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The design of new glasses is often plagued by poorly efficient Edisonian “trial-and-error” discovery approaches.
As an alternative route, the Materials Genome Initiative has largely popularized new approaches relying on
artificial intelligence and machine learning for accelerating the discovery and optimization of novel, advanced
materials. Here, we review some recent progress in adopting machine learning to accelerate the design of new
glasses with tailored properties.

1. Introduction
1.1. Challenges in the development of new glasses

Developing novel glasses with new, improved properties and func-
tionalities is key to address some of the Grand Challenges facing our
society [1,2]. Although the process of designing a new material is al-
ways a difficult task, the design of novel glasses comes with some un-
ique challenges. First, virtually all the elements of the periodic table can
be turned into a glass if quenched fast enough [3]. Second, unlike
crystals, glasses are intrinsically out-of-equilibrium and, hence, can
exhibit a continuous range in their stoichiometry (within the glass-
forming ability domain) [4]. For both of these reasons, the composi-
tional envelope that is accessible to glass is limitless and, clearly, only
an infinitesimal fraction of these compositions have been explored thus
far [3]. Although the vast compositional envelop accessible to glass
opens endless possibilities for the discovery of new glasses with unusual
properties, efficiently exploring such a high-dimension space is notor-
iously challenging and traditional discovery methods based on trial-
and-error Edisonian approaches are highly inefficient [5]. Although
“intuition” can partially overcome these challenges, it is unlikely to
yield a leapfrog in glass properties and functionalities.

As a first option, physics-based modeling can greatly facilitate the
design of new glasses by predicting a range of optimal promising
compositions to focus on [6]. For instance, topological constraint
theory has led to the development of several analytical models pre-
dicting glass properties as a function of their compositions (e.g., glass
transition temperature, hardness, stiffness, etc.) [7-12]. However, the
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complex, disordered nature of glasses renders challenging the devel-
opment of accurate and transferable physics-based models for certain
properties (e.g., liquidus temperature, fracture toughness, dissolution
kinetics, etc.) [6]. Alternatively, “brute-force” atomistic modeling
techniques (e.g., molecular dynamics) can be used to accurately com-
pute glass properties and partially replace more costly experiments (see
also Section 3.5) [13,14]. However, such techniques come with their
own challenges (e.g., limited timescale, small number of atoms, fast
cooling rate, large computing cost, etc.), which prevents a systematic
exploration of all the possible glasses [15-17].

1.2. When machine learning meets glass science

As an alternative route to physics-based modeling, artificial in-
telligence and machine learning offer a promising path to leverage
existing datasets and infer data-driven models that, in turn, can be used
to accelerate the discovery of novel glasses [11,18]. As a notable suc-
cess, machine learning modeling techniques have been used to accel-
erate the design of Corning® Gorilla® glasses [18]. Over the past decade,
thanks to the rapid increase in available computing power, artificial
intelligence and machine learning have revolutionized various aspects
of our lives [19,20], including for image recognition [21], Internet data
mining [22], or self-driving cars [23].

In details, machine learning can “learn from example” by analyzing
existing datasets and identifying patterns in data that are invisible to
human eyes [24]. Fig. 1 shows a typical application of machine learning
to glass design. First, some data are generated (by experiments, simu-
lations, or mining from existing databases) to build a database of
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Fig. 1. Illustration of a typical application of machine learning to facilitate glass design.

properties. Such databases can comprise, as an example, the glass
composition, synthesis procedure, as well as select properties. Machine
learning is then used to infer some patterns within the dataset and es-
tablish a predictive model [24].

Machine learning algorithms can accomplish two types of tasks,
namely, supervised and unsupervised. In the case of supervised ma-
chine learning, the dataset comprises a series of inputs (e.g., glass
composition) and outputs (e.g., density, hardness, etc.). Supervised
machine learning can then learn from these existing examples and infer
the relationship between inputs and outputs [25]. Supervised machine
learning comprises (i) regression algorithms [26], which can be to
predict the output as a function of the inputs (e.g., composition-prop-
erty predictive models) and (ii) classification algorithms [27], which
can be used to label glasses within different categories. In contrast, in
the case of unsupervised machine learning, the dataset is not labeled
(i.e., no output information is known) [28]. Unsupervised machine
learning can, for instance, be used to identify some clusters within
existing data, that is, to identify some families of data points that share
similar characteristics [29]. More details about these machine learning
methods are presented in Section 2.

1.3. Challenges and limitations of machine learning for glass science

Although machine learning offers a unique, largely untapped op-
portunity to accelerate the discovery of novel glasses with exotic
functionalities, it faces several challenges. First, the use of machine
learning requires as a prerequisite the existence of data that are (i)
available (i.e., public and easily accessible), (ii) complete, (iii) con-
sistent (e.g., obtained from a single operation), (iv) accurate (i.e., with
low error bars [30]), and (v) numerous [31]. For instance, although
some glass property databases are available [32], inconsistencies be-
tween data generated by different groups render challenging the
meaningful application of machine learning approaches. In addition,
since they are usually only driven by data and do not embed any
physics- or chemistry-based knowledge, machine learning models can
sometimes violate the laws of physics or chemistry [33,34]. For these
reasons, conventional machine learning techniques are usually good at
“interpolating” data, but have thus far a limited potential for “extra-
polating” predictions far from their initial training set [34,35], which
usually prevents the efficient exploration of new unknown composi-
tional domains (see Section 3.2 on how “physics-informed machine
learning” can offer improved extrapolations). Finally, machine learning
models often offer poor interpretability, that is, they act as black boxes

and do not offer clear physical insights [36—-38]. Here, we review some
recent progress aiming to address and mitigate these challenges.

This review is organized as follows. First, Section 2 presents an
overview of available machine learning techniques. Section 3 then re-
views the state-of-the-art in the application of machine learning to glass
science and engineering. Finally, Section 4 offers some conclusions and
future directions.

2. Overview of machine learning techniques for glass science
2.1. Regression techniques

2.1.1. Parametric and nonparametric regression

Regression consists of fitting known data points to establish a
functional relationship between the inputs and output [26]. As illu-
strated in Fig. 2a, regression models are able to interpolate known
points by learning from an existing dataset. Generally, regression
methods can be categorized into (i) parametric regression, which yields
an analytical formula expressing the output in terms of the input
variables [26] (e.g., linear [39], polynomial [40], or nonlinear func-
tions [41]) and (ii) nonparametric regression, which defines a kernel
function to calculate the output at a given input position based on the
correlation between this input position and its surrounding known
points [42].

Nonparametric regression comprises, for instance, the K-nearest-
neighbor (KNN) [43] and Gaussian process regression (GPR) methods
[44]. The basic idea of the KNN method is to predict the value of the
output for a given input position by using the average value of the K
nearest known points at the vicinity of the input position. On the other
hand, the GPR method predicts a Gaussian-type probability distribution
of the output for each input position based on the multivariate normal
correlation between this input position and all the other known points
[45]—wherein the degree of correlation decreases as a function of the
distance between these points [44]. As a major advantage, the GPR
method is able to provide the uncertainty of the predicted output va-
lues, which is key to assess the reliability of the predictions [46].

In contrast to nonparametric regression, parametric regression relies
on an explicit analytical formula relating the inputs to the out-
put—wherein the parameters of the formula are adjusted to fit the
known points by establishing and minimizing a cost function [26]. It is
worth pointing out that more complex machine learning algorithms
(described in Section 2.3) can be used for classification and regression.
For instance, artificial neuron network (ANN) [19,47], support vector
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Fig. 2. Illustration of regression machine learning techniques. (a) Example of regression (black line) applied on an existing dataset (grey points). For illustration
purposes, a polynomial regression model (with a polynomial degree p = 3) is adopted herein. (b) Illustration of underfitting (blue line, p = 1) and overfitting (red
line, p = 15) on the same dataset. The dataset is divided into a (i) training set (cyan points), which is used to train the model, and (ii) validation set (green points),
which is used to estimate how well the model can predict data that are kept invisible during its training. (c) Error in the prediction of the training (black line) and
validation (red line) sets as a function of the model complexity (i.e., p in the polynomial model herein). The optimal model presents the lowest validation set
prediction error. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

machine (SVM) [48], random forest [49], or gradient boosting [50]
essentially rely on complex nonlinear parametric formulas and, hence,
can be classified as parametric regression techniques, except in the case
of kernel-based functions [51]. These types of models often show a very
good ability to interpolate data [52], but usually present low inter-
pretability due to the complex format of the parametric formula [47]
and limited extrapolation abilities [35].

2.1.2. Optimization of model complexity

The development of supervised learning models usually comprises
two stages, viz., (i) the learning/fitting (i.e., training and validation)
stage and (ii) the prediction (i.e., test) stage. During the fitting/learning
stage, it is key to properly adjust the complexity of the model (e.g., the
maximum degree in polynomial regression) to offer reliable predictions
[53,54]. This process is described in the following.

