST METRIC THAT YIELDS
DIFFERENT DISTRIBUTIONAL TAILS FOR
NULL AND ALTERNATIVE HYPOTHESIS

A key challenge in the use of simulated data for hypothesis testing
is identification of context-appropriate null generating models

and test statistics that, in combination, allow for meaningful
inferences.

Specifically, the phenomenon being investigated should not
be generically present (should have low probability of occurring)
in data from the generating model, and (as also discussed
in Hindriks et al, 2016) the test statistic should have highly
specific, strictly monotonic sensitivity to the investigative target
phenomenon (values deeper in the relevant tail of the test statistic
distribution should explicitly correspond with increased presence
of that phenomenon). The field of dynamic connectivity in
particular has struggled with this as there are multiple threads of
research proposing use of different models of dynamic behavior
including covariance dynamics (Hutchison et al., 2013; Allen
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Percentage of Multivariate Observations Found to be Non-stationary or
Dynamic by the Multivariate Kurtosis Metric

Multivariate Kurtosis (Percentage of observations whose z-transformed multivariate kurtosis is elevated enough to offer
significant (a=0.05) evidence against the observation being a stationary multivariate gaussian)
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FIGURE 8 | The percentage of multivariate timeseries from each indicated simulation regime (and the real rs-fMRI study on which the simulated data was modeled)
that present significant evidence (p < 0.05) of having been generated by some process that is not a stationary multivariate Gaussian. The explicitly implemented
spectral and statistical non-stationarities of the two SS Non-stationary regimes (columns 5 and 6) are effectively never found to exhibit significant evidence against
being generated by stationary multivariate Gaussians. In the two explicitly covariance-non-stationary regimes (columns 4 and 6), one of which is also spectrally and
statistically non-stationary variations (column 6), at most 5% of the 1,000 simulated subjects—each of which exhibits the explicit non-stationarity—are identified as
unlikely to have arisen from a stationary multivariate Gaussian process. Like the SCC Gaussian simulations (column 2), the SS Non-stationary simulations (columns 5
and 6) and the covariance-non-stationary simulations (columns 4 and 6), empirical observations from real subjects (column 1) in whom the phenomenon of interest
(FRBD) is ubiquitous are not statistically distinguishable from realizations of a stationary multivariate Gaussian process. The only regime that multivariate kurtosis
reliably distinguishes from realizations of a stationary multivariate Gaussian process is the case of SCC Gaussians in which a single high-amplitude, high-frequency
spike is inserted into between 3 and 15 of the 47 univariate timeseries from the multivariate observation (column 3). This regime is basically just a lightly contaminated
version of the SCC Gaussian regime (column 2) and of all of the simulation regimes exhibits the least evidence of functionally relevant brain dynamics. The behavior
underlying upper-tail observations of multivariate kurtosis looks more like scan contamination than anything task-paradigm fMRI studies suggest would be strongly

associated with FRBD.

et al., 2014) and oscillatory dynamics (Golos et al., 2015). In
this context, it is very important to apply any proposed null
model only within the narrow conditions under which it is
able to reject a particular hypothesis about brain dynamics. For
example, as seen earlier and also shown in Liégeois et al. (2017),
a null model based on stationary oscillatory dynamics may
well produce data exhibiting dynamically-changing covariances
with high probability, something that would impair the model’s
ability to function as a proxy for the null hypothesis in
studies of dynamic connectivity (Hindriks et al, 2016). In
addition to that, even models of covariance dynamics have
been shown to be limited to a rather particular set of
parameters, which we do not yet fully understand how to
set for the human brain (Shakil et al., 2016). There is also
evidence that the brain functions as a non-linear dynamical
system (He, 2013). The result is that many of the null
models that have been proposed are making strong assumptions
about brain dynamics which, while having some justification,
are not able to rule out dynamics of a different sort. We

provide some additional discussion on this important point
below.

