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AN INEXACT VARIABLE METRIC PROXIMAL POINT
ALGORITHM FOR GENERIC QUASI-NEWTON ACCELERATION∗

HONGZHOU LIN† , JULIEN MAIRAL‡ , AND ZAID HARCHAOUI§

Abstract. We propose an inexact variable-metric proximal point algorithm to accelerate gradi-
ent-based optimization algorithms. The proposed scheme, called QNing, can notably be applied to
incremental first-order methods such as the stochastic variance-reduced gradient descent algorithm
and other randomized incremental optimization algorithms. QNing is also compatible with composite
objectives, meaning that it has the ability to provide exactly sparse solutions when the objective
involves a sparsity-inducing regularization. When combined with limited-memory BFGS rules, QNing
is particularly effective at solving high-dimensional optimization problems while enjoying a worst-case
linear convergence rate for strongly convex problems. We present experimental results where QNing
gives significant improvements over competing methods for training machine learning methods on
large samples and in high dimensions.
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1. Introduction. Convex composite optimization arises in many scientific fields,
such as image and signal processing or machine learning. It consists of minimizing a
real-valued function composed of two convex terms:

(1) min
x∈Rd
{f(x) , f0(x) + ψ(x)},

where f0 is smooth with Lipschitz continuous derivatives, and ψ is a regularization
function that is not necessarily differentiable. A typical example from the signal
and image processing literature is the `1-norm ψ(x) = ‖x‖1, which encourages sparse
solutions [19, 40]; composite minimization also encompasses constrained minimization
when considering extended-valued indicator functions ψ that may take the value +∞
outside of a convex set C and 0 inside (see [28]). In general, algorithms that are
dedicated to composite optimization only require the ability to efficiently compute
the proximal operator of ψ:

pψ(y) , arg min
x∈Rd

{
ψ(x) +

1

2
‖x− y‖2

}
,

where ‖ · ‖ denotes the Euclidean norm. Note that when ψ is an indicator function
the proximal operator corresponds to the simple Euclidean projection.
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1409

To solve (1), significant efforts have been devoted to the following:
(i) extending techniques for smooth optimization to deal with composite terms;

(ii) exploiting the underlying structure of the problem, i.e.,
• is f a finite sum of independent terms?
• is ψ separable in different blocks of coordinates?

(iii) exploiting the local curvature of the smooth term f to achieve faster conver-
gence than gradient-based approaches when dimension d is large.

Typically, the first point is well understood in the context of optimal first-order meth-
ods (see [2, 48]), and the third point is tackled with effective heuristics such as the
limited-memory BFGS (L-BFGS) algorithm when the problem is smooth [35, 49].
Yet, addressing all these challenges at the same time, which is precisely the focus of
this paper, is difficult.

In particular, a problem of interest that initially motivated our work is that of
empirical risk minimization (ERM); the problem arises in machine learning and can
be formulated as the minimization of a composite function f : Rd → R:

(2) min
x∈Rd

{
f(x) ,

1

n

n∑
i=1

fi(x) + ψ(x)

}
,

where the functions fi are convex and smooth with Lipschitz continuous derivatives,
and ψ is a composite term, possibly nonsmooth. The function fi measures the fit
of some model parameters x to a specific data point indexed by i, and ψ is a regu-
larization penalty to prevent overfitting. To exploit the sum structure of f , a large
number of randomized incremental gradient-based techniques have been proposed,
such as stochastic average gradient (SAG) [56], SAGA [15], stochastic dual coordi-
nate ascent (SDCA) [58], stochastic variance-reduced gradient descent (SVRG) [60],
Finito [16], or minimization by incremental surrogate optimization (MISO) [38]. These
approaches access a single gradient ∇fi(x) at every iteration instead of the full gra-
dient (1/n)

∑n
i=1∇fi(x) and achieve lower computational complexity in expectation

than optimal first-order methods [2, 48] under a few assumptions. Yet, these methods
are unable to exploit the curvature of the objective function; indeed, this is also the
case for variants that are accelerated in the sense of Nesterov [21, 33, 58].

To tackle (2), dedicated first-order methods are often the default choice in machine
learning, but it is also known that standard quasi-Newton approaches can sometimes
be surprisingly effective in the smooth case—that is, when ψ = 0 (see, e.g., [56]
for extensive benchmarks). Since the dimension, d, of the problem is typically very
large (d ≥ 10 000), “limited-memory” variants of these algorithms, such as L-BFGS,
are necessary to achieve the desired scalability [35, 49]. The theoretical guarantees
offered by L-BFGS are somewhat limited, meaning that it does not outperform accel-
erated first-order methods in terms of worst-case convergence rate and also that it is
not guaranteed to correctly approximate the Hessian of the objective. Yet, L-BFGS
remains one of the greatest practical successes of smooth optimization. Adapting L-
BFGS to composite and structured problems, such as the finite sum of functions (2),
has become increasingly important.

For instance, there have been several attempts to develop a proximal quasi-
Newton method [10, 31, 54, 62]. These algorithms typically require the proximal
operator of ψ to be computed many times with respect to a variable metric. Quasi-
Newton steps have also been incorporated as local search steps into accelerated first-
order methods to further enhance their numerical performance [24]. More related to
our work, in [26] L-BFGS is combined with SVRG for minimizing smooth finite sums.
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1410 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

The scope of our approach is broader, beyond the case of SVRG. We present a generic
quasi-Newton scheme, applicable to a large class of first-order methods for composite
optimization including other incremental algorithms [15, 16, 38, 56, 58] and block
coordinate descent methods [51, 52].

More precisely, the main contribution of this paper is a generic meta-algorithm,
called QNing (the letters “Q” and “N” stand for quasi-Newton), which uses a given
optimization method to solve a sequence of auxiliary problems up to some appropriate
accuracy, resulting in faster global convergence in practice. QNing falls into the
class of inexact proximal point algorithms with variable metric and may be seen as
applying a quasi-Newton algorithm with inexact (but accurate enough) gradients to the
Moreau envelope of the objective. As a result, (i) our approach is generic, as stated
previously; (ii) despite the smoothing of the objective, the subproblems that we solve
are composite ones, which may lead to exactly sparse iterates when a sparsity-inducing
regularization, e.g., the `1-norm, is involved; (iii) when used with L-BFGS rules, it
admits a worst-case linear convergence rate for strongly convex problems similar to
that of gradient descent (GD), which is typically the best guarantee obtained for
L-BFGS schemes in the literature.

The idea of combining second-order or quasi-Newton methods with the Moreau
envelope is in fact relatively old. It may be traced back to variable metric proximal
bundle methods [14, 23, 41], which aim to incorporate curvature information into
the bundle methods. Our approach revisits this principle with a limited-memory
variant (to deal with large dimension d), a simple line-search scheme, several warm-
start strategies for the subproblems, and a global complexity analysis, which is more
relevant than convergence rates of the iterates, as the latter do not take into account
the cost per iteration.

To demonstrate the effectiveness of our scheme in practice, we evaluate QNing on
regularized logistic regression and regularized least squares, with smooth and non-
smooth regularization penalties such as the elastic net [63]. We use large-scale ma-
chine learning data sets and show that QNing performs at least as well as the recently
proposed accelerated incremental algorithm Catalyst [33] and other quasi-Newton
baselines, such as proximal quasi-Newton methods [31] and stochastic L-BFGS [44],
in all numerical experiments, and significantly outperforms them in many cases.

The paper is organized as follows: section 2 presents related work on quasi-
Newton methods such as L-BFGS; we introduce QNing in section 3 and its convergence
analysis in section 4; section 5 is devoted to numerical experiments; and section 6
concludes the paper.

2. Related work and preliminaries. The history of quasi-Newton methods
can be traced back to the 1950s [6, 29, 50]. In practice, quasi-Newton methods
often lead to significantly faster convergence than simpler gradient-based methods for
solving smooth optimization problems [55]. Yet, a theoretical analysis of quasi-Newton
methods that explains their impressive empirical behavior is still an open problem. We
briefly review the well-known BFGS algorithm in section 2.1, and review its limited-
memory variant [49] and a few recent extensions in section 2.2. Then, in section 2.3
we discuss earlier works that combine proximal point algorithm and quasi-Newton
methods.

2.1. Quasi-Newton methods for smooth optimization. The most popu-
lar quasi-Newton methods are probably BFGS, named after its inventors (Broyden,
Fletcher, Goldfarb, and Shanno), and its limited variant, L-BFGS [50]. These ap-
proaches will be the workhorses of the QNing meta-algorithm in practice. Consider
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1411

a smooth convex objective f to be minimized. The BFGS method constructs at
iteration k a couple (xk, Bk) with the following update:

(3) xk+1 = xk − αkB−1
k ∇f(xk) and Bk+1 = Bk −

Bksks
>
k Bk

s>k Bksk
+
yky
>
k

y>k sk
,

where αk is a suitable step size and

sk = xk+1 − xk, yk = ∇f(xk+1)−∇f(xk).

The matrix Bk aims to approximate the Hessian matrix at iterate xk. When f is
strongly convex, the positive definiteness of Bk is guaranteed, as well as the condition
y>k sk > 0, which ensures that (3) is well defined. The step size αk is usually deter-
mined by a line-search strategy. For instance, applying Wolfe’s line-search strategy
provides a linear convergence rate for strongly convex objectives. Moreover, under the
stronger conditions that the objective f is twice differentiable and its Hessian is Lips-
chitz continuous, the algorithm can asymptotically achieve a superlinear convergence
rate [50].

However, when the dimension d is large, storing the d-by-d matrix Bk is infeasi-
ble. The limited-memory variant L-BFGS [49] overcomes this issue by restricting the
matrix Bk to be low rank. More precisely, instead of storing the full matrix, a “gen-
erating list” of at most l pairs of vectors {(ski , yki )}i=0,...,j is kept in the memory. The
low rank matrix Bk can then be recovered by performing the matrix update recursion
in (3) involving all pairs of the generating list. Between iterations k and k + 1, the
generating list is incrementally updated by removing the oldest pair in the list (when
j = l) and adding a new one. What makes the approach appealing is the ability
to compute the matrix-vector product Hkz = B−1

k z with only O(ld) floating-point
operations for any vector z. This procedure relies entirely on a vector-vector product
that does not explicitly construct the d-by-d matrix Bk or Hk. The price to pay is
that superlinear convergence becomes out of reach.