Underfitting and overfitting: In the case of underfitting (i.e., low
complexity), the model is too simple to properly capture the functional
relationship between the inputs and output. In contrast, in the case of
overfitting (i.e., high complexity), the model keeps the memory of the
“noise” of the dataset [55]. In general, the model complexity can be
captured by the number of non-zero fitting parameters, number of in-
puts, and number of high-order terms in a model [20,24]. Fig. 2b il-
lustrates the manifestations of underfitting and overfitting by fitting a
set of data (i.e., training set, see below) when some polynomial models
with varying maximum polynomial degrees p. Clearly, in this case, a
linear model with p = 1 does not properly capture the non-linear re-
lationship between inputs and output. In contrast, a polynomial model
with p = 15 is able to capture the noise of the training set, which, in
turn, yields a poor predicting for unknown data points (i.e. validation
set, see below). In between these two regimes, a polynomial regression
model with p = 3 is able to properly capture the trend of the data while
filtering out the noise of the dataset.

Training, validation, and test sets: To limit the risk of overfitting and
assess the accuracy of the model, the dataset is usually divided into the
training, validation, and test sets [20,24]. The training set is first used
to train the model, that is, to adjust the model parameters in order to fit
some existing data points. At this stage, the training and test sets are
kept fully invisible to the model. Afterward, the validation set is used to
adjust the complexity of the model. Indeed, as illustrated in Fig. 2c,
higher model complexity (i.e., higher p herein) usually yields an im-
proved interpolation of the training set, but eventually results in a
lower ability to predict the training set as the model starts to remember
the noise of the training set. Overall, the optimal degree of complexity

manifests itself by a minimum prediction error for the validation set
[55]. Finally, once the optimal degree of complexity is fixed, the test set
is used to assess the accuracy of the model by comparing its predictions
to a fraction of the dataset that is kept unknown to the model.

K-fold cross-validation: In many realistic cases, the limited number of
data present in datasets makes it undesirable to keep a large fraction of
the data fully unknown to the model as a validation—since a large
number of data points is key to ensure the proper training of the model.
This challenge can be overcome by using the K-fold cross-validation
technique [24,56]. This technique divides the initial training set into K
folds, trains the model based on K — 1 of the folds, and uses the re-
maining fold for validation. This procedure is then repeated K times
until each of the folds has been used as a validation set. The accuracy of
the model is then determined by averaging the accuracy of the pre-
diction over all the K validation folds.

Regularization methods: An alternative route to decrease the model
complexity consists in filtering out non-important terms from the
model, which can be accomplished by regularization methods [57],
e.g., LASSO [58], Ridge [59], or Elastic Net [57]. The main idea of
regularization methods is to formulate and minimize a cost function
that comprises (i) how well the model can predict known data as well as
(ii) an additional term that attributes a penalty to complex models. As
such, the minimization of the cost function forces non-important terms
(i.e., which do not significantly contribute to increasing the accuracy of
the model) to become zero. The degree of complexity of the model can
be tuned by adjusting the weight attributed to the penalty term until the
model offers an optimal prediction of the validation set [24,57].

2.2. Classification techniques

Classification can be viewed as a special case of regression [27]. In
contrast to the case of regression—wherein the output is a continuous
value—classification considers problems where the output is discrete,
wherein each state corresponds to the labels to distinct categories. For
instance, in the case of a binary classification problem, the data points
belong to two classes (Class A and B), which can be represented by an
output value equal to +1 or — 1 for Class A and B, respectively. The
goal of classification models is to predict the class of unknown data
(e.g., “glass is transparent or not transparent”) as a function of the in-
puts (e.g., glass composition). This can be accomplished by identifying
the optimal hyperplane within the inputs space that best divides the
different classes (see Fig. 3) [20,24,27].
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Fig. 3. Illustration of classification machine learning techni-
ques. (a) Example of a dataset comprising two inputs (i.e.,
two-dimensional input space). The data points are labeled as
belonging to either Class A (red points) or Class B (blue
points). (b) Example of classification in the two-dimensional
space. For illustration purposes, a support vector machine
(SVM) model is adopted, which yields a hyperplane boundary
(black line) that divides the two-dimensional space into two
different class regions, i.e., Class A (left) and Class B (right).
Note that a hyperplane has a dimensionality that is 1 degree
lower than that of the input space and, as such, takes the form
a line in a two-dimensional input space. (For interpretation of
the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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2.3. Examples of supervised machine learning algorithms

Artificial neural network (ANN): ANN algorithms, e.g., multilayer
perceptron [60] or convolutional neural network (CNN) [21], rely on a
multilayer structure comprising (i) an input monolayer, (ii) some
hidden multilayer, and (iii) an output monolayer (see Fig. 5a). Each
layer is made up of several neurons that are connected to each other to
mimic the human neuron network system. Each neuron consists of a
non-linear transformation operator (e.g., a sigmoid function) that re-
lates the signal coming from the neurons from the previous layer to a
response signal that is transmitted to the neurons of the subsequent
layer. ANN can be viewed as a complex, non-linear functional mapping
the relationship between the inputs and output(s) [25].

Support vector machine (SVM): SVM algorithms, which include both
linear SVM [48] and kernel SVM [51], rely on a functional formula that
represents the hyperplane that divides data into different classes in
classification problems (see Section 2.2). On the one hand, linear SVM
uses linear functions to express a set of linear hyperplanes to divide the
input space into different class regions. The coefficients of the linear
functions are determined by maximizing the separation/margin of the
nearest known points on both sides of the hyperplane [48]. On the
other hand, kernel SVM uses a kernel function that describes the cor-
relation between an input position and the known points from the
training set (i.e., for which the class is known). This yields a set of non-
linear hyperplanes that can be used for classification. The parameters in
the kernel function are also determined so as to maximize the margin
[51].

Decision tree: Tree-based models, e.g., random forest [49], are based
on an ensemble of several parallel tree paths made of sequentially
splitting nodes. Each node represents a judge condition that guides the

choice of the next node derived from it. The judge condition at each
node, which can be expressed as a split of a target input range, is op-
timized based on the training set. Each parallel tree path gives its own
predicted output and the final output value is determined from the
overall votes from the outputs of all the tree paths. The tree size (i.e.,
the number of nodes) depends on the size of the dataset (in terms of the
number of data points or the dimensionality of the input space). This
parameter can be optimized by minimizing the prediction error of the
validation set (see Fig. 2c), that is, to avoid both underfitting and
overfitting [49].

Boosting method: Boosting models, e.g., AdaBoost [61] or gradient
boosting [50], are based on an ensemble of sequentially-added weak
learners/classifiers (e.g., decision tree, SVM, or other classifiers). In this
case, the predicted output is given by a weighted average of the outputs
yielded by all the weak learners/classifiers. Each weak learner is added
in sequence and is mainly trained by the remaining training samples
that are not well predicted from the weighted average of all the outputs
of the previous weak learners. The weight coefficient attached to each
weak learner, which represents its contribution to the final prediction,
is determined from the updated prediction error of the assembled
model after adding this weak learner [50].

2.4. Unsupervised machine learning—Clustering

Rather than learning by example (i.e., supervised machine
learning), unsupervised machine learning aims to decipher some in-
trinsic characteristics of the input dataset itself. A typical example of
unsupervised machine learning is the detection of clusters within da-
ta—wherein a cluster is a group of data that present similar char-
acteristics [29]. In this case, no examples of previously identified
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Fig. 5. (a) Illustration of an artificial neural network model, which comprises an input layer, hidden layer, and output layer. Here, the input variables refer to the
glass composition. Comparison between predicted (i.e., the output of the model) and measured glass properties for (b) glass solubility [75], (c) Young's modulus [11],
and (d) glass transition temperature [37]. The correlation coefficient R? is indicated as a measure of the model accuracy.