Whole-Brain Windowed Connectivity
States and Occupancies From Statistically
Stationary and Explicitly Non-stationary
Null Models Strongly Resemble Each Other

As we have discussed previously, creating a valid null model
for rs-FRBD is difficult without explicitly understanding the
properties that multivariate network timeseries might exhibit
in response to complex CASE variations. One approach,
suggested recently by Laumann et al. (2016), employs a space
of low-pass filtered multivariate white noise, spectrally matched
to the average spectrum of empirical timecourse data and then
projected onto the eigenspace of empirically observed mean
network covariance. As discussed in earlier sections, this is a
space of timeseries explicitly modeled on real data recorded
from a material in which the phenomenon of interest (i.e.,
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FIGURE 9 | This table presents the t-statistic (where significant at the p < 0.05 level, asterisks where non-significant), for pairwise T-tests of ® on the row regime vs.
the column regime. From this standpoint, we see that the real network timecourses (row 1) exhibit significantly greater presence of SDTEs than the SCC Gaussians
(column 2) modeled on them, significantly less evidence of SDTEs than the lightly contaminated “noisy” SCC Gaussians (column 3) and the explicitly SS
Non-stationary Regimes (columns 5 and 6) and are statistically indistinguishable from the explicitly covariance-dynamic SCC Gaussians (column 4). Unlike what was
found using multivariate kurtosis, the covariance-static SCC Gaussians (row 2) are in terms of & significantly less dynamic than the covariance-dynamic SCC
Gaussians (column 4) and both SS Non-stationary regimes (columns 5 and 6). Again, in contrast to multivariate kurtosis, the lightly contaminated SCC Gaussians (row
3) in terms of ® are significantly less dynamic than both SS Non-stationary regimes (columns 5 and 6). ® is putting regimes exhibiting different kinds of temporally
epochal behavior—including the epochal behavior seen in statistically stationary Gaussian processes—in what seems a plausible ordering with respect to dynamism:
SCC Gaussians < Real Data ~ Covariance-Dynamic SCC Gaussians < Noise-Contaminated SCC Gaussians < SS Non-stationary < Covariance-Dynamic SS
Non-stationary (where curly binary relations indicate ordinal evidence of potentially relevant multivariate epochal behavior as measured by ).

functionally relevant brain dynamics) is continually present. It
is therefore not a space in which univariate or multivariate
temporal behavior plausibly sourced in CASE variations is
vanishingly rare. Which is to say, it is not a useful null space
for the identification of rs-FRBD. Moreover, it is a space of
signals whose time-varying behavior is jointly determined by all
simulation parameters and assumptions: the auxiliary spectral
and covariance constraints as well as the Gaussianity assumption
and the primary assumption of statistical stationarity. Above
and beyond the problematic success of this simulation model
in replicating empirical data recorded under circumstances
in which the phenomenon of interest is uninterrupted and
continual, this simulation regime’s value as a null model is further
undermined by the unexamined role of auxiliary parameters

in shaping key measures and distributions. This can be seen
in Figure 10, rows 2 and 3, where we break the models
core assumption of statistical stationarity, a property, arguably
incorrectly, associated by the authors with an absence of FRBD,
without discernibly disrupting either the clusters formed by
short-timescale FNCs or the average cluster occupancy rates
(see the Technical Supplement for a brief background on this
approach).

The distributional tails of occupancy rates for each
connectivity state in the SCC Gaussian and the SS Non-
stationary regimes have significant overlap (see Figure 11)
and as such this model can quite easily rule both for and
against dynamic connectivity at the same time, an obvious
flaw in the approach (ie., evaluating statistical significance
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of measures of a phenomenon of interest generically present  hindering some existing proposed models, demonstrated how
in a model chosen as the null as well as its alternative). This  a metric such as the one used in this paper could effectively
example illustrates the difficulties of building hypothesis-testing ~ detect potential properties of functionally relevant brain
frameworks for phenomena whose distinguishing quantifiable =~ dynamics, and have, we hope, provided the context for
characteristics are not well-understood. If, in contrast to a rich ongoing discussion of where the field should head
Laumann et al. (2016), one realizes that the space within which ~ from here. In the remainder of this paper, we highlight
one is working contains the very dynamics that one is trying a few high-level questions that we hope make this point
to rule out (a point subsequently made by Liégeois et al,  clear.