L-BFGS is thus appropriate for high-dimensional problems (when d is large), but
still requires the full gradient to be computed at each iteration, which may be cum-
bersome in the large sum setting (2). This motivated a stochastic counterpart of the
quasi-Newton method (called stochastic quasi-Newton, or SQN) [9, 42, 57]. Unfor-
tunately, directly substituting the full gradient ∇f(xk) by its stochastic counterpart
does not lead to a convergent scheme. Instead, the SQN method [9] uses updates
with subsampled Hessian-vector products, which leads to a sublinear convergence
rate. Later, a linearly convergent SQN algorithm was proposed by exploiting a vari-
ance reduction scheme [26, 44]. However, it is unclear how to extend these techniques
to the composite setting.

2.2. Quasi-Newton methods for composite optimization. Different ap-
proaches have been proposed to extend quasi-Newton methods to composite opti-
mization problems. A first approach consists in minimizing successive quadratic ap-
proximations, also called proximal quasi-Newton methods [10, 25, 30, 31, 36, 54].
More concretely, a local quadratic approximation qk is minimized at each iteration:

(4) qk(x) , f0(xk) + 〈∇f0(xk), x− xk〉+
1

2
(x− xk)TBk(x− xk) + ψ(x),

where Bk is a Hessian approximation based on quasi-Newton methods. The minimizer
of qk provides a descent direction, which is subsequently used to build the next iterate.
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1412 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

However, a closed-form solution of (4) is usually not available since Bk changes over
the iterations. Thus, one needs to apply an optimization algorithm to approximately
solve (4). The composite structure of the subproblem naturally leads to the choice of a
first-order optimization algorithm, such as a randomized coordinate descent algorithm.
Then, superlinear complexity becomes out of reach since it requires the subproblems
(4) to be solved with “high accuracy” [31]. The global convergence rate of this inexact
variant was analyzed, for instance, in [54], where a sublinear convergence rate was
obtained for convex problems; later, the analysis was extended to strongly convex
problems in [36], where a linear convergence rate was achieved.

A second approach to extending quasi-Newton methods to composite optimiza-
tion problems is based on smoothing techniques. More precisely, a quasi-Newton
method is applied to a smoothed version of the objective. For instance, one may use
the forward-backward envelope [4, 59]. The idea is to mimic forward-backward split-
ting methods and apply quasi-Newton steps instead of gradient steps on top of the
envelope. Another well-known smoothing technique is to apply the Moreau–Yosida
regularization [43, 61], which gives a smoothed function called the Moreau envelope.
Then, applying quasi-Newton methods on it leads to the family of variable metric
proximal point algorithms [7, 14, 22, 23]. Our method pursues this line of work by
developing a practical inexact variant with global complexity guarantees.

2.3. Combining the proximal point algorithm and quasi-Newton meth-
ods. We briefly recall the definition of the Moreau envelope and its basic properties.

Definition 1. Given an objective function f and a smoothing parameter κ >
0, the Moreau envelope of f is the function F obtained by performing the infimal
convolution

(5) F (x) , min
z∈Rd

{
f(z) +

κ

2
‖z − x‖2

}
.

When f is convex, the subproblem defined in (5) is strongly convex, which pro-
vides a unique minimizer, called the proximal point of x, which we denote by p(x).

Proposition 1 (basic properties of the Moreau envelope). If f is convex, the
Moreau envelope F defined in (5) satisfies the following.

1. F has the same minimum as f , i.e.,

min
x∈Rd

F (x) = min
x∈Rd

f(x),

and the solution sets of the above two problems coincide with each other.
2. F is continuously differentiable even when f is not, and

(6) ∇F (x) = κ(x− p(x)).

Moreover, the gradient ∇F is Lipschitz continuous with constant LF = κ.
3. F is convex. Moreover, when f is µ-strongly convex with respect to the Eu-

clidean norm, F is µF -strongly convex with µF = µκ
µ+κ .

4. F is upper-bounded by f . More precisely, for any x ∈ Rd,

(7) F (x) +
1

2κ
‖∇F (x)‖2 ≤ f(x).

Interestingly, F inherits all the convex properties of f and, more importantly, it
is always continuously differentiable (see [32] for elementary proofs). Moreover, the
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1413

condition number of F is given by

(8) q =
LF
µF

=
µ+ κ

µ
,

which may be adjusted by the regularization parameter κ. Then, a naive approach to
overcome the nonsmoothness of the function f is to transfer the optimization problem
to its Moreau envelope F . More concretely, we may apply an optimization algorithm
to minimize F and use the obtained solution as a solution to the original problem,
since both functions share the same minimizers. This yields the following well-known
algorithm.

Proximal point algorithm. Consider the gradient descent method with constant
step size 1/LF = 1/κ:

xk+1 = xk −
1

κ
∇F (xk).

By rewriting the gradient ∇F (xk) as κ(xk − p(xk)), we obtain the proximal point
algorithm [53]:

(9) xk+1 = p(xk) = arg min
z∈Rd

{
f(z) +

κ

2
‖z − xk‖2

}
.

Accelerated proximal point algorithm. Since GD on F yields the proximal point
algorithm, it is natural to apply an accelerated first-order method to get faster con-
vergence. To that effect, Nesterov’s algorithm [45] uses a two-stage update, along
with a specific extrapolation parameter βk+1,

xk+1 = yk −
1

κ
∇F (yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

and, given (6), we obtain that

xk+1 = p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk).

This is known as the accelerated proximal point algorithm introduced by Güler [27],
which was recently extended in [33, 34].

Variable metric proximal point algorithm. Quasi-Newton methods can also be
applied on F , which yields

(10) xk+1 = xk − αkB−1
k ∇F (xk),

where Bk is the Hessian approximation of F based on quasi-Newton methods. This
is known as the variable metric proximal point algorithm [7, 14, 22, 23].

Toward an inexact variable metric proximal point algorithm. Quasi-Newton ap-
proaches have been applied after the inexact Moreau envelope in various ways [7, 14,
22, 23]. In particular, it is shown in [14] that if the subproblems (5) are solved up
to high enough accuracy, then the inexact variable metric proximal point algorithm
preserves the superlinear convergence rate. However, the complexity of solving the
subproblems with high accuracy is typically not taken into account in the above-
mentioned works.

In the unrealistic case where p(xk) can be obtained at no cost, the proximal point
algorithm can afford much larger step sizes than classical gradient methods, and thus
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1414 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

is more effective. For instance, when f is strongly convex, the Moreau envelope F can
be made arbitrarily well conditioned by making κ arbitrarily small, according to (8).
Then, a single gradient step on F is enough to be arbitrarily close to the optimum.
In practice, however, subproblems are solved only approximately, and the complexity
of solving the subproblems is directly related to the smoothing parameter κ. This
leaves an important question: how large to choose the smoothing parameter κ. A
small κ makes the smoothed function F better conditioned, while a large κ is needed
to improve the conditioning of the subproblem (5).

The main contribution of our paper is to close this gap by providing a global
complexity analysis that takes into account the complexity of solving the subproblems.
More concretely, in the proposed QNing algorithm, we provide (i) a practical stopping
criterion for the subproblems, (ii) several warm-start strategies, (iii) a simple line-
search strategy that guarantees a sufficient descent in terms of function value. These
three components together yield the global convergence analysis, which allows us to
use the first-order method as a subproblem solver. Moreover, the global complexity
we develop depends on the smoothing parameter κ, which provides some insight into
how large to choose this parameter practically.

Solving the subproblems with first-order algorithms. In the composite setting,
both proximal quasi-Newton methods and the variable metric proximal point algo-
rithm require us to solve subproblems (4) and (5), respectively. In the general case,
when a generic first-order method, e.g., proximal gradient descent, is used, our worst-
case complexity analysis does not provide a clear winner, and our experiments in
section 5.4 confirm that both approaches perform similarly. However, when it is pos-
sible to exploit the specific structure of the subproblems in one case but not in the
other, the conclusion may differ.

For instance, when the problem has a finite sum (2) structure, the proximal point
algorithm approach leads to subproblems that can be solved inO(n log(1/ε)) iterations
with first-order incremental methods such as SVRG [60], SAGA [15], or MISO [38], by
using the same choice of smoothing parameter κ = 2L/n as Catalyst [34]. Assuming
that computing a gradient of a function fi and computing the proximal operator
of ψ are both feasible in O(d) floating-point operations, our approach solves each
subproblem with enough accuracy in Õ(nd) operations.1 On the other hand, we
cannot naively apply SVRG to solve the proximal quasi-Newton update (4) at the
same cost for the following reasons. First, the variable metric matrix Bk does not
admit a natural finite sum decomposition. The naive way of writing it into n copies
results in an increase in computational complexity for evaluating the incremental
gradients. More precisely, when Bk has rank l, computing a single gradient now
requires us to compute a matrix-vector product with cost at least O(dl), resulting in an
l-fold increase per iteration. Second, the previous iteration complexity O(n log(1/ε))
for solving the subproblems would require the subproblems to be well conditioned,
i.e., Bk � (L/n)I, forcing the quasi-Newton metric to be potentially more isotropic.
For these reasons, existing attempts to combine SVRG with quasi-Newton principles
have taken other directions [26, 44].

3. QNing: A quasi-Newton meta-algorithm. We now present the QN-
ing method in Algorithm 1, which consists of applying variable metric algorithms
on the smoothed objective F with inexact gradients. Each gradient approximation
is the result of a minimization problem tackled with the algorithm M, used as a

1The notation Õ hides logarithmic quantities.
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1415

subroutine. The outer loop of the algorithm performs quasi-Newton updates. The
method M can be any algorithm of the user’s choice, as long as it enjoys a linear
convergence rate for strongly convex problems. More technical details are given in
section 3.1.

Algorithm 1 QNing: A quasi-Newton meta-algorithm.

input Initial point x0 in Rd; number of iterations K; smoothing parameter κ > 0;
optimization algorithm M; optionally, budget TM for solving the subproblems.