clusters are needed to train the model—and relevant clusters are
identified based on the analysis of the distances between the data points
within the inputs space. Fig. 4 shows an example of clustering analysis
in a two-dimensional input space. In this case, based on the spatial
distribution of the data, two clusters are detected (see Fig. 4b) [62].
The K-mean algorithm (and its derivations) is one of the most
widely used clustering algorithm [63,64]. The basic idea of this algo-
rithm is to first randomly place K clusters centroids within input space.
At the first iteration, all the data points are labeled with a cluster ID
(ranging from 1 to K) based on the ID of the cluster centroid they are
the closest to. The position of each cluster centroid is then updated
based on the average position of the labeled data points belonging to
that cluster and all the data points are relabeled accordingly. This
procedure is then iteratively repeated until the positions of each cen-
troid converges and does not move any longer [65]. Note that, in the K-
mean algorithm, the number of clusters K is fixed and is a prerequisite
input of the model. However, several methods have been developed to
determine the optimal number of parameters K [66], such as the Elbow
method [67]—wherein the idea is to select an optimal value for K for
which any further addition of centroids does not significantly reduce
the cost function to be minimized (e.g., the square sum of the distances
between each data point and its associated cluster centroid [67]). A
common issue of the K-mean algorithm is that the algorithm remains
stuck in a local minimum of the cost function during the optimization
and does not converge to the global minimum [68]. This limitation can
be partially overcome by repeating the clustering analysis several times
while considering different random initial positions for the cluster

centroids [68].
2.5. Feature engineering and dimensionality reduction

In both supervised and unsupervised learning, feature engineering is
key to identify relevant inputs describing each data point (e.g., glass
composition, synthesis method, annealing temperature, etc.) [24]. Each
input variable is called a feature. To select the proper independent
input variables, one must identify the system features that present the
largest influence on the target output. This step is called feature en-
gineering, which can be based on some physical knowledge of the
problem or a statistical analysis of the correlation between inputs and
output [69]. In practice, the relevant inputs can be identified based on
some feature evaluation methods (for instance, by calculating the
covariance matrix) [69]. However, in some cases, there are tens to
hundreds of possible input variables that can be defined for a given data
point—and such a high dimensionality of the input space would sig-
nificantly reduce the computational efficiency of machine learning
models [70]. To overcome the “curse of dimensionality” [24], some
dimensionality reduction methods can be used to reduce the di-
mensionality of the inputs space, that is, to reduce the number of inputs
considered during the training of the model. Such techniques include
principal component analysis (PCA) [71], non-negative matrix factor-
ization (NMF) [72], and linear discriminant analysis (LDA) [73].
Briefly, the main idea behind these methods is to use some linear/
nonlinear combinations of the different available inputs to construct
informative new inputs and replace some of the original inputs
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Fig. 6. Comparison between predicted and measured glass dissolution rates values, as offered by (a) “blind machine learning” and (b) “physics-informed machine
learning” using polynomial regression models for the training and test sets [34]. Note that panel (b) presents the logarithm of the dissolution rate values.

[20,24,74]. As such, by combining several inputs into some single
metrics, such techniques can be used to reduce the dimensionality of
the model and, hence, enhance the computational efficiency of machine
learning. It is worth pointing out that the minimum number of data
points that is needed to train a machine learning model increases with
increasing dimensionality—but also depends on the type of machine
learning methods that is used, as well as the nature of the predicted
property. Empirically, at least 3-to-5 data points per input dimension
are required to meaningfully train a machine learning model.

3. Application of machine learning to glass science and
engineering

3.1. Conventional composition-property regression models

Most applications of machine learning for glass science have focused
on the development of composition-property regression models. To this
end, pioneering works have focused on the use of the artificial neural
network method (see Section 2.3 and Fig. 5a) [11,36,37,75]. To the
best of our knowledge, the first use of machine learning in the context
of glass science was conducted by Brauer et al. and aimed to predict the
solubility of P505-CaO-MgO-Na,O-TiO- glass as a function of com-
position [75]. Fig. 5b shows a comparison between the predicted and
measured solubility. Overall, the predictions match well with experi-
ments and the trained model yields a correlation coefficient R? for the
test set that approaches 0.999 [76]. Following the pioneering work,
various studies have focused on applying the artificial neural network
method to predict the properties of glasses as a function of their com-
position [11,18,36,37,77]. As an example, Fig. 5¢c shows a comparison
between predicted and measured values of the Young's modulus of a
wide range of silicate glasses from a study conducted by Mauro
et al.—wherein the model yields a correlation coefficient R? = 0.991
for the test set [11]. Finally, Fig. 5d shows the outcome of a recent work
from Casser et al. wherein artificial neural network was used to predict
the glass transition temperature (Tj) as a function of glass composition
(with R? = 0.998 for the test set) [37]. This work exemplifies the ability
of artificial neural network to handle complex datasets—since the glass
transition temperature presents several definitions and is not con-
sistently measured among different research groups [37]. This de-
monstrates the ability of artificial neural network to extract the relevant
underlying patterns in datasets while filtering out the noise of the data
when the dataset is large enough (55,000 glass compositions therein).
Overall, as illustrated in Fig. 5, machine learning and artificial neural
network offer a promising route to predict glass properties as a function
of composition while relying only on the analysis of existing datasets,
that is, with no physical knowledge prerequisite (i.e., “blind machine

learning” [34]).

3.2. Physics-informed composition-property regression models

Although “blind machine learning” and artificial neural network
can offer reliable predictions, this approach requires the existent of a
large amount of data—which is not always available. In addition, the
complex nature of artificial neural network models renders their in-
terpretation challenging, which limits their potential to offer new
physical insights. As an alternative route, the concept of “physics-in-
formed machine learning” was recently introduced by Liu et al. [34].
This approach relies on (i) using a simple, analytical model formulation
(e.g., a polynomial function) that offers a good interpretability, (ii)
linearizing the relationship between inputs and output based on our
physical and chemical understanding of the predicted property to in-
crease the propensity of the model for reliable extrapolations, and (iii)
identifying relevant reduced-dimensionality descriptors that capture
the atomic structure of the glass [34,78]. This approach was recently
used to predict the stage I dissolution rate of Na;0-Al,03-SiO, silicate
glasses as a function of their composition and pH based on a small
dataset (~200 data points) [34].

Fig. 6 presents a comparison between the outcomes of blind and
physics-informed machine learning using polynomial regression [34].
In the case of blind machine learning, we find that the optimal model
consists of a degree 5 polynomial function. However, as shown in
Fig. 6a, this model yields poor predictions as the relative-root-mean-
square-error (RRMSE) of the training and test sets are very high,
namely, 98% and 731%, respectively [79]. This shows that, in this case,
blind machine learning (i.e., the direct prediction of the dissolution rate
as a function of composition and pH) requires the use of complex ma-
chine learning algorithms (e.g., artificial neural network) and cannot be
achieved by simpler, more interpretable models like polynomial re-
gression [36,80].

In contrast, as shown in Fig. 6b, the physics-informed model offers a
significantly improved accuracy—with a RRMSE values of 2.32% and
3.77% for the training and test sets, respectively [34]. This was pri-
marily accomplished by using some physical and chemical under-
standing of the dissolution process of silicate glasses to linearize the
relationship between the inputs (i.e., glass composition and pH) and
output (i.e., dissolution rate). This greatly decreases the complexity of
the model (i.e., polynomial degree 1 as compared to 5 in the case of
blind machine learning). In addition, the number of topological con-
straints per atom (n.) was introduced as a reduced-dimensionality de-
scriptor that captures how the structure of the glass network controls its
dissolution rate [81-86]. This greatly increases the ability of the model
to offer some reliable extrapolations far from the initial training set
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Overall, this work suggests that embedding some physical knowl-
edge within machine learning offers a promising route to overcome the
tradeoff between accuracy, simplicity, and interpretability (i.e., the
degree to which a human can understand the outcome produced by the
model [20,24,38])—which are otherwise often mutually exclusive in
traditional, blind machine learning models [20,36,54]. Indeed, simple
and interpretable models (e.g., polynomial regression) usually offer
limited accuracy (see Fig. 6a), whereas more advanced models (e.g.,
random forest or artificial neural network) offer increased levels of
accuracy but often come with higher complexity and lower interpret-
ability (see Fig. 5) [20,36,54]. In general, models that are simpler and
more interpretable are highly desirable as (i) simpler models are less
likely to overfit small datasets, (ii) simpler models are usually more
computationally-efficient, and (iii) more interpretable models are more
likely to offer some new insights into the underlying physics governing
the relationship between inputs and outputs.

3.3. Composition-property regression models informed by high-throughput
simulations

In general, irrespective of the algorithm that is used, the quality of
machine learning models depends on the availability of a large body of
accurate and consistent data to spans a large compositional domain
[31,34]. Since extensive experimental datasets are not always available,
high-throughput molecular dynamics (MD) simulations offer a con-
venient and reliable route to build large, consistent, and accurate da-
tasets of glass properties, which, in turn, can serve as a training set for
machine learning algorithms [11,77].