2017) the conclusions that can be made are unconvincing and

uninteresting. Are Functional Brain Dynamics Rare?

One of the key points we emphasized relates to the creation of
DISCUSSION a null simulation model. A useful null simulation model should

be built on assumptions complementary to those that would
In this position paper, we have attempted to clarify and  apply if the phenomenon of interest were present, and then
develop some of the important issues related to dynamic  combined with a test statistic that is sufficiently sensitive to the
connectivity within the resting brain. Our focus has mostly  null assumptions that it very rarely achieves extreme values when
centered around the use of metrics to detect possible dynamic  they are absent. Due to these concerns (as illustrated in the paper
behavior and also the creation of appropriate null models of earlier), the null model in Laumann et al. (2016) does not seem
functionally relevant brain dynamics, including but not limited  to be the right null model to evaluate functionally relevant brain
to dynamic connectivity. We have discussed crucial limitations ~ dynamics with time-varying connectivity methods. A particular

Simulation Regimes and Windowed Connectivity

Windowed Connectivity States and Occupancy Rates from Real Data
and Under Stationary and Non-stationary Simulation Regimes

DMN-to Global Mean/ | States are highly
sk " Tastk # SII\(/)II?laII\IMetanI/ N DM{}J similar across all
€a egative yper- eutra egauve regimes, as are
Connected Connectivit Connected Connectivit Connectivit
State State. State State State ;’;?ea: Oeclpancy

Real Data

kA

Stationary
Simulation

Spectral and
covariance
constraints taken
from the real
data are
common.

to all regimes.
More than the
degree of
statistical or
epochal
stationarity,
these global
constraints seem
to shape
short-timescale
connectivity.

Non-Stationary
Simulation ~ =

FIGURE 10 | As we have pointed out previously, statistical stationarity, even multivariate stationary Gaussianity, can be richly inclusive of the types of time-varying
multivariate behavior consistent with known brain responses to experimental tasks. Thus, the windowed connectivity states that a statistically stationary multivariate
process moves through have every reason to resemble those of the real data upon which the process was tightly modeled (rows 1 and 2). However, it is also the case
that short-timescale connectivity measurements from explicitly non-stationary processes (see “Statistically and Spectrally Non-stationary” regime in Section Empirical
Data and Simulation Regimes) subjected to spectral and global covariance constraints drawn from the real data cluster in the same way (row 3) as both the real data
and the stationary Gaussian simulation modeled upon it. This suggests that the short-timescale connectivity states and occupancies are driven more by auxiliary
constraints on mean spectrum and mean covariance than by whether the underlying process is statistically stationary. As we have shown, statistical stationarity does
not preclude a multivariate signal from passing through connectivity states resembling those potentially arising from FRBD in real data. But more importantly it passes
through the same connectivity states in the same way as explicitly non-stationary processes subjected to the same auxiliary constraints and as such is not particularly
useful as a null condition for detection relevant brain dynamics.
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Simulation Regimes and Lack of Hypothesis-Separating Distributional Tails