1: Initialization: (g0, F0, z0) = ApproxGradient (x0,M); H0 = 1
κI.

2: for k = 0, . . . ,K − 1 do
3: Initialize ηk = 1.
4: Perform the quasi-Newton step

xtest = xk − (ηkHk + (1− ηk)H0) gk.

5: Estimate the gradient and function value of the Moreau envelope at xtest:

(gtest, Ftest, ztest) = ApproxGradient (xtest,M) .

6: while Ftest > Fk − 1
4κ‖gk‖

2 do
7: Decrease the line-search parameter ηk in [0, 1] and re-evaluate xtest.

8: Re-estimate (gtest, Ftest, ztest) = ApproxGradient (xtest,M).

9: end while

10: Accept the new iterate: (xk+1, gk+1, Fk+1, zk+1) = (xtest, gtest, Ftest, ztest).

11: Update Hk+1 (for example, use L-BFGS update with sk = xk+1 − xk and yk =
gk+1 − gk).

12: end for
output Inexact proximal point zK (solution).

3.1. The main algorithm. We now discuss the main algorithm components
and its main features.

Outer loop: Inexact variable metric proximal point algorithm. We apply variable
metric algorithms with a simple line-search strategy similar to that of [54] on the
Moreau envelope F . Given a positive definite matrix Hk and a step size ηk in [0, 1],
the algorithm computes the update

(LS) xk+1 = xk − (ηkHk + (1− ηk)H0)gk,

where H0 = (1/κ)I. When ηk = 1, the update uses the metric Hk, and when ηk = 0,
it uses an inexact proximal point update xk+1 = xk − (1/κ)gk. In other words,
when the quality of the metric Hk is not good enough, due to the inexactness of the
gradients used in its construction, the update is corrected toward a simple proximal
point update whose convergence is well understood when the gradients are inexact.

In order to determine the step size ηk, we introduce the following descent condi-
tion:

(11) Fk+1 ≤ Fk −
1

4κ
‖gk‖2.

We show that the descent condition (11) is always satisfied when ηk = 0; thus, the
finite termination of the line search follows (see section 4.3 for more details). In our
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1416 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

experiments, we observed that the step size ηk = 1 was almost always selected. In
practice, we try the values ηk in {1, 1/2, 1/4, 1/8, 0} starting from the largest one and
stopping when condition (11) is satisfied.

Example of variable metric algorithm: Inexact L-BFGS method. The L-BFGS
rule we consider is the standard one and consists in updating incrementally a gen-
erating list of vectors {(si, yi)}i=1,...,j , which implicitly defines the L-BFGS matrix.
We use here the two-loop recursion detailed in [50, Algorithm 7.4] and use skipping
steps when the condition s>i yi > 0 is not satisfied, in order to ensure the positive-
definiteness of the L-BFGS matrix Hk (see [20]).

Inner loop: Approximate the Moreau envelope. The inexactness of our scheme
comes from the approximation of the Moreau envelope F and its gradient. The
procedure ApproxGradient (·) calls an minimization algorithm M and applies M to
minimize the subproblem (14). When the problem is solved exactly, the function
returns the exact values g = ∇F (x), Fa = F (x), and z = p(x). However, this is
infeasible in practice and we can only expect approximate solutions. In particular, a
stopping criterion should be specified. We consider the following variants.

(a) We define an adaptive stopping criterion based on function values, and stop
M when the approximate solution satisfies the inequality (15). In contrast
to the standard stopping criterion where the accuracy is an absolute con-
stant, our stopping criterion is adaptive, since the right-hand side of (15) also
depends on the current iterate z. More detailed theoretical insights will be
given in section 4. Typically, checking whether or not the criterion is satisfied
requires computing a duality gap, as in Catalyst [34].

(b) We use a predefined budget TM in terms of number of iterations of methodM,
where TM is a constant independent of k.

Note that such an adaptive stopping criterion is relatively classical in the literature
of inexact gradient-based methods [8]. As we will see later, in section 4, when TM is
large enough, criterion (15) is guaranteed.

Requirements on M. To apply QNing, the optimization method M needs to
have linear convergence rates for strongly convex problems. More precisely, for any
strongly convex objective h, method M should be able to generate a sequence of
iterates (wt)t≥0 such that

(12) h(wt)− h∗ ≤ CM(1− τM)t(h(w0)− h∗)
for some constants CM > 0 and 1 > τM > 0,

where w0 is the initial point given to M. The notion of linearly convergent methods
extends naturally to nondeterministic methods where (12) is satisfied in expectation:

(13) E[h(wt)− h∗] ≤ CM(1− τM)t(h(w0)− h∗).

The linear convergence condition typically holds for many primal gradient-based
optimization techniques, including classical full gradient descent methods, block-
coordinate descent algorithms [47, 52], and variance-reduced incremental algorithms
[15, 56, 60]. In particular, our method provides a generic way to combine incremental
algorithms with quasi-Newton methods that are suitable for large-scale optimization
problems. For simplicity, we only consider the deterministic variant (12) in the anal-
ysis. However, it is possible to show that the same complexity results still hold for
nondeterministic methods in expectation, as discussed in section 4.5. We emphasize
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1417

that we do not assume any convergence guarantee ofM on nonstrongly convex prob-
lems, since our subproblems are always strongly convex.

Warm starts for the subproblems. The employment of an adequate initialization
for solving each subproblem plays an important role in our analysis. The warm-start
strategy we propose here ensures that the stopping criterion in each subproblem can
be achieved in a constant number of iterations.

Consider the minimization of a subproblem

min
w∈Rd

{
h(w) , f(w) +

κ

2
‖w − x‖2

}
.

Then, our warm-start strategy depends on the nature of f :
• when f is smooth, we initialize with w0 = x;
• when f = f0 + ψ is composite, we initialize with

w0 = arg min
w∈Rd

{
f0(x) + 〈∇f0(x), w − x〉+

L+ κ

2
‖w − x‖2 + ψ(w)

}
,

which performs an additional proximal step compared to the smooth case.
Handling composite objective functions. In machine learning or signal processing,

convex composite objectives (1) with a nonsmooth penalty ψ are typically formulated
to encourage solutions with specific characteristics; in particular, the `1-norm is known
to provide sparsity. Smoothing techniques [46] may allow us to solve the optimization
problem up to some chosen accuracy, but they provide solutions that do not inherit
the properties induced by the nonsmoothness of the objective. To illustrate what
we mean by this statement, we may consider smoothing the `1-norm, leading to a
solution vector with small coefficients but not exact zeros. When the goal is to
perform model selection, that is, understanding which variables are important to
explain a phenomenon, exact sparsity is seen as an asset, and optimization techniques
dedicated to composite problems such as the fast iterative shrinkage-thresholding
algorithm (FISTA) [2] are often preferred (see [40]).

One might then be concerned that our scheme operates on the smoothed ob-
jective F , leading to iterates (xk)k≥0 that may suffer from the above “nonsparse”
issue, assuming that ψ is the `1-norm. Yet, our approach does not directly output
the iterates (xk)k≥0 but rather their proximal mappings (zk)k≥0. In particular, the
`1-regularization is encoded in the proximal mapping (14). Thus, the approximate
proximal point zk may be sparse. For this reason, our theoretical analysis presented
in section 4 studies the convergence of the sequence (f(zk))k≥0 to the solution f∗.

4. Convergence and complexity analysis. In this section, we study the con-
vergence of the QNing algorithm, that is, the rate of convergence of the quantities
(F (xk)−F ∗)k≥0 and (f(zk)− f∗)k≥0, and also the computational complexity due to
solving the subproblems (14). We start by stating the main properties of the gradient
approximation in section 4.1. Then, we analyze the convergence of the outer loop
algorithm in section 4.2, and section 4.3 is devoted to the properties of the line-search
strategy. After that, we provide the cost of solving the subproblems in section 4.4
and derive the global complexity analysis in section 4.5.

4.1. Properties of the gradient approximation. The next lemma is clas-
sical and provides approximation guarantees about the quantities returned by the
ApproxGradient procedure (Algorithm 2); see [5, 23]. We recall here the proof for
completeness.
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1418 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

Algorithm 2 Generic procedure ApproxGradient.

input Current point x in Rd; smoothing parameter κ > 0; optionally, budget TM.
1: Compute the approximate proximal mapping using an optimization method M:

(14) z ≈ arg min
w∈Rd

{
h(w) , f(w) +

κ

2
‖w − x‖2

}
,

using one of the following stopping criteria:
• stop when the approximate solution z satisfies

(15) h(z)− h∗ ≤ κ

36
‖z − x‖2;

• stop when we reach the predefined constant budget TM (for instance, one
pass over the data).

2: Estimate the gradient ∇F (x) of the Moreau envelope using

g = κ(x− z).

output Gradient estimate g, objective value estimate Fa , h(z), proximal point
estimate z.

Lemma 1 (approximation quality of the gradient approximation). Consider a
point x in Rd, a positive scalar ε, and an approximate proximal point

z ≈ arg min
w∈Rd

{
h(w) , f(w) +

κ

2
‖w − x‖2

}
,

such that
h(z)− h∗ ≤ ε,

where h∗ = minw∈Rd h(w). As in Algorithm 2, we define the gradient estimate g =
κ(x− z) and the function value estimate Fa = h(z). Then, the following inequalities
hold:

F (x) ≤ Fa ≤ F (x) + ε,(16)

‖z − p(x)‖ ≤
√

2ε

κ
,(17)

‖g −∇F (x)‖ ≤
√

2κε.(18)

Moreover, Fa is related to f by the following relationship:

(19) f(z) = Fa −
1

2κ
‖g‖2.

Proof. Relations (16) and (19) are straightforward by the definition of h(z). Since
f is convex, the function h is κ-strongly convex, and (17) follows from

κ

2
‖z − p(x)‖2 ≤ h(z)− h(p(x)) = h(z)− h∗ ≤ ε,

where we recall that p(x) minimizes h. Finally, we obtain (18) from

g −∇F (x) = κ(x− z)− κ(x− p(x)) = κ(p(x)− z),

by using the definitions of g and the property (6).
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1419

This lemma allows us to quantify the quality of the gradient and function value
approximations, which is crucial to control the error accumulation of inexact proximal
point methods. Moreover, the relation (19) establishes a link between the approximate
function value of F and the function value of the original objective f ; as a consequence,
it is possible to relate the convergence rate of f to the convergence rate of F . Finally,
the following result is a direct consequence of Lemma 1.