This approach was recently used by Yang et al. to predict the
Young's modulus of silicate glasses as a function of their composition
[77]. Fig. 7a shows the Young's modulus values E computed by high-
throughput MD simulations as a function of composition in the
Ca0-Al,03-Si0O,, glass ternary system [77]. The use of high-throughput
MD simulations makes it possible to systematically and homogeneously
explore entire compositional domain in an efficient fashion. Im-
portantly, MD simulations offer excellent accuracy and low noise-to-
signal ratios, which is key for the use of data-driven modeling. Fig. 7b
then shows the prediction of an artificial neural network model trained
based on the data present in Fig. 7a [77]. The artificial neural network
is found to successfully capture the complex, non-linear evolution of the
Young's modulus as a function of composition while filtering out the
intrinsic noise of the simulation data. Overall, the model offers an ex-
cellent agreement with molecular dynamics data (see Fig. 7c)—with a
correlation coefficient R? of 0.981 and 0.974 for the training and test
sets, respectively. Importantly, the predicted values also show a very
good agreement with available experimental data (see Fig. 7d). Note
that, although the cooling rate used in MD simulation is significantly
higher than experimental ones, computed stiffness values remain fairly
unaffected by the cooling rate—as they are mostly governed by the
curvature of the interatomic potential [87,88].

These results illustrate the benefits of combining machine learning
with high-through MD simulations (i.e., rather than directly relying on
available experimental data). Indeed, even for a simple and technolo-
gically important system like CaO-Al,05-SiO, glasses, the number of
available experimental stiffness data is fairly limited. Further, most of
the data available for this system are clustered in some small regions of
the whole compositional domain (namely, pure silica, per-alkaline
aluminosilicates, and calcium aluminate glasses). Such clustering of the
data is a serious issue as, in turn, available experimental data come with
a notable uncertainty—for instance, the Young's modulus of select
glasses (at fixed composition) can vary by as much as 20 GPa among
different references [32, 89]. As such, the combination of a high level of
noise and clustering of the data would not allow machine learning
approaches to isolate the “true” trend of the data from their noise. Fi-
nally, generating data using MD simulations is faster and cheaper than
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conducting systematic experiments. Nevertheless, it should be pointed
out that, due to some intrinsic limitation of timescale, MD simulations
cannot describe the long-term behavior of glasses (e.g., long-term aging
or dissolution kinetics). In that regard, various modeling techniques
(ranging from physics-based to purely empirical) often needs to be
combined to bridge the gap between different timescales [6]. Overall,
the combination of physics-based simulations with data-driven machine
learning offers a promising route to accelerate the discovery of novel
glasses.

3.4. Identification of relevant structural fingerprints

Due to the complex, disordered nature of the atomic structure of
glasses, the atoms of the network can exhibit a variety of local en-
vironments, which mainly depend on the glass composition and the
cooling rate—in contrast with the case of crystals [4]. Such structural
complexity makes it challenging to understand how the atomic struc-
ture of glasses controls their properties [6,7,102]. Although some
properties (e.g., stiffness [88,103] and hardness [10,104]) are largely
governed by “intuitive” structural features (e.g., the average co-
ordination number [9,88]), more complex properties (e.g., those that
strongly depend on the medium-range order) do not exhibit any cor-
relation with conventional structural metrics [105]. New advanced
structural descriptors are required to describe such complex properties
(e.g., which cannot be simply described in terms of the average con-
nectivity of the atomic network).

Thanks to its ability to decipher some patterns in complex, multi-
dimensional data, machine learning offers a promising route to identify
some non-intuitive structural fingerprints that govern glass properties
[106]. Recently, Cubuk et al. introduced a classification-based machine
learning method to identify some “high-level” structural fingerprints
(called “softness”) that control the dynamics of atom rearrangements
[102,105-109]. In details, the atomic softness is a highly non-intuitive
structural property that is calculated based on the local environment of
each atom [106]. This property was determined by classifying each
atom as being “soft” (i.e., mobile) or “hard” (i.e., immobile). A large
number of systematic structural order descriptors were then computed
and used as inputs. A classification model (SVM) was then used to
identify the optimal hyperplane within the inputs space that best se-
parates soft from hard atoms (see Fig. 3b). The atomic softness was then
defined—for a given atom—as the orthogonal distance between a given
position in the inputs space and the hyperplane [107]. As shown in
Fig. 8, the probability of atomic rearrangement (Pg) is found to be a
logarithmic function of their softness (S) at different temperatures, in-
cluding into the supercooled liquid regime [105]. Although this ap-
proach has thus far been applied to only “toy” model glasses (i.e.,
Lennard Jones glasses) that may not capture the complex chemistry of
more realistic oxide glasses, this work offers some pioneering insights
into the linkages between atomic structure and glass properties (dy-
namics, plasticity, etc.) and paves the way toward the discovery by
machine learning of new structural fingerprints that are governing glass
properties.

3.5. Machine learning forcefields for glass modeling

As discussed in Section 3.3, MD simulations are an important tool to
access the atomic structure of glasses and, thereby, decipher the nature
of the relationship between glass composition and properties. However,
the reliability of MD (or Monte Carlo) simulations is intrinsically lim-
ited by that of the interatomic forcefield that is used, which acts as a
bottleneck in glass modeling [15]. To this end, machine learning offers
a promising route to develop new accurate interatomic forcefields for
glass modeling in an efficient and non-biased fashion [110]. Although
various studies have focused on the use of machine learning to develop
complex, non-analytical interatomic forcefields, such forcefields pre-
sent low interpretability and have been largely restricted to simple



H. Liu, et al.

R ® AR O
o o o o o
Simulated Youngs modulus (GPa)

a
5

100

. 160 1 I 1 I 1 I 1 I 1 %
S o Training set 3/ |
Qo ¢ Testset g
— 140 -
2
= i L
kS
g 120 -
..w - -
(@)
5 100 L
o
>_ - -
©
2 2,
© 80 R(train)=0.981 [~
g e 2,
o) 4 . R{testy=0.974 |
a e

60 T I T I T I T I T

60 80 100 120 140 160
Measured Young’s modulus (GPa)

(©)

Journal of Non-Crystalline Solids: X 4 (2019) 100036

08 140 %
[C]
130 g
\
\ ]
\ © 1110

=
o
Predicted Young's modulu

%00 0.2 0.4 06 60
AIZOG
(b)
160 1 - I .I I 1 I 1
O Simulations
71 & Experiments r
§ 140 |/ — Machine learning model -
o i L
3 120 i
> i
© . -
g
» 100 — S O =
2 _ <O L
3 jo)
> 80— -
1 ca0),A1,0,),,.,(si0,) i
60 T 2| 2 0AI |2 20 T I T
-40 -20 0 20 40

[Ca0] - [ALO,] (mol %)

(d)

Fig. 7. Ternary diagram showing the Young's modulus values E as a function of composition in the CaO-Al,03-SiO, glass system (a) computed by high-throughput
molecular dynamics (MD) simulations and (b) predicted by artificial neural network (ANN) [77]. (c) Comparison between the Young's modulus values predicted by
the ANN model and computed by MD simulations. (d) Comparison between the Young's modulus values computed by MD simulations and predicted by ANN with
select available experimental data [89-100] for the series of compositions (Ca0),(Al203)40_,(SiO2)e0. Note that no experimental data is available for glasses wherein
[CaO] < [Al,O3] due to the poor glass-forming ability of such compositions [101].
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Fig. 8. Probability of atomic rearrangement Py for select temperatures as the
function of the atomic softness—a non-intuitive structural fingerprint identified
by classification-based machine learning [105].

monoatomic or diatomic systems thus far [111-114].

On the other hand, empirical forcefields based on analytical forms
can offer a realistic description of the atomic structure of silicate glasses
[110,115-120]. However, the parameterization of empirical forcefield
remains a complex task that often relies on some level of intuition. The
parameterization of a forcefield is usually based on the formulation of a
cost function that depends on the forcefield parameters [117,119,120].

Recently, Carré et al. introduced a new type of cost function that cap-
tures the structural difference between a liquid simulated by ab initio
molecular dynamics (i.e., the reference configuration) and that pre-
dicted by the forcefield that is to be optimized [120]. The para-
meterization of the forcefield then consists in identifying the optimal
forcefield parameters that minimize the cost function. Traditionally,
this step has been conducted by classical minimization algorithms, e.g.,
steepest gradient descent methods [121]—wherein, starting from a
random initial position in the parameter space, one follows the direc-
tion of steepest gradient descent in the parameter space until the gra-
dient becomes zero, that is, until a minimum has been found. However,
such techniques usually yield some local rather than global minima of
functions and, as such, the outcome of the minimization strongly de-
pends on the choice of the initial parameters—which renders the
parameterization of forcefield largely biased [119,121].