OverlappingUTails in the Occupancy Distributions of Windowed Connectivity States
nder Stationary and Non-stationary Simulation Regimes
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FIGURE 11 | For a combination of null model and test metric to allow for meaningful inferences, the null model should exhibit evidence of the phenomenon being
investigated (and believed to be captured through the test metric) extremely rarely. SCC Gaussians arguably present evidence of FRBD as ubiquitously as the real
fMRI data does. It is also not clear a priori that tail phenomena in SCC Gaussians should have an especially strong association to FRBD rather than, for example, to
motion artifacts or measurement noise. Moreover, the measures evaluated on a null model are only helpful in identifying behavior of interest if the distributional tails of
the measure do not overlap with those of the same measure evaluated on a model that violates assumptions of the original null hypothesis. The upper tails of the
distributions of occupancy rates on the windowed connectivity states from SCC Gaussians (red) and the SS Non-stationary simulation regime (blue) have substantial
overlap (semi-transparent gray triangles indicate the overlapping part of the tails for each state). Insufficient clarity on the unique, distinguishing features of the
phenomenon being studied and of the models/measures being employed neutralizes the measure’s role in hypothesis testing as the same observation can then
present significant evidence against multiple, mutually contradictory null hypotheses. In terms of occupancy rates of windowed connectivity states, we see here that a
newly scanned subject who spends 65% of their time in state 2 exhibits significant evidence against one statistically stationary null hypothesis and also against an
explicitly non-stationary null hypothesis.

and carefully constructed null model was proposed in Hindriks ~ properties of the fMRI data; hence, the study of functional
et al. (2016), a study that evaluated statistical significance of  brain dynamics presents challenges to the utility of this entire
variance as a test statistic to assess time-varying connectivity — type of modeling (to fit or study fMRI data). Moreover, we
and emphasized importance of appropriate surrogate data testing ~ know that functional brain dynamics are constantly present in
in time-varying studies. The distributional tails of this test  conscious human beings, so the phenomenon is anything but rare
statistic on their static null simulation model matched the tails  empirically.

of variance computed on a wide range of explicitly dynamic
variants of the model in which parameters were meaningfull . . .
changing with time. As also clearly pointed out by authogrs iI}I Are Functional Brain Dynamics Separable
this study (Hindriks et al., 2016), such observations would simply ~ From Nuisance Factors and Background
suggest lack of sensitivity of this metric to separate out real  Brain Rhythms')

fMRI data from stationary null model directly and would not The null model for a phenomenon necessarﬂy produces’ with
suggest absence of brain dynamics in the fMRI data. Additionally,  very low probability, values of some test statistic that are
partially contrasting results have indeed been reported using  consistent with the phenomenon which is being tested. This
the same null model (or null model retaining similar properties  kind of model makes sense primarily when there is a very
of the data) on the same metric (Laumann et al., 2016) or  clear understanding of the range of values a particular test
other time-varying measures factoring in this metric (Hindriks  statistic will assume in the presence of the hypothesized
et al, 2016) These studies have provided evidence that the phenomenon, So although in this short paper we are focusing
stationary, linear and Gaussian model does not capture all the primarily on the insufficiency of null models built on many
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realizations of some statistically stationary multivariate process
modeled on empirical timecourse spectra and covariance, the
larger problem is really that our present understanding cannot
rule out the possibility of non-trivial intersection between
signal features foreseeably connected with brain dynamics
and those arising from nuisance factors and background
brain rhythms. Even a spectrally pure signal, e.g., a single-
frequency sinusoid, features amplitude changes that could be
consistent with the ebb and flow of a network’s contributions
to temporally varying CASE demands. Certainly pure sinusoids
and other epochally stationary signals (whose phase-randomized
stochastic analogs are statistically stationary) could provide
evidence of network responsiveness in certain experimental task
paradigms, e.g., those involving repetitive motor or sensory
tasks. Since most temporal changes in a signal, including raw
amplitude changes, could plausibly be correlated with some
complex sequence of CASE conditions, the present state of
knowledge makes it difficult to construct null models that can
claim to yield, almost-exclusively, timeseries (multivariate or
univariate) lacking features prospectively associated with brain
dynamics.