Lemma 2 (bounding the exact gradient by its approximation). Consider the
quantities introduced in Lemma 1. Then,

1

2
‖g‖2 − 2κε ≤ ‖∇F (x)‖2 ≤ 2(‖g‖2 + 2κε).(20)

Proof. The right-hand side of (20) follows from

‖∇F (x)‖2 ≤ 2(‖∇F (x)− g‖2 + ‖g‖2)

≤ 2(2κε+ ‖g‖2) (from (18)).

Interchanging ∇F (x) and g gives the left-hand side of the inequality.

Corollary 1. If ε ≤ c
κ‖g‖

2 with c < 1
4 , then

(21)
1− 4c

2
≤ ‖∇F (x)‖2

‖g‖2
≤ 2(1 + 2c).

This corollary is important since it allows us to replace the unknown exact gra-
dient ‖∇F (x)‖ by its approximation ‖g‖, at the cost of a constant factor, as long as
the condition ε ≤ c

κ‖g‖
2 is satisfied.

4.2. Convergence analysis of the outer loop. We are now in a position to
establish the convergence of the QNing meta-algorithm, without yet considering the
cost of solving the subproblems (14). At iteration k, an approximate proximal point
is evaluated:

(22) (gk, Fk, zk) = ApproxGradient(xk,M).

The following lemma characterizes the expected descent in terms of objective function
value.

Lemma 3 (approximate descent property). At iteration k, if the subproblem (22)
is solved up to accuracy εk in the sense of Lemma 1 and the next iterate xk+1 satisfies
the descent condition (11), then

(23) F (xk+1) ≤ F (xk)− 1

8κ
‖∇F (xk)‖2 +

3

2
εk.

Proof. From (16) and (11),

F (xk+1) ≤ Fk+1 ≤ Fk −
1

4κ
‖gk‖2

≤ F (xk) + εk −
(

1

8κ
‖∇F (xk)‖2 − εk

2

)
(from (16) and (20))

= F (xk)− 1

8κ
‖∇F (xk)‖2 +

3

2
εk.
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1420 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

This lemma gives us an initial clue about the natural choice of the accuracy εk,
which should be of the same order as ‖∇F (xk)‖2. In particular, if

(24) εk ≤
1

16κ
‖∇F (xk)‖2,

then we have

(25) F (xk+1) ≤ F (xk)− 1

32κ
‖∇F (xk)‖2,

which is a typical inequality used for analyzing gradient descent methods. Before
presenting the convergence result, we remark that condition (24) cannot be used
directly since it requires the exact gradient ‖∇F (xk)‖ to be known. A more practical
choice consists of replacing it by the approximate gradient.

Lemma 4 (a practical choice of εk). The following condition implies inequal-
ity (24):

(26) εk ≤
1

36κ
‖gk‖2.

Proof. From Corollary 1, (26) implies

‖gk‖2 ≤
2

1− 4
36

‖∇F (xk)‖2 =
9

4
‖∇F (xk)‖2,

and thus

εk ≤
1

36κ
‖gk‖2 ≤

1

16κ
‖∇F (xk)‖2.

This is the first stopping criterion (15) in Algorithm 2. Finally, we obtain the
following convergence result for strongly convex problems, which is classical in the
literature of inexact gradient methods (see [8, section 4.1] for a similar result).

Proposition 2 (convergence of Algorithm 1, strongly convex objectives). As-
sume that f is µ-strongly convex. Let (xk)k≥0 be the sequences generated by Algo-
rithm 1 where the stopping criterion (15) is used. Then,

F (xk)− F ∗ ≤
(

1− 1

16q

)k
(F (x0)− F ∗), with q =

µ+ κ

µ
.

Proof. The proof follows directly from (25) and the standard analysis of the GD
algorithm for the µF -strongly convex and LF -smooth function F by remarking that
LF = κ and µF = µκ

µ+κ .

Corollary 2. Under the conditions of Proposition 2, we have

(27) f(zk)− f∗ ≤
(

1− 1

16q

)k
(f(x0)− f∗).

Proof. From (19) and (26), we have

f(zk) = Fk −
1

2κ
‖gk‖2 ≤ F (xk) + εk −

1

2κ
‖gk‖2 ≤ F (xk).

Moreover, F (x0) is upper-bounded by f(x0), following (7).
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1421

It is worth pointing out that our analysis establishes a linear convergence rate,
whereas one would expect a superlinear convergence rate as for classical variable met-
ric methods. The trade-off lies in the choice of the approximation error εk. In order
to achieve superlinear convergence, the approximation error εk needs to decrease su-
perlinearly, as shown in [14]. However, a quickly decreasing sequence εk requires
increasing effort in solving the subproblems, which will dominate the global complex-
ity. In other words, the global complexity may increase even though we achieve faster
convergence in the outer loop. This will become clearer when we discuss the inner
loop complexity in section 4.4.

Next, we show that, under a bounded level set condition, QNing enjoys the clas-
sical sublinear O(1/k) convergence rate when the objective is convex but not strongly
convex.

Proposition 3 (convergence of Algorithm 1 for convex but not strongly convex
objectives). Let f be a convex function with bounded level sets. Then, there exists
a constant R > 0 that depends on the initialization point x0, such that the sequences
(xk)k≥0 and (zk)k≥0 generated by Algorithm 1 with stopping criterion (15) satisfy

F (xk)− F ∗ ≤ 32κR2

k
and f(zk)− f∗ ≤ 32κR2

k
.

Proof. We defer the proof and the proper definition of the bounded level set
assumption to Appendix A.

So far, we have assumed in our analysis that the iterates satisfy the descent
condition (11), which means the line-search strategy will always terminate. We prove
in the next section that this is indeed the case, and provide some additional conditions
under which a nonzero step size will be selected.

4.3. Conditions for nonzero step sizes ηk and termination of the line
search. At iteration k, a line search is performed on the step size ηk to find the next
iterate

xk+1 = xk − (ηkHk + (1− ηk)H0)gk,

such that xk+1 satisfies the descent condition (11). We first show that the descent
condition holds when ηk = 0, before giving a more general result.

Lemma 5. If the subproblems are solved up to accuracy εk ≤ 1
36κ‖gk‖

2, then the
descent condition (11) holds when ηk = 0.

Proof. When ηk = 0, xk+1 = xk − 1
κgk = zk. Then,

Fk+1 ≤ F (xk+1) +
1

36κ
‖gk+1‖2 (from (16))

≤ F (xk+1) +
1

36κ

2

1− 4
36

‖∇F (xk+1)‖2 (from (21))

< F (xk+1) +
1

2κ
‖∇F (zk+1)‖2

≤ f(xk+1) = f(zk) (from (7))

= Fk −
1

2κ
‖gk‖2 (from (19)).
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1422 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

Therefore, it is theoretically sound to take the trivial step size ηk = 0, which
implies the termination of our line-search strategy. In other words, the descent condi-
tion always holds by taking an inexact gradient step on the Moreau envelope F , which
corresponds to the update of the proximal point algorithm. However, the purpose of
using the variable metric method is to exploit the curvature of the function, which
is not the case when ηk = 0. Thus, the trivial step size should only be considered
as a backup plan, and we show in the following some sufficient conditions for taking
nonzero step sizes and even stronger conditions for unit step sizes.

Lemma 6 (a sufficient condition for satisfying the descent condition (11)). If the
subproblems are solved up to accuracy εk ≤ 1

36κ‖gk‖
2, then the sufficient condition

(11) holds for any xk+1 = xk−Akgk, where Ak is a positive definite matrix satisfying
1−α
κ I � Ak � 1+α

κ I with α ≤ 1
3 .

As a consequence, a line-search strategy consisting of finding the largest ηk of the
form γi, with i = 1, . . . ,+∞ and γ in (0, 1), always terminates in a bounded number
of iterations if the sequence of variable metrics (Hk)k≥0 is bounded, i.e., there exists
0 < m < M such that, for any k, mI � Hk � MI. This is the case for the L-BFGS
update.

Lemma 7 (boundedness of L-BFGS metric matrix [50, Chapters 8 and 9]). The
variable metric matrices (Bk)k constructed by the L-BFGS rule are positive definite
and bounded.

Proof of Lemma 6. First, we recall that zk = xk − 1
κgk and we rewrite

Fk+1 = Fk+1 − F (xk+1)︸ ︷︷ ︸
,E1

+F (xk+1)− F (zk)︸ ︷︷ ︸
,E2

+F (zk)

as follows. We shall bound the two error terms E1 and E2 by some factors of ‖gk‖2.
Noting that the subproblems are solved up to εk ≤ c

κ‖gk‖
2 with c = 1

36 , we obtain by
construction that

(28) E1 = Fk+1 − F (xk+1) ≤ εk+1 ≤
c

κ
‖gk+1‖2 ≤

2c

(1− 4c)κ
‖∇F (xk+1)‖2,

where the last inequality comes from Corollary 1. Moreover,

‖∇F (xk+1)‖ ≤ ‖∇F (zk)‖+ ‖∇F (xk+1)−∇F (zk)‖
≤ ‖∇F (zk)‖+ κ‖xk+1 − zk‖.

Since xk+1 − zk = ( 1
κ −Ak)gk, we have ‖xk+1 − zk‖ ≤ α

κ‖gk‖. This implies that

(29) ‖∇F (xk+1)‖ ≤ ‖∇F (zk)‖+ α‖gk‖,

and thus

(30) E1 ≤
4c

(1− 4c)κ

(
‖∇F (zk)‖2 + α2‖gk‖2

)
.
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1423

Second, by the κ-smoothness of F , we have

E2 = F (xk+1)− F (zk)

≤ 〈∇F (zk), xk+1 − zk〉+
κ

2
‖xk+1 − zk‖2

≤ 1

4κ
‖∇F (zk)‖2 + κ‖xk+1 − zk‖2 +

κ

2
‖xk+1 − zk‖2

≤ 1

4κ
‖∇F (zk)‖2 +

3α2

2κ
‖gk‖2,(31)

where the last inequality follows from ‖xk+1−zk‖ ≤ α
κ‖gk‖. Combining (30) and (31)

yields

(32) E1 + E2 ≤
[

4c

1− 4c
+

1

4

]
1

κ
‖∇F (zk)‖2 +

[
4c

1− 4c
+

3

2

]
α2

κ
‖gk‖2.