To overcome these limitations, Liu et al. recently introduced a new
forcefield parametrization scheme that combines Gaussian Process
Regression and Bayesian optimization [110,122]. The main idea of this
method is presented in Fig. 9. Taking glassy silica as an archetypal
example, Fig. 9a shows the evolution of the cost function R, that is to be
minimized as a function of a forcefield parameter (here, the partial
charge of Si atoms gs;). The other forcefield parameters are here kept
fixed. The cost function R, is first interpolated by the GPR method (see
Section 2.1 [44]) based on a series of known points, that is, a series of
forcefield parameters for which the value of the cost function has been
computed. The Figure also shows the uncertainty (95% confidence
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Fig. 9. Illustration of empirical forcefields parametrization using Bayesian optimization and Gaussian Process Regression (GPR) [110]. (a) Cost function R, as a
function of a forcefield parameter (here, the partial charge of Si atoms gs;). The other forcefield parameters are kept fixed. The cost function R, is interpolated by GPR
(red line) based on an initial training set comprising 5 data points (i.e., known points, black symbols). The orange area indicates the uncertainty (95% confidence
interval) of the prediction. (b) Expected Improvement (EI) function yielded by the Bayesian optimization method, which predicts the set of parameters (here, gs;) that
offers the highest probability to find the global minimum of R,. (c) Illustration of the iterative parameterization process based on Bayesian optimization. The contour
plot shows the cost function R, as a function of two select forcefield parameters (qs; and Agio). The other forcefield parameters are kept fixed. The set of parameters
(red diamond) predicted by Bayesian optimization at each iteration is incorporated into the training set, which is used for the next prediction. The white dashed line
indicates the path explored by the Bayesian optimization method until the global minimum in the cost function R, is identified. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

interval) of the prediction. Based on the GPR predictions and the un-
certainty thereof, Bayesian optimization (BO) is then used to determine
an optimal set of forcefield parameters that presents the highest prob-
ability to yield a minimum value for the cost function R,. This is ac-
complished by using a so-called expected improvement (EI) function
(see Fig. 9b) [122], which offers the best tradeoff between “exploitation
and exploration,” that is, the optimal balance between (i) exploiting the
minimum position predicted by GPR and (ii) exploring the parameter
space to minimize the uncertainty of the GPR model. The “true” cost
function R, associated with this optimal set of parameters is then
computed by MD and is subsequently incorporated into the training
set—which, in turn, refines the GPR model. New optimal forcefield
parameters are then iteratively predicted until a satisfactory minimum
in the cost function is obtained, that is, when R, does not decrease any
further. This iterative optimization method is illustrated in Fig. 9c,
which shows the path explored by the Bayesian optimization method
until the global minimum in the cost function R, is identified. This
parameterization method is found to yield a forcefield for glassy silicate
that offers an unprecedented level of agreement with ab initio simula-
tions [110]. Overall, this work establishes machine learning as a pro-
mising route to accelerate the development of new forcefield to model
complex, multi-component glasses.

4. Conclusions and future directions

Overall, machine learning techniques offer a unique, largely un-
tapped opportunity to leapfrog current glass design approaches—a
process that has thus far remained largely empirical and based on
previous experience. When combined with physics-based modeling,
machine learning can efficiently and robustly interpolate and extra-
polate predictions of glass properties as a function of composition and,
hence, drastically accelerate the discovery of new glass formulations
with tailored properties and functionalities.

It is worth pointing out that, when adopting machine learning,
different properties may come with different challenges and different
degrees of complexity. Various criteria can be used to describe the
complexity of a given property, e.g.: (i) Does it present a linear or non-
linear dependence on composition? (ii) Is it mostly governed by the
short-range order structure of the glass or also sensitive to the medium-
range order? (iii) Is it significantly affected by some variations in the

thermal history of the glass (e.g., varying cooling rate)? (iv) What is our
physical or chemical understanding of the nature of this property? (v)
How many existing experimental or simulation data points are available
for this property? Clearly, different machine learning algorithms to
predict properties with different degrees of complexity—for instance,
polynomial regression might be sufficient to predict “simple properties”
but more advanced algorithms (e.g., artificial neural network) might be
required to model more “complex properties.” In addition, predicting
more complex properties typically requires larger initial training sets.

Despite these challenges, future applications of machine learning to
glass science and engineering are promising and limitless. First, the
compositional evolution of virtually all the glass properties can be
predicted by machine learning—provided that enough data points are
available. To this end, high-throughput atomistic simulations offer a
promising route to generate large bodies of consistent, accurate data
that can used be as training sets for machine learning approaches. In
turn, machine learning optimization techniques offer a unique oppor-
tunity to develop new sets of reliable, transferable, and computation-
ally-efficient forcefields for atomistic modeling. In parallel, much pro-
gress is still needed to develop new strategies to leverage our existing
physical and chemical knowledge of the glassy state to inform machine
learning and, hence, overcome some of its intrinsic limitations (e.g.,
balance between accuracy, complexity, and interpretability). In addi-
tion, by excelling at detecting non-intuitive patterns in complex, multi-
dimensional datasets, machine learning has the potential to offer some
new physical insights into the nature of the glassy state—which have
remained hidden thus far due to the complex, disordered, out-of-equi-
librium structure of glasses. We postulate that future progress in such
approaches will strongly rely on a closer collaboration between dif-
ferent research groups focusing on experiments, theory, simulations,
and data analytics. Indeed, successful future applications of machine
learning modeling are likely to require closed-loop integrated ap-
proaches, wherein (i) experimental or simulation data are used to train
machine learning models, (ii) machine learning models are used to
pinpoint promising glass compositions, (iii) experiments are conducted
to validate these predictions or refined the data-driven models. We
hope that the present review will contribute to stimulating the adoption
of machine learning techniques in glass science and engineering!



H. Liu, et al.

Declaration of Competing Interests
None
Acknowledgments

This work was supported by the National Science Foundation under
Grants No. 1762292, 1826420, and 1928538. Part of this research is
being performed using funding received from the DOE Office of Nuclear
Energy's Nuclear Energy University Program.

References

[1] J.C. Mauro, C.S. Philip, D.J. Vaughn, M.S. Pambianchi, Glass science in the United
States: current status and future directions, Int. J. Appl. Glas. Sci. 5 (2014) 2-15,
https://doi.org/10.1111/ijag.12058.

[2] J.C. Mauro, E.D. Zanotto, Two centuries of glass research: historical trends, cur-
rent status, and grand challenges for the future, Int. J. Appl. Glas. Sci. 5 (2014)
313-327, https://doi.org/10.1111/ijag.12087.

[3] E.D. Zanotto, F.A.B. Coutinho, How many non-crystalline solids can be made from
all the elements of the periodic table? J. Non-Cryst. Solids 347 (2004) 285-288,
https://doi.org/10.1016/j.jnoncrysol.2004.07.081.

[4] A.K. Varshneya, Fundamentals of Inorganic Glasses, Academic Press Inc, 1993.

[5] H. Liu, T. Du, N.M.A. Krishnan, H. Li, M. Bauchy, Topological Optimization of
Cementitious Binders: Advances and Challenges, Cement and Concrete
Composites, (2018), https://doi.org/10.1016/j.cemconcomp.2018.08.002.

[6] J.C. Mauro, Decoding the glass genome, Curr. Opinion Solid State Mater. Sci. 22
(2018) 58-64, https://doi.org/10.1016/j.cossms.2017.09.001.

[7]1 M. Bauchy, Deciphering the atomic genome of glasses by topological constraint
theory and molecular dynamics: a review, Comput. Mater. Sci. 159 (2019)
95-102, https://doi.org/10.1016/j.commatsci.2018.12.004.

[8] J.C. Mauro, Topological constraint theory of glass, Am. Ceram. Soc. Bull. 90
(2011) 31-37.

[9]1 J.C. Phillips, Topology of covalent non-crystalline solids I: short-range order in
chalcogenide alloys, J. Non-Cryst. Solids 34 (1979) 153-181, https://doi.org/10.
1016/0022-3093(79)90033-4.

[10] M.M. Smedskjaer, J.C. Mauro, Y. Yue, Prediction of glass hardness using tem-
perature-dependent constraint theory, Phys. Rev. Lett. 105 (2010), https://doi.
org/10.1103/PhysRevLett.105.115503.

[11] J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer,
Accelerating the design of functional glasses through modeling, Chem. Mater. 28
(2016) 4267-4277, https://doi.org/10.1021/acs.chemmater.6b01054.

[12] K. Yang, B. Yang, X. Xu, C. Hoover, M.M. Smedskjaer, M. Bauchy, Prediction of the
Young's modulus of silicate glasses by topological constraint theory, J. Non-Cryst.
Solids 514 (2019) 15-19, https://doi.org/10.1016/j.jnoncrysol.2019.03.033.

[13] C. Massobrio, J. Du, M. Bernasconi, P.S. Salmon (Eds.), Molecular Dynamics
Simulations of Disordered Materials, Springer International Publishing, Cham,
2015, , https://doi.org/10.1007/978-3-319-15675-0.

[14] K. Binder, W. Kob, Glassy Materials and Disordered Solids: An Introduction to their
Statistical Mechanics, World Scientific Publishing Company, Hackensack, NJ,
2005.