This is true even when the null model is narrow. Indeed, it
can be difficult to ensure that the test statistic being assessed does
not have distributional tails roughly matched to the distributional
tails of that statistic on a similarly narrow but explicitly
“dynamic” model. In that case, we can easily conceive of examples
where we are in the position of having an empirical measurement
of the test statistic that simultaneously leads to rejection of
one static null hypothesis and various related dynamic null
hypotheses. In such a case, the desired test has been rendered
essentially useless. Due to factors delineated earlier in this paper,
statistically stationary null models are not necessarily well suited
for evaluating functionally relevant brain dynamics in rs-fMRI.
We expect functionally relevant temporal variations in brain
activation to be constantly occurring throughout the experiment,
and as the phenomenon of FRBD is better understood, improved
null models will naturally emerge. We hope that the discussions
herein are useful and promote thoughtful consideration of these
important issues.

CONCLUSIONS

To summarize, serious and continuing investigation of dynamic
multivariate brain activation patterns (including dynamic
connectivity) is scientifically important and central to many core
open questions in brain science. The time-varying measurements
provided by BOLD fMRI currently play a vital supporting
role in this overall project. We have discussed some of the
limitations of existing null models and metrics for capturing
dynamics, and provide initial evaluations of a new wavelet-based
metric to demonstrate advantages of exploring more targeted
measurements of time-series characteristics that form FRBD.
While the evaluated metric appears to provide sensible results
in a number of simulated scenarios, it still needs to be tuned
and validated for an exhaustive range of spectral/amplitude

variations and different noise classes. Moreover, a broader
framework will ultimately be necessary to not only locate
evidence of FRBD per se in univariate and multivariate brain
data, but to also identify specific timepoints at which signals,
signal-pairs and arbitrary signal n-tuples yield evidence that
an underlying functional shift was underway. Finally, we urge
caution in the development of null models in the context of
dynamic connectivity. Especially for studies in which subjects
are not engaging in a common, narrow experimental task,
the relevant features, temporal and spatial/functional scales
are not yet well-understood. Specific well-defined questions
about how particular signal features evolve on a range
of spatial and temporal scales could produce more useful
and testable hypotheses about how the brain signals we
measure relate to high-level processes by which the brain
organizes, directs and rotates through some of its central tasks:
e.g., cognition, sense-making, generative thinking, memory-
formation, memory-retrieval and emotion regulation, among
others.

Finally, we would like to strongly emphasize that this
paper is not an argument against the use of formal hypothesis
testing in investigations of resting state dynamics. Nor is
it an argument in favor of null spaces whose constituents
have no recognizable relationship to actual brain data.
In addition to tests for group differences or regression
analyses (two cases in which there is always a well-defined
null hypothesis), we are arguing in favor of narrower
hypotheses that attach narrowly defined, non-ubiquitous
neural/mental phenomena to a very narrow domain of signal
characteristics. This will allow for null models that are, up
to a limited set of signal properties, modeled on real fMRI
data.

Following the choice of a narrow, non-ubiquitous target
neural/mental phenomenon, we would advocate identifying
some metric or test statistic A on the data under which there
is good reason to believe in the existence of an interval
I (or region if A is multi-dimensional) outside of which A
is both highly specific to and roughly monotonic in the
presence (strength or abundance) of the target neural/mental
phenomenon. This allows the construction of a useful null space
built from simulated fMRI data that is as realistic as possible
subject to the constraint that its elements induce values of A
outside of I at a rate consistent with the level of the target
phenomenon an investigation is concerned with: very rarely if
the target is present at levels of interest immediately beyond I,
or less rarely if A really is roughly monotonic and the target
is only present at levels of interest as A gets much further
from I.

We would like to close by re-emphasizing our strong belief
that hypothesis testing is crucial to advancing knowledge. The
purpose of this paper is simply to highlight that in relatively
young observational sciences the range of hypotheses that are
rigorously testable at any given time might not extend to some
questions of central importance to researchers. Most importantly,
the set of rigorously testable hypotheses is constantly growing via
ongoing vibrant interplay between more exploratory studies and
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studies that leverage the existing set of testable hypotheses for
scientific gains.
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