When c ≤ 1
36 and α ≤ 1

3 , we have

E1 + E2 ≤
1

2κ
‖∇F (zk)‖2 +

1

4κ
‖gk‖2.

Therefore,

Fk+1 ≤ F (zk) + E1 + E2

≤ F (zk) +
1

2κ
‖∇F (zk)‖2 +

1

4κ
‖gk‖2

≤ f(zk) +
1

4κ
‖gk‖2

= Fk −
1

4κ
‖gk‖2,(33)

where the last equality follows from (19). This completes the proof.

Note that, in practice, we consider a set of step sizes ηk = γi for i ≤ imax or
ηk = 0, which naturally upper-bounds the number of line-search iterations to imax.
More precisely, all experiments performed in this paper use γ = 1/2 and imax = 3.
Moreover, we observe that the unit step size is very often sufficient for the descent
condition to hold, as studied empirically in Appendix C.2.

The following result shows that, under a specific assumption on the Moreau enve-
lope F , the unit step size is indeed selected when the iterate are close to the optimum.
The condition, called the Dennis–Moré criterion [17], is classical in the literature of
quasi-Newton methods. Even though we cannot formally show that the criterion holds
for the Moreau envelope F , since it requires F to be twice continuously differentiable,
which is not true in general (see [32]), it provides a sufficient condition for the unit
step size. Therefore, the lemma below should be seen not as a formal explanation for
the choice of step size ηk = 1, but simply as a reasonable condition that leads to this
choice.

Lemma 8 (a sufficient condition for unit step size). Assume that f is strongly
convex and F is twice continuously differentiable with Lipschitz continuous Hessian

∇2F . If the subproblems are solved up to accuracy εk ≤ µ2

128κ(µ+κ)2 ‖gk‖
2 and the

Dennis–Moré criterion [17] is satisfied, i.e.,

(DM) lim
k→∞

‖(B−1
k −∇2F (x∗)−1)gk‖

‖gk‖
= 0,
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1424 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

where x∗ is the minimizer of the problem and Bk = H−1
k is the variable metric matrix,

then the descent condition (11) is satisfied with ηk = 1 when k is large enough.

We remark that the Dennis–Moré criterion we use here is slightly different from
the standard one since our criterion is based on approximate gradients gk. If the
gk’s are indeed the exact gradients and the variable metrics Bk are bounded, then
our criterion is equivalent to the standard Dennis–Moré criterion. The proof of the
lemma is close to that of similar lemmas appearing in the proximal quasi-Newton
literature [31], and is relegated to the appendix. Interestingly, this proof also suggests
that a stronger stopping criterion εk such that εk = o(‖gk‖2) could lead to superlinear
convergence. However, such a choice of εk would significantly increase the complexity
for solving the subproblems, and degrade the overall complexity.

4.4. Complexity analysis of the inner loop. In this section, we evaluate the
complexity of solving the subproblems (14) up to the desired accuracy using a linearly
convergent method M. Our main result is that all subproblems can be solved in a
constant number TM of iterations (in expectation if the method is nondeterministic)
using the proposed warm-start strategy. Let us consider the subproblem with an
arbitrary prox center x,

(34) min
w∈Rd

{
h(w) = f(w) +

κ

2
‖w − x‖2

}
.

The number of iterations needed is determined by the ratio between the initial gap
h(w0)− h∗ and the desired accuracy. We shall bound this ratio by a constant factor.

Lemma 9 (warm start for primal methods: smooth case). If f is differentiable
with L-Lipschitz continuous gradients, we initialize the methodM with w0 = x. Then,
we have the guarantee that

(35) h(w0)− h∗ ≤ L+ κ

2κ2
‖∇F (x)‖2.

Proof. Denote by w∗ the minimizer of h. Then, we have the optimality condition
∇f(w∗) + κ(w∗ − x) = 0. As a result,

h(w0)− h∗ = f(x)−
(
f(w∗) +

κ

2
‖w∗ − x‖2

)
≤ f(w∗) + 〈∇f(w∗), x− w∗〉+

L

2
‖x− w∗‖2 −

(
f(w∗) +

κ

2
‖w∗ − x‖2

)
=
L+ κ

2
‖w∗ − x‖2

=
L+ κ

2κ2
‖∇F (x)‖2.

The inequality in the above proof relies on the smoothness of f , which does not
hold for composite problems. The next lemma addresses this issue.

Lemma 10 (warm start for primal methods: composite case). Consider the
composite optimization problem f = f0 + ψ, where f0 is L-smooth. By initializing
with

(36) w0 = arg min
w∈Rd

{
f0(x) + 〈∇f0(x), w − x〉+

L+ κ

2
‖w − x‖2 + ψ(w)

}
,

we have

h(w0)− h∗ ≤ L+ κ

2κ2
‖∇F (x)‖2.
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1425

Proof. We use the inequality corresponding to [2, Lemma 2.3]: for any w,

(37) h(w)− h(w0) ≥ L′

2
‖w0 − x‖2 + L′〈w0 − x, x− w〉,

with L′ = L+ κ. Then, we apply this inequality to w = w∗ to obtain

h(w0)− h∗ ≤ −L
′

2
‖w0 − x‖2 − L′〈w0 − x, x− w∗〉

≤ L′

2
‖x− w∗‖2 =

L+ κ

2κ2
‖∇F (x)‖2.

We get an initialization in the composite case of the same quality as that in the
smooth case by performing an additional proximal step. It is important to remark
that the above analysis does not require the strong convexity of f , which allows us to
derive the desired inner-loop complexity.

Proposition 4 (inner-loop complexity for Algorithm 1). Consider Algorithm 1
with the warm-start strategy described in either Lemma 9 or Lemma 10. Assume that
the optimization method M applied in the inner loop produces a sequence (wt)t≥0 for
each subproblem (34) such that

(38) h(wt)− h∗ ≤ CM(1− τM)t(h(w0)− h∗) for some constants CM, τM > 0.

Then, the stopping criterion ε ≤ 1
72κ‖g‖

2 is achieved in at most TM iterations with

TM =
1

τM
log

(
38CM

L+ κ

κ

)
.

Proof. Consider that at iteration k we apply M to approximate the proximal
mapping according to x. With the given TM (which we abbreviate as T ), we have

h(wT )− h∗ ≤ CM(1− τM)T (h(w0)− h∗)
≤ CMe−τMT (h(w0)− h∗)

≤ CMe−τMT L+ κ

2κ2
‖∇F (x)‖2 (by Lemmas 9 and 10)

=
1

76κ
‖∇F (x)‖2

≤ 1

36κ
‖g‖2,

where the last inequality follows from Lemma 2.

Next, we extend the previous result obtained with deterministic methods M to
randomized ones, where linear convergence is only achieved in the expectation. The
proof is a simple application of [33, Lemma C.1] (see also [12] for related results on
the expected complexity of randomized algorithms).

Remark 1 (M is nondeterministic). Assume that the optimization method M
applied to each subproblem (34) produces a sequence (wt)t≥0 such that

E[h(wt)− h∗] ≤ CM(1− τM)t(h(w0)− h∗) for some constants CM, τM > 0.

We define the stopping time TM by

(39) TM = inf

{
t ≥ 1

∣∣∣∣ h(wt)− h∗ ≤
1

36κ
‖gt‖2

}
, where gt = κ(x− wt),
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1426 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

which is the random variable corresponding to the minimum number of iterations to
guarantee the stopping condition (15). Then, when the warm-start strategy described
in either Lemma 9 or Lemma 10 is applied, the expected number of iterations satisfies

(40) E[TM] ≤ 1

τM
log

(
76CM

L+ κ

τMκ

)
+ 1.

Remark 2 (checking the stopping criterion). Notice that the stopping criterion
(15), i.e., h(w) − h∗ ≤ κ

36‖w − x‖
2, cannot be checked directly since h∗ is unknown.

Nevertheless, an upper bound on the optimality gap h(w) − h∗ is usually available.
In particular,

• when f is smooth, which implies h is smooth, we have

(41) h(w)− h∗ ≤ 1

2(µ+ κ)
‖∇h(w)‖2,

• otherwise, we can evaluate the Fenchel conjugate function, which is a natural
lower bound of h∗; see [37, section D.2.3].

4.5. Global complexity of QNing. Finally, we can use the previous results
to upper-bound the complexity of the QNing algorithm in terms of iterations of the
method M for minimizing f up to ε.

Proposition 5 (worst-case global complexity for Algorithm 1). Given a lin-
early convergent method M satisfying (12), we apply M to solve the subproblems of
Algorithm 1 with the warm-start strategy given in either Lemma 9 or Lemma 10 up
to accuracy εk ≤ 1

36κ‖gk‖
2. Then, the number of iterations of methodM to guarantee

the optimality condition f(zk)− f∗ ≤ ε is as follows:
• for µ-strongly convex problems,

O

(
TM ×

µ+ κ

µ
log

(
f(x0)− f∗

ε

))
= O

(
µ+ κ

τMµ
log

(
f(x0)− f∗

ε

)
log

(
38CM

L+ κ

κ

))
;

• for convex problems with bounded level sets,

O

(
TM ×

2κR2

ε

)
= O

(
2κR2

τMε
log

(
38CM

L+ κ

κ

))
.

Proof. The total number of calls of methodM is simply TM times the number of
outer-loop iterations times the potential number of line-search steps at each iteration
(which is hidden in the O(·) notation since this number can be made arbitrarily
small).

Remark 3. For nondeterministic methods, applying (40) yields a global complex-
ity in expectation similar to the previous result with additional constant 2/τM in the
last log factor.