[15] J. Du, Challenges in molecular dynamics simulations of multicomponent oxide
glasses, in: C. Massobrio, J. Du, M. Bernasconi, P.S. Salmon (Eds.), Molecular
Dynamics Simulations of Disordered Materials, Springer International Publishing,
2015, pp. 157-180.

[16] L. Huang, J. Kieffer, Challenges in modeling mixed ionic-covalent glass formers,
in: C. Massobrio, J. Du, M. Bernasconi, P.S. Salmon (Eds.), Molecular Dynamics
Simulations of Disordered Materials, Springer International Publishing, 2015, pp.
87-112, , https://doi.org/10.1007/978-3-319-15675-0_4.

[17] X.Li, W. Song, K. Yang, N.M.A. Krishnan, B. Wang, M.M. Smedskjaer, J.C. Mauro,
G. Sant, M. Balonis, M. Bauchy, Cooling rate effects in sodium silicate glasses:
bridging the gap between molecular dynamics simulations and experiments, J.
Chem. Phys. 147 (2017) 074501, , https://doi.org/10.1063/1.4998611.

[18] M.C. Onbasli, A. Tandia, J.C. Mauro, Mechanical and compositional Design of
High-Strength Corning Gorilla® Glass, in: W. Andreoni, S. Yip (Eds.), Handbook of
Materials Modeling: Applications: Current and Emerging Materials, Springer
International Publishing, Cham, 2018, pp. 1-23, , https://doi.org/10.1007/978-3-
319-50257-1_100-1.

[19] S.J. Russell, S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach,
Prentice Hall, 2010.

[20] E. Alpaydin, Introduction to Machine Learning, MIT Press, 2014.

[21] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale
Image Recognition, ArXiv:1409.1556 [Cs], 2014. http://arxiv.org/abs/1409.
1556.

[22] X. Wu, X. Zhu, G. Wu, W. Ding, Data mining with big data, IEEE Trans. Knowl.
Data Eng. 26 (2014) 97-107, https://doi.org/10.1109/TKDE.2013.109.

[23] S. Tsugawa, T. Yatabe, T. Hirose, S. Matsumoto, An Automobile with Artificial
Intelligence, Proceedings of the 6th International Joint Conference on Artificial
Intelligence - Volume 2, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1979, pp. 893-895 http://dl.acm.org/citation.cfm?id =1623050.1623117.

[24] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York,
2006.

10

[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]
[40]

[41]

[42]
[43]

[44]
[45]

[46]

[47]
[48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Journal of Non-Crystalline Solids: X 4 (2019) 100036

D.R. Hush, B.G. Horne, Progress in supervised neural networks, IEEE Signal
Process. Mag. 10 (1993) 8-39, https://doi.org/10.1109/79.180705.

N.R. Draper, H. Smith, Applied Regression Analysis, John Wiley & Sons, 2014.
R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons, 2012.
H.B. Barlow, Unsupervised learning, Neural Comput. 1 (1989) 295-311, https://
doi.org/10.1162/neco.1989.1.3.295.

A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Comput. Surv.
31 (1999) 264-323, https://doi.org/10.1145/331499.331504.

G. Cumming, F. Fidler, D.L. Vaux, Error bars in experimental biology, J. Cell Biol.
177 (2007) 7-11, https://doi.org/10.1083/jcb.200611141.

T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom, A. Waibel,
Machine learning, Ann. Rev. Comput. Sci. 4 (1990) 417-433, https://doi.org/10.
1146/annurev.cs.04.060190.002221.

AL Priven, O.V. Mazurin, Glass property databases: their history, present state,
and prospects for further development, Adv. Mater. Res. 39-40 (2008) 145-150,
https://doi.org/10.4028/www.scientific.net/AMR.39-40.145.

R. Chrisley, Embodied artificial intelligence, Artif. Intell. 149 (2003) 131-150,
https://doi.org/10.1016,/50004-3702(03)00055-9.

H. Liu, T. Zhang, N.M.A. Krishnan, M.M. Smedskjaer, J.V. Ryan, S. Gin, M. Bauchy,
Physics-Informed Machine Learning: Predicting the Stage I Dissolution Kinetics of
Silicate Glasses, Npj Materials Degradation, 2019.

A.L. Pomerantsev, Confidence intervals for nonlinear regression extrapolation,
Chemom. Intell. Lab. Syst. 49 (1999) 41-48, https://doi.org/10.1016/S0169-
7439(99)00026-X.

N.M. Anoop Krishnan, S. Mangalathu, M.M. Smedskjaer, A. Tandia, H. Burton,
M. Bauchy, Predicting the dissolution kinetics of silicate glasses using machine
learning, J. Non-Cryst. Solids 487 (2018) 37-45, https://doi.org/10.1016/j.
jnoncrysol.2018.02.023.

D.R. Cassar, A.C.P.L.F. de Carvalho, E.D. Zanotto, Predicting glass transition
temperatures using neural networks, Acta Materialia 159 (2018) 249-256,
https://doi.org/10.1016/j.actamat.2018.08.022.

T. Lookman, F. Alexander, K. Rajan, Information Science for Materials Discovery
and Design, Springer, Berlin Heidelberg, New York, 2015.

G.AF. Seber, A.J. Lee, Linear Regression Analysis, John Wiley & Sons, 2012.
Yu.N. Subbotin, Piecewise-polynomial (spline) interpolation, Math. Notes Acad.
Sci. USSR 1 (1967) 41-45, https://doi.org/10.1007/BF01221723.

H.J. Motulsky, L.A. Ransnas, Fitting curves to data using nonlinear regression: a
practical and nonmathematical review, FASEB J. 1 (1987) 365-374, https://doi.
org/10.1096/fasebj.1.5.3315805.

W. Hérdle, Applied Nonparametric Regression, Cambridge University Press, 1990.
N.S. Altman, An introduction to kernel and nearest-neighbor nonparametric re-
gression, Am. Stat. 46 (1992) 175-185, https://doi.org/10.1080/00031305.1992.
10475879.

C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, 3. print
MIT Press, Cambridge, Mass, 2008.

Y.L. Tong, The Multivariate Normal Distribution, Springer-Verlag, New York,
1990.

S. Bishnoi, S. Singh, R. Ravinder, M. Bauchy, N.N. Gosvami, H. Kodamana,
N.M.A. Krishnan, Predicting Young's Modulus of Glasses with Sparse Datasets
using Machine Learning, ArXiv:1902.09776 [Cond-Mat], 2019. http://arxiv.org/
abs/1902.09776.

K. Mohiuddin, J. Mao, A.K. Jain, Artificial neural networks: a tutorial, Computer.
29 (1996) 31-44.

C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data
Min. Knowl. Disc. 2 (1998) 121-167, https://doi.org/10.1023/A:1009715923555.
A. Liaw, M. Wiener, Classification and regression by randomForest, R News. 2
(2002) 18-22.

J.H. Friedman, Greedy function approximation: a gradient boosting machine, Ann.
Stat. 29 (2001) 1189-1232.

N. Cristianini, J. Shawe-Taylor, D. of C.S.R.H.J. Shawe-Taylor, J. (Royal H.S.-T.
London) University of, An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods, Cambridge University Press, 2000.

R.M. Balabin, E.I. Lomakina, Support vector machine regression (SVR/LS-
SVM)—an alternative to neural networks (ANN) for analytical chemistry?
Comparison of nonlinear methods on near infrared (NIR) spectroscopy data,
Analyst. 136 (2011) 1703-1712, https://doi.org/10.1039/COANO0387E.

C. Wang, S.S. Venkatesh, J.S. Judd, Optimal stopping and effective machine
complexity in learning, in: J.D. Cowan, G. Tesauro, J. Alspector (Eds.), Advances
in Neural Information Processing Systems 6, Morgan-Kaufmann, 1994, pp.
303-310.

E. Aragones, I. Gilboa, A. Postlewaite, D. Schmeidler, Accuracy vs. simplicity: a
complex trade-off, SSRN Electron. J. (2002), https://doi.org/10.2139/ssrn.
332382.

J. Lever, M. Krzywinski, N. Altman, Model selection and overfitting: points of
significance, Nat. Methods 13 (2016) 703-704, https://doi.org/10.1038/nmeth.
3968.

Y. Bengio, Y. Grandvalet, No unbiased estimator of the variance of K-fold cross-
validation, J. Mach. Learn. Res. 5 (2004) 1089-1105.

H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R.
Stat. Soc. 67 (2005) 301-320, https://doi.org/10.1111/j.1467-9868.2005.
00503.x.

R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser.
B Methodol. 58 (1996) 267-288, https://doi.org/10.1111/j.2517-6161.1996.
tb02080.x.

A.E. Hoerl, R.W. Kennard, Ridge regression: biased estimation for nonorthogonal
problems, Technometrics. 12 (1970) 55-67, https://doi.org/10.1080/00401706.