As we shall see, the global complexity of our algorithm is mainly controlled by
the smoothing parameter κ. Unfortunately, under the current analysis, our algorithm
QNing does not lead to an improved convergence rate in terms of the worst-case
complexity bounds. It is worthwhile underlining, however, that this result is not
surprising since it is often the case for L-BFGS-type methods, for which there remains
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1427

an important gap between theory and practice. Indeed, L-BFGS often outperforms
the vanilla GD method in many practical cases, but never in theory, which turns out
to be the bottleneck in our analysis.

We give below the worst-case global complexity of QNing when applied to two
optimization methods M of interest. Proposition 5 and its application to the two
examples show that, in terms of worse-case complexity, the QNing scheme leaves the
convergence rate almost unchanged.

Example 1. Consider GD with fixed constant step size 1/L as the optimization
method M. Directly applying GD to minimize f requires

O(L/µ log(1/ε))

iterations to achieve ε accuracy. The complexity to achieve the same accuracy with
QNing-GD is, in the worst case,

Õ((L+ κ)/µ log(1/ε)).

Example 2. Consider the stochastic variance-reduced gradient (SVRG) as the op-
timization method M. SVRG minimizes f to ε accuracy in

O

(
max

{
n,
L

µ

}
log

(
1

ε

))
iterations in expectation. QNing-SVRG achieves the same result with the worst-case
expected complexity

Õ

(
max

{
µ+ κ

µ
n,
L+ κ

µ

}
log

(
1

ε

))
.

Choice of κ. Minimizing the above worst-case complexity with respect to κ sug-
gests that κ should be chosen as small as possible. However, such a statement is
based on the pessimistic theoretical analysis of the L-BFGS-type method, which is
not better than standard gradient descent methods. Noting that for smooth functions
the L-BFGS method often outperforms Nesterov’s accelerated gradient method, it is
reasonable to expect they achieve a similar complexity bound. In other words, the
choice of κ may be substantially different if one is able to show that the L-BFGS-type
method enjoys an accelerated convergence rate.

In order to illustrate the difference, we heuristically assume that the L-BFGS
method enjoys a similar convergence rate to Nesterov’s accelerated gradient method.
Then, the global complexity of our algorithm QNing matches the complexity of the
related Catalyst acceleration scheme [33], which will be

Õ

(
1

τM

√
µ+ κ

µ
log

(
1

ε

))
,

for µ-strongly convex problems. In such a case, the complexity of QNing-GD and
QNing-SVRG will be

Õ

(
L+ κ√
(µ+ κ)µ

log

(
1

ε

))
and Õ

(
max

{√
µ+ κ

µ
n,

L+ κ√
(µ+ κ)µ

}
log

(
1

ε

))
,

which enjoy acceleration by taking κ = O(L) and κ = O(L/n), respectively. In the
following section, we will experiment with this heuristic as if the L-BFGS method
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1428 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

enjoys an accelerated convergence rate. More precisely, we will choose the smoothing
parameter κ as in the related Catalyst acceleration scheme [33], and present empirical
evidence in support of this heuristic.

5. Experiments and practical details. In this section, we present the exper-
imental results obtained by applying QNing to several first-order optimization algo-
rithms. We start by presenting various benchmarks and practical parameter-tuning
choices. Then, we study the performance of QNing applied to SVRG (section 5.3)
and to the proximal gradient algorithm ISTA (iterative shrinkage-thresholding algo-
rithm; see section 5.4), which reduces to GD in the smooth case. We demonstrate that
QNing can be viewed as an acceleration scheme: by applying QNing to an optimiza-
tion algorithm M, we achieve better performance than when applying M directly to
the problem. In addition, we compare QNing to existing stochastic variants of the
L-BFGS algorithm in section 5.3. Finally, we study the behavior of QNing under
different choices of parameters in section 5.5. The code used for all the experiments
is available at https://github.com/hongzhoulin89/Catalyst-QNing/.

5.1. Formulations and data sets. We consider three common optimization
problems in machine learning and signal processing: logistic regression, least abso-
lute shrinkage and selection operator (Lasso) regression, and linear regression with
elastic-net regularization. These three formulations all admit the composite finite-
sum structure but differ in terms of smoothness and strength of convexity. The three
specific formulations are listed below.

• `22-regularized logistic regression:

min
x∈Rd

1

n

n∑
i=1

log
(
1 + exp(−bi aTi x)

)
+
µ

2
‖x‖2,

which leads to a µ-strongly convex smooth optimization problem.
• `1-regularized linear regression (Lasso):

min
x∈Rd

1

2n

n∑
i=1

(bi − aTi x)2 + λ‖x‖1,

which is convex and nonsmooth, but not strongly convex.
• (`1 − `22)-regularized linear regression (elastic-net):

min
x∈Rd

1

2n

n∑
i=1

(bi − aTi x)2 + λ‖x‖1 +
µ

2
‖x‖2,

which is based on the elastic-net regularization [63] leading to nonsmooth
strongly convex problems.

For each formulation, we consider a training set (ai, bi)
n
i=1 of n data points, where

the bi’s are scalars in {−1,+1} and the ai’s are feature vectors in Rd. Then, the goal
is to fit a linear model x in Rd such that the scalar bi can be predicted well by the
inner product a>i x or by its sign. Since we normalize the feature vectors ai, a natural
upper bound on the Lipschitz constant L of the unregularized objective can easily be
obtained with Llogistic = 1/4, Lelastic-net = 1, and Llasso = 1.

In the experiments, we consider relatively ill-conditioned problems with the regu-
larization parameter µ = 1/(100n). The `1-regularization parameter is set to λ = 1/n
for the elastic-net formulation; for the Lasso problem, we consider a logarithmic grid
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10i/n, with i = −3,−2, . . . , 3, and we select the parameter λ that provides a sparse
optimal solution closest to 10% nonzero coefficients.

Data sets. We consider five standard machine learning data sets with different
characteristics in terms of size and dimension, which are described in the following
table.

Name covtype alpha real-sim MNIST-CKN CIFAR-CKN
n 581 012 250 000 72 309 60 000 50 000
d 54 500 20 958 2 304 9 216

The first three data sets are standard machine learning data sets from LIBSVM
[13]. We normalize the features to provide a natural estimate of the Lipschitz constant,
as mentioned previously. The last two data sets are from computer vision applications.
MNIST and CIFAR-10 are two image classification data sets involving 10 classes. The
feature representation of each image is computed using an unsupervised convolutional
kernel network [39]. We focus here on the task of classifying class #1 vs. other classes.

5.2. Choice of hyper-parameters and variants. We now discuss the choice
of default parameters used in the experiments as well as the different variants. First,
to deal with the high-dimensional nature of the data, we systematically use the L-
BFGS metric Hk and maintain the positive definiteness by skipping updates when
necessary (see [20]).

Choice of method M. We apply QNing to the proximal SVRG algorithm [60]
and proximal gradient algorithm. The proximal SVRG algorithm is an incremental
algorithm that is able to exploit the finite-sum structure of the objective and can
deal with the composite regularization. We also consider the GD algorithm and its
proximal variant ISTA, which allows us to perform a comparison with the natural
baselines FISTA [2] and L-BFGS.

Stopping criterion for the inner loop. The default stopping criterion consists of
solving each subproblem with accuracy εk ≤ 1

36‖gk‖
2. Although we have shown that

such accuracy is attainable within some constant number of iterations, T = Õ(n), for
SVRG with the choice κ = L/2n, a natural heuristic proposed in Catalyst [34] consists
of performing exactly one pass over the data T = n in the inner loop without checking
any stopping criterion. In particular, for GD or ISTA, one pass over the data means a
single gradient step, because evaluation of the full gradient requires passing through
the entire data set. When applying QNing to SVRG and ISTA, we call the default
algorithm using the stopping criterion (24) QNing-SVRG and QNing-ISTA, and the
one-pass variant QNing-SVRG1 and QNing-ISTA1, respectively.

Choice of regularization parameter κ. We choose κ as in the Catalyst algorithm
[34], which is κ = L for GD/ISTA and κ = L/2n for SVRG. Indeed, the convergence
of L-BFGS is hard to characterize, and its theoretical rate of convergence can be
pessimistic, as shown in our theoretical analysis. Noting that for smooth functions
L-BFGS often outperforms Nesterov’s accelerated gradient method, it is reasonable
to expect that QNing achieves a similar complexity bound to Catalyst. Later, in
section 5.5, we make a comparison between different values of κ to demonstrate the
effectiveness of this strategy.

Choice of limited-memory parameter l. The default setting is l = 100. Later, in
section 5.5, we will compare different values to study the influence of this parameter.

Implementation of the line search. As mentioned earlier, we consider the step
sizes ηk in the set {1, 1/2, 1/4, 1/8, 0} and select the largest one that satisfies the
descent condition.
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1430 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

Evaluation metric. For all experiments, we use the number of gradient evaluations
as a measure of complexity, assuming this is the computational bottleneck of all
methods considered. This is indeed the case here since the L-BFGS step costs O(ld)
floating-point operations [50], whereas evaluating the gradient of the full objective
costs O(nd), with l� n.

5.3. QNing-SVRG for minimizing large sums of functions. We now apply
QNing to SVRG and compare different variants.

• SVRG: the Prox-SVRG algorithm of [60] with default parameters m = 1 and
η = 1/L, where L is the upper bound on Lipschitz constant of the gradient,
as described in section 5.1.

• Catalyst-SVRG: the Catalyst meta-algorithm of [34] applied to Prox-SVRG,
using the variant (C3) that performs best among the different variants of
Catalyst.

• L-BFGS/Orthant: since implementing L-BFGS effectively with a line-search
algorithm is a bit involved, we use the implementation by Mark Schmidt,2

which has been widely used in other comparisons [56]. In particular, the
Orthant-wise method follows the algorithm developed in [1]. We use L-BFGS
for the logistic regression experiment and the Orthant-wise method [1] for
elastic-net and Lasso experiments. The limited-memory parameter l is set to
100.

• QNing-SVRG: the algorithm according to the theory given by solving the
subproblems until εk ≤ 1

36‖gk‖
2.

• QNing-SVRG1: the one-pass heuristic.
The result of the comparison is presented in Figure 1 and leads to the conclusions

below,3 showing that QNing-SVRG1 is a safe heuristic, which never decreases the
speed of the SVRG method.