H. Liu,

[60]

[61]
[62]
[63]
[64]
[65]
[66]
671
[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

et al.

1970.10488634.

M.W. Gardner, S.R. Dorling, Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences, Atmos. Environ. 32
(1998) 2627-2636, https://doi.org/10.1016/51352-2310(97)00447-0.

T. Hastie, S. Rosset, J. Zhu, H. Zou, Multi-class AdaBoost, Stat. Interface. 2 (2009)
349-360, https://doi.org/10.4310/SI11.2009.v2.n3.a8.

D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw. 16 (2005)
645-678, https://doi.org/10.1109/TNN.2005.845141.

A.K. Jain, Data clustering: 50 years beyond K-means, Pattern Recogn. Lett. 31
(2010) 651-666, https://doi.org/10.1016/j.patrec.2009.09.011.

T.S. Madhulatha, An Overview on Clustering Methods, ArXiv:1205.1117 [Cs],
2012. http://arxiv.org/abs/1205.1117.

A. Likas, N. Vlassis, J.J. Verbeek, The global k-means clustering algorithm, Pattern
Recogn. 36 (2003) 451-461, https://doi.org/10.1016/50031-3203(02)00060-2.
T.M. Kodinariya, P.R. Makwana, Review on determining number of cluster in K-
means clustering, Int. J. Adv. Res. Comput. Sci. Manage. Stud. 1 (2013) 6.

P. Bholowalia, EBK-means: a clustering technique based on elbow method and K-
means in WSN, Int. J. Comput. Appl. 105 (2014) 17-24.

P.S. Bradley, U.M. Fayyad, Refining Initial Points for K-Means Clustering, Morgan
Kaufmann, 1998, pp. 91-99.

S. Khalid, T. Khalil, S. Nasreen, A survey of feature selection and feature extraction
techniques in machine learning, 2014 Science and Information Conference, 2014,
pp. 372-378, , https://doi.org/10.1109/SA1.2014.6918213.

M.L Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects,
Science. 349 (2015) 255-260, https://doi.org/10.1126/science.aaa8415.

1. Jolliffe, Principal component analysis, Encyclopedia of Statistics in Behavioral
Science, American Cancer Society, 2005, , https://doi.org/10.1002/0470013192.
bsa501.

D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix fac-
torization, Nature. 401 (1999) 788-791, https://doi.org/10.1038/44565.

M. Li, B. Yuan, 2D-LDA: a statistical linear discriminant analysis for image matrix,
Pattern Recogn. Lett. 26 (2005) 527-532, https://doi.org/10.1016/j.patrec.2004.
09.007.

L. van der Maaten, E. Postma, J. van den Herik, Dimensionality Reduction: A
Comparative Review, http://www.math.chalmers.se/Stat/Grundutb/GU/
MSA220/S18/DimRed2.pdf.

D.S. Brauer, C. Riissel, J. Kraft, Solubility of glasses in the system
P205-Ca0-MgO-Na20-TiO2: experimental and modeling using artificial neural
networks, J. Non-Cryst. Solids 353 (2007) 263-270, https://doi.org/10.1016/j.
jnoncrysol.2006.12.005.

J. Lee Rodgers, W.A. Nicewander, Thirteen ways to look at the correlation coef-
ficient, Am. Stat. 42 (1988) 59-66, https://doi.org/10.1080/00031305.1988.
10475524.

K. Yang, X. Xu, B. Yang, B. Cook, H. Ramos, M. Bauchy, Prediction of Silicate
Glasses' Stiffness by High-Throughput Molecular Dynamics Simulations and
Machine Learning, ArXiv:1901.09323 [Cond-Mat, Physics:Physics], 2019. http://
arxiv.org/abs/1901.09323.

J.D. Vienna, J.J. Neeway, J.V. Ryan, S.N. Kerisit, Impacts of glass composition, pH,
and temperature on glass forward dissolution rate, Npj Mater. Degrad. 2 (2018)
22, https://doi.org/10.1038/541529-018-0042-5.

M.-F. Li, X.-P. Tang, W. Wu, H.-B. Liu, General models for estimating daily global
solar radiation for different solar radiation zones in mainland China, Energy
Convers. Manag. 70 (2013) 139-148, https://doi.org/10.1016/j.enconman.2013.
03.004.

P. Frugier, C. Martin, I. Ribet, T. Advocat, S. Gin, The effect of composition on the
leaching of three nuclear waste glasses: R7T7, AVM and VRZ, J. Nucl. Mater. 346
(2005) 194-207, https://doi.org/10.1016/j.jnucmat.2005.06.023.

T. Oey, A. Kumar, L. Pignatelli, Y. Yu, N. Neithalath, J.W. Bullard, M. Bauchy,
G. Sant, Topological controls on the dissolution kinetics of glassy aluminosilicates,
J. Am. Ceram. Soc. 100 (2017) 5521-5527, https://doi.org/10.1111/jace.15122.
I. Pignatelli, A. Kumar, M. Bauchy, G. Sant, Topological control on silicates' dis-
solution kinetics, Langmuir. 32 (2016) 4434-4439, https://doi.org/10.1021/acs.
langmuir.6b00359.

T. Oey, Y.-H. Hsiao, E. Callagon, B. Wang, I. Pignatelli, M. Bauchy, G.N. Sant, Rate
controls on silicate dissolution in cementitious environments, RILEM Tech. Lett. 2
(2017) 67-73, https://doi.org/10.21809/rilemtechlett.2017.35.

T. Oey, K.F. Frederiksen, N. Mascaraque, R. Youngman, M. Balonis,

M.M. Smedskjaer, M. Bauchy, G. Sant, The role of the network-modifier's field-
strength in the chemical durability of aluminoborate glasses, J. Non-Cryst. Solids
505 (2019) 279-285, https://doi.org/10.1016/j.jnoncrysol.2018.11.019.

N. Mascaraque, M. Bauchy, M.M. Smedskjaer, Correlating the network topology of
oxide glasses with their chemical durability, J. Phys. Chem. B 121 (2017)
1139-1147, https://doi.org/10.1021/acs.jpcb.6b11371.

N. Mascaraque, M. Bauchy, J.L.G. Fierro, S.J. Rzoska, M. Bockowski,

M.M. Smedskjaer, Dissolution kinetics of hot compressed oxide glasses, J. Phys.
Chem. B 121 (2017) 9063-9072, https://doi.org/10.1021/acs.jpcb.7b04535.
J.F. Lutsko, Generalized expressions for the calculation of elastic constants by
computer simulation, J. Appl. Phys. 65 (1989) 2991-2997, https://doi.org/10.
1063/1.342716.

Rouxel Tanguy, Elastic properties and short-to medium-range order in glasses, J.
Am. Ceram. Soc. 90 (2007) 3019-3039, https://doi.org/10.1111/j.1551-2916.
2007.01945.x.

L.-G. Hwa, K.-J. Hsieh, L.-C. Liu, Elastic moduli of low-silica calcium alumino-
silicate glasses, Mater. Chem. Phys. 78 (2003) 105-110, https://doi.org/10.1016/
$0254-0584(02)00331-0.

R.J. Eagan, J.C. Swearekgen, Effect of composition on the mechanical properties of

11

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Journal of Non-Crystalline Solids: X 4 (2019) 100036

Aluminosilicate and borosilicate glasses, J. Am. Ceram. Soc. 61 (1978) 27-30,
https://doi.org/10.1111/j.1151-2916.1978.tb09222.x.

C. Ecolivet, P. Verdier, Proprietes elastiques et indices de refraction de verres
azotes, Mater. Res. Bull. 19 (1984) 227-231, https://doi.org/10.1016/0025-
5408(84)90094-1.

S. Inaba, S. Todaka, Y. Ohta, K. Morinaga, Equation for estimating the young&
rsquo;s modulus, shear modulus and Vickers hardness of aluminosilicate glasses, J.
Jpn. Inst. Metals 64 (2000) 177-183, https://doi.org/10.2320/jinstmet1952.64.3_
177.

S. Inaba, S. Oda, K. Morinaga, Equation for estimating the thermal diffusivity,
specific heat and thermal conductivity of oxide glasses, J. Jpn. Inst. Metals 65
(2001) 680-687, https://doi.org/10.2320/jinstmet1952.65.8_680.

C. Weigel, C. Le Losq, R. Vialla, C. Dupas, S. Clément, D.R. Neuville, B. Rufflé,
Elastic moduli of XAlSiO4 aluminosilicate glasses: effects of charge-balancing
cations, J. Non-Cryst. Solids 447 (2016) 267-272, https://doi.org/10.1016/j.
jnoncrysol.2016.06.023.

J. Rocherulle, C. Ecolivet, M. Poulain, P. Verdier, Y. Laurent, Elastic moduli of
oxynitride glasses: extension of Makishima and Mackenzie's theory, J. Non-Cryst.
Solids 108 (1989) 187-193, https://doi.org/10.1016,/0022-3093(89)90582-6.

M. Yamane, M. Okuyama, Coordination number of aluminum ions in alkali-free
alumino-silicate glasses, J. Non-Cryst. Solids 52 (1982) 217-226, https://doi.org/
10.1016/0022-3093(82)90297-6.

S. Sugimura, S. Inaba, H. Abe, K. Morinaga, Compositional dependence of me-
chanical properties in aluminosilicate, borate and phosphate glasses, J. Ceram.
Soc. Jpn. 110 (2002) 1103-1106, https://doi.org/10.2109/jcersj.110.1103.

T.M. Gross, M. Tomozawa, A. Koike, A glass with high crack initiation load: role of
fictive temperature-independent mechanical properties, J. Non-Cryst. Solids 355
(2009) 563-568, https://doi.org/10.1016/j.jnoncrysol.2009.01.022.

1. Yasui, F. Utsuno, Material design of glasses based on database — INTERGLAD, in:
M. Doyama, J. Kihara, M. Tanaka, R. Yamamoto (Eds.), Computer Aided
Innovation of New Materials II, Elsevier, Oxford, 1993, pp. 1539-1544, , https://
doi.org/10.1016/B978-0-444-89778-7.50147-X.

N.P. Bansal, R.H. Doremus, Handbook of Glass Properties, Elsevier, 2013.

J.E. Shelby, Formation and properties of calcium aluminosilicate glasses, J. Am.
Ceram. Soc. 68 (1985) 155-158, https://doi.org/10.1111/j.1151-2916.1985.
tb09656.x.

E.D. Cubuk, R.J.S. Ivancic, S.S. Schoenholz, D.J. Strickland, A. Basu,

Z.S. Davidson, J. Fontaine, J.L. Hor, Y.-R. Huang, Y. Jiang, N.C. Keim,

K.D. Koshigan, J.A. Lefever, T. Liu, X.-G. Ma, D.J. Magagnosc, E. Morrow,

C.P. Ortiz, J.M. Rieser, A. Shavit, T. Still, Y. Xu, Y. Zhang, K.N. Nordstrom,

P.E. Arratia, R.W. Carpick, D.J. Durian, Z. Fakhraai, D.J. Jerolmack, D. Lee, J. Li,
R. Riggleman, K.T. Turner, A.G. Yodh, D.S. Gianola, A.J. Liu, Structure-property
relationships from universal signatures of plasticity in disordered solids, Science
358 (2017) 1033-1037, https://doi.org/10.1126/science.aai8830.

K. Philipps, R.P. Stoffel, R. Dronskowski, R. Conradt, Experimental and theoretical
investigation of the elastic moduli of silicate glasses and crystals, Front. Mater. 4
(2017), https://doi.org/10.3389/fmats.2017.00002.

M. Bauchy, M.J.A. Qomi, C. Bichara, F.-J. Ulm, R.J.-M. Pelleng, Rigidity transition
in materials: hardness is driven by weak atomic constraints, Phys. Rev. Lett. 114
(2015) 125502, https://doi.org/10.1103/PhysRevLett.114.125502.

S.S. Schoenholz, E.D. Cubuk, D.M. Sussman, E. Kaxiras, A.J. Liu, A structural
approach to relaxation in glassy liquids, Nat. Phys. 12 (2016) 469-471, https://
doi.org/10.1038/nphys3644.

E.D. Cubuk, S.S. Schoenholz, E. Kaxiras, A.J. Liu, Structural properties of defects in
glassy liquids, J. Phys. Chem. B 120 (2016) 6139-6146, https://doi.org/10.1021/
acs.jpcb.6b02144.

E.D. Cubuk, S.S. Schoenholz, J.M. Rieser, B.D. Malone, J. Rottler, D.J. Durian,
E. Kaxiras, A.J. Liu, Identifying structural flow defects in disordered solids using
machine-learning methods, Phys. Rev. Lett. 114 (2015), https://doi.org/10.1103/
PhysRevLett.114.108001.

D.M. Sussman, S.S. Schoenholz, E.D. Cubuk, A.J. Liu, Disconnecting structure and
dynamics in glassy thin films, PNAS. 114 (2017) 10601-10605, https://doi.org/
10.1073/pnas.1703927114.

X. Ma, Z.S. Davidson, T. Still, R.J.S. Ivancic, S.S. Schoenholz, A.J. Liu, A.G. Yodh,
Heterogeneous activation, local structure, and softness in supercooled colloidal
liquids, Phys. Rev. Lett. 122 (2019), https://doi.org/10.1103/PhysRevLett.122.
028001.

H. Liu, Z. Fu, Y. Li, N.F.A. Sabri, M. Bauchy, Machine Learning Forcefield for
Silicate Glasses, ArXiv:1902.03486 [Cond-Mat], 2019. http://arxiv.org/abs/1902.
03486.

A.P. Bart6k, J. Kermode, N. Bernstein, G. Csanyi, Machine learning a general-
purpose interatomic potential for silicon, Phys. Rev. (2018), https://doi.org/10.
1103/PhysRevX.8.041048 X. 8.

V.L. Deringer, G. Csanyi, Machine learning based interatomic potential for
amorphous carbon, Phys. Rev. B 95 (2017) 094203, , https://doi.org/10.1103/
PhysRevB.95.094203.

P. Rowe, G. Csanyi, D. Alfe, A. Michaelides, Development of a machine learning
potential for graphene, Phys. Rev. B. 97 (2018), https://doi.org/10.1103/
PhysRevB.97.054303.

M. Hellstrém, J. Behler, Neural network potentials in materials modeling, in:

W. Andreoni, S. Yip (Eds.), Handbook of Materials Modeling, Springer
International Publishing, Cham, 2018, pp. 1-20, , https://doi.org/10.1007/978-3-
319-42913-7_56-1.

M. Bauchy, Structural, vibrational, and elastic properties of a calcium alumino-
silicate glass from molecular dynamics simulations: the role of the potential, J.
Chem. Phys. 141 (2014) 024507, , https://doi.org/10.1063/1.4886421.



H. Liu, et al.

[116]

[117]

[118]

[119]

L. Deng, J. Du Development of boron oxide potentials for computer simulations of
multicomponent oxide glasses, J. Am. Ceram. Soc.. doi:https://doi.org/10.1111/
jace.16082.

S. Sundararaman, L. Huang, S. Ispas, W. Kob, New optimization scheme to obtain
interaction potentials for oxide glasses, J. Chem. Phys. 148 (2018) 194504,
https://doi.org/10.1063/1.5023707.

M. Wang, N.M. Anoop Krishnan, B. Wang, M.M. Smedskjaer, J.C. Mauro,

M. Bauchy, A new transferable interatomic potential for molecular dynamics si-
mulations of borosilicate glasses, J. Non-Cryst. Solids 498 (2018) 294-304,
https://doi.org/10.1016/j.jnoncrysol.2018.04.063.

A. Carré, S. Ispas, J. Horbach, W. Kob, Developing empirical potentials from ab

12

[120]

[121]

[122]

Journal of Non-Crystalline Solids: X 4 (2019) 100036

initio simulations: the case of amorphous silica, Comput. Mater. Sci. 124 (2016)
323-334, https://doi.org/10.1016/j.commatsci.2016.07.041.

A. Carré, J. Horbach, S. Ispas, W. Kob, New fitting scheme to obtain effective
potential from Car-Parrinello molecular-dynamics simulations: application to si-
lica, EPL. 82 (2008) 17001, https://doi.org/10.1209/0295-5075/82/17001.
J.R. Shewchuk, An Introduction to the Conjugate Gradient Method without the
Agonizing Pain, https://www.cs.cmu.edu/~quake-papers/painless-conjugate-
gradient.pdf, (1994).

P.1. Frazier, J. Wang, Bayesian optimization for materials design, Information
Science for Materials Discovery and Design, Springer, Cham, 2016, pp. 45-75, ,
https://doi.org/10.1007/978-3-319-23871-5_3.



	Machine learning for glass science and engineering: A review
	Introduction
	Challenges in the development of new glasses
	When machine learning meets glass science
	Challenges and limitations of machine learning for glass science

	Overview of machine learning techniques for glass science
	Regression techniques
	Parametric and nonparametric regression
	Optimization of model complexity

	Classification techniques
	Examples of supervised machine learning algorithms
	Unsupervised machine learning—Clustering
	Feature engineering and dimensionality reduction

	Application of machine learning to glass science and engineering
	Conventional composition-property regression models
	Physics-informed composition-property regression models
	Composition-property regression models informed by high-throughput simulations
	Identification of relevant structural fingerprints
	Machine learning forcefields for glass modeling

	Conclusions and future directions
	Declaration of Competing Interests
	Acknowledgments
	References