• L-BFGS/Orthant is less competitive than other approaches that exploit the
sum structure of the objective, except on the data set real-sim; the difference
in performance with the SVRG-based approaches can be important (see data
set alpha).

• QNing-SVRG1 is significantly faster than or on par with both SVRG and
QNing-SVRG.

• QNing-SVRG is significantly faster than, on par with, or only slightly slower
than SVRG.

• QNing-SVRG1 is significantly faster than, or on par with Catalyst-SVRG.
This justifies our choice of κ, which assumes a priori that L-BFGS performs
as well as Nesterov’s method.

So far, we have shown that applying QNing with SVRG provides a significant
speedup compared to the original SVRG algorithm or other acceleration scheme such
as Catalyst. Now we compare our algorithm to other variable metric approaches,
including proximal L-BFGS [31] and stochastic L-BFGS [44].

• Proximal L-BFGS: we apply the MATLAB package PNOPT4 implemented
by [31]. The subproblems are solved by the default algorithm up to the desired
accuracy. We consider one subproblem as one gradient evaluation in our plot,
even though it often requires multiple passes.

2Available at http://www.cs.ubc.ca/∼schmidtm/Software/minFunc.html.
3Color figures are available in the online version of this paper.
4Available at https://web.stanford.edu/group/SOL/software/pnopt.
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Fig. 1. Experimental study of the performance of QNing-SVRG for minimizing large sums of
functions. We plot the value F (xk)/F ∗ − 1 as a function of the number of gradient evaluations, on
a logarithmic scale; the optimal value F ∗ is estimated with a duality gap.

• Stochastic L-BFGS (for smooth objectives): we apply the MATLAB package
StochBFGS5 implemented by [44]. We consider the “prev” variant, which
has the best practical performance.

The result of the comparison is presented in Figure 2 and we observe that QNing-
SVRG1 is significantly faster than proximal L-BFGS and stochastic L-BFGS:

• proximal L-BFGS often outperforms Orthant-based methods but it is less
competitive than QNing;

• stochastic L-BFGS is sensitive to parameters and data since the variable met-
ric is based on stochastic information that may have high variance. It per-
forms well on data set covtype but becomes less competitive on other data
sets. Moreover, it only applies to smooth problems.

5Available at https://perso.telecom-paristech.fr/rgower/software.html.
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Fig. 2. Comparison to proximal L-BFGS and stochastic L-BFGS. We plot the value
F (xk)/F ∗ − 1 as a function of the number of gradient evaluations, on a logarithmic scale; the
optimal value F ∗ is estimated with a duality gap.

The previous results are complemented by Appendix C.1, which also presents
some comparisons in terms of outer-loop iterations, regardless of the cost of the inner
loop.

5.4. QNing-ISTA and comparison with L-BFGS. The previous experi-
ments included a comparison between L-BFGS and approaches that are able to ex-
ploit the sum structure of the objective. It is interesting to next study the behavior
of QNing when applied to a basic proximal gradient descent algorithm such as ISTA.
Specifically, we now consider the following:

• GD/ISTA, the classical proximal gradient descent algorithm ISTA [2] with
back-tracking line search to automatically adjust the Lipschitz constant of
the gradient objective;

• Acc-GD/FISTA, the accelerated variant of ISTA from [2];
• QNing-ISTA and QNing-ISTA1, as in the previous section, replacing SVRG

by GD/ISTA.
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Fig. 3. Experimental study of the performance of QNing-ISTA. We plot the value F (xk)/F ∗−1
as a function of the number of gradient evaluations, on a logarithmic scale; the optimal value F ∗ is
estimated with a duality gap.

The results are reported in Figure 3 and lead to the following conclusions.
• L-BFGS is slightly better on average than QNing-ISTA1 for smooth problems,

which is not surprising since we use a state-of-the-art implementation with a
well-calibrated line search.

• QNing-ISTA1 is always significantly faster than ISTA and QNing-ISTA.
• The QNing-ISTA approaches are significantly faster than FISTA in 12 cases

out of 15.
• There is no clear conclusion regarding the performance of the Orthant-wise

method versus other approaches. For three data sets—covtype, alpha, and
mnist—QNing-ISTA is significantly better than Orthant-wise. However, on
the other two data sets, the behavior is different: the Orthant-wise method
outperforms QNing-ISTA.

5.5. Experimental study of hyper-parameters l and κ. In this section,
we study the influence of the limited-memory parameter l and of the regularization
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parameter κ in QNing. More precisely, we start with the parameter l and try the
QNing-SVRG1 method with the values l = 1, 2, 5, 10, 20, 100. Note that all previous
experiments were conducted with l = 100, which is the most expensive in terms of
memory and computational cost for the L-BFGS step. The results are presented in
Figure 4. Interestingly, the experiment suggests that having a large value for l is not
necessarily the best choice, especially for composite problems where the solution is
sparse, where l = 10 seems to perform reasonably well.
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Fig. 4. Experimental study of influence of the limited-memory parameter l for QNing-SVRG1.
We plot the value F (xk)/F ∗−1 as a function of the number of gradient evaluations, on a logarithmic
scale; the optimal value F ∗ is estimated with a duality gap.

The next experiment consists of studying the robustness of QNing to the smooth-
ing parameter κ. We present in Figure 5 an experiment trying the values κ = 10iκ0

for i = −3,−2, . . . , 2, 3, where κ0 is the default parameter used in the previous ex-
periments. The conclusion is clear: QNing clearly slows down when using a larger
smoothing parameter than κ0, but it is robust to small values of κ (and in fact it even
performs better for smaller values than κ0).
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Fig. 5. Experimental study of influence of the smoothing parameter κ for QNing-SVRG1. κ0
denotes the default choice used in the previous experiments. We plot the value F (xk)/F ∗ − 1 as
a function of the number of gradient evaluations, on a logarithmic scale; the optimal value F ∗ is
estimated with a duality gap.

6. Discussions and concluding remarks. A few questions naturally arise
regarding the QNing scheme: one may wonder whether or not our convergence rates
may be improved, or if the Moreau envelope could be replaced by another smoothing
technique. In this section, we discuss these two points and present concluding remarks.

6.1. Discussion of convergence rates. In this paper, we have established
the linear convergence of QNing for strongly convex objectives when subproblems
are solved with enough accuracy. Since QNing uses quasi-Newton steps, one might
have expected a superlinear convergence rate as several quasi-Newton algorithms often
enjoy [11]. The situation is as follows. Consider the BFGS algorithm (without limited
memory), as shown in [14]; if the sequence (εk)k≥0 decreases superlinearly, then it
is possible to design a scheme similar to QNing that indeed enjoys a superlinear
convergence rate. There is a major downside though: a superlinearly decreasing
sequence (εk)k≥0 implies an exponentially growing number of iterations in the inner
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1436 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

loops, which will degrade the global complexity of the algorithm. This issue makes
the approach proposed in [14] impractical.

Another potential strategy for obtaining a faster convergence rate consists in in-
terleaving a Nesterov-type extrapolation step in the QNing algorithm. Indeed, the
convergence rate of QNing scales linearly in the condition number µF /LF , which
suggests that a faster convergence rate could be obtained using a Nesterov-type ac-
celeration scheme. Empirically, we did not observe any benefit of such a strategy,
probably because of the pessimistic nature of the convergence rates that are typically
obtained for quasi-Newton approaches based on L-BFGS. Obtaining a linear conver-
gence rate for an L-BFGS algorithm is still an important sanity check, but to the best
of our knowledge the gap in performance between these worst-case rates and practice
has always been huge for this class of algorithms.

6.2. Other types of smoothing. The Moreau envelope we considered is a
particular instance of infimal convolution smoothing [3], whose family also encom-
passes the so-called Nesterov smoothing [3]. Other ways to smooth a function include
randomization techniques [18] or specific strategies tailored for the objective at hand.

One of the main purposes of applying the Moreau envelope is to provide a better
conditioning. As recalled in Proposition 1, the gradient of the smoothed function F
is κ-Lipschitz continuous regardless of whether the original function is continuously
differentiable or not. Furthermore, the conditioning of F is improved with respect to
the original function, with a condition number depending on the amount of smoothing.
As highlighted in [3], this property is also shared by other types of infimal convolutions.
Therefore, QNing could potentially be extended to such types of smoothing in place of
the Moreau envelope. A major advantage of our approach, though, is its outstanding
simplicity.

6.3. Concluding remarks. To conclude, we have proposed a generic mecha-
nism, QNing, to accelerate existing first-order optimization algorithms with quasi-
Newton-type methods. QNing’s main features are compatibility with the variable
metric update rule and composite optimization. Its ability to combine with incre-
mental approaches makes it a promising tool for solving large-scale machine learning
problems. However, a few questions remain open regarding the use of the method in
a purely stochastic optimization setting, and the gap in performance between worst-
case convergence analysis and practice is significant. We are planning to address the
first question about stochastic optimization in future work; the second question is un-
fortunately difficult and is probably one of the main open questions in the literature
about L-BFGS methods.

Appendix A. Proof of Proposition 3. First, we show that the Moreau
envelope F inherits the bounded level set property from f .

Definition 2. We say that a convex function f has bounded level sets if f attains
its minimum at x∗ in Rd and, for any x, there exists Rx > 0 such that

∀y ∈ Rd s.t. f(y) ≤ f(x) we have ‖y − x∗‖ ≤ Rx.

Lemma 11. If f has bounded level sets, then its Moreau envelope F has bounded
level sets as well.

Proof. First, from Proposition 1, the minimum of F is attained at x∗. Next,
we reformulate the bounded level set property by contraposition: for any x, there
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1437

exists Rx > 0 such that

∀y ∈ Rd s.t. ‖y − x∗‖ > Rx we have f(y) > f(x).

Given x in Rd, we show that

∀y ∈ Rd s.t. ‖y − x∗‖ >
√

2(f(x)− f∗)
κ

+Rx we have F (y) > F (x).

Let y satisfy the above inequality. By definition,

F (y) = f(p(y)) +
κ

2
‖p(y)− y‖2.

From the triangle inequality,

‖y − p(y)‖+ ‖p(y)− x∗‖ ≥ ‖y − x∗‖ >
√

2(f(x)− f∗)
κ

+Rx.

Then either ‖y − p(y)‖ >
√

2(f(x)−f∗)
κ or ‖p(y)− x∗‖ > Rx.

• If ‖y − p(y)‖ >
√

2(f(x)−f∗)
κ , then

F (y) = f(p(y)) +
κ

2
‖p(y)− y‖2 > f(p(y)) + f(x)− f∗ ≥ f(x) ≥ F (x).

• If ‖p(y)− x∗‖ > Rx, then

F (y) = f(p(y)) +
κ

2
‖p(y)− y‖2 ≥ f(p(y)) > f(x) ≥ F (x).

This completes the proof.

We are now in a position to prove the proposition.

Proof of Proposition 3. From (25), we have

F (xk+1) ≤ F (xk)− 1

32κ
‖∇F (xk)‖2.

Thus, F (xk) is decreasing. From the bounded level set property of F , there exists
R > 0 such that ‖xk − x∗‖ ≤ R for any k. By the convexity of F , we have

F (xk)− F ∗ ≤ 〈∇F (xk), xk − x∗〉 ≤ ‖∇F (xk)‖‖xk − x∗‖ ≤ R‖∇F (xk)‖.

Therefore,

F (xk+1)− F ∗ ≤ F (xk)− F ∗ − 1

32κ
‖∇F (xk)‖2

≤ F (xk)− F ∗ − (F (xk)− F ∗)2

32κR2
.

Let us define rk , f(xk)− f∗. Thus,

1

rk+1
≥ 1

rk(1− rk
32κR2 )

≥ 1

rk

(
1 +

rk
32κR2

)
=

1

rk
+

1

32κR2
.

Then, after exploiting the telescoping sum, we obtain

1

rk+1
≥ 1

r0
+

k + 1

32κR2
≥ k + 1

32κR2
.
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1438 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

Appendix B. Proof of Lemma 8. Let us define δk = −B−1
k gk and let the

subproblems be solved to accuracy εk ≤ c
κ‖gk‖

2. We show that when c ≤ µ2

128(µ+κ)2

the following two inequalities hold:

(42) F (xk + δk) ≤ F (xk)− 3

8κ
‖gk‖2 + o(‖gk‖2)

and

(43) Fk+1 ≤ F (xk + δk) +
1

16κ
‖gk‖2 + o(‖gk‖2).

Then, summing the above inequalities yields

Fk+1 ≤ F (xk)− 5

16κ
‖gk‖2 + o(‖gk‖2)

≤ Fk −
1

4κ
‖gk‖2,

where the last inequality holds since F (xk) ≤ Fk and o(‖gk‖2) ≤ 1
4κ‖gk‖

2 when k is
large enough. This is the desired descent condition (11).

We first prove (42), which relies on the smoothness and Lipschitz Hessian as-
sumption of F . More concretely,

F (xk + δk)− F (xk)

≤ ∇F (xk)T δk +
1

2
δTk∇2F (xk)δk +

L2

6
‖δk‖3

= (∇F (xk)− gk)T δk + gTk δk +
1

2
δTk (∇2F (xk)−Bk)δk +

1

2
δTk Bkδk︸ ︷︷ ︸

=− 1
2 g

T
k δk

+
L2

6
‖δk‖3

=
1

2
gTk δk︸ ︷︷ ︸
E1

+ (∇F (xk)− gk)T δk︸ ︷︷ ︸
E2

+
1

2
δTk (∇2F (xk)−Bk)δk︸ ︷︷ ︸

E3

+
L2

6
‖δk‖3︸ ︷︷ ︸
E4

.

We shall upper bound each term one by one. First,

E1 =
1

2
gTk δk = −1

2
gkB

−1
k gk

= −1

2
gk∇2F (x∗)−1gk −

1

2
gk(B−1

k −∇
2F (x∗)−1)gk

≤ − 1

2κ
‖gk‖2 + o(‖gk‖2),

where the last inequality uses (DM) and the κ-smoothness of F , which implies

∇2F (x∗) � κI.

Second,

E2 = (∇F (xk)− gk)T δk ≤ ‖∇F (xk)− gk‖‖δk‖

≤
√

2c‖gk‖‖B−1
k gk‖ (from (18))

≤
√

2c‖gk‖
[
‖∇2F (x∗)−1gk‖+ ‖(B−1

k −∇
2F (x∗)−1)gk‖

]
≤
√

2c
1

µF
‖gk‖2 + o(‖gk‖2)

=
1

8κ
‖gk‖2 + o(‖gk‖2).
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INEXACT VARIABLE METRIC PROXIMAL POINT ALGORITHM 1439

Third,

E3 =
1

2
δTk (∇2F (xk)−Bk)δk ≤

1

2
‖δk‖‖(∇2F (xk)−Bk)δk‖

≤ 1

2
‖δk‖

(
‖(∇2F (xk)−∇2F (x∗))δk‖+ ‖(∇2F (x∗)−Bk)δk‖

)
≤ L2

2
‖xk − x∗‖‖δk‖2 + ‖∇2F (x∗)‖‖(B−1

k −∇
2F (x∗)−1)gk‖

= o(‖gk‖2),

where the last line comes from (DM) and the fact that ‖xk − x∗‖ → 0. Last, since

δk = −∇2F (x∗)−1gk︸ ︷︷ ︸
=O(‖gk‖)

+ (∇2F (x∗)−1 −B−1
k )gk︸ ︷︷ ︸

=o(‖gk‖) by the Dennis–Moré condition

and ‖gk‖ → 0, we have

E4 =
L2

6
‖δk‖3 = o(‖gk‖2).

Summing the above four inequalities yields (42). Next, we prove the other desired
inequality, (43). The main effort is to bound ‖gk+1‖ by a constant factor times ‖gk‖.
From the inexactness of the subproblem, we have

Fk+1 ≤ F (xk+1) +
c

κ
‖gk+1‖2 ≤ F (xk+1) +

2c

(1− 4c)κ
‖∇F (xk+1)‖2.

Moreover,

∇F (xk+1)−∇F (xk)−∇2F (x∗)(xk+1 − xk)

=

∫ 1

0

(
∇2F (xk + τ(xk+1 − xk))−∇2F (x∗)

)
(xk+1 − xk)dτ.

Therefore,

‖∇F (xk+1)−∇F (xk)−∇2F (x∗)(xk+1 − xk)‖
≤ max {‖xk − x∗‖, ‖xk+1 − x∗‖} ‖xk+1 − xk‖ = o(‖gk‖).

Then, by the triangle inequality, we have

‖∇F (xk+1)‖ ≤ ‖∇F (xk) +∇2F (x∗)(xk+1 − xk)‖+ o(‖gk‖)
≤ ‖∇F (xk)− gk‖+ ‖gk +∇2F (x∗)(xk+1 − xk)‖︸ ︷︷ ︸

=o(‖gk‖) by the Dennis–Moré condition

+o(‖gk‖)

≤
√

2c‖gk‖+ o(‖gk‖).

As a result,

Fk+1 ≤ F (xk+1) +
4c2

(1− 4c)κ
‖∇gk‖2 + o(‖gk‖2)

≤ F (xk+1) +
1

16κ
‖∇gk‖2 + o(‖gk‖2) when c ≤ 1

16
.

This completes the proof.
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1440 HONGZHOU LIN, JULIEN MAIRAL, AND ZAID HARCHAOUI

Appendix C. Additional experiments. In this section, we provide additional
experimental results, including experimental comparisons in terms of outer loop iter-
ations and an empirical study regarding the choice of the unit step size ηk = 1.

C.1. Comparisons in terms of outer-loop iterations. In the main paper,
we have used the number of gradient evaluations as a natural measure of complexity.
Here, we also provide a comparison in terms of outer-loop iterations, which does
not take into account the complexity of solving the subproblems. While interesting,
the comparison artificially gives an advantage to the stopping criterion (15), since
achieving it usually requires multiple passes.
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Fig. 6. Experimental study of the performance of QNing-SVRG with respect to the number of
outer iterations.

The result of the comparison is presented in Figure 6. We observe that the
theory-based variant QNing-SVRG always outperforms the one-pass heuristic QNing-
SVRG1. This is not surprising since the subproblems are solved more accurately
in the theoretical grounded variant. However, once we take the complexity of the
subproblems into account, QNing-SVRG never outperforms QNing-SVRG1. This
suggests that it is not beneficial to solve the subproblem up to high accuracy as long
as the algorithms converge.
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C.2. Empirical frequency of choosing the unit step size. In this section,
we evaluate how often the unit step size is taken in the line search. When the unit
step size is taken, the variable metric step provides a sufficient decrease, which is key
for acceleration. The statistics of QNing-SVRG1 (the one-pass variant) and QNing-
SVRG (the subproblems are solved until the stopping criterion (15) is satisfied) are
given in Tables 1 and 2, respectively. As we can see, for most of the iterations (> 90%),
the unit step size is taken.

Table 1
Relative frequency of picking the unit step size ηk = 1 of QNing-SVRG1. For each method, the

first column is in the form N/D, where N is the number of times the unit step size was picked over
the iterations and D is the total number of iterations. The total number of iterations D varies a
lot since we stop our algorithm as soon as the relative function gap is smaller than 10−10 or the
maximum number of iterations (100) is reached. It implicitly indicates how easy the problem is.

Logistic Elastic-net Lasso

covtype 24/27 89% 54/56 96% 19/21 90%
alpha 8/8 100% 6/6 100% 6/6 100%
real-sim 60/60 100% 71/76 93% 14/14 100%
MNIST 53/53 100% 80/80 100% 100/100 100%
CIFAR-10 58/58 100% 75/75 100% 42/44 95%

Table 2
Relative frequency of picking the unit step size ηk = 1 of QNing-SVRG. The settings are the

same as in Table 1.

Logistic Elastic-net Lasso

covtype 18/20 90% 23/25 92% 16/16 100%
alpha 6/6 100% 4/4 100% 3/3 100%

real-sim 27/27 100% 20/23 87% 8/8 100%
MNIST 27/27 100% 28/28 100% 28/28 100%

CIFAR-10 25/25 100% 29/29 100% 31/31 100%
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[27] O. Güler, New proximal point algorithms for convex minimization, SIAM J. Optim., 2 (1992),
pp. 649–664.
